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Parabolic (3, 5, 6)-distributions

and GL(2)-structures

Wojciech Kryński

We consider rank-three distributions with growth vector (3, 5, 6).
The class of such distributions splits into three subclasses: para-
bolic, hyperbolic and elliptic. In the present paper, we deal with the
parabolic case. We provide a classification of such distributions and
exhibit connections between them and GL(2)-structures. We prove
that any GL(2)-structure on three- and four-dimensional manifold
can be described as a parabolic (3, 5, 6)-distribution.

1. Introduction

In the present paper, we deal with rank-three distributions on manifolds
of dimension 6. A generic distribution within this class is one-step bracket
generating, i.e., its growth vector is (3, 6). The equivalence problem for this
generic class of distributions was studied by Bryant [2] who also showed
that there is a canonical conformal structure associated to any distribution
of this type. Our aim is to locally classify non-generic rank-three distribu-
tions on manifolds of dimension 6. Namely, distributions which have growth
vector (3, 5, 6) and so-called parabolic symbol. Our results extend unpub-
lished results of Doubrov who considered elliptic and hyperbolic symbol [6].
We also exhibit links between distributions and GL(2)-structures.

In the recent years, GL(2)-structures have attracted much attention due
to their links to ordinary differential equations (ODEs). The first result in
this direction goes back to the paper of Chern [5] who showed that if an ODE
of third order satisfies Wünschmann condition then it defines a conformal
Lorentz metric on its solutions space. A similar observation for ODEs of
fourth order was made by Bryant in his paper on exotic holonomies [1]. The
general case was treated by Dunajski and Tod [11], whereas a more detailed
analysis of equations of order 5 was given in [13]. GL(2)-structures were also
recently studied in [10, 12, 16, 23].

Simultaneously, serious progress has been made in understanding
geometry of non-holonomic distributions, and wide classes of distributions
have been classified. In particular, the problem of equivalence was solved
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for generic distributions of rank 2 [8], of rank 3 [2, 9] and of corank 2 on
odd-dimensional manifolds [14, 17]. Besides, there is a number of results,
inspired by the discovery of Nurowski conformal structure, showing that
certain types of distributions define G-structures on manifolds [2, 22]. In
the present paper, we associate GL(2)-structures to non-generic distribu-
tions of rank 3.

To be more precise, we consider a rank-three distribution D on a six-
dimensional manifold M and assume that D has growth vector (3, 5, 6) (i.e.,
rk [D, D] = 5 and [D, [D, D]] = TM ; we say that D is (3,5,6)-distribution).
Doubrov [6] showed that the class splits into three subclasses distinguished
by the signature of a certain bilinear form associated to a distribution, i.e., D
can be either parabolic, elliptic or hyperbolic. A construction of the bilinear
form is given in Section 2. Doubrov concentrated on the elliptic and hyper-
bolic cases, which can be described in terms of Cartan geometry modelled
on SL(4). The distributions of elliptic and hyperbolic type correspond to
systems of two partial differential equations (PDEs), elliptic or hyperbolic,
respectively, for one function in two independent variables. The results of
Doubrov give clear and complete picture of the geometry of such PDEs.

The geometry of parabolic (3, 5, 6)-distributions is more complicated. In
fact, there are three inequivalent distributions which can be considered as
flat (or homogeneous) models and the geometry of each of them is different.
One of them is the canonical Cartan distribution on the mixed jet space
J2,1(R, R2) defined as the annihilator of the following one-forms

du − u1dt, du1 − u2dt, dv − v1dt,

where (t, u, v, u1, u2, v1) are natural coordinates on J2,1(R, R2). The two
other flat models can be extracted from [18] where the classification of low-
dimensional, nilpotent, graded Lie algebras is given. The Lie algebras define
in a natural way canonical distributions on the corresponding Lie groups
(see [17] for detailed explanation of the construction) and these distribu-
tions are called flat. The two algebras corresponding to parabolic (3, 5, 6)-
distributions are denoted m6 3 3 and m6 3 4 in the notation of [18]. It is
computed in [18] that the two algebras have infinite Tanaka prolongation.
It follows that the algebras of infinitesimal symmetries of the corresponding
flat models are infinite-dimensional. The same holds for the Cartan distri-
bution on J2,1(R, R2). Therefore the picture is completely different if com-
pared to generic (3, 6)-distribution, or to (3, 5, 6)-distribution with elliptic
or hyperbolic symbol, where the dimension of the group of symmetries is
always finite and the most symmetric distribution is unique up to a local
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equivalence. The reason for infinite dimensionality in the parabolic case is
the existence of non-trivial Cauchy characteristics of the Lie square [D, D]
of a parabolic (3, 5, 6)-distribution D. In Section 3, we use the Cauchy char-
acteristic to define a reduction of D. The reduction allows to interpret the
original problem of equivalence of distributions as the problem of equivalence
of certain structures on lower-dimensional manifolds. The process of reduc-
tion and the converse construction is analogous to the process of reduction
of Goursat distributions [3, 20].

Our solution to the problem of equivalence is given in Sections 4, 5 and 6.
It splits into several branches which correspond to different flat models. Mor-
eover, we discover that all GL(2)-structures on three- and four-dimensional
manifolds can be interpreted as certain parabolic (3, 5, 6)-distributions. In
dimension 4, the result does not depend on whether a GL(2)-structure is
defined by an ODE (in the case of dimension 3 all GL(2)-structures are of
equation type, see [12, 16]). Therefore, as a by-product, we get a unified
model for all GL(2)-structures on four-dimensional manifolds.

There is no clear interpretation of parabolic (3, 5, 6)-distributions as
systems of PDEs. One can observe that, unlike in the elliptic and hyper-
bolic cases, parabolic systems of two PDEs in two variables give rise not
to (3, 5, 6)- but (3, 4, 6)-distributions, which can be reduced to (2, 3, 5)-
distributions considered by Cartan in his famous paper [4]. In Section 7,
we provide PDE models for one branch in our classification.

2. Preliminaries

Let D be a (3, 5, 6)-distribution on a manifold M . Then, the Lie bracket
of vector fields gives rise, at each point x ∈ M , to the map D(x) ∧ D(x) →
[D, D](x)/D(x)

(v1, v2) �→ [V1, V2](x) mod D(x),

where in order to compute the Lie bracket on the right-hand side we extend
vectors v1, v2 ∈ D(x) to local sections V1 and V2 of D in an arbitrary way,
and the result does not depend on the extensions. Since dimD(x) ∧ D(x) = 3
and dim[D, D](x)/D(x) = 2 the mapping has one-dimensional kernel. Any
element of D(x) ∧ D(x) is decomposable and thus there is the unique
subdistribution

D2 ⊂ D

of rank 2 such that [D2, D2] ⊂ D. (As a matter of fact D2 is defined by the
image of the singular exponential map associated to D [15, 19].)
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There are two cases: D2 can be integrable or [D2, D2] = D (in a neigh-
bourhood of a generic point). In the second case D is uniquely determined by
D2, which has growth vector (2, 3, 5, 6). All distributions of type (2, 3, 5, 6)
were classified in [8]. Therefore, in what follows, we will assume that D2 is
integrable. We will denote

D5 = [D, D].

Now, assume that (X1, X2) is a local frame of D2, and let Y be a vector
field complementing X1 and X2 to a local frame of D. Define

Yi = [Y, Xi].

Then (X1, X2, Y, Y1, Y2) is a local frame of [D, D] and we can complement
this tuple to the full local frame on M by choosing a vector field Z. Following
Doubrov [6] we define a 2 × 2 matrix-valued function (aij) by the formula:

[Xi, Yj ](x) = aij(x)Z(x) mod [D, D](x).

The matrix (aij) has the following properties

1. (aij) is symmetric. Indeed

[Xi, Yj ] = [Xi, [Y, Xj ]] = [Xj , [Y, Xi]] + [Y, [Xi, Xj ]] = [Xj , Yi] mod [D, D]

since [Xi, Xj ] is a section of D2 ⊂ D.

2. If we choose different vector fields Y and Z then (aij) is multiplied by
a function. Indeed, if

Y �→ αY mod D2, Z �→ βZ mod D5

then
(aij) �→ α

β
(aij).

3. If we choose a different frame of D2, Xi �→ bi1X1 + bi2X2 then (aij)
transforms as a bilinear form, i.e.

(aij) �→ (bij)T(aij)(bij).

Therefore, at each point x ∈ M , the matrix (aij) defines a bilinear symmetric
form on D2(x) given up to multiplication by a number. There are three cases
depending on the signature of (aij(x)): if (aij(x)) is definite then we say that
D is elliptic at x, if (aij(x)) is indefinite then we say that D is hyperbolic at
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x, or if (aij(x)) is not of a full rank then we say that D is parabolic at x.
The parabolic case splits to the two subsequent cases: if (aij(x)) has rank 1
then we say that D is non-degenerate parabolic at x or if (aij(x)) has rank
0 then we say that D is degenerate parabolic at x.

Definition. A (3, 5, 6)-distribution D is regular at x ∈ M if there exists
a neighbourhood of x such that the signature of (aij) is constant in this
neighbourhood (D is either elliptic or hyperbolic or non-degenerate parabolic
or degenerate parabolic). Otherwise we say that D is irregular at x.

Clearly if D is elliptic or hyperbolic at x then it is also elliptic or hyper-
bolic in a small neighbourhood of x, because (aij(x)) depends smoothly on
a point x ∈ M . Thus all elliptic and hyperbolic points are regular. On the
other hand there are irregular parabolic points, but we will not consider
them in the present paper. We will consider a problem of local equivalence
of (3, 5, 6)-distributions at regular parabolic points and we will just say that
D is parabolic (degenerate or non-degenerate).

In the whole paper we say that two structures on a manifold are (locally)
equivalent if there exists a (local) diffeomorphism transforming one structure
onto the other.

3. Reduction

Assume first that D is degenerate parabolic. It follows that [Xi, Yj ] = 0
mod D5. However, [D, D5] = TM , so for each choice of Y as in Section 2 we
have a surjection D5(x) → TxM/D5(x)

v �→ [Y, V ](x) mod D5(x),

where V is an extension of v ∈ D5(x) to a local section of D5. The mapping
has a four-dimensional kernel, which does not depend on the choice of Y .
Therefore there is a well-defined subdistribution D4 ⊂ D5. Clearly D ⊂ D4.
Now we can consider the mapping D2(x) → D5(x)/D4(x)

v �→ [Y, V ](x) mod D4(x),

where V is an extension of v ∈ D2(x) to a local section of D2. This mapping
has a one-dimensional kernel D1 ⊂ D2, which is again invariantly assigned
to a distribution.

If D is non-degenerate parabolic then the situation looks similar. Namely
the matrix (aij(x)), which is a bilinear form on D2, has a one-dimensional
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kernel for any x. Thus we have a rank-one distribution D1 ⊂ D2. Then we
can define D4 = [D1, D].

Denoting D3 = D, in both cases we get the flag

D1 ⊂ D2 ⊂ D3 ⊂ D4 ⊂ D5 ⊂ TM.

Lemma 3.1. If D is a regular parabolic (3, 5, 6)-distribution on a manifold
M , then the associated flag (Di)i=1,...,5 satisfies

(3.1) [D1, D2] = D2, [D1, D3] = D4, [D1, D4] = D4.

Proof. The first equality follows from the fact that D2 is always integrable
in our context. The second follows from the definition of D1 and D4. In
order to prove [D1, D4] = D4, let us assume that (X1, X2, Y, Y1, Y2, Z) is a
local frame on M as in Section 2. Moreover assume that X1 spans D1. Then
Y1 = [Y, X1] complements (X1, X2, Y ) to a local frame of D4. We shall show
that [X1, Y1] = 0 mod D4. In general, we have

[X1, Y1] = fY2 mod D4,

for some f . The proof splits into two cases.
In the degenerate case we may assume that Z = [Y, Y2]. Then we consider

[Y, [X1, Y1]] and apply Jacobi identity. On the one hand, we get

[Y, [X1, Y1]] = fZ mod D5.

On the other hand, we get

[Y, [X1, Y1]] = [Y1, Y1] + [X1, [Y, Y1]] = 0 + [X1, Ỹ ] mod D5,

for some section Ỹ of D5. But, since (aij) = 0, we get [X1, Ỹ ] = 0 mod D5

and consequently f = 0.
In the non-degenerate case, we may assume that Z = [X2, Y2]. Then we

consider [X2, [X1, Y1]] and apply the Jacobi identity. On the one hand, we get

[X2, [X1, Y1]] = fZ mod D5.

On the other hand, we get

[X2, [X1, Y1]] = [X̃, Y1] + [X1, Ỹ ] mod D5,
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for some section X̃ of D2 and some section Ỹ of D5. But, by the definition
of our frame, the only non-zero entry of (aij) is a22, so we get [X̃, Y1] =
[X1, Ỹ ] = 0 mod D5. As a result we get f = 0 as desired. �

Now we can define the fundamental reduction of parabolic (3, 5, 6)-
distribution. Namely, from (3.1) it follows that D1 is contained in Cauchy
characteristic of both D2 and D4. Thus we can consider (at least locally)
the quotient manifold N = M/D1 with the quotient mapping

q : M → N,

and with two well-defined distributions

B1 = q∗(D2), B3 = q∗(D4),

such that rkB1 = 1, rkB3 = 3 and B1 ⊂ B3. A pair (B1, B3) on N will be
called the reduced pair of D.

Remark. We do not consider global properties of D1. Therefore, we do not
know if the quotient M/D1 is a well-defined manifold. However, as we are
interested only in the problem of local classification of D near x ∈ M , we
can always restrict to a sufficiently small neighbourhood U ⊂ M of x such
that the quotient NU = U/(D1|U ) is well defined. Writing N we will always
have in mind NU even if it is not written explicitly.

There exists also the converse construction and it appears that the
reduced pair (B1, B3) contains almost all information about the original
distribution D. In fact the construction is very similar to the construc-
tion of Cartan prolongation for Goursat distributions (cf.[20, 21]). Having
a pair (B1, B3) on a manifold N , we consider the quotient vector bundle
B3/B1 → N , and we define a manifold

M̃ = P (B3/B1),

where P (B3/B1) is the total space of the projectivisation of the bundle
B3/B1 → N . M̃ is a manifold of dimension dimN + 1, and we have the
projection π : M̃ → N .

Let x ∈ M̃ . Then x is an element of P (B3(π(x))/B1(π(x))), and it will
be convenient to denote

L(x) = two-dimensional subspace of B3(π(x))
defining x as an element of P (B3(π(x))/B1(π(x))).
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We define a canonical rank-three distribution on M̃ by the following formula

D̃3(x) = {v ∈ TxM̃ | π∗(v) ∈ L(x)}, x ∈ M̃.

By definition D̃3 contains the vertical rank-one distribution

D̃1 = kerπ∗,

which is tangent to the fibres of π. There is also a well-defined rank-two
distribution

D̃2 = π−1
∗ (B1).

Moreover, it can be easily seen that

D̃4 = [D̃1, D̃3]

is a rank-four distribution that coincides with π−1∗ (B3). It follows that the
flag D̃1 ⊂ D̃2 ⊂ D̃3 ⊂ D̃4 satisfies relations (3.1).

Lemma 3.2. Assume that D1 ⊂ D2 ⊂ D3 ⊂ D4 satisfies (3.1). Then the
natural mapping Φ: M → M̃

Φ(x) = q∗(D3(x))/B1(q(x)) ∈ P (B3(q(x))/B1(q(x)))

is a local diffeomorphism that establishes an equivalence of flags (Di)i=1,...,4

and (D̃i)i=1,...,4. In particular, D3 in a neighbourhood of x is locally equiva-
lent to D̃3 in a neighbourhood of Φ(x).

Proof. The first and the third relation of (3.1) allow us to define the reduc-
tion and the mapping Φ. The second relation of (3.1) will be used to prove
that Φ establishes a local equivalence of flags (Di)i=1,...,4 and (D̃i)i=1,...,4. By
construction q∗(Di(x)) = π∗(Φ∗(Di(x))) = π∗(D̃i(Φ(x))) for any x ∈ M and
i = 1, 2, 3, 4. Therefore, in order to finish the proof, it is sufficient to prove
that Φ is a local diffeomorphism. Since π and q are projections to the same
manifold, it is sufficient to prove that Φ∗ is non-degenerate on the fibres
of q. But the second relation of (3.1) implies that there exists a section X
of D1 and a section Y of D3, transversal to D2 ⊂ D3 such that [X, Y ] is
transversal to D3 ⊂ D4. It follows that Φ∗(X) �= 0. �

Assume that D is a parabolic (3, 5, 6)-distribution. Lemma 3.2 does
not say that D̃3 is a parabolic (3, 5, 6)-distribution in a neighbourhood
of an arbitrary x̃ ∈ M̃ . We can only conclude that D̃3 is a parabolic
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(3, 5, 6)-distribution in a neighbourhood of a point x̃ ∈ Im Φ. In fact D̃3

can have the growth vector (3, 4, . . .) at some points and this phenomenon
is similar to the fact that there exist singular Goursat distributions [20, 21].
Indeed, we will prove later (Lemmas 4.1 and 5.2) the following fact:

Fact 3.1. Let D be a parabolic (3, 5, 6)-distribution and let (B1, B3) be the
associated reduced pair. There is a unique rank-two subdistribution B2 of B3

such that [B2, B2] ⊂ B3.

Taking this fact into account we can choose a local frame (Z1, Z2, Z3)
of B3 such that Z1 spans B1 and (Z1, Z2) is a local frame of B2. Then it
follows that [Z1, Z2] = 0 mod B3. Now, at a fixed point z ∈ N the vectors
Z2(z), Z3(z) ∈ TzN define a basis of B3(z)/B1(z) and we can introduce the
following parametrization of the projective space P (B3(z)/B1(z))

(t : s) �→ span{tZ2(z) + sZ3(z)}.

We get two affine parameters t and s on the bundle π : P (B3/B2) → N .
Then

(3.2) D̃3(t) = span{∂t, Z1, Z3 + tZ2},

for points (t : s) such that s �= 0 and

(3.3) D̃3(s) = span{∂s, Z1, sZ3 + Z2},

for points (t : s) such that t �= 0. If we compute the Lie square [D̃3, D̃3]
we see that it is a rank-five distribution provided that s �= 0. On the other
hand, if s = 0, then [D̃3, D̃3] is of rank 4 (it is spanned by ∂s, Z1, Z2, Z3

and [Z1, Z2], however [Z1, Z2] is contained in B3 at s = 0). Thus, if we start
with a parabolic (3, 5, 6)-distribution D then q∗(D(x)) does not coincide
with B2(q(x)) ⊂ B3(q(x)) for any x ∈ M . Otherwise it would contradict
Lemma 3.2. To conclude we state the following.

Corollary 3.1. A germ of a regular parabolic (3, 5, 6)-distributions D at
x ∈ M is uniquely determined by a germ of the corresponding reduced pair
(B1, B3) at q(x) ∈ N together with the point Φ(x) ∈ P (B3(q(x))/B1(q(x)))
which corresponds to L(Φ(x)) = q∗(D3(x)) ⊂ B3(q(x)). Moreover, q∗(D3(x))
does not coincide with B2(q(x)).
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4. The degenerate case

In this section, we consider degenerate parabolic (3, 5, 6)-distributions.

Lemma 4.1. Let D be a degenerate parabolic (3, 5, 6)-distribution on M
and let (B1, B3) be the associated reduced pair on N . Then

1. B4 = [B3, B3] = [B1, B3] is a rank-four distribution,

2. [B1, B4] = B4, [B4, B4] = TN ,

3. B3 has a rank-one Cauchy characteristic C, and B2 = C ⊕ B1 is
Cauchy characteristic of B4. In particular B2 is integrable.

Proof. The first two statements follow immediately from the definition of
the flag (Di)i=1,...,5 and the definition of Bi. Namely, in the degenerate case,
[D4, D4] = [D2, D4] = D5, [D2, D5] = D5 and [D5, D5] = TM .

It follows from statements 1 and 2 that B3 has growth vector (3, 4, 5), so
it has Cauchy characteristic C which is of rank one. The Cauchy characteris-
tic C does not coincide with B1 since [B1, B3] = B4. Therefore B2 = C ⊕ B1

is a distribution of rank 2. To prove that B2 is Cauchy characteristic of
B4, let us choose a vector field V that spans B1 and a vector field W
that spans C. Moreover, let U be a vector field complementing (V, W ) to a
local frame of B3. Then (V, W, U, [V, U ]) is a local frame of B4. Additionally
[W, V ] = [W, U ] = 0 mod B3, since W is a section of Cauchy characteristic
of B3. Hence

[W, [V, U ]] = [[W, V ], U ] + [V, [W, U ]] = 0 mod B4.
�

Now we are ready to prove our first main result.

Theorem 4.1. All degenerate parabolic (3, 5, 6)-distributions are locally
equivalent to the canonical Cartan distribution on the mixed jet space J2,1(R,
R

2). In natural coordinates (t, u, v, u1, u2, v1) on J2,1(R, R2) the distribution
is annihilated by the following one-forms

du − u1dt, du1 − u2dt, dv − v1dt.

Proof. Lemma 4.1 implies that B3 ⊂ B4 ⊂ TN is Goursat flag of length 2
and therefore one can choose local coordinates (t, u, u1, u2, v) such that

(4.1) B3 = span{∂t + u1∂u + u2∂u1 , ∂u2 , ∂v}
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(see [20], p. 462). The Cauchy characteristic of B3 is spanned by ∂v and
the Cauchy characteristic of B4 is spanned by ∂u2 and ∂v. Thus we have
(see statement 3 of Lemma 4.1): C = span{∂v} and B1 = span{∂u2 + α∂v}
for some function α : N → R. However, on each leaf of the foliation tangent
to the integrable distribution B2 = C ⊕ B1 we can make a local change of
coordinates (v, u2) �→ (φ(v, u2, t, u, u1), u2) in such a way that

(4.2) C = span{∂v}, B1 = span{∂u2}.

(One just solves the ODE: (∂u2 + α∂v)(φ) = 0 with the condition ∂vφ �= 0).
In new coordinates ∂t + u1∂u + u2∂u1 is unchanged modulo ∂v. Therefore,
formula (4.1) is satisfied also in new coordinates.

Now, by Corollary 3.1 and remarks following Lemma 3.2 we can con-
clude that any germ of a degenerate parabolic (3, 5, 6)-distribution has the
following form

D = span{∂v1 , ∂u2 , ∂t + u1∂u + u2∂u1 + v1∂v},

where v1 plays the role of t in the formula (3.2). This is just the Cartan
distribution on the mixed jet space J2,1(R, R2). �

5. The non-degenerate case: symbol algebras and the
reduced pair

In this section, we consider non-degenerate parabolic (3, 5, 6)-distributions
and provide their basic properties. In this case, besides relations (3.1), we
also have the following relations

(5.1) [D1, D5] = D5, [D2, D3] = D5, [D2, D4] = D5, [D2, D5] = TM.

All of them follow directly form the definitions. Relations (3.1) and (5.1)
implies that it is reasonable to introduce the following graded Lie algebra
at each point x ∈ M :

g(x) =
7⊕

i=1

g−i(x),

where

g−1(x) = D1(x), g−2(x) = D2(x)/D1(x), g−3(x) = D3(x)/D2(x),
g−4(x) = D4(x)/D3(x), g−5(x) = D5(x)/D4(x), g−6(x) = 0,

g−7(x) = TxM/D5(x).
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and the bracket in g(x) is defined in a standard way using the Lie bracket of
vector fields. The Lie algebra g(x) is assigned to a distribution D at point x
in an invariant way, and it will be called the symbol algebra. We use negative
grading in order to be consistent with Tanaka theory.

Our first aim is to classify all possible graded Lie algebras g =
⊕7

i=1 g−i,
that can appear as the symbol of a non-degenerate parabolic (3, 5, 6)-
distribution.

Lemma 5.1. Let g =
⊕7

i=1 g−i be a symbol algebra of a non-degenerate
parabolic (3, 5, 6)-distribution D at some point x ∈ M . Then there exists a
basis e1, . . . , e5, e7 of g such that ei spans g−i,

1. [e1, e2] = 0,

2. [e1, e3] = e4,

3. [e1, e4] = 0,

4. [e2, e3] = e5,

5. [e2, e5] = e7,

6. [e3, e4] = εe7,

where ε = 0 or ε = 1 and all other brackets [ei, ej ] vanish. Thus, there are
exactly two inequivalent symbols.

Proof. First of all, Lie brackets [ei, ej ] not listed in the lemma necessarily
vanish due to the definition of a graded Lie algebra.

If we choose a local frame (X1, X2, Y, Y1, Y2, Z) as in Section 2 in such
a way that X1 spans D1 then we can take e1 = X1(x), e2 = X2(x), e3 =
Y (x), e4 = Y1(x), e5 = Y2(x) and e7 = Z(x) (ei is defined modulo ej , j < i).
Then we have [e1, e3] = e4 and [e2, e3] = e5. Moreover, we can assume that
Z = [X2, Y2] and then [e2, e5] = e7. The Lie bracket [e1, e2] vanishes because
D2 is integrable. The Lie bracket [e1, e4] vanishes due to the third relation
of Lemma 3.1. Then we have [e3, e4] = εe7 for some ε ∈ R. However, if we
substitute Y �→ αY for some α �= 0 then a simple calculation proves that ε
becomes αε. Hence, if ε �= 0 we can assume ε = 1. �

Remark. The two symbols appear in the paper [18] and are denoted:
m6 3 3 (for ε = 0) and m6 3 4 (for ε = 1). Flat distributions on Lie groups
corresponding to the two graded Lie algebras have infinite-dimensional alge-
bras of infinitesimal symmetries. For simplicity, m6 3 3 we will denote g0

and m6 3 4 we will denote g1.
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In the next two lemmas, we provide basic properties of the reduced pair
(B1, B3) associated to a non-degenerate parabolic distribution.

Lemma 5.2. Let D be a non-degenerate parabolic (3, 5, 6)-distribution on
M , and let (B1, B3) be the associated reduced pair on N . Then

1. [B1, B3] = B4 is a rank-four distribution,

2. [B1, B4] = TN ,

3. there exists a unique rank-two subdistribution B2 ⊂ B3 such that [B2,
B2] ⊂ B3 and B1 ⊂ B2.

Conversely, if a pair (B1, B3) satisfies conditions 1 and 2 above, then D̃,
as defined in Section 3 on the manifold M̃ , is a non-degenerate parabolic
(3, 5, 6)-distribution in a neighbourhood of any point x ∈ M̃ such that the
corresponding two-dimensional subspace L(x) ⊂ B3 defining x as a point in
P (B3(π(x))/B1(π(x))) does not coincide with B2(x).

Proof. The first two statements immediately follow from the definition of
the flag (Di)i=1,...,5 and the definition of Bi. Namely, in the non-degenerate
case, [D2, D4] = D5 and [D2, D5] = TM by formula (5.1).

To prove statement 3 let us choose a vector field X that spans B1

and consider a mapping B3(x) → B4(x)/B3(x) defined by the formula v �→
[X, V ](x) mod B3(x), where V is an extension of v ∈ B3(x) to a local sec-
tion of B3. It follows from statement 1 that this mapping has a two-
dimensional kernel, denoted B2(x).

Note that if B3 has growth vector (3, 4, 5), then it has Cauchy charac-
teristic C, which is a distribution of rank 1. Then B2 = B1 ⊕ C. If B3 has
growth vector (3, 5) then it is well known that the square root of B3 exists.
This square root is exactly B2 defined above.

To prove that any pair (B1, B3) satisfying conditions 1 and 2 defines a
non-degenerate parabolic (3, 5, 6)-distribution D̃ on M̃ in a neighbourhood
of a point which does not correspond to B2 we first have to show that
rk [D̃, D̃] = 5. This follows from formula (3.2) and the relation [B1, B3] = B4.
As a conclusion we can define D̃5 = [D̃, D̃] = π−1∗ (B4). Then the condition
[B1, B4] = TN reads that [D̃2, D̃5] = TM̃ and, by construction, [D̃1, D̃5] =
D̃5, since D̃1 is tangent to the fibres of π : M̃ → N and D̃5 is a pull-back
of B4, i.e., D̃5 = π−1∗ (B4). Thus the bilinear form (aij) has rank 1 and it
completes the proof of the lemma. �



794 Wojciech Kryński

Lemma 5.3. Let D be a non-degenerate parabolic (3, 5, 6)-distribution on
M , let (B1, B3) be the associated reduced pair, and let g(x) be a symbol
algebra of D at x ∈ M . Then, g(x) is isomorphic to g0 iff B3 has growth
vector (3, 4, 5) at x and g(x) is isomorphic to g1 iff B3 at x has growth
vector (3, 5) at x.

Proof. By Lemma 5.2 there are only two possible growth vectors of B3:
(3, 4, 5) or (3, 5), because rk [B3, B3] ≥ rk [B1, B3] = 4 and [B3, [B3, B3]] ⊃
[B1, B4] = TN . Let us choose a local frame (X1, X2, Y, Y1, Y2, Z) as in the
proof of Lemma 5.1. If we take into account that B3 = q∗(D4) = q∗(span{X1,
X2, Y, Y1}) then this characterization of g(x) in terms of B3 becomes
obvious. �

In order to exclude irregular points, we will need one more regularity
condition.

Definition. A non-degenerate parabolic (3, 5, 6)-distribution D is called
completely non-degenerate if the associated distribution B2 has locally con-
stant growth vector.

It follows that if D is completely non-degenerate then either B2 is inte-
grable or [B2, B2] = B3. In the second case, B3 is determined by B2, so we
can consider the pair (B1, B2) instead of (B1, B3).

In view of Lemmas 5.3 and 5.2 there are four possibilities at a point
x ∈ M . A non-degenerate parabolic (3, 5, 6)-distribution can have a symbol
algebra g0 or g1, and B2 can be integrable or not. Note that if D has symbol
g1 at x, then it has symbol g1 in a neighbourhood of x.

6. The non-degenerate case: GL(2)-structures
and canonical frames

A GL(2)-structure on a manifold M is a vector bundle isomorphism

TM = S � · · · � S︸ ︷︷ ︸
dim M−1

,

where � is a symmetric tensor product and S → M is a rank-two vector
bundle over M . The natural action of the group GL(2) on S extends to
an irreducible action of GL(2) on TM and any tangent space TxM can
be identified with the space of homogeneous polynomials in two variables
of order dimM−1.
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GL(2)-structures generalize Lorentz conformal metrics in dimension 3.
Indeed, the splitting TM = S � · · · � S defines the following cones

C(x) =

⎧
⎨

⎩v � · · · � v︸ ︷︷ ︸
dim M−1

| v ∈ S(x)

⎫
⎬

⎭ ⊂ TxM.

It follows that C(x) is a rational curve of order dimM−1 in TxM . In the
case dim M = 3 it defines a cone of null-directions of a conformal Lorentz
metric on M . Moreover, one can observe that the field x �→ C(x) encodes a
GL(2)-structure uniquely. We refer to [11] for details on GL(2)-structures
(called paraconformal structures in this paper).

The importance of GL(2)-structures is based on the fact that they
appear as basic geometric structures on solutions spaces of ODEs [1, 5,
11, 12]. In the simplest case the structures are described by the profound
result of Chern [5]: if a third-order ODE given in the form

x′′′ = F (t, x, x′, x′′)

satisfies the Wünschmann condition

X2
F (∂x2F ) − 2∂x2FXF (∂x2F ) − 3XF (∂x1F ) + 6∂x0F +

4
9
(∂x2F )3

+ 2∂x2F∂x1F = 0,

where XF = ∂t + x1∂x0 + x2∂x1 + F (t, x0, x1, x2)∂x2 is the total derivative,
then it defines a conformal Lorentz metric on the solutions space. More-
over, an arbitrary conformal Lorentz metric can be obtained in this way.
The Wünschmann condition is invariant under contact transformations of
variables.

In the case of equations of order k > 3 the Wünschmann condition is
replaced by the set of k − 2 conditions [1, 11]. However, if k > 3 then not
every GL(2)-structure comes from an ODE [12, 16]. In order to characterize
GL(2)-structures that are defined by ODEs we have introduced in [16] the
following definition:

Definition. A pair (E1, E2) of two distributions on a manifold M of dimen-
sion n is regular if

1. rkE1 = 1, rkE2 = 2, E1 ⊂ E2.

2. rk adi
E1

E2 = i + 2 for i = 1, . . . , n−2, where adi
E1

E2 are distributions
defined by induction: adE1E2 = [E1, E2] and adi+1

E1
E2 = [E1, adi

E1
E2].
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The notion of regular pairs generalizes the notion of ODEs. Namely, for
a given equation of order k

x(k) = F (t, x, x′, . . . , x(k−1)),

we define E1 = span{XF } and E2 = {XF , ∂xk−1} where

XF = ∂t + x1∂x0 + · · · + xk−1∂xk−2 + F∂xk−1

is the total derivative. Then E2 is the canonical Cartan distribution on
the space of jets and we get that (E1, E2) is regular. Regular pairs locally
equivalent to pairs defined by ODEs are called of equation type. An intrinsic
characterization of such pairs is given in [16].

There is also a notion of Wünschmann condition for regular pairs. The
notion generalizes the notion of Wünschmann condition in the case of ODEs.
Roughly speaking, the evolution of E2 along an integral curve of E1 defines
an unparameterized curve in a projective space. One can compute Wilczyński
invariants [24] for the curve and the Wünschmann condition is defined as
the vanishing of all Wilczyński invariants of the curve. The geometric mean-
ing of the condition is that (E1, E2) satisfies the Wünschmann condition if
and only if there exists a local frame (X1, X2) of E2 such that X1 spans
E1 and adn

X1
X2 = 0 mod E1. It is an easy observation [16] that there is

one-to-one correspondence between germs of GL(2)-structures and germs of
regular pairs satisfying Wünschmann condition.

Now we are in position to state our main results.

Theorem 6.1. Let D be a completely non-degenerate parabolic (3, 5, 6)-
distribution on M such that the associated distribution B2 on N is non-
integrable. Then:

1. The pair (B1, B2) is regular in the sense of [16].

2. There exists a canonical frame on a T (2)-bundle over N , where T (2) ⊂
GL(2) is the subgroup of upper-triangular matrices. Two pairs are
equivalent if and only if the corresponding frames are diffeomorphic.

3. The pair (B1, B2) is of equation type if and only if D has constant
symbol algebra g0.

4. If (B1, B2) satisfies the Wünschmann condition, then it defines a
GL(2)-structure on the quotient manifold N/B1, which is of dimen-
sion 4; conversely all germs of GL(2)-structures on four-dimensional
manifolds can be obtained in this way.
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Proof. Statement 1 follows from the assumption [B2, B2] = B3, which implies
[B1, B2] = B3 and together with Lemma 5.2 proves that (B1, B2) is a reg-
ular pair. In order to prove statement 3 let us recall from [16] that a reg-
ular pair (E1, E2) on five-dimensional manifold is of equation type if and
only if [E1, E2] has growth vector (3, 4, 5). Thus statement 3 follows from
Lemma 5.3. Statement 4 is just a consequence of statement 1 and results
of [16] (Theorem 1.1).

Statement 2 in the case of regular pairs of equation type follows from [7],
where a proof is given that for an arbitrary equation of fourth order there is a
normal Cartan connection on a T (2)-bundle. Besides, the case when (B1, B2)
satisfies the Wünschmann condition follows from [1], where a canonical con-
nection is defined for the associated GL(2)-structure. The construction of
the canonical frame in the general case will be provided in a forthcoming
paper. In the general case, we are able to construct not a Cartan connection,
but just a frame on a bundle. �

Theorem 6.2. Let D be a completely non-degenerate parabolic (3, 5, 6)-
distribution on M such that the associated distribution B2 on N is integrable.
If D has constant symbol g0 then:

1. The Cauchy characteristic C of B3 is contained in Cauchy characteris-
tic of B2, so there is a well-defined reduction p : N → O, A1 = p∗(B2),
A2 = p∗(B3), where O = N/C, and the pair (B1, B3) is uniquely
defined by the pair (A1, A2).

2. The pair (A1, A2) is regular in the sense of [16].

3. If (A1, A2) satisfies the Wünschmann condition, then it defines a con-
formal Lorentz metric on the quotient manifold O/A1, which is of
dimension 3; conversely all germs of conformal Lorentz metrics on
three-dimensional manifolds can be obtained in this way.

Proof. If D has symbol g0 then B3 has growth vector (3, 4, 5) and it defines
a Goursat flag. Then, as in the proof of Theorem 4.1, we can choose local
coordinates on N such that

B3 = span{∂t + u1∂u + u2∂u1 , ∂u2 , ∂v}.

Then C = span{∂v}. But, since [B1, B3] = B4 and [B1, B4] = TN , we get
that B1 has to be of the form

B1 = span{∂t + u1∂u + u2∂u1 + F∂u2 + α∂v}
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for some functions F and α. From the proof of Lemma 5.2 it follows that
B2 = B1 ⊕ C is integrable. In order to prove that (B1, B3) is defined by
(A1, A2) note that the integrability of B2 implies that F does not depend
on v and, as in the proof of Theorem 4.1, we can change local coordinates
in such a way that α ≡ 0. Since C = span{∂v}, the functions (t, u, u1, u2)
constitutes a system of local coordinates on O = N/C. B1 is a function of
(t, u, u1, u2) only and in coordinates we can write A1 = B1. Thus, we see
that N has locally a structure of a Cartesian product N = N/C × C which
is compatible with the pair (B1, B3), i.e., the pair (A1, A2) on N/C defines
the pair (B1, B3) on N by the formula: B1 = A1 and B3 = A2 ⊕ C.

Statement 2 follows from the fact that B3 has growth vector (3, 4, 5)
which implies that A2 has growth vector (2, 3, 4). Additionally [A1, A3] =
TO since [B2, B4] = TN as was proved in Lemma 5.2. Statement 3 is a
corollary of Theorem 1.1 [16] applied to regular pairs on four-dimensional
manifolds. �

Remark. Since all regular pairs on four-dimensional manifolds are of
equation type [12, 16], the problem of equivalence of parabolic (3, 5, 6)-
distributions described in Theorem 6.2 is reduced to the problem of con-
tact equivalence of ODEs of third order. The last problem was solved by
Chern [5], who constructed a Cartan connection taking values in sp(4, R)
(see also [7]).

We can summarize Theorems 6.1 and 6.2 in the following table

g0 g1

integrable B2 third-order ODEs ?
[B2, B2] = B3 fourth-order ODEs regular pairs not of equation type

Open problem. Classify all non-degenerate parabolic (3, 5, 6)-
distributions with integrable B2 and symbol g1. In this case B3 is equiv-
alent to the Cartan distribution on the space J1(R, R2) and B2 is the
integrable subdistribution of B3 tangent to the fibres of the projection
J1(R, R2) → J0(R, R2). However the choice of B1 ⊂ B2 should give non-
equivalent D.

7. Symmetric models and PDEs

In this section, we will provide examples of non-degenerate parabolic (3, 5, 6)-
distributions.
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We start with two flat models. Namely, for algebras g0 and g1 we can
construct Lie groups G0 and G1 such that gi is the Lie algebra of Gi. Then
on Gi we can define a left-invariant rank-three distribution Di such that
at the identity element e ∈ Gi we have Di(e) = gi−1 ⊕ gi−2 ⊕ gi−3. Then it is
clear that Gi admits a frame (X1, X2, Y, Y1, Y2, Z) of left-invariant vector
fields that is adapted to Di in a sense of the proof of Lemma 5.1 and have
structure constants such as algebra gi. Moreover, any distribution which
has an adapted frame with structure constants such as algebra gi is locally
equivalent to the distribution Di on Gi. We call Di the flat distribution of
type gi. Below we will present PDE models for D0 and D1, but first we show
normal forms of distributions corresponding to ODEs from Theorems 6.1
and 6.2. The following theorem can be relatively easy obtained in a process
inverse to the reduction of Section 3.

Theorem 7.1. Any non-degenerate parabolic (3,5,6)-distribution D with
constant symbol g0 can be locally put in the form

(7.1) du1 − u2dx, du2 − zdx, du3 − G(x, y, z, u1, u2, u3)dx + zdy,

for a function G satisfying X2(G) = 0, where X = ∂y − z∂u3. If B2 is inte-
grable, then G can be taken in the form

(7.2) G(x, y, z, u1, u2, u3) = F (x, u1, u2, z)y,

for a function F in four variables. If B2 is non-integrable, then G can be
taken in the form

(7.3) G(x, y, z, u1, u2, u3) = F (x, u1, u2, z, u3 + yz) − yu3 − y2z,

for a function F in five variables.

Proof. First, we check by direct computations that (7.1) defines a parabolic
(3, 5, 6)-distribution and D2 is integrable if and only if X2(G) = 0. On the
other hand, applying Theorems 6.1 and 6.2 to the ODEs ϕ′′′ = F (t, ϕ, ϕ′, ϕ′′)
and ϕ(4) = F (t, ϕ, ϕ′, ϕ′′, ϕ′′′), respectively, and performing computations
converse to the process of reduction, we get that the corresponding dis-
tributions are defined by functions G given by (7.2) and (7.3). �

The Pfaffian system (7.1) can be also written as a system of PDEs.
Substituting u = u1 and v = u3 we get the following system

(7.4) uy = 0, vy = −uxx, vx = G(x, y, u, ux, uxx, v),
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and X2(G) = 0 is just an integrability condition. Taking F = 0 in (7.2)
and (7.3) we get the models for distributions corresponding to the trivial
equations ϕ′′′ = 0 and ϕ(4) = 0. Explicitly, we have

(7.5) uy = 0, vy = −uxx, vx = 0,

for order 3, and

(7.6) uy = 0, vy = −uxx, vx = −yv − y2uxx,

for order 4. Note that equation (7.5) gives also a PDE model for the flat
distribution with symbol algebra g0. On the other hand equation (7.6) corre-
sponds to the flat GL(2)-structure on four-dimensional manifold. In general,
the system (7.4) defines a GL(2)-structure if and only if F , defined by (7.2)
and (7.3), satisfies the Wünschmann condition.

A PDE system corresponding to the flat distribution with symbol algebra
g1 has the following form

uy = 1
2(uxx)2, vy = uxx, vx = 0.

Open problem. Find normal forms (and PDE models) for parabolic
(3, 5, 6)-distributions with symbol algebra g1. The task seems to be more
complex than the case of g0 since we do not have a nice description of the
reduced pair in the case of g1 (in the case of symbol algebra g0 we have
ODEs).

Acknowledgments

I would like to express my gratitude to Boris Doubrov for his comments and
questions posted to me while I was working on this paper. Partially sup-
ported by Polish Ministry of Science and Higher Education, grant N201 607540.

References

[1] R. Bryant, Two exotic holonomies in dimension four, path geometries,
and twistor theory, Proceedings of Symposium in Pure Mathematics 53
(1991), 33–88.

[2] R. Bryant, Conformal geometry and 3-plane fields on 6-manifolds, in
‘Developments of Cartan Geometry and Related Mathematical Prob-
lems’, RIMS Symposium Proceedings, vol. 1502, pp. 1–15, Kyoto
University, July 2006.



Parabolic (3, 5, 6)-distributions and GL(2)-structures 801

[3] R. Bryant and L. Hsu, Rigidity of integral curves of rank 2 distributions,
Invent. Math. 114 (1993), 435–461.

[4] E. Cartan, Les systemes de Pfaff a cinq variables et les equations aux
derivees partielles du second ordre, Ann. Sci. Ecole Norm. 27(3) (1910),
109–192.

[5] S-S. Chern, The Geometry of the Differential Equation y′′′ =
F (x, y, y′, y′′), Sci Rep. Nat. Tsing Hua Univ. 4 (1940), 97–111.

[6] B. Doubrov, Conformal geometries associated with 3-dimensional vec-
tor distributions, Conformal structures and ODEs (Lecture), Banach
Center, Warsaw, 16–18 September 2010.

[7] B. Doubrov, B. Komrakov and T. Morimoto, Equivalence of holonomic
differential equations, Lobachevskii J. Math. 3 (1999), 39–71.

[8] B. Doubrov and I. Zelenko, On local geometry of nonholonomic rank 2
distributions, J. London Math. Soc. 80(3) (2009), 545–566.

[9] B. Doubrov and I. Zelenko, On local geometry of rank 3 distributions
with 6-dimensional square, 40 pages, arXiv:math.DG0807.3267v1.

[10] M. Dunajski, M. Godlinski, GL(2, R) structures, G2 geometry and
twistor theory, Quart. J. Math. (2010), arXiv:math/1002.3963.

[11] M. Dunajski and P. Tod, Paraconformal geometry of n-th order ODEs,
and exotic holonomy in dimension four, J. Geom. Phys. 56 (2006),
1790–1809.

[12] S. Frittelli, C. Kozameh and E. T. Newman, Differential Geometry
from Differential Equations, Comm. Math. Phys. 223 (2001),
383–408.
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