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Existence of Hermitian–Yang–Mills metrics under

conifold transitions

Ming-Tao Chuan

We first study the degeneration of a sequence of Hermitian–Yang–
Mills metrics with respect to a sequence of balanced metrics on a
Calabi–Yau three-fold X̂ that degenerates to the balanced metric
constructed by Fu–Li–Yau [14] on the complement of finitely many
(−1,−1)-curves in X̂. Then under some assumptions we show the
existence of Hermitian–Yang–Mills metrics on bundles with respect
to balanced metrics constructed by Fu–Li–Yau over a family of
three-folds Xt with trivial canonical bundles. These three-folds Xt

are obtained by performing conifold transitions on X̂.

1. Introduction

This paper is about the existence problem for Hermitian–Yang–Mills met-
rics on holomorphic vector bundles with respect to balanced metrics, when
conifold transitions are performed on the base Calabi–Yau three-folds.

The construction of canonical geometric structures on manifolds and
vector bundles has always been a very important problem in differential
geometry, especially in Kähler geometry. A class of manifolds that are the
main focus in this direction is the Kähler Calabi–Yau manifolds,1 i.e., Kähler
manifolds with trivial canonical bundles. The Calabi conjecture that was
solved by Yau [43] in 1976 states that in every Kähler class of a Kähler
Calabi–Yau manifold there is a unique representative which is Ricci-flat.

After the solution of the Calabi conjecture, Kähler Calabi–Yau mani-
folds have undergone rapid developments, and the moduli spaces of Kähler
Calabi–Yau three-folds gradually became one of the most important area of
study. In the work of Todorov [37] and Tian [35] the smoothness of the mod-
uli spaces of Kähler Calabi–Yau manifolds in general dimensions was proved.
In the complex two-dimensional case, the moduli space of K3 surfaces is

1In this paper, by a Calabi–Yau manifold we mean a complex manifold with
trivial canonical bundle which may or may not be Kähler, and what is usually
called a Calabi–Yau manifold will now be a Kähler Calabi–Yau manifold.
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known to be a 20-dimensional complex smooth irreducible analytic space,
with the algebraic K3 surfaces occupying a 19-dimensional reducible analytic
subvariety with countable irreducible components [23, 28, 38]. The global
properties of the moduli spaces of Kähler Calabi–Yau three-folds remain
much less understood.

However, there was the proposal by Miles Reid [32] which states that the
moduli spaces of all Calabi–Yau three-folds can be connected by means of
taking birational transformations and smoothings on the Calabi–Yau three-
folds. This idea, later dubbed as “Reid’s Fantasy,” was checked for a huge
number of examples in [4, 7]. The processes just mentioned are called geo-
metric transitions in general, and the main focus in this paper is the most
studied example, namely the conifold transition, which was first considered
by Clemens [8] in 1982 and later caught the attention of the physicists start-
ing the late 1980s. It is described as follows. Let X̂ be a smooth Calabi–
Yau three-fold containing a collection of mutually disjoint (−1,−1)-curves
C1, . . . , Cl, i.e., rational curves Ci ∼= P

1 with normal bundles in X̂ isomor-
phic to OP1(−1) ⊕OP1(−1). One can contract the Ci’s to obtain a space
X0 with ordinary double points, and then under certain conditions given by
Friedman, X0 can be smoothed and one obtains a family of three-folds Xt

with trivial canonical bundles.
Even when X̂ is Kähler, the manifolds Xt may be non-Kähler, and it

was proved in [14] that they nevertheless admit balanced metrics, which we
denote by ω̃t. In general, a Hermitian metric ω on a complex n-dimensional
manifold is balanced if d(ωn−1) = 0 [30]. Kähler metrics are obviously bal-
anced metrics, but, unlike the Kähler case, the existence of balanced metrics
is preserved under birational transformations [1]. Moreover, if the manifold
satisfies the ∂∂̄-lemma, then the aforementioned existence is also preserved
under small deformations [16, 41]. What [14] shows is that it is also preserved
under conifold transitions provided X̂ is Kähler Calabi–Yau.

In this paper we would like to push further the above result on the
preservation of geometric structures after conifold transitions. Consider a
pair (X̂, E) where X̂ is a Kähler Calabi–Yau three-fold with a Kähler metric
ω, and E is a holomorphic vector bundle endowed with a Hermitian–Yang–
Mills metric with respect to ω. Denote the contraction of exceptional rational
curves mentioned above by π : X̂ → X0. From the point of view of metric
geometry, such a contraction can be seen as a degeneration of Hermitian
metrics on X̂ to a metric which is singular along the exceptional curves. In
fact, following the methods in [14], one can construct a family of smooth
balanced metrics {ω̂a}a>0 on X̂ such that ω̂2

a and ω2 differ by ∂∂̄-exact
forms and, as a→ 0, ω̂a converges to a metric ω̂0 which is singular along the
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exceptional curves. The metric ω̂0 can also be viewed as a smooth metric on
X0,sm, the smooth part of X0.

We have the following result which is the first main theorem.

Theorem 1.1. Let E be an irreducible holomorphic vector bundle over a
Kähler Calabi–Yau three-fold (X,ω) such that c1(E) = 0 and E is trivial on
a neighborhood of the exceptional rational curves Ci. Suppose E is endowed
with a HYM metric w.r.t. ω.

Then there exists a HYM metric H0 on E|X0,sm with respect to ω̂0, and
there is a decreasing sequence {ai}∞i=1 converging to 0, such that there is a
sequence {Hai

}∞i=1 of Hermitian metrics on E converging weakly in the Lp2-
sense, for all p, to H0 on each compactly embedded open subset of X0,sm,
where each Hai

is HYM with respect to ω̂ai
.

Suppose that one can smooth the singular space X0 to Xt, and that the
bundle π∗E fits in a family of holomorphic bundles Et over Xt, i.e., the pair
(X0, π∗E) can be smoothed to (Xt, Et). We ask the question of whether a
Hermitian–Yang–Mills metric with respect to the balanced metric ω̃t exists
on the bundle Et. Note that the condition that E is trivial in a neighborhood
of the exceptional rational curves Ci implies that the bundles Et would be
trivial in a neighborhood of the vanishing cycles. Also note that c1(Et) = 0
for any t �= 0.

We now state the second main theorem of this paper.

Theorem 1.2. Let (X̂, ω) be a smooth Kähler Calabi–Yau three-fold and
π : X̂ → X0 be a contraction of mutually disjoint (−1,−1)-curves. Let E be
an irreducible holomorphic vector bundle over X̂ with c1(E) = 0 that is trivial
in a neighborhood of the exceptional curves of π, and admits a Hermitian–
Yang–Mills metric with respect to ω. Suppose that the pair (X0, π∗E) can
be smoothed to a family of pairs (Xt, Et) where Xt is a smooth Calabi–Yau
three-fold and Et is a holomorphic vector bundle on Xt.

Then for t �= 0 sufficiently small, Et admits a smooth Hermitian–Yang–
Mills metric with respect to the balanced metric ω̃t constructed in [14].

For irreducible holomorphic vector bundles over a Kähler manifold, the
existence of Hermitian–Yang–Mills metrics corresponds to the slope stabil-
ity of the bundles. For proofs of this correspondence, see [9, 10, 39]. On
a complex manifold endowed with a balanced metric, or more generally a
Gauduchon metric, i.e., a Hermitian metric ω satisfying ∂∂̄(ωn−1) = 0, one
can still define the slopes of bundles and hence the notion of slope stability.
Under this setting, Li and Yau [24] proved the same correspondence.
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Another motivation for considering stable vector bundles over
non-Kähler manifolds comes from physics. Kähler Calabi–Yau manifolds
have always played a central role in the study of Supersymmetric String The-
ory, a theory that holds the highest promise so far concerning the unification
of the fundamental forces of the physical world. Among the many models in
Supersymmetric String Theory, the Heterotic String models [20, 40] require
not only a manifold with trivial canonical bundle but a stable holomor-
phic vector bundle over it as well. Besides using the Kähler Calabi–Yau
three-folds as the internal spaces, Strominger also suggested to use a model
allowing nontrivial torsions in the metric. In [34], he proposed the following
system of equations for a pair (ω,H) consisting of a Hermitian metric ω on
a Calabi–Yau three-fold X and a Hermitian metric H on a vector bundle
E → X with c1(E) = 0:

FH ∧ ω2 = 0, F 0,2
H = F 2,0

H = 0,(1.1)
√−1∂∂̄ω =

α

4
(tr(Rω ∧Rω) − tr(FH ∧ FH)),(1.2)

d∗ω =
√−1(∂̄ − ∂) ln ‖Ω‖ω,(1.3)

where Rω is the full curvature of ω and FH is the Hermitian curvature
of H. Equation (1.1) is simply the Hermitian–Yang–Mills equations for H.
Equation (1.2) is named the anomaly cancellation equation derived from
physics. In [25] it was shown that Equation (1.3) is equivalent to another
equation showing that ω is conformally balanced:

d(‖Ω‖ωω2) = 0.

The system, although written down in 1986, was first shown to have
non-Kähler solutions only in 2004 by Li and Yau [25] using perturbation
from a Kähler solution. The first solutions to exist on manifolds which are
never Kähler are constructed by Fu and Yau [17]. The class of three-folds
they considered were the T 2-bundles over K3 surfaces constructed by Gold-
stein and Prokushkin [19]. Some non-compact examples have also been con-
structed by Fu et al.[15] on T 2-bundles over the Eguchi–Hanson space. More
solutions are found in a recent preprint [2] using the perturbation method
developed in [25].

The present paper can also be viewed as a step following [14] in the
investigation of the relation between the solutions to Strominger’s system
on X̂ and those on X0 and Xt.
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This paper is organized as follows:
Section 2 sets up the conventions and contains more background

information of conifold transitions and Hermitian–Yang–Mills metrics over
vector bundles. Moreover, the construction of balanced metrics in [14] is
described in more details necessary for later discussions.

In Section 3 the uniform coordinate systems on X0 and on Xt are intro-
duced, which are needed to show a uniform control of the constants in the
Sobolev inequalities and elliptic regularity theorems.

In Section 4 Theorem 1.1 is proved, and several boundedness results of
the HYM metric H0 in that theorem are discussed.

In Section 5 a family of approximate Hermitian metrics Ht on Et are
constructed, and some estimates on their mean curvatures are
established.

Section 6 describes the contraction mapping setup for the HYM equation
on the bundle Et. Theorem 1.2 is proved here.

Section 7 deals with a proposition left to be proved from Section 6.

2. Backgrounds

2.1. Conifold transitions

Let X̂ be a Kähler Calabi–Yau three-fold with a Kähler metric denoted
by ω. Let

⋃
Ci be a collection of (−1,−1)-curves in X̂, and let X0 be the

three-fold obtained by contracting
⋃
Ci, so X̂ is a small resolution of X0.

X0 has ordinary double points, which are the images of the curves Ci under
the contraction. There is a condition given by Friedman which relates the
smoothability of the singular space X0 to the classes [Ci] of the exceptional
curves in X̂:

Theorem 2.1 [12, 13]. If there are non-zero numbers λi such that the
class

(2.1)
∑

i

λi[Ci] = 0

in H2(X̂,Ω2
X̂

) then a smoothing of X0 exists, i.e., there is a four-dimensional
complex manifold X and a holomorphic projection X → Δ to the disk Δ in
C such that the general fibers are smooth and the central fiber is X0.
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The above theorem is also considered in [36] from a more differential
geometric point of view, and in [6] the condition (2.1) is discussed in the
obstructed case of the desingularization of Kähler Calabi–Yau three-folds
with conical singularities.

The local geometry of the total space X near an ODP of X0 is described
in the following. For some ε > 0 and for

Ũ = {(z, t) ∈ C
4 × Δε|‖z‖ < 2, z2

1 + z2
2 + z2

3 + z2
4 = t}

there is a holomorphic map Ξ : Ũ → X respecting the projections to Δ and
Δε so that Ũ is biholomorphic to its image. We will denote

Qt := {z2
1 + z2

2 + z2
3 + z2

4 = t} ⊂ C
4.

From the above description, a neighborhood of 0 in Q0 models a neighbor-
hood of an ODP in X0. For t �= 0, Qt is called a deformed conifold. Through-
out this paper we will denote by rt the restriction of ‖z‖ to Qt ⊂ C

4, and
use the same notation for their pullbacks under Ξ−1.

For each ODP pi of X0, we have the biholomorphism Ξi : Ũi → X as
above. Without loss of generality, we may assume that the images of the
Ξi’s are disjoint. For a given t ∈ Δ, define Vt,i(c) to be the image under
Ξi of {(z, t) ∈ C

4 × Δε|rt(z) < c, z2
1 + z2

2 + z2
3 + z2

4 = t}, and define Vt(c) =⋃
i Vt,i(c). Define Vt,i(R1, R2) = Vt,i(R2)\Vt,i(R1) for any 0 < R1 < R2 and

Vt(R1, R2) =
⋃
i Vt,i(R1, R2). Define Ui(c) := π−1(V0,i(c)) ⊂ X̂ where π is

the small resolution π : X̂ → X0, and U(c) =
⋃
i Ui(c). Finally, defineXt[c] =

Xt\Vt(c).
For each t �= 0, it can be easily checked that rt ≥ |t| 12 on Qt and the

subset {rt = |t| 12 } ⊂ Qt is isomorphic to a copy of S3, which is usually called
the vanishing sphere. Each subset Vt(c) is thus an open neighborhood of the
vanishing spheres.

Remark. In the rest of the paper we will always regard Vt,i(c) not only
as a subset of Xt, but also as a subset of Qt via the map Ξi and the pro-
jection map from the set {(z, t) ∈ C

4 × Δε|rt(z) < c, z2
1 + z2

2 + z2
3 + z2

4 = t}
to C

4.

We also use the same notation rt to denote a fixed smooth extension of
rt from Vt(1) to Xt so that rt < 3.
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The following description of Q0 and Q1 will be useful in our discussion.
Denote Σ = SO(4)/SO(2). Then there are diffeomorphisms

(2.2) φ0 : Σ × (0,∞) → Q0,sm such that φ0(ASO(2), r0) = A

⎛

⎜
⎜
⎜
⎜
⎝

1√
2
r0

i√
2
r0

0
0

⎞

⎟
⎟
⎟
⎟
⎠
,

and

φ1 : Σ × (1,∞) → Q1\{r1 = 1} such that(2.3)

φ1(ASO(2), r1) = A

⎛

⎜
⎜
⎜
⎝

cosh(1
2 cosh−1(r2

1))

i sinh(1
2 cosh−1(r2

1))
0
0

⎞

⎟
⎟
⎟
⎠
.

Here Q0,sm is the smooth part of Q0, and the variables r0 and r1 are indeed
the distances of the image points to the origin.

We can see in particular from (2.2) that φ0 describes Q0 as a cone over
Σ. It is not hard to see that Σ ∼= S2 × S3. However, the radial variable for
the Ricci-flat Kähler cone metric gco,0 on Q0 is not r0, but ρ0 = r

2
3
0 . In fact,

gco,0 can be expressed as

(2.4) gco,0 = (dr
2
3
0 )2 + r

4
3
0 gΣ,

where gΣ is an SO(4)-invariant Sasaki–Einstein metric on Σ. The Kähler
form of gco,0 is given by ωco,0 =

√−1∂∂̄f0(r2
0) where f0(s) = 3

2s
2
3 . In this

paper we will not use the variable ρ0.
In this paper, given a Hermitian metric g, the notation ∇g will always

refer to the Chern connection of g.

2.2. The Candelas–de la Ossa metrics

Candelas and de la Ossa [5] constructed a one-parameter family of Ricci-flat
Kähler metrics {gco,a|a > 0} on the small resolution Q̂ of Q0. The space Q̂
is named the resolved conifold, and the parameter a measures the size of the
exceptional curve C in Q̂. Identifying Q0,sm with Q̂\C biholomorphically via
the resolution map, the family {gco,a|a > 0} converges smoothly, as a goes
to 0, to the cone metric gco,0 on each compactly embedded open subset of
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Q0,sm, i.e., each open subset of Q0,sm whose closure in Q0 is contained in
Q0,sm. The Kähler forms of the metrics gco,a will be denoted by ωco,a.

They also construct a Ricci-flat Kähler metric gco,t on Qt for each 0 �=
t ∈ Δ. Explicitly, the Kähler form of gco,t is given by ωco,t =

√−1∂∂̄ft(r2
t )

where

(2.5) ft(s) = 2−
1
3 |t| 23

∫ cosh−1
(

s

|t|

)

0
(sinh(2τ) − 2τ)

1
3 dτ,

and it satisfies

(2.6) ω3
co,t =

√−11
2Ωt ∧ Ωt,

where Ωt is the holomorphic (3,0)-form on Qt such that, on {z1 �= 0},

Ωt =
1
z1
dz2 ∧ dz3 ∧ dz4|Qt

.

In this paper, the metrics gco,a with subscripts a will always denote the
Candelas–de la Ossa metrics on the resolved conifold Q̂, and the metrics
gco,t with subscripts t will always denote the Candelas–de la Ossa metrics
on the deformed conifolds Qt.

In the following we discuss the asymptotic behavior of the CO-metrics
gco,t. Consider the smooth map

Φ : Σ × (1,∞) → Σ × (0,∞)

defined by

Φ(ASO(2), r1) = (ASO(2), r0(r1)),

where

r0(r1) =
(

1
2
(sinh(2 cosh−1(r2

1)) − 2 cosh−1(r2
1))
) 1

4

.

Note that

(2.7) r1 = (cosh(f−1(2r4
0)))

1
2 ,

where f(s) = sinh(2s) − 2s.
Define x1 = φ0 ◦ Φ ◦ φ−1

1 , which is a diffeomorphism from Q1\{r1 = 1}
to Q0,sm. Then r0(x1(x)) = r0(r1(x)) for x ∈ Q1\{r1 = 1}. Define Υ1 = x−1

1 .
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It is shown in [6] that the following holds for some constants D1,k, D2,k, and
D3,k as r0 → ∞:

Υ∗
1ωco,1 = ωco,0,(2.8)

|∇k
gco,0

(Υ∗
1Ω1 − Ω0)|gco,0 ≤ D1,kr

2
3
(−3−k)

0 ,(2.9)

|∇k
gco,0

(Υ∗
1gco,1 − gco,0)|gco,0 ≤ D2,kr

2
3
(−3−k)

0 ,(2.10)

and

(2.11) |∇k
gco,0

(Υ∗
1J1 − J0)|gco,0 ≤ D3,kr

2
3
(−3−k)

0 ,

where Jt is the complex structure on Qt.
Let ψt : Q1 → Qt be a map such that ψ∗

t (zi) = t
1
2 zi. Here t

1
2 can be either

of the two square roots of t. We then have

ψ∗
t rt = |t| 12 r1, ψ∗

t r0 = |t| 12 r0,

ψ∗
tΩt = tΩ1, ψ∗

tΩ0 = tΩ0,

ψ∗
t ωco,t = |t| 23ωco,1, ψ∗

t ωco,0 = |t| 23ωco,0,

ψ∗
t gco,t = |t| 23 gco,1, and ψ∗

t gco,0 = |t| 23 gco,0.

(2.12)

The equality ψ∗
t ωco,t = |t| 23ωco,1 follows from the explicit formulas of the

Kähler potentials (2.5) and the fact that the map ψt is biholomorphic.
With this understood, ψ∗

t gco,t = |t| 23 gco,1 then follows easily. The rest is triv-
ial. Note that ∇ψ∗

t gco,0 = ∇|t| 23 gco,0
= ∇gco,0 and ∇ψ∗

t gco,t
= ∇|t| 23 gco,1

= ∇gco,1

for t �= 0.
Let xt = ψt ◦ x1 ◦ ψ−1

t , which is understood as a diffeomorphism from
Qt\{rt = |t| 12 } to Q0,sm. Note that xt is independent of the choice of t

1
2 , and

so {xt}t form a smooth family. Define Υt = x−1
t .

Lemma 2.1. We have
x∗tωco,0 = ωco,t,

and for the same constants D1,k, D2,k and D3,k as in (2.9) to (2.11), we
have, as r0 → ∞,

|∇k
gco,0

(Υ∗
tΩt − Ω0)|gco,0 ≤ D1,k|t|r

2
3
(−3−k)

0 ,

|∇k
gco,0

(Υ∗
t gco,t − gco,0)|gco,0 ≤ D2,k|t|r

2
3
(−3−k)

0 ,

|∇k
gco,0

(Υ∗
tJt − J0)|gco,0 ≤ D3,k|t|r

2
3
(−3−k)

0 .
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Proof. The first equation follows easily. From the rescaling properties (2.12)
we have, for w ∈ X0,

|∇k
gco,0

(Υ∗
tΩt − Ω0)|gco,0(w) = |∇k

gco,0
((ψ−1

t )∗Υ∗
1ψ

∗
tΩt − Ω0)|gco,0(w)

= |∇k
gco,0

(t(ψ−1
t )∗Υ∗

1Ω1 − Ω0)|gco,0(w)

= |∇k
ψ∗

t gco,0
(tΥ∗

1Ω1 − ψ∗
tΩ0)|ψ∗

t gco,0(ψ
−1
t (w))

= |∇k
gco,0

(tΥ∗
1Ω1 − tΩ0)||t| 23 gco,0

(ψ−1
t (w))

= |t||∇k
gco,0

(Υ∗
1Ω1 − Ω0)||t| 23 gco,0

(ψ−1
t (w))

= |t||t|− 1
3
(3+k)|∇k

gco,0
(Υ∗

1Ω1 − Ω0)|gco,0(ψ
−1
t (w))

≤ |t||t|− 1
3
(3+k)D1,kr0(ψ−1

t (w))
2
3
(−3−k) = |t|− 1

3
kD1,k|t|

1
3
(3+k)r0(w)

2
3
(−3−k)

= D1,k|t|r0(w)
2
3
(−3−k).

The other two estimates can be carried out in a similar manner. �

Using the explicit formula (2.7), the following lemma is elementary, and
the proof is omitted:

Lemma 2.2. As x ∈ Q1\{r1 = 1} goes to infinity, r1(x)r0(x1(x))−1 goes
to 1. In particular, there is a constant A > 0 such that

1
A
< r1(x)r0(x1(x))−1 < A

for any x ∈ Q1 such that 1 � r1(x). As a result, by the rescaling relation
(2.12), for the same constant A we have

1
A
< rt(z)r0(xt(z))−1 < A

for any z ∈ Qt such that |t| 12 � rt(z).

Lemmas 2.1 and 2.2 imply

Corollary 2.1. There exists a constant D0 > 0 such that for any z ∈ Qt
with |t| 12 � rt(z),

|∇k
gco,0

(Υ∗
tJt − J0)|Υ∗

t gco,t
(xt(z)) ≤ D0|t|rt(z) 2

3
(−3−k)

for k = 0, 1.
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2.3. The balanced metrics constructed by Fu–Li–Yau

Using Mayer–Vietoris sequence, the change in the second Betti numbers
before and after a conifold transition is given in the following proposition:

Proposition 2.1 [32]. Let k be the maximal number of homologically inde-
pendent exceptional rational curves in X̂. Then the second Betti numbers of
X̂ and Xt satisfy the equations

b2(Xt) = b2(X̂) − k.

From this proposition one sees that the second Betti number drops after
each transition, and when it becomes 0, the resulting three-fold is never
Kähler. Because of this, when considering Reid’s conjecture, a class of three-
folds strictly containing the Kähler Calabi–Yau ones have to be taken into
account. A particular question of interest would be finding out suitable geo-
metric structures that are possessed by every member in this class of three-
folds. One achievement in this direction is the work of [14] in which the
following theorem is proved:

Theorem 2.2. Let X̂ be a Kähler Calabi–Yau three-fold. Then after a
conifold transition, for sufficiently small t, Xt admits a balanced metric.

In the following we review the results in [14] in more detail.
First, a balanced metric ω̂0 on X0,sm is constructed by replacing the

original metric ω near the ODPs with the CO-cone metric ωco,0. One of the
main feature of this construction is that ω2 and ω̂2

0 differ by a ∂∂̄-exact form.
It is not hard to see that their construction can be used the construct a family
of balanced metrics {ω̂co,a|a > 0} on X̂ converging smoothly, as a goes to 0,
to the metric ω̂0 on compactly embedded open subsets of X̂\⋃Ci ∼= X0,sm,
such that ω2 and all ω̂2

co,a differ by ∂∂̄-exact forms.
The main achievement in [14] is the construction of balanced metrics

ω̃t on Xt. Fix a smooth family of diffeomorphisms xt : Xt[12 ] → X0[12 ] that
such x0 = id. Let �(s) be a decreasing cut-off function such that �(s) = 1
when s ≤ 5

8 and �(s) = 0 when s ≥ 7
8 . Define a cut off function �0 on X0

such that �0|X0[1] = 0, �0|V0(
1
2
) = 1 and �0|V0(

1
2
,1) = �(r0). Also define a cut

off function �t on Xt such that �t|Xt[
1
2
] = x∗t�0 and �t|Vt(

1
2
) = 1. Denote Ω̂0 =

ω̂2
0 = i∂∂̄(f0∂∂̄f0), and let

Φt = f∗t (Ω̂0 − i∂∂̄(�0f0(r2
0)∂∂̄f0(r2

0))) + i∂∂̄(�tft(r2
t )∂∂̄ft(r

2
t )).
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We can decompose the four-form Φt = Φ3,1
t + Φ2,2

t + Φ1,3
t . It is proved in [14]

that for t �= 0 sufficiently small the (2,2) part Φ2,2
t is positive and over Vt(1

2)
it coincides with ω2

co,t. Let ωt be the positive (1,1)-form on Xt such that
ω2
t = Φ2,2

t . Neither ωt nor ω2
t is closed in general. The balanced metric ω̃t

constructed in [14] satisfies the condition ω̃2
t = Φ2,2

t + θt + θ̄t where θt is a
(2,2)-form satisfying the condition that, for any κ > −4

3 ,

(2.13) lim
t→0

(|t|κ sup
Xt

|θt|2gt
) = 0,

where gt is the Hermitian metric associated to ωt. The proof of this limit
makes use of the expression

(2.14) θt = ∂∂̄∗∂∗γt

for a unique (2,3)-form γt satisfying the equation Et(γt) = −∂Φ1,3
t and γt ⊥

kerEt where
Et = ∂∂̄∂̄∗∂∗ + ∂∗∂̄∂̄∗∂ + ∂∗∂

and the ∗-operators are with respect to the metric gt. It was proved in [14]
that ∂γt = 0. Moreover, the (2, 3)-form ∂Φ1,3

t is supported on Xt[1], so there
is a constant C > 0 independent of t such that

(2.15) |∂Φ1,3
t |Ck < C|t|.

We will denote | · |t the norm w.r.t. g̃t, | · |co,t the norm w.r.t. gco,t, and
| · | the norm w.r.t. gt. We will denote dVt the volume w.r.t. g̃t, dVco,t the
volume w.r.t. gco,t, and dV the volume w.r.t. gt.

Because of (2.13) we have the following lemma concerning a uniformity
property between the metrics gt and gco,t.

Lemma 2.3. There exists a constant C̃ > 1 such that for any small t �= 0,
over the region Vt(1) we have

C̃−1g̃t ≤ gco,t ≤ C̃g̃t.

Consequently, we have constants C̃1 > 1 and C̃2 > 1 such that for any t �= 0
small enough,

C̃−1
1 dVt ≤ dVco,t ≤ C̃1dVt

and
C̃−1

2 | · |t ≤ | · |co,t ≤ C̃2| · |t.
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Now we introduce our conventions on (negative) Laplacians. Let ω be a
Hermitian metric on X and n = dimCX. For any (1,1)-form ϕ on X, define
Λωϕ := ϕ∧ωn−1

ωn . For a smooth function f onX, define Δωf =
√−1Λω∂∂̄f . In

local coordinates, if ω =
√−1

2 gij̄dzi ∧ dz̄j and ϕ = ϕij̄dzi ∧ dz̄j , then√−1Λωϕ = 2gij̄ϕij̄ . We denote Δ̃t := Δω̃t
and Δ̂a := Δω̂a

.

2.4. Hermitian–Yang–Mills equation

Let H be a Hermitian metric on a holomorphic vector bundle E over a
complex manifold X endowed with a balanced metric g. Let ∇A = ∂A + ∂̄A
be anH-unitary connection on E . We denote by 〈·, ·〉H,g the pointwise pairing
induced by H and g between the E-valued forms or the End(E)-valued forms.
The following proposition is will be used in later calculations.

Proposition 2.2 [27]. For h1, h2 ∈ Γ(End(E)), we have
∫

X
〈∂Ah1, ∂Ah2〉H,g dVg =

√−1
∫

X
〈Λg∂̄A∂Ah1, h2〉H,g dVg

and ∫

X
〈∂̄Ah1, ∂̄Ah2〉H,g dVg = −√−1

∫

X
〈Λg∂A∂̄Ah1, h2〉H,g dVg.

In a local holomorphic frame of E , the curvature of a connection ∇A is
given by

FA := dA−A ∧A,
which is an End(E)-valued two-form. Given a Hermitian metric H over a
bundle E , the curvature for the Chern connection can then be locally com-
puted to be

FH = ∂̄(∂HH−1).

Taking the trace of the curvature two-form with respect to a Hermitian
metric ω, we obtain the mean curvature

√−1ΛωFH of H. It is not hard to
see that

√−1ΛωFH is H-symmetric.

Definition 2.1. A Hermitian metric H on E satisfies the Hermitian–Yang–
Mills equation with respect to ω if

√−1ΛωFH = λI

for some constant λ. Here I denotes the identity endomorphism of E .
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Next we introduce slope stability. For a given Hermitian metric H on E ,
the first Chern form of E with respect to H is defined to be

c1(E , H) =
√−1
2π

trFH .

It is independent of H up to a ∂∂̄-exact form, and is a representative of the
topological first Chern class c1(E) ∈ H2(X,C).

The ω-degree of E with respect to a Hermitian metric ω is defined to be

degω(E) :=
∫

X
c1(E , H) ∧ ωn−1

where n = dimCX. This is not well defined for a general ω. It is, however,
well defined for a Gauduchon metric ω since ∂∂̄(ωn−1) = 0 and c1(E , H)
is independent of H up to ∂∂̄-exact forms. In particular, the degree with
respect to a balanced metric is well defined. Note that the ω-degree is a
topological invariant, i.e., depends only on c1(E), if ω is balanced. We restrict
ourselves from now on to the case when ω is Gauduchon.

For an arbitrary coherent sheaves F of OX -modules of rank s > 0, we
define degω(F) := degω(detF) where detF := (ΛsF)∗∗ is the determinant
line bundle of F . We define the ω-slope of F to be μω(F) := degω(F)

s .

Definition 2.2. A holomorphic vector bundle E is said to be ω-(semi)stable
if μω(F) < (≤)μω(E) for every coherent subsheaf F ↪→ E with 0 < rankF <
rank E .

A holomorphic vector bundle E is said to be ω-polystable if E is a direct
sum of ω-stable bundles all of which have the same ω-slope.

The following theorem generalizing [39] was proved by Li and Yau [24]:

Theorem 2.3. On a complex manifold X endowed with a Gauduchon met-
ric ω, a holomorphic vector bundle E is ω-polystable if and only if it admits
a Hermitian–Yang–Mills metric with respect to ω.

2.5. Controls of constants

Let E be a holomorphic vector bundle over a compact Hermitian manifold
(X, g), H a Hermitian metric on E , and ∇H,g the connection on E ⊗ (Ω1)⊗k

induced from the Chern connections of H and g. Let r be a smooth positive
function on X.
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We can define the following weighted norms on the usual Sobolev spaces
Lpk(E) over X: for each σ ∈ Lpk(E),

‖σ‖Lp
k,β

:=

⎛

⎝
k∑

j=0

∫

X
|r− 2

3
β+ 2

3
j∇j

H,gσ|pH,gr−4 dVg

⎞

⎠

1
p

.

We denote by Lpk,β(E) the same space as Lpk(E) but endowed with the above
norm. Here dVg is the volume form of g.

There are also the weighted Ck-norms:

‖σ‖Ck
β

:=
k∑

j=0

sup
X

|r− 2
3
β+ 2

3
j∇j

H,gσ|H,g.

We denote by Ckβ(E) the same space as Ck(E) but endowed with the above
norm.

Now let {φz : Bz → Uz ⊂ X}z∈X be a system of complex coordinate
charts where each φz maps the Euclidean ball of radius ρ in C

3 centered at
0 homeomorphically to Uz, an open neighborhood of z, such that φz(0) = z.
Over each Uz define ḡ to be r(z)−

4
3 g. Let ge denote the standard Euclidean

metric on Bz ⊂ C
3 and ∇e the Euclidean derivatives.

For m ≥ 0, let Rm > 0 be constants such that for any z ∈ X and y ∈ Uz,

(2.16)
1
R0

r(z) ≤ r(y) ≤ R0r(z)

and

(2.17) |∇m
e r|ge(y) ≤ Rmr(y).

For k ≥ 0, let Ck > 0 be constants such that for any z ∈ X,

(2.18)
1
C0
ge ≤ φ∗z ḡ ≤ C0ge

over Bz where ge is the Euclidean metric, and

(2.19) ‖φ∗z ḡ‖Ck(Bz,ge) ≤ Ck.

We may deduce the following version of Sobolev Embedding Theorem.
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Theorem 2.4. For each l, p, q, r there exists a constant C > 0 depending
only on the constants Rm and Ck above such that

‖σ‖Lr
l,β

≤ C‖σ‖Lp
q,β

whenever 1
r ≤ 1

p ≤ 1
r + q−l

6 and

‖σ‖Cl
β
≤ C‖σ‖Lp

q,β

whenever 1
p <

q−l
6 .

The proof of the above result is standard. Simply put, we integrate over
z ∈ X the Sobolev inequalities on each chart Uz, and use the bounds (2.16)
to (2.19) to help control the constants of the global inequalities.

In fact, the method of this proof is useful in controlling not only the
Sobolev constants, but the constants in elliptic estimates as well. Consider
a linear differential operator P : C∞(E) → C∞(E) of order m on the space
of smooth sections of E . Assume also that P is strongly elliptic, i.e., its
principal symbol σ(P ) satisfies the condition that there is a constant λ > 0
such that 〈σξ(P )(v), v〉 ≥ λ‖v‖2 for any v ∈ R

r (r = rank E) and ξ ∈ R
6 with

norm ‖ξ‖ = 1.

Proposition 2.3. Assume there are constants Λk > 0, k ≥ 0, such that for
any z ∈ X there is a trivialization of E|Uz

under which the operator P above
takes the form

P =
∑

|α|≤m
Aα

∂|α|

∂wα1
1 . . . ∂w̄α6

3

in the coordinates (w1, w2, w3) ∈ Bz ⊂ C
3, and the matrix-valued coefficient

functions Aα satisfy

|∇k
eAα|ge ≤ Λk

for all α and k. Here α = (α1, . . . , α6), αi ≥ 0, are the multi-indices and
|α| = α1 + · · · + α6.

Assume also that there is a Hermitian metric H on E and constants
C ′
k > 0 for k ≥ 0, such that when H is viewed as a matrix-valued function

on Uz under the above frames, we have C ′
0
−1I ≤ H ≤ C ′

0I and |∇k
eH|ge ≤ C ′

k

on Uz for any k and z ∈ X.
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Then there exists a constant C > 0 depending only on p, l, m, β, λ, Λk,
Rm, Ck and C ′

k such that for any σ ∈ C∞(E), we have

‖σ‖Lp
l+m,β

≤ C(‖P (σ)‖Lp
l,β

+ ‖σ‖L2
0,β

).

3. Uniform coordinate systems

In this section we will construct coordinate systems with special properties
over X0,sm and over each Xt for small t �= 0. Later we will mainly be using
the weighted Sobolev spaces and the discussions in Section 2 show that these
coordinate systems help providing uniform controls of constants appearing
in the weighted versions of Sobolev inequalities and elliptic estimates. The
use of weighted Sobolev spaces is now standard in the gluing constructions
or desingularization of spaces with conical singularities. See [26, 31] for more
details.

The main goal of this section is to prove the following theorem.

Theorem 3.1. There is a constant ρ > 0 such that, for any t (t can be
zero), at each point z ∈ Xt (or z ∈ X0,sm when t = 0), there is an open
neighborhood Uz ⊂ Xt (or Uz ⊂ X0,sm when t = 0) of z and a diffeomorphic
map φt,z : Bz → Uz from the Euclidean ball of radius ρ in C

3 centered at 0
to Uz mapping 0 to z so that one has the following properties:

(i) There are constants Rm > 0, m ≥ 0, such that for any t, z ∈ Xt (or
z ∈ X0,sm when t = 0) and y ∈ Uz,

(3.1)
1
R0

rt(z) ≤ rt(y) ≤ R0rt(z)

and

(3.2) |∇m
e rt|ge(y) ≤ Rmrt(y).

(ii) Over each Uz define ¯̃gt to be rt(z)−
4
3 g̃t. Then for each k ≥ 0, there is

a constant Ck independent of t and z ∈ Xt (or z ∈ X0,sm when t = 0)
such that

(3.3)
1
C0
ge ≤ φ∗t,z ¯̃gt ≤ C0ge

over Bz, and

(3.4) ‖φ∗t,z ¯̃gt‖Ck(Bz,ge) ≤ Ck.
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We first consider the following version of this theorem:

Theorem 3.2. Theorem 3.1 holds with Bz understood as a Euclidean ball
of radius ρ in R

6 centered at 0 and ge as the standard Euclidean metric on
Bz ⊂ R

6.

The proof of Theorem 3.2 begins with a version where Xt are replaced
by Qt and g̃t by gco,t.

Proposition 3.1. There is a constant ρ > 0 such that, for any t (t can be
zero), at each point z ∈ Qt (z ∈ Q0,sm when t = 0), there is an open neigh-
borhood Uz ⊂ Qt (or Uz ⊂ Q0,sm when t = 0) of z and a diffeomorphic map
φt,z : Bz → Uz from the Euclidean ball of radius ρ in R

6 centered at 0 to Uz
mapping 0 to z so that one has the following properties:

(i) There are constants Rm > 0, m ≥ 0, such that for any t, z ∈ Qt (or
z ∈ Q0,sm when t = 0) and y ∈ Uz,

(3.5)
1
R0

rt(z) ≤ rt(y) ≤ R0rt(z)

and

(3.6) |∇m
e rt|ge(y) ≤ Rmrt(y).

(ii) Over each Uz define ḡco,t to be rt(z)−
4
3 gco,t. Then for each k ≥ 1, there

is a constant Ck independent of t and z ∈ Qt (or z ∈ Q0,sm when t = 0)
such that

(3.7)
1
C0
ge ≤ φ∗t,z ḡco,t ≤ C0ge

over Bz, and

(3.8) ‖φ∗t,z ḡco,t‖Ck(Bz,ge) ≤ Ck.

Proof. While constructing the coordinate charts, we prove (3.5), (3.7) and
(3.8) first, leaving (3.6) to be discussed at the end.

We begin with the t = 0 case. Choose ρ < 1 to be significantly smaller
then the injectivity radius of the metric gΣ from (2.4). Then at each point
p ∈ Σ one has the coordinates Φp : B̃p → Σ from the Euclidean ball of radius
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ρ in R
5 centered at 0 to Σ mapping 0 to p and satisfying the properties that

there are constants C̃k > 0, k ≥ 0, independent of p such that

(3.9)
1
C̃0

g̃e ≤ Φ∗
pgΣ ≤ C̃0g̃e

over B̃p, and

(3.10) ‖Φ∗
pgΣ‖Ck(B̃p,g̃e)

≤ C̃k.

Here g̃e is the standard Euclidean metric on B̃p. More explicitly, we can
simply choose a coordinate chart around one point in Σ and then define the
coordinates around the other points of Σ by using the transitive action of
SO(4) on Σ. Since the metric gΣ is SO(4)-invariant, the above constants are
easily seen to exist.

For x ∈ Q0,sm with φ−1
0 (x) = (p, r0(x)) ∈ Σ × (0,∞), define

jx : B̃p × (−ρ, ρ) ↪→ Σ × (0,∞)

which maps (y, s) ∈ B̃p × (−ρ, ρ) to jx(y, s) = (Φp(y), r0(x) e
3
2
s). Denote the

restriction of jx to Bx ⊂ B̃p × (−ρ, ρ) by the same notation. Then define
φ0,x : φ0 ◦ jx : Bx ↪→ Q0,sm. Condition (3.5) is manifest.

We have

φ∗0,xgco,0 = (d(r0(x)
2
3 es))2 + r0(x)

4
3 e2sΦ∗

pgΣ = r0(x)
4
3 e2s((ds)2 + Φ∗

pgΣ).
(3.11)

By choosing ρ small so that 1
2 < e2s < 2 for s ∈ (−ρ, ρ). Using the identity

ge = (ds)2 + g̃e, one sees that the bound (3.7) for the t = 0 case follows from
(3.9). Moreover, using the fact that the derivatives of e2s and (ds)2 + Φ∗

pgΣ
are bounded in the Euclidean norm on Bx, the bound (3.8) for this case
follows.

Next we deal with the t = 1 case. We will use the asymptotically conical
behavior of the deformed conifold metrics discussed in Section 2. Recall the
explicit diffeomorphism x1 : Q1\{r1 = 1} → Q0,sm with inverse Υ1, and also
the estimate

(3.12) |∇k
gco,0

(Υ∗
1gco,1 − gco,0)|gco,0 ≤ D2,kr

− 2
3
(3+k)

0

for r0 ∈ (R,∞) where R > 0 is a large number. Let V1(R) be the compact
subset of Q1 where r1 ≤ R. We will specify the choice of R later. It is easy
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to see that the desired neighborhood Uw exists for w inside V1(R). In fact,
for w ∈ V1(R) we can even choose Bw to be a Euclidean ball of fixed small
radius in C

3 with the real coordinates taken from the real and imaginary
parts of the complex coordinates. Therefore we focus on Q1\V1(R).

For w ∈ Q1\V1(R), define

φ1,w := Υ1 ◦ φ0,x1(w) : Bw → Q1\V1(R)

for each w ∈ Q1\V1(R). Here we identify Bw with Bx1(w). What we do
is defining the chart around w ∈ Q1\V1(R) by pushing forward the chart
around x1(w) via Υ1. Property (3.5) is clear in view of Lemma 2.2.

From the k = 0 case of (3.12) and (3.7) for the t = 0 case, (3.7) holds for
t = 1 for a constant independent of w ∈ Q1\V1(R) when R is large enough.

We have

φ∗1,w(r1(w)−
4
3 gco,1) = r1(w)−

4
3φ∗0,x1(w)(Υ

∗
1gco,1 − gco,0)(3.13)

+ (r1(w)−
4
3φ∗0,x1(w)gco,0).

The second term in the RHS of (3.13) is dealt with in a way similar to
the t = 0 case as follows. By (3.11) we can write

r1(w)−
4
3φ∗0,x1(w)gco,0 = r1(w)−

4
3 r0(x1(w))

4
3 e2s((ds)2 + Φ∗

pgΣ).

Lemma 2.2 implies that for R large enough we have

|r1(w)−
4
3 r0(x1(w))

4
3 | < A,

where A is independent of w ∈ Q1\V1(R), and from this we obtain, as in the
t = 0 case,

(3.14) ‖r1(w)−
4
3φ∗0,x1(w)gco,0‖Ck(Bw,ge) < C0,k.

Next we deal with the first term in the RHS of (3.13). Note that by
(3.12) and the bound (3.7) for t = 0, we have, for any w ∈ Q1\V1(R) when
R is large enough,

‖r1(w)−
4
3φ∗0,x1(w)(∇k

gco,0
(Υ∗

1gco,1 − gco,0))‖C0(Bw,ge)(3.15)

≤ D′
2,k sup

y∈x1(Uw)
(r1(w)−

4
3 r0(y)−

2
3 ).
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Here Uw is the image of Bw in Q1. Note that from (3.5) (for the t = 1 case)
and Lemma 2.2 one can deduce that

r1(w)−
4
3 r0(y)−

2
3 < 1

for w ∈ Q1\V1(R) and for any y ∈ x1(Uw) if R is large enough.

Lemma 3.1. For each k ≥ 0 there is a constant C1,k > 0 independent of
w ∈ Q1\V1(R) such that

‖φ∗0,x1(w)(Υ
∗
1gco,1 − gco,0)‖Ck(Bw,ge)

≤ C1,k

k∑

j=0

‖φ∗0,x1(w)(∇j
gco,0

(Υ∗
1gco,1 − gco,0))‖C0(Bw,ge).

Proof. Recall the expression (3.11) for the pullback of gco,0 to Bw. Using
(3.9) and (3.10), an explicit calculation shows that the Christoffel symbols
of the cone metric gco,0 and their derivatives are bounded in Bw w.r.t. the
Euclidean norm by constants independent of w ∈ Q1\V1(R). The lemma now
follows easily. �

From this lemma we have for k ≥ 1

(3.16) ‖r1(w)−
4
3φ∗0,x1(w)(Υ

∗
1gco,1 − gco,0)‖Ck(Bw,ge) < C2,k.

The required bound (3.8) for the t = 1 case then follow from (3.13),
(3.14) and (3.16).

We proceed to consider the case for general t �= 0. For each point z =
ψt(w) in Qt, denote Uz = ψt(Uw), Bz = Bw and define φt,z = ψt ◦ φ1,w. Then
{(Uz, φt,z)|z ∈ Qt} is a coordinate system on Qt and one can check that

(3.17)
1
C0
ge ≤ φ∗t,z ḡco,t ≤ C0ge

over Bz, and

(3.18) ‖φ∗t,z ḡco,t‖Ck(Bz,ge) ≤ Ck

for the same constants Ck appearing in the t = 1 case.
Finally, we prove (3.6). In the t = 0 case, for y ∈ Ux we have r0 = r0(x) e

2
3
s,

s ∈ (−ρ, ρ), for values of r0, and (3.6) follows immediately.
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For the t = 1 case, recall the expression (2.7) of r1 as a function of r0.
If a point y ∈ Uw ⊂ Q1 has coordinates (p, s) ∈ Bw, then r1(y) = r1(s) =
r1(r0(x1(w)) e

3
2
s). From straight forward computation we can see that there

exist constants R′
m, m ≥ 1, independent of w ∈ Q1 such that

∣
∣ ∂m

∂sm r1(s)
∣
∣ ≤

R′
mr1(s). This implies (3.6) for the t = 1 case. The general case follows easily

from a rescaling argument.
The proof of Proposition 3.1 is now complete. �

It’s not hard to deduce the following:

Corollary 3.1. For any fixed β ∈ R\{0}, there are constants R′′
m > 0, m ≥

1, such that |∇m
gco,t

rβt |gco,t
≤ R′′

mr
β− 2

3
m

t on Qt for any t.

The above proposition and the uniform geometry of
⋃
tXt[1] together

imply

Proposition 3.2. Theorem 3.2 is true if g̃t is replaced by gt.

What we have now are charts Bz endowed with some Euclidean
coordinates (y1, . . . , y6). In the following, we introduce holomorphic coor-
dinates (w1, w2, w3) on Bz (with possibly a smaller common radius) so each
Bz can be regarded as a copy of the ball Bz in Section 2.5. From the construc-
tion above for z ∈ Xt\Vt(R|t| 12 , 3

4) we can simply take wi = yi +
√−1yi+3 for

i = 1, 2, 3. For z ∈ Vt(R|t| 12 , 3
4), by our construction it is actually enough to

consider z ∈ Q1 where r1(z) ≥ R. Moreover, by the homogeneity property
of Q1 it is enough to consider

z =

(
√−1

√
r2
1 − 1
2

, 0, 0,

√
r2
1 + 1
2

)

∈ Q1.

The coordinates of each point (z1, . . . , z4) ∈ Q1 near z satisfy

Z = M1Z0M2,

where

Z =
(
z1 +

√−1z2 −z3 +
√−1z4

z3 +
√−1z4 z1 −

√−1z2

)

,

Z0 =
√−1

⎛

⎝

√
r1(s)2−1

2 +
√

r1(s)2+1
2 0

0
√

r1(s)2−1
2 −

√
r1(s)2+1

2

⎞

⎠ ,
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M1 =

(
cos(θ1 + π

4 ) e
√−1(ψ+φ1) − sin(θ1 + π

4 ) e−
√−1(ψ−φ1)

sin(θ1 + π
4 ) e

√−1(ψ−φ1) cos(θ1 + π
4 ) e−

√−1(ψ+φ1)

)

and

M2 =

(
cos(θ2 + π

4 ) e−
√−1φ2 sin(θ2 + π

4 ) e
√−1φ2

− sin(θ2 + π
4 ) e−

√−1φ2 cos(θ2 + π
4 ) e

√−1φ2

)

for (θ1, θ2, φ1, φ2, ψ, s) ∈ Bz, viewed as the ball of radius 0 < ρ� 1 in R
6

centered at 0. Here r1(s) = r1(r0(x1(z)) e
3
2
s) as before, and (θ1, θ2, φ1, φ2, ψ)

form a local coordinate system on Σ. Explicitly, we have (y1, . . . , y6) =
(θ1, θ2, φ1, φ2, ψ, s).

Near the point

z = (z1, . . . , z4) =

(
√−1

√
r2
1 − 1
2

, 0, 0,

√
r2
1 + 1
2

)

∈ Q1

we can let (z1, z2, z3) be local holomorphic coordinates. Using the above
explicit expressions, we can show that, for some ρ > 0 small enough indepen-
dent of z, on the ballBz the rescaled holomorphic coordinates (w1, w2, w3) :=
r1(z)−1(z1, z2, z3) satisfy the following property that there exist constants
Λk > 0 and Λk,l > 0 for k ≥ 1 and l ≥ 0 independent of z such that as func-
tions in coordinates (x1, . . . , x6) on Bz where wi = xi +

√−1xi+3, i = 1, 2, 3,
the partial derivatives ∂kyj

∂xi1 ...∂xik

and ∂l

∂xi1 ...∂xil

(
∂kxi

∂yj1 ...∂yjk

)
satisfy

∣
∣
∣
∣

∂kyj
∂xi1 . . . ∂xik

∣
∣
∣
∣ ≤ Λk and

∣
∣
∣
∣

∂k

∂xi1 . . . ∂xik

(
∂lxi

∂yj1 . . . ∂yjl

)∣
∣
∣
∣ ≤ Λk,l

for k ≥ 1 and l ≥ 0. Moreover, there is a constant Λ0 > 0 independent of z
such that

1
Λ0

≤ ∂(y1, . . . , y6)
∂(x1, . . . , x6)

≤ Λ0

on Bz.
These properties are not affected if we make a shift in the coordinates

(x1, . . . , x6), and we do so to have Bz centered at the origin of R
6 ∼= C

3.
We can easily see from the above properties that for some possibly smaller
choice of ρ > 0, the version of Theorem 3.1 with g̃t replaced by gt holds
on each Bz endowed with the coordinates (w1, w2, w3) and with ∇e now
understood as the Euclidean derivative w.r.t. (w1, w2, w3). This is what we’ll
always have in mind from now on when we work in the charts Bz, and in
all our later calculations on Bz the coordinates (w1, w2, w3) will always be
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understood as the choice of holomorphic coordinates introduced here unless
stated otherwise.

Remark. For simplicity, in the following we will identify Bz with its image
Uz under φt,z. In particular, Bz can also be regarded as a subset of Xt if
z ∈ Xt, and the pullback sign φ∗t,z will be omitted without causing confusion.

We proceed to prove the original version of Theorem 3.1. Recall that the
Hermitian form ω̃t of the balanced metric g̃t on Xt satisfies ω̃2

t = ω2
t + θt + θ̄t

where θt = ∂∂̄∗∂∗γt for some (2,3)-form γt satisfying the equations Et(γt) =
−∂Φ1,3

t and ∂γt = 0, where

Et = ∂∂̄∂̄∗∂∗ + ∂∗∂̄∂̄∗∂ + ∂∗∂

and the ∗-operators are with respect to the metric gt. Moreover, ∂Φ1,3
t is

supported on Xt[1] and there is a constant C > 0 such that

(3.19) |∂Φ1,3
t |Ck < C|t|.

For an arbitrary Hermitian metric g with Hermitian form ω, in a complex
coordinate system (w1, w2, w3) we have

ω =
√−1

2

∑

1≤i,j≤3

gij̄dwi ∧ dw̄j .

Write

ω2 = −1
2

∑

1≤i,j≤3

Gij̄dw1 ∧ dw̄1 ∧ · · · ∧ d̂wi ∧ · · · ∧ d̂w̄j ∧ · · · ∧ dw3 ∧ dw̄3,

then each gij̄ is a polynomial in the Gij̄ ’s and det(Gij̄)
− 1

2 . With this elemen-
tary fact in mind Theorem 3.1 follows from its version for gt and

Proposition 3.3. For given k ≥ 0, there is a constant C > 0 which may
depend on k such that

‖rt(z)− 8
3 θt‖Ck(B′

z,ge)
< C|t| 13

for any z ∈ Xt when t �= 0 sufficiently small. Here B′
z ⊂ Bz is the ball cen-

tered at 0 with radius ρ
2 .
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Proof. It is enough to prove for z ∈ Vt(1
8). Let Δ∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄ be the ∂̄-

Laplacian w.r.t. gt. Over the region Vt(1) where gt is just the CO-metric
gco,t, we have Δ∂̄θt = 0 since

∂̄∗θt = ∂̄∗∂∂̄∗∂∗γt = ∂∂̄∗∂̄∗∂∗γt = 0

and

(3.20) ∂̄θt = ∂̄∂∂̄∗∂∗γt = −Et(γt) = ∂Φ1,3
t = 0.

The second equality of the second line follows because ∂γt = 0.
The operator

r
4
3
t Δ∂̄ : Γ(Xt,Ω2,2) → Γ(Xt,Ω2,2)

is elliptic. In general, given a (p, q)-form ψ =
∑
ψα1...β̄q

dwα1 ∧ · · · ∧ dw̄βq
,

Kodaira’s Bochner formula says

(Δ∂̄ψ)α1...β̄q
= −

∑

α,β

gβ̄α∇α∇β̄ψα1...β̄q

+
p∑

i=1

q∑

k=1

∑

α,β

Rααiβ̄k

β̄ψα1...αi−1ααi+1...β̄k−1β̄β̄k+1...β̄q

−
q∑

k=1

∑

β

Rβ̄k

β̄ψα1...β̄k−1β̄β̄k+1...β̄q
.

Applying this to ψ = θt =
∑
θα1α2β̄1β̄2

dwα1 ∧ dwα2 ∧ dw̄β1 ∧ dw̄β2 and using
(3.20), we have

r
4
3
t

∑

α,β

gβ̄α∇α∇β̄θα1α2β̄1β̄2
−
∑

α,β

r
4
3
t

(
Rαα1β̄2

β̄θαα2β̄1β̄(3.21)

+Rαα2β̄2

β̄θα1αβ̄1β̄ + Rαα1β̄1

β̄θαα2β̄β̄2
+Rαα2β̄1

β̄θα1αβ̄β̄2

)

+
∑

β

r
4
3
t

(
Rβ̄1

β̄θα1α2β̄β̄2
+Rβ̄2

β̄θα1α2β̄1β̄

)
= 0.

The first term above can be written as

∑

α,β

r
4
3
t g

β̄α∇α∇β̄θα1α2β̄1β̄2
= r

4
3
t g

β̄α ∂

∂wα

∂

∂w̄β
θα1α2β̄1β̄2

+ remaining terms,

(3.22)
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where the remaining terms involve derivatives of θα1α2β̄1β̄2
of order 1 or less,

with coefficients bounded as in Proposition 2.3 for constants Λk independent
of z and t �= 0. Note that the products of r

4
3
t and the curvature terms in

(3.21) are bounded similarly. Therefore, θt is the zero of the elliptic operator
r

4
3
t Δ∂̄ whose coefficients are bounded as in Proposition 2.3 for constants Λk

independent of z and t �= 0. We use the Hermitian metric on Ω2,2 induced
by ge. Then there are constants Cp,k > 0 such that

‖θt‖Lp
k+2(Bz,ge) ≤ Cp,k‖θt‖L2(Bz,ge)

for z ∈ Vt(1
8) (so Bz ⊂ Vt(1

4) for ρ small enough, which we assume is the
case). Each Cp,k is independent of z and t since we use the Euclidean metric
in each chart. By the usual Sobolev Theorem over the Euclidean ball (Bz, ge),
for p large enough one can get

‖θt‖Ck(B′
z,ge)

≤ C ′
p,k‖θt‖L2(Bz,ge)

= C ′
p,k

(∫

Bz

|θt|2gedVe

) 1
2

≤ C ′
p,kVole(Bz)

1
2 sup
Bz

|θt|ge

for some constants C ′
p,k > 0 independent of z and t. Therefore,

(3.23) ‖rt(z)− 8
3 θt‖Ck(Bz,ge) ≤ C ′

p,kVole(Bz)
1
2 sup
Bz

|rt(z)− 8
3 θt|ge .

From (2.13) one sees easily that

|θt|2gco,t
≤ |t| 23

for t �= 0 sufficiently small, and by Proposition 3.1 this implies

(3.24) |rt(z)− 8
3 θt|2ge ≤ C|t| 23

for t �= 0 sufficiently small. Now (3.23) and (3.24) complete the proof. �
In later section we will need the following result on the sup norm of θt:

Proposition 3.4. There is a constant C > 0 independent of t such that

|θt|gt
≤ Cr

− 2
3

t |t|.

Consequently, there is a constant C > 0 such that

|ω̃−1
t − ω−1

t |gt
≤ Cr

− 2
3

t |t|.
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Proof. Again, it is enough to consider over Bz for z ∈ Vt(1
8). A similar dis-

cussion as in Proposition 3.3 shows that for each z ∈ Vt(1
8) we have

sup
B′

z

|r
2
3
t θt|gt

≤ C‖θt‖C0
3 (B′

z,ge)
≤ C ′‖θt‖L2

3(Bz,ge) = C ′
(∫

Bz

|r−2
t θt|2gedVe

) 1
2

(3.25)

= C ′′
(∫

Bz

|r
2
3
t θt|2gt

r−4
t dVt

) 1
2

≤ C ′′
(∫

Vt(
1
4
)
|θt|2gt

r
− 8

3
t dVt

) 1
2

.

It is proved in Lemma 17 of [14] that
∫

Vt(
1
4
)
|θt|2gt

r
− 8

3
t dVt ≤ C

∫

Xt[
1
8
]
(|γt|2gt

+ |∂Φ1,3
t |2gt

)dVt

for some constant C > 0 independent of t. In view of (3.19), to prove the
proposition it is enough to show

∫

Xt

|γt|2gt
dVt ≤ C|t|2

for some constant C > 0 independent of t. Suppose that there is a sequence
{ti} converging to 0 such that

|ti|−2

∫

Xti

|γti |2dVti = α2
i → ∞ when i→ ∞,

where α1 > 0. Define γ̃ti = |ti|−1α−1
i γti then

∫

Xti

|γ̃ti |2dVti = 1 and Eti(γ̃ti) = −|ti|−1α−1
i ∂Φ1,3

ti .

Thus there exists a smooth (2,3)-form γ̃0 on X0,sm such that E0(γ̃0) = 0 and
γ̃ti → γ̃0 pointwise. Then one can prove that

∫

X0,sm

|γ̃0|2dV0 = 1 but γ̃0 = 0

as in [14] in exactly the same way, only noticing that in several places we use
the fact that |ti|−2α−2

i |∂Φ1,3
ti |2 → 0 as i→ ∞. This completes the proof. �
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4. HYM metrics on the vector bundle over X0

Let E be an irreducible holomorphic vector bundle over the Kähler Calabi–
Yau three-fold (X̂, ω) as before. Our assumption on E is that it is trivial
over a neighborhood of the exceptional curves Ci’s. By a rescaling of the
metric ω̂0, we may assume that E is trivial over U(1) ⊂ X̂. As mentioned in
Section 2, over X̂ there is a one-parameter family of balanced metrics ω̂a,
0 < a� 1, constructed as in [14]. Since for each a �= 0 the (2,2)-forms ω̂2

a

and ω2 differ by smooth ∂∂̄-exact forms, the bundle E is stable with respect
to all ω̂a if it is so with respect to ω. Assume that this is the case. Then by
the result of [24], there exists a HYM metric Ha on E with respect to ω̂a.

In this section, Ĥ will be a metric such that Ĥ = I with respect to some
a constant frame over U(1) where E is trivial. By a constant frame we mean
the following: under an isomorphism E|U(1)

∼= Or
U(1), a holomorphic section

of E over U(1) can be viewed as a holomorphic vector-valued function on
U(1). Then a constant frame {s1, . . . , sr} is a set of such functions which are
(pointwise) linearly independent and each member si is a constant (vector-
valued) function. A constant frame is in particular a holomorphic frame.

The metric Ĥ will serve as the reference metric. The constants appearing
in this section may depend on Ĥ. We will also often use implicitly the
identification X̂\⋃Ci ∼= X0,sm.

4.1. Proof of the first main theorem

The goal of this subsection is to prove the following theorem on the existence
of a HYM metric with respect to ω̂0 over E|X0,sm . The techniques we use are
largely based on [9–11, 33, 39].

Theorem 4.1. There is a smooth Hermitian metric H0 on E|X0,sm which
is HYM with respect to ω̂0 such that there is a decreasing sequence {ai}∞i=1

converging to 0 for which a sequence {Hai
} of HYM metrics (w.r.t. ω̂ai

,
respectively) converge weakly to H0 in the Lp2-sense for all p on each com-
pactly embedded open subset of X0,sm.

Proof. We begin with a boundedness result on the determinants of ha :=
HaĤ

−1.

Lemma 4.1. After a rescaling Ha by positive constants we can assume that
detha are bounded from above and below by positive constants independent
of 0 < a� 1.
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Proof. Let ϕa be the unique smooth function on X̂ satisfying

Δ̂aϕa = −
√−1
r

tr Λω̂a
FĤ

and
∫
X̂ ϕadVa = 0 where dVa is the volume form of ĝa.

Claim. The sup norm of ϕa is bounded by a constant independent of 0 <
a� 1.

Proof. First note that since Λω̂a
FĤ = 0 on U(1), ϕa is harmonic over U(1)

and so we have by the maximum principle supU(1) |ϕa| ≤ supX0[
3
4
] |ϕa|.

Since ω̂a is a balanced metric the Laplacian Δ̂a coincides (up to a con-
stant multiple) with the negative of the Laplace–Beltrami operator its associ-
ated Riemannian metric (see, e.g.,[18]). We thus have the Greens formula [3]:
for each x ∈ X0[34 ], 0 < a� 1, 1

4 ≤ δ ≤ 1
2 , and smooth function f on X̂,

(4.1)

f(x) =
∫

∂X0[δ]
Γa,δ(x, y)f(y)dSa(y) +

∫

y∈X0[δ]
Ga,δ(x, y)Δ̂af(y) dVa(y),

where Ga,δ(x, y) ≤ 0 is the Green’s function for Δ̂a over the region X0[δ],
and Γa,δ is the boundary normal derivative of Ga,δ(x, y) with respect to
y. Moreover, dSa is the volume form on ∂X0[δ] with respect to the metric
induced from ĝa.

We apply the above formula to f = ϕa. Since the family of metrics
{ω̂a|0 < a� 1} are uniform over X0[14 ] there is a constant K0 such that
for any 0 < a� 1, 1

4 ≤ δ ≤ 1
2 , y ∈ ∂X0[δ] and x ∈ X0[34 ],

|Γa,δ(x, y)| ≤ K0.

For the same reason there is a constant K1 > 0 such that

−
∫

y∈X0[δ]
Ga,δ(x, y) dVa(y) ≤ K1

for any x ∈ X0[34 ], 1
4 ≤ δ ≤ 1

2 , and 0 < a� 1.
Because Λω̂a

FĤ = 0 over U(1), |1r tr Λω̂a
FĤ | is bounded by a constant

K2 > 0 independent of a. Therefore we have

|Ga,δ(x, y)Δ̂aϕa| ≤ −Ga,δ(x, y)|1
r
tr Λω̂a

FĤ | ≤ −K2 ·Ga,δ(x, y).
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We can conclude from the above bounds that

|ϕa(x)| ≤ K0

∫

∂X0[δ]
|ϕa|dSa −

∫

y∈X0[δ]
K2 ·Ga,δ(x, y)dVa(y)(4.2)

≤ K0

∫

∂X0[δ]
|ϕa| dSa +K1K2.

Integrate (4.2) with respect to δ from 1
4 to 1

2 and use once again the
uniformity in the metrics over X0[14 ] we obtain

|ϕa(x)| ≤ K4

(∫

X0[
1
2
]\X0[

1
4
]
|ϕa|dVa

)

+ 4K1K2(4.3)

≤ K4K
1
2
5

(∫

X̂
|ϕa|2dVa

) 1
2

+ 4K1K2

for each x ∈ X0[34 ]. Here K5 is a common upper bound for the volumes of
X̂ w.r.t. ĝa. Now, to prove the claim, we have to show that

∫
X̂ |ϕa|2dVa is

bounded by a constant independent of 0 < a� 1. For this we use the esti-
mates on the first eigenvalue of Laplacians due to Yau [42] which implies that
for a compact Riemannian manifold (X, g) of dimension n, if (i) diagg(X) ≤
D1, (ii) Volg(X) ≥ D2 and (iii) Ric(g) ≥ (n− 1)K hold, then the number

λ1 := inf
0�=f∈C∞(X),

∫
X
fdVg=0

∫
X fΔLB

g f dVg
∫
X f

2 dVg

is bounded below by a constant depending only on D1, D2 and K. Here ΔLB
g

denotes the Laplace–Beltrami operator of g.
For the family of metrics {ĝa} on X̂, it is easy to see that the diameters

and volumes are bounded as in (i) and (ii) by the same constants D1 and
D2. Note that in a neighborhood of the exceptional curves each member ĝa
is Ricci-flat, and so by the uniformity outside that neighborhood, condition
(iii) holds for a common value of K.

Therefore, there is a constant K6 > 0 such that

∫

X̂
|ϕa|2dVa ≤ K6

∫

X̂
|ϕa‖Δ̂aϕa|dVa = K6

∫

X̂
|ϕa||1

r
tr Λω̂a

FĤ |dVa

≤ K6K2

∫

X̂
|ϕa|dVa ≤ K6K2K

1
2
5

(∫

X̂
|ϕa|2dVa

) 1
2
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and hence
(∫

X̂
|ϕa|2dVa

) 1
2

≤ K6K2K
1
2
5 .

This completes the proof of the claim. �

Define Ĥa := eϕaĤ. Then it follows from the claim that to prove the
lemma, it is enough to show that the determinants of ĥa := HaĤ

−1
a have

common positive upper and lower bounds.
To do so first note that we have tr Λω̂a

FĤa
= 0. Then the proof of Propo-

sition 2.1 in [39] shows that this and the fact that Λω̂a
FHa

= 0 imply det ĥa
is constant for each a. After a rescaling of Ha by a positive constant, we can
assume det ĥa = 1, and the proof of Lemma 4.1 is complete. �

From now on we assume that the rescaling in the above lemma is done.
We next show a result on the C0-bound for trha.

Proposition 4.1. Assume that the integrals
∫
X̂ | log trha|2 dVa have a com-

mon upper bound for 0 < a� 1. Then there is a constant C0 > 0 such that
for any 0 < a� 1,

−C0 < log trha < C0.

Proof. First of all, we have the following inequality whose proof can be found
in [33]:

Lemma 4.2. Let H0 and H1 be two Hermitian metrics on a holomorphic
vector bundle E over a Hermitian manifold (X,ω), and define h = H1H

−1
0 .

Then

(4.4) Δω log trh ≥ −(|ΛωFH0 |H0 + |ΛωFH1 |H0).

By Lemma 4.2, we have the inequality

(4.5) Δ̂a log tr(ha) ≥ −(|Λω̂a
FHa

|Ĥ + |Λω̂a
FĤ |Ĥ) = −|Λω̂a

FH̃ |Ĥ ,

where the equality follows since Ha is HYM with respect to ω̂a.
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Over U(7
8) we have Δ̂a log trha ≥ −|Λω̂a

FĤ |Ĥ = 0 and so by Maximum
Principle we have

sup
U( 7

8
)

log trha ≤ sup
∂U( 7

8
)

log trha ≤ sup
X0[

3
4
]

log trha.

Using the Green’s formula (4.2), we can show as in Lemma 4.1 that

(4.6) sup
X0[

3
4
]

log trha ≤ K ′

for some K ′ > 0 independent of 0 < a� 1 assuming that the integrals∫
X̂ | log trha|2 dVa have a common upper bound. We thus have a common

upper bound for supX̂ log trha.
Together with the fact that the determinants of ha are bounded from

above and below by positive constants independent of 0 < a� 1, this upper
bound also implies a common lower bound for log trha over X̂. The proof
is completed. �

Therefore, to get C0-estimate we prove

Proposition 4.2. There is a constant C ′
0 > 0 such that

∫

X̂
| log trha|2dVa < C ′

0

for any 0 < a� 1.

Proof. The idea is basically the same as in the proof of Proposition 4.1
in [39]. Assume the contrary. Then there is a sequence {ak}∞k=1 converging to
0 such that limk→∞

∫
X̂ | log trhak

|2 dVak
= ∞. Denote h(k) = hak

, and define
ρk = e−Mk where Mk is the largest eigenvalue of log h(k). Then ρkh(k) ≤ I.

The following inequality is proved in Lemma 4.1 of [39]:

Lemma 4.3. Suppose

ΛωFH + Λω∂̄((∂Hh)h−1) = 0

holds for a Hermitian metric H on a vector bundle E over a Hermitian man-
ifold (X,ω) and h ∈ Γ(End(E)). Then for 0 < σ ≤ 1, we have the inequality

|h−σ

2 ∂Hh
σ|2H,g −

1
σ

Δω|hσ|H ≤ −〈ΛωFH , hσ〉H .
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In our case, because Λω̂a
FĤ + Λω̂a

∂̄((∂Ĥha)h
−1
a ) = Λω̂a

FHa
= 0, apply

the above lemma to σ = 1, we see immediately that

(4.7) −Δ̂a|ha|Ĥ ≤ |Λω̂a
FĤ |Ĥ |ha|Ĥ ≤ K7|ha|Ĥ ,

where K7 is a common upper bound for |Λω̂a
FĤ |Ĥ .

Note that |ha|Ĥ is subharmonic in U(7
8) because of the first inequal-

ity in (4.7) and the fact that Λω̂a
FĤ = 0 there. Maximum Principle then

implies that

sup
U( 7

8
)

|ha|Ĥ ≤ sup
X0[

3
4
]

|ha|Ĥ .

From this observation and an iteration argument over X0[34 ] on (4.7), we
can deduce that

sup
X̂

|ha|Ĥ ≤ K8

(∫

X0[
1
4
]
|ha|2ĤdVa

) 1
2

.

This implies

(4.8) 1 ≤ K8

(∫

X0[
1
4
]
|ρkh(k)|2ĤdVak

) 1
2

for any k > 0.
As in page S275 of [39], one can show that
∫

X̂
|∇Ĥ(ρkh(k))|2Ĥ,ĝak

dVak
≤ 4 max

X̂
|Λω̂ak

FĤ |ĤVolak
(X̂) ≤ 4K7K5,

where K5 is as in the proof of Lemma 4.1.
Thus we see that the L2

1-norms of ρkh(k) with respect to ω̂ak
are bounded

by a constant independent of k. Because the sequence of metrics {ω̂ak
} are

uniformly bounded only on each compactly embedded open subset in X0,sm,
a subsequence of the sequence {ρkh(k)} converges strongly on each subset of
this kind. After taking a sequence {Ul ⊂⊂ X̂}l of exhausting increasing sub-
sets and use the diagonal argument, we obtain a subsequence {ρki

h(ki)}i≥1

of {ρkh(k)}k≥1 and an Ĥ-symmetric endomorphism h∞ of E which is the
limit of {ρki

hki
|Ul

}i≥1 in L2(Ul,End(E)) for all l. From (4.8) one immediately
sees that h∞ is nontrivial.

Define hi = ρki
h(ki). The same argument shows that hσi converges weakly

in the L2
1 sense on each Ul to some hσ∞. The uniform bound on the L2

1-norm
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of hσi gives the same bound on hσ∞ for all σ. It follows that I − hσ∞ has a
weak limit in L2

1 sense on each Ul for some subsequence σ → 0. We call the
limit π. Similar to [39] except that we consider integrals over each Ul, we can
show that π gives a weakly holomorphic subbundle of E . More precisely [27],
there is a coherent subsheaf F of E and an analytic subset S ⊂ X̂ (contain-
ing the exceptional curves) such that S has codimension greater than 1
in X̂, the restriction of π to X̂\S is smooth and satisfies π∗Ĥ = π = π2 and
(I − π)∂̄π = 0, and finally, the restriction F ′ := F|X̂\S = π|X̂\S(E|X̂\S) ↪→ E
is a holomorphic subbundle. The rank of F satisfies 0 < rankF < rank E .

Following the argument in [22, pp. 181–182] (see also Proposition 3.4.9
of [27]), we have

μ0 := lim
δ→0

1
rankF

∫

X0[δ]
c1(detF , u) ∧ ω̂2

0 = lim
δ→0

1
rankF

∫

X0[δ]
c1(F ′, Ĥ1) ∧ ω̂2

0.

Here u is some smooth Hermitian metric on the holomorphic line bundle
detF over X̂, and Ĥ1 is the Hermitian metric on the bundle F ′ induced by
the metric Ĥ on E . Using the above construction of π by convergence on the
Ul’s one can show by a slight modification of the arguments in [39] that

lim
δ→0

1
rankF

∫

X0[δ]
c1(F ′, Ĥ1) ∧ ω̂2

0 ≥ 0.

Claim. For 0 < a� 1, μω̂a
(F) ≥ 0.

Proof. It is enough to show μω̂a
(F) = μ0. From the construction of ω̂0 in [14],

we have

ω̂2
0 = Ψ + Φ0,

where Ψ is a (2,2)-form supported outside U(1) and Φ0 is a ∂∂̄-exact (2,2)-
form which is defined only on X̂\ ∪ Ci, is supported in U(3

2)\ ∪ Ci, and
equals ω2

co,0 = 9
4

√−1∂∂̄r
4
3 ∧√−1∂∂̄r

4
3 on U(1)\ ∪ Ci. The same construc-

tion gives ω̂a such that

ω̂2
a = Ψ + Φa,

where Φa is a smooth ∂∂̄-exact (2,2)-form supported in U(3
2) which equals

ω2
co,a on U(1).
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Denote the smooth (1,1)-form c1(detF , u) on X̂ by c1 and rankF by s.
From the above descriptions we have

μω̂a
(F) − μ0 = lim

δ→0

1
s

∫

X0[δ]
c1 ∧ (ω̂2

a − ω̂2
0) = lim

δ→0

1
s

∫

X0[δ]
c1 ∧ (Φa − Φ0),

=
1
s

∫

X̂
c1 ∧ Φa − lim

δ→0

1
s

∫

X0[δ]
c1 ∧ Φ0 = − lim

δ→0

1
s

∫

X0[δ]
c1 ∧ Φ0,

where the last equality follows from the fact that, as smooth forms on X̂,
c1 is closed and Φa is exact. One can write c1 ∧ Φ0 = d(c1 ∧ ς) where ς is a
three-form supported on U(3

2)\ ∪ Ci which equals 9
8(∂r

4
3 − ∂̄r

4
3 ) ∧ ∂∂̄r 4

3 on
U(1)\ ∪ Ci. By Stokes’ Theorem, we have

(4.9) − lim
δ→0

1
s

∫

X0[δ]
c1 ∧ Φ0 = − lim

δ→0

9
8

1
s

∫

∂X0[δ]
c1 ∧ (∂r

4
3 − ∂̄r

4
3 ) ∧ ∂∂̄r 4

3 .

An explicit calculation on coordinate charts can then show that the last
limit is zero. �

Since μω̂a
(E) = 0, we get from this claim a contradiction to the assump-

tion that E is stable with respect to ω̂a and complete the proof of Proposi-
tion 4.2. �

We continue with the proof of Theorem 4.1. Using Ĥ and ĝa one can
define L2

1-norms for ha. The next step is to give an L2
1-boundedness.

Proposition 4.3. The L2
1-norm of ha over X̂ is bounded by some constant

C2 independent of 0 < a� 1.

Proof. The C0-boundedness obtained above and the common upper bound
in Vola(X̂) imply that the L2 norm of ha is bounded above by a constant
independent of a.

Choose a finite number of Hermitian metrics H(ν) for 1 ≤ ν ≤ k on
E which are constant in some holomorphic frame E|U(1)

∼= Or over U(1),
such that for any smooth Hermitian metric K on E the entries of the
Hermitian matrix representing K are linear functions of tr(K(H(ν))−1),
1 ≤ ν ≤ k, whose coefficients are constants depending only on H(ν). Denote
h

(ν)
a = Ha(H(ν))−1. It is therefore enough to bound the integrals

∫

X̂
|d trh(ν)

a |2ĝa
dVa

for 1 ≤ ν ≤ k.
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From Lemma 4.2 and the fact that Ha is HYM w.r.t. ω̂a, we have

Δ̂a log trh(ν)
a ≥− (|Λω̂a

FH(ν) |H(ν) + |Λω̂a
FHa

|H(ν)) ≥ −|Λω̂a
FH(ν) |H(ν) ,

(4.10)

from which we have the inequality

(4.11) −Δ̂atrh(ν)
a ≤ |Λω̂a

FH(ν) |H(ν)trh(ν)
a ≤ K9trh(ν)

a

for some constant K9 > 0. Here the last inequality follows from the fact that
FH(ν) is supported on X̂\U(1), where the ω̂a are uniform.

Multiplying trh(ν)
a on both sides of the inequality (4.11) and using inte-

gration by parts, we get

∫

X̂
|d trh(ν)

a |2ĝa
dVa ≤ K9

∫

X̂
|trh(ν)

a |2dVa.

Finally, write h(ν)
a = haĤ(H(ν))−1, and we see that the result follows from

the uniform C0 bound of ha. �

Using the diagonal argument, the uniform boundedness of the L2
1-norm

of ha over X̂ implies that there is a sequence {ai}i≥1 converging to 0 and
an Ĥ-symmetric endomorphism h0 of E which is the limit of {hai

|Ul
}i≥1 in

L2(Ul,End(E)) for all l.
As in [9, 33], we can then prove that the sequence {hai

}i≥1 converges
in the C0-sense to h0 on each Ul. Next we argue that there is a uniform
C1-bound for {hai

}i≥1 over X̂. We need the following lemma, whose proof
will be given later.

Lemma 4.4. Let V be a Kähler manifold endowed with a Ricci-flat Kähler
metric g, and let H be a HYM metric on a trivial holomorphic F bundle
over V w.r.t. g. Fix a trivialization of F and view H as a matrix-valued
function on V . Then

−Δg|∂HH−1|2H,g ≤ 0.

We apply this lemma to the the restriction of E to U(1) under a trivi-
alization in which Ĥ = I. Also let H = Hai

and g the restriction of ĝai
to

U(1), where it coincides with the CO-metric on resolved conifold. Then we
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have

−Δ̂ai
|∂Hai

H−1
ai

|2Hai
,ĝai

≤ 0

and hence, by the Maximum Principle,

sup
U(1)

|∂Hai
H−1
ai

|2Hai
,ĝai

≤ sup
∂U(1)

|∂Hai
H−1
ai

|2Hai
,ĝai

.

Using the uniform C0-boundedness of Ha and the fact that Ĥ = I, the
above inequality implies

sup
U(1)

|∂Ĥhai
|Ĥ,ĝai

≤ K10 sup
∂U(1)

|∂Ĥhai
|Ĥ,ĝai

.

Therefore, it is enough to bound the maximum of |∂Ĥhai
|Ĥ,ĝai

overX0[12 ].
Let xi ∈ X0[12 ] be a sequence of points such that

mi := sup
X0[

1
2
]

|∂Ĥhai
|Ĥ,ĝai

= |∂Ĥhai
|Ĥ,ĝai

(xi).

Assume mi is unbounded. If {xi} has a converging subsequence with
limit in the interior of X0[12 ], then one can argue as in [9, 33] and get
a contradiction. Thus, it is enough to get a uniform bound near ∂X0[12 ].
For this we use Lemma 4.4 and an iteration argument to conclude that
sup∂X0[

1
2
] |∂Ĥhai

|Ĥ,ĝai

is bounded by the L2-integral of |∂Ĥhai
|Ĥ,ĝai

in a
neighborhood of ∂X0[12 ], say V0(1

4 ,
3
4). This last integral is uniformly bounded

by Proposition 4.3. Thus if {xi} has a limit on ∂X0[12 ], mi is bounded, which
contradicts to the assumption. We therefore prove uniform C1-boundedness
for {hai

}i≥1.
One can then obtain from this uniform C1-bound a uniform Lp2-bound

for {hai
}i≥1 over each Ul as in [9, 33]. Then after taking a subsequence, we

may assume that hai
converges to h0 weakly in the Lp2 sense for all p over

each Ul. This implies Λω̂0FH0 = 0 where H0 = h0Ĥ. By standard elliptic
regularity H0 is smooth.

The proof of Theorem 4.1 is now complete. �

Remark. From Lemma 4.1 and Proposition 4.1 it is easy to see that the
largest eigenvalue of h0 is bounded from above over X0,sm, and lower eigen-
values of h0 is bounded from below over X0,sm. In particular, the C0-norm
of h0 is bounded over X0,sm.
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Proof of Lemma 4.4. The HYM equation takes the form
√−1Λg∂̄(∂HH−1) = 0.

In local coordinates this is just

gij̄
∂

∂z̄j

(
∂H

∂zi
H−1

)

= 0.

In the following we denote ∂i = ∂
∂zi

and ∂j̄ = ∂
∂z̄j

. Taking partial derivatives
on both sides of the above equation, we get

−gip̄∂kgp̄qgqj̄∂j̄(∂iHH−1) + gij̄∂j̄((∂k∂iH)H−1 − ∂iHH
−1∂kHH

−1) = 0.
(4.12)

One can compute that

(∂k∂iH)H−1 − ∂iHH
−1∂kHH

−1 = ∂i(∂kHH−1) + ∂kHH
−1∂iHH

−1

− ∂iHH
−1∂kHH

−1 = (∂H)i(∂kHH−1).

Note also that gip̄ ∂gp̄q

∂zk
is the Christoffel symbol Γikq of g. Therefore (4.12)

becomes

(4.13) −Γikqg
qj̄∂j̄

(
∂iHH

−1
)

+ gij̄∂j̄(∂H)i
(
∂kHH

−1
)

= 0.

Now, in local charts,

−Δg|∂HH−1|2H,g = −√−1Λg∂∂̄|∂HH−1|2H,g(4.14)

≤ −〈√−1Λg∇1,0
H,g ∧∇0,1

H,g(∂HH
−1), ∂HH−1〉H,g

− 〈∂HH−1,
√−1Λg∇0,1

H,g ∧∇1,0
H,g(∂HH

−1)〉H,g.

Here Λg : Γ(V,End(F) ⊗ Ω1 ⊗ Ω2) → Γ(V,End(F) ⊗ Ω1) is the contrac-
tion of the two-form part with the Kähler form ωg of g. The operator
∇1,0
H,g ∧∇0,1

H,g is the composition

Γ(V,End(F) ⊗ Ω1)
∇0,1

H,g−−−→ Γ(V,End(F) ⊗ Ω1 ⊗ Ω0,1)
∇1,0

H,g−−−→ Γ(V,End(F) ⊗ Ω1 ⊗ Ω0,1 ⊗ Ω1,0) a−→ Γ(V,End(F) ⊗ Ω1 ⊗ Ω1,1),

where the last map is the natural anti-symmetrization. The operator ∇0,1
H,g ∧

∇1,0
H,g is analogously defined.
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Write A = ∂HH−1 = Akdzk so ∇H,g = ∇A,g. Explicitly, we have

√−1Λg∇1,0
H,g ∧∇0,1

H,g(∂HH
−1) = −2(gij̄(∂A)i∂j̄Ak)dzk + 2gqj̄(∂j̄Ai)Γ

i
kqdzk

(4.15)

= 2(−gij̄∂j̄(∂A)iAk + gqj̄(∂j̄Ai)Γ
i
kq)dzk,

where we use the fact that

gij̄(∂A)i∂j̄Ak = gij̄∂j̄(∂A)iAk + [gij̄(FA)ij̄ , Ak] = gij̄∂j̄(∂A)iAk

because d+A is a HYM connection. Now (4.13) and (4.15) together implies
that

(4.16)
√−1Λg∇1,0

H,g ∧∇0,1
H,g(∂HH

−1) = 0.

Next we compute
√−1Λg∇0,1

H,g ∧∇1,0
H,g(∂HH

−1). We have

√−1Λg∇0,1
H,g ∧∇1,0

H,g(∂HH
−1)(4.17)

= 2
(
gij̄(∂j̄(∂A)iAk)dzk − (∂j̄Ai)g

qj̄Γikqdzk −Aig
qj̄∂j̄Γ

i
kqdzk

)
.

Note that

−∂j̄Γikq = −∂j̄(gip̄∂kgp̄q) = −gip̄∂j̄∂kgp̄q + gis̄gtp̄∂j̄gs̄t∂kgp̄q

is the full curvature tensor Ri
qkj̄

of g. From the Bianchi identity and the fact
that g is Ricci flat, we have

(4.18) −gqj̄∂j̄Γikq = gqj̄Riqkj̄ = gqj̄Rqp̄kj̄g
ip̄ = gqj̄Rqj̄kp̄g

ip̄ = Rkp̄g
ip̄ = 0.

From (4.13) and (4.18) we then have

(4.19)
√−1Λg∇0,1

H,g ∧∇1,0
H,g(∂HH

−1) = 0.

The result now follows from (4.14), (4.16) and (4.19). �

4.2. Boundedness results for H0

We will now establish some boundedness results for H0. The following C1-
boundedness for h0 follows easily from the uniform C1-bound of the sequence
{hai

}i≥1 which converges to h0.
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Proposition 4.4. There is a constant C ′
1 > 0 such that |∇Ĥh0|Ĥ,ĝ0 ≤ C ′

1

on X0,sm.

Higher order bounds for H0 will be described in the uniform coordinate
system {(Bz, φ0,z)|z ∈ X0,sm} from Section 3.

Proposition 4.5. There are constants C ′
k > 0 for k ≥ 0 such that in the

above coordinate system,

‖h0‖Ck(Bz,Ĥ,ge)
< C ′

k

for each z ∈ X0,sm.

Proof. It is enough to focus on V0,sm(1), where E is the trivial bundle. More-
over, by gauge invariance of the norm, it is enough to work under a holo-
morphic frame in which Ĥ = I. With this understood, h0 is just H0.

The result for the k = 0 cases is Proposition 4.1. For the k = 1 case, note
that by Proposition 4.4 we have locally

tr
(

ĝij̄0
∂H0

∂wi

∂H∗
0

∂w̄j

)

< (C ′
1)

2.

Here ∗ is w.r.t. I, and in this case H∗
0 = H0. Therefore, because the norm

r0(z)−
4
3 ĝ0 ≤ C0ge where ge is the Euclidean metric in (w1, w2, w3), we have

tr
(

gij̄e
∂H0

∂wi

∂H0

∂w̄j

)

≤ C0tr
(

r0(z)
4
3 (ĝ0)ij̄

∂H0

∂wi

∂H0

∂w̄j

)

< (C ′
1)

2C0r0(z)
4
3 < K11,

(4.20)

for some constant K11 independent of z. This is the desired result for k = 1.
For the k ≥ 2 case, note that the metricH0 is HYM, so in each coordinate

chart Bz it satisfies the equation

(4.21) r0(z)
4
3 ĝij̄0

∂2H0

∂wi∂w̄j
= r0(z)

4
3 ĝij̄0

∂H0

∂wi
H0

−1∂H0

∂w̄j
.

By the k = 0, 1 cases and Proposition 4.4 the right-hand side of (4.21) is
bounded by some constant independent of z ∈ V0,sm(1). Moreover, there is
a constant λ > 0 independent of z ∈ V0,sm(1) such that

(4.22) r0(z)
4
3 (ĝ0)ij̄ξiξ̄j ≥ λ|ξ|2

over any Bz. Therefore, by p. 15 of [21], the bounds in (4.20) and (4.22)
together with the estimates on the higher derivatives of r0(z)−

4
3 ĝ0 from
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(3.4) imply that

‖H0‖C1, 1
2 (B′

z,ge)
< K12,

where B′
z ⊂ Bz is the ball of radius ρ

2 and K12 is a constant independent of
z. It is not hard to improve this to

‖H0‖C1, 1
2 (Bz,ge)

< K13

by considering the estimates over By for y ∈ Bz\B′
z. What is important is

that this C1, 1
2 (Bz, ge) bound of H0 implies that the right-hand side of (4.21)

is bounded in the C0, 1
2 sense, and so by elliptic regularity we get

‖H0‖C2, 1
2 (B′

z,ge)
< K14,

which can be improved to Bz as before. Using bootstrap arguments, we can
obtain, for any k ≥ 1, a constant C ′

k independent of z ∈ V0,sm(1) such that

‖H0‖Ck(Bz,ge) < C ′
k.

Here the derivatives is w.r.t. the Euclidean derivatives. However, these are
also the derivatives w.r.t. ge and Ĥ since Ĥ = I here. �

Let α be a number such that 0 < α < 1
2 . We will specify the choice of

α later. If we restrict ourselves to the region V0(1
2R|t|α, 3R|t|α), where the

bundle E is trivial, we have the following result which we will need in the
next section.

Proposition 4.6. For every small t and wt ∈ V0(1
2R|t|α, 3R|t|α), we have

‖H0H0(wt)−1 − I‖C2,α(Bz,Ĥ,ge)
< D|t| 23α,

where D > 0 is a constant independent of t and z ∈ V0(1
2R|t|α, 3R|t|α). Here

H0(wt) is viewed as a constant metric on E|V0(
1
2
R|t|α,3R|t|α)

∼= Or.

Proof. We work in a holomorphic frame over V0(1
2R|t|α, 3R|t|α) under which

Ĥ = I, so H0(wt) is constant a matrix. Because of the bound in the remark
before the proof of Lemma 4.4, it is enough to show that

‖H0 −H0(wt)‖C2(Bz,ge) < D|t| 23α

for some constant D.
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Since |∇ĤH0|Ĥ,ĝ0 < C ′
1 for some constant C ′

1 and there is a constant
K15 > 0 such that distĝ0(z, wt) < K15|t| 23α for any small t and z ∈
V0(1

2R|t|α, 3R|t|α), by the mean value theorem we have |H0 −H0(wt)| <
K16|t| 23α on V0(1

2R|t|α, 3R|t|α). For each z ∈ V0(1
2R|t|α, 3R|t|α) in each coor-

dinate chart Bz we have

(4.23) r0(z)
4
3 (ĝ0)ij̄

∂2(H0 −H0(wt))
∂wi∂w̄j

= r0(z)
4
3 (ĝ0)ij̄

∂H0

∂wi
H0

−1∂H0

∂w̄j
.

Notice that Equation (4.20) actually implies that the right-hand side of
Equation (4.23) is bounded by (C ′

1)
2C0r0(z)

4
3 , which is less than K17|t| 43α

for some constant K17 > 0. Therefore, in view of (3.4), by elliptic regularity
there is a constant K18 independent of t and z ∈ V0(1

2R|t|α, 3R|t|α) such
that

‖H0 −H0(wt)‖C1, 1
2 (B′

z,ge)

≤ K18(‖RHS of (4.23)‖C0(Bz) + ‖H0 −H0(wt)‖C0(Bz))

≤ K18(K17 +K16)|t| 23α.

As in the proof of Proposition 4.5, this final estimate can be improved
to ‖H0 −H0(wt)‖C1, 1

2 (Bz,ge)
≤ K19|t| 23α, and we use elliptic regularity once

again to get the desired bound. �

5. The approximate Hermitian metrics on Et over Xt

5.1. Construction of approximate metrics

In this subsection we construct approximate Hermitian metrics on Et. We will
compare the estimates on the bundles Et, each over a different manifold Xt.
For this we first recall the smooth family of diffeomorphisms xt : Qt\{rt =
|t| 12 } → Q0,sm from Section 2. Recall also the fixed large number R� 1
from Section 3 (after (3.12)). For t small, restricting to Vt(1

2R|t|
1
2 , 1) we get

a smooth family of injective maps

xt : Vt
(

1
2R|t|

1
2 , 1
)
→ V0

(
1
4R|t|

1
2 , 3

2

)
.

We can extend these to a smooth family of injective maps, still denoted
by xt:

xt : Xt

[
1
2R|t|

1
2

]
→ X0

[
1
4R|t|

1
2

]
.
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Next, choose a smooth family

ft : Et|Xt

[
1
2
R|t| 12

] → E|
X0

[
1
4
R|t| 12

]

of maps between smooth complex vector bundles which commute with xt
and are diffeomorphic onto the images.

In addition, we require the following condition on ft. Denote by (X , Ẽ)
the smoothing of the pair (X0, π∗E) mentioned in the introduction. By our
assumption on E the restriction of Ẽ to V :=

⋃
t∈Δε

Vt(1) is a trivial holomor-
phic bundle. Fix a holomorphic trivialization Ẽ |V ∼= Or

V inducing the trivi-
alization E|V0,sm(1)

∼= Or
V0,sm(1) under which Ĥ = I, the r × r identity matrix.

With the induced holomorphic trivialization of Et|Vt(1) for all small t, we
require the family ft to be such that when restricting to Vt(1

2R|t|
1
2 , 3

4), we
get a map from the trivial rank r bundle to another trivial rank r bundle
which is the product of the map on the base and the identity map on the
C
r fibers.

Over Xt[12R|t|
1
2 ] we let H ′′

t = f∗t H0, the pullback of the HYM metric H0

from X0[14R|t|
1
2 ]. Note that our choice of ft over Vt(1

2R|t|
1
2 , 3

4) is one such
that f∗t becomes the pullback of vector-valued functions by xt. In partic-
ular, the pullback of a constant frame of E|xt(Vt(2R|t|α, 3

4
)) by ft is again a

constant frame of Et|Vt(2R|t|α, 3
4
). Therefore, under some constant frame of

Et|Vt(
1
2
R|t| 12 , 3

4
)
, the pullback Ĥt of Ĥ can be seen as an identity matrix. We

can extend this constant frame of Et|Vt(2R|t|α, 3
4
) naturally to one over Vt(3

4),
and we then can extend Ĥt over Vt(3

4) by taking the identity matrix under
this constant frame. We then further extend Ĥt over the whole Xt to form
a smooth family. We still denote these extensions by Ĥt, and they will serve
as reference metrics on Et.

From Proposition 4.5 one can deduce

Lemma 5.1. There exists a constant Ck such that for any t �= 0 and z ∈
Xt[R|t| 12 ] we have ‖f∗t h0‖Ck(Bz,Ĥt,g̃t)

≤ Ck.

In view of Theorem 3.1 and Proposition 3.1, we can deduce

Corollary 5.1. There exists a constant C ′′
k such that for any t over

Vt(R|t| 12 , 3
4), we have

k∑

j=0

|r
2
3
j

t ∇j
gco,t

(f∗t h0)|Ĥt,gco,t
≤ C ′′

k .



720 Ming-Tao Chuan

For α such that 0 < α < 1
2 and t small, the image of the restriction of xt

to Vt(R|t|α, 2R|t|α) lies in V0(1
2R|t|α, 3R|t|α). For wt as in Proposition 4.6,

define H ′
t := f∗t (H0(wt)) to be the constant metric on Et|Vt(2R|t|α) (w.r.t. a

constant frame).
Then by Proposition 4.6 we immediately get

Lemma 5.2. There is a constant D > 0 such that for any t and z ∈
Vt(R|t|α, 2R|t|α), we have

‖H ′′
t (H ′

t)
−1 − I‖C2(Bz,Ĥt,ge)

< D|t| 23α.

Now let τ̃t(s) be a smooth increasing cutoff function on R
1 such that

τ̃t(s) =

{
1, s ≥ 2R|t|α− 1

2 ,

0, s ≤ R|t|α− 1
2 ,

and such that its lth derivative τ̃ (l)
t satisfies |τ̃ (l)

t | ≤ K̃l|t|( 1
2
−α)l for l ≥ 1 for

a constant K̃l > 0 independent of t. Define τt = τ̃t(|t|− 1
2 rt), which is a cutoff

function on Xt, and define the approximate Hermitian metric to be

Ht = (1 − τt)H ′
t + τtH

′′
t = (I + τt(H ′′

t (H ′
t)
−1 − I))H ′

t.

Remark. The metric Ht is just an interpolation between f∗t H0 and H ′
t =

f∗t (H0(wt)). Because the determinant f∗t h0 is bounded uniformly both from
above and below, the common C0-bound of f∗t h0 w.r.t. Ĥt in Lemma 5.1
implies that the norms | · |Ht

and | · |Ĥt
are in fact equivalent (uniformly

in t).

The following estimates for Ht are analogous to those for H0 in Propo-
sition 4.5. They follow from that proposition with the help of Corollary 3.1.

Proposition 5.1. There are constants Ck > 0 for k ≥ 0 such that

‖Ht(Ĥt)−1‖Ck(Bz,Ĥt,ge)
< Ck

for each z ∈ Xt.

5.2. Bounds for the mean curvatures

The following proposition gives the bounds for the mean curvatures√−1Λω̃t
FHt

of the approximate metrics Ht.
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Proposition 5.2. There are constants Λk > 0 and Z̃k > 0 such that for t
small enough, we have the following:

(1) For any z ∈ Xt and k ≥ 1,

(5.1) ‖r
4
3
t Λω̃t

FHt
‖Ck(Bz,Ĥt,ge)

≤ Λk,

(2)

(5.2) |r
4
3
t Λω̃t

FHt
|Ht

≤ Z̃0 max{|t| 23α, |t|1−2α}

and

(3)

(5.3) ‖Λω̃t
FHt

‖Lk
0,−4(Xt,Ht,g̃t) ≤ Z̃k max{|t|2α, |t|1− 2

3
α}.

Proof. The first estimates (5.1) follow from Theorem 3.1 and Proposition 5.1.
For (5.2), first of all we have

(5.4) Λω̃t
FHt

= 0 on Vt(R|t|α)

because Ht = H ′
t there and H ′

t is a flat metric.
Next consider the annulus Vt(R|t|α, 2R|t|α). Let

h′t = I + τt(H ′′
t (H ′

t)
−1 − I),

then we have

Λω̃t
FHt

= Λω̃t
FH′

t
+ Λω̃t

∂̄(∂H′
t
h′t(h

′
t)
−1) = Λω̃t

∂̄(∂H′
t
h′t(h

′
t)
−1).

Now, on each local coordinate chart Bz ∩ Vt(R|t|α, 2R|t|α), compute in
a frame under which H ′

t is constant, we have

r
4
3
t Λω̃t

∂̄(∂H′
t
h′t(h

′
t)
−1) = r

4
3
t Λω̃t

∂̄((∂h′t− ∂H ′
t(H

′
t)
−1h′t +h′t∂H

′
t(H

′
t)
−1)(h′t)

−1)

(5.5)

= r
4
3
t Λω̃t

∂̄(∂h′t(h
′
t)
−1)

= r
4
3
t Λω̃t

∂h′t(h
′
t)
−1∂̄h′t(h

′
t)
−1 + r

4
3
t Λω̃t

∂̄∂h′t(h
′
t)
−1.
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To bound the derivatives of h′t we need to bound the derivatives of τt. The
first order derivative of τt can be bounded as

|∇eτt|ge ≤ |τ̃ ′(|t|− 1
2 rt)|t|− 1

2∇ert|ge(5.6)

≤ K̃1|t| 12−α|t|− 1
2 ·R1rt ≤ K̃1R1|t|−αrt ≤ 2K̃1R1R,

where (3.2) is used. The last inequality follows from the fact that the support
of ∇τt is contained in Vt(R|t|α, 2R|t|α).

Similarly, the second order derivative of τt can be bounded as

(5.7) |∇2
eτt|ge ≤ 4K̃2R

2 + 2K̃1R2R.

From (5.6), (5.7) and Lemma 5.2 we can obtain the estimates

|∂h′t|Ĥt,ge
= |∂(τt(H ′′

t (H ′
t)
−1 − I))|Ĥt,ge

≤ |∇eτt|ge |H ′′
t (H ′

t)
−1 − I|Ĥt

+ τt|∇e(H ′′
t (H ′

t)
−1)|Ĥt,ge

≤ 2K̃1R1R ·D|t| 23α +D|t| 23α ≤ (2K̃1R1R+ 1)D · |t| 23α

and

|∂̄∂h′t|Ĥt,ge
≤ |∇2

eτt|ge |H ′′
t (H ′

t)
−1 − I|Ĥt

+ τt|∇2
e(H

′′
t (H ′

t)
−1)|Ĥt,ge

+ 2|∇eτt|ge |∇e(H ′′
t (H ′

t)
−1)|Ĥt,ge

≤ (4K̃2R
2 + 2K̃1R2R) ·D|t| 23α +D|t| 23α + 2 · 2K̃1R1R ·D|t| 23α

≤ (4K̃2R
2 + 2K̃1R2R+ 4K̃1R1R+ 1) ·D|t| 23α.

In local charts, the term r
4
3
t Λω̃t

contributes to r
4
3
t g̃

−1
t , which is bounded by

Theorem 3.1. Therefore, from expression (5.5) we can now conclude that

|r
4
3
t Λω̃t

FHt
|Ĥt

= |r
4
3
t Λω̃t

∂̄(∂H′
t
h′t(h

′
t)
−1)|Ĥt

≤ Z1|t| 23α

on Vt(R|t|α, 2R|t|α) for some constant Z1 > 0 independent of t.
From the remark before Proposition 5.1 we get

(5.8) |r
4
3
t Λω̃t

FHt
|Ht

≤ Z2|t| 23α

on Vt(R|t|α, 2R|t|α) for some constant Z2 > 0 independent of t.
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We now estimate the Lk0,−4-norm of
√−1Λω̃t

FHt
on Vt(R|t|α, 2R|t|α)

with respect to g̃t and Ht.

∫

Vt(R|t|α,2R|t|α)
|r

8
3
t Λω̃t

FHt
|kHt

r−4
t dVt

=
∫

Vt(R|t|α,2R|t|α)
r

4
3
k

t |r
4
3
t Λω̃t

FHt
|kHt

r−4
t dVt

≤ (2R)
4
3
k|t| 43αk · Zk2 |t|

2
3
αk

∫

Vt(R|t|α,2R|t|α)
r−4
t dVt ≤ (2R)

4
3
kZk2 |t|2αkZ3,

where Z3 > 1 is an upper bound for
∫
Vt(R|t|α,2R|t|α) r

−4
t dVt for any t �= 0 small.

Thus

(5.9) ‖Λω̃t
FHt

‖Lk
0,−4(Vt(R|t|α,2R|t|α),g̃t,Ht) ≤ (2R)

4
3Z2Z3|t|2α.

We proceed to consider the region Vt(2R|t|α, 3
4). We will first give a

pointwise estimate on the mean curvature of the Hermitian metric Ht =
f∗t H0. We will use ∂t and ∂̄t to emphasize that they are the ∂- and ∂̄-
operators on Xt, respectively. The calculation will be done under the specific
choices of frames as mentioned before Lemma 5.1. With these choices, we
have Ĥt = I and f∗t H0 can be regarded as the pullback by xt of a matrix-
valued function representing H0. Since constant frames are holomorphic,
the curvature of f∗t H0 can be computed using this pullback matrix-valued
function which we still denote by f∗t H0.

Lemma 5.3. There is a constant Z4 > 0 independent of t such that

|r
4
3
t Λω̃t

(
∂̄t(∂t(f∗t H0)(f∗t H0)−1)

) |Ĥt
≤ Z4 · |t|r−2

t

on Vt(2R|t|α, 3
4).

Proof. We expand and get

∂̄t(∂t(f∗t H0)(f∗t H0)−1) = (∂̄t∂t(f∗t H0))(f∗t H0)−1 + ∂t(f∗t H0)(5.10)

∧ (f∗t H0)−1∂̄t(f∗t H0)(f∗t H0)−1.
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We compute

∂̄t∂t(f∗t H0) = −
√−1

2
dJtd(f∗t H0) = −

√−1
2

dJtf
∗
t (dH0)

(5.11)

= −
√−1

2
d(x∗tJ0d(f∗t H0)) −

√−1
2

d[(Jt − x∗tJ0)d(f∗t H0)]

= −
√−1

2
f∗t (dJ0d(f∗t H0))) −

√−1
2

d[(Jt − x∗tJ0)d(f∗t H0)]

= f∗t (∂̄0∂0H0) −
√−1

2
d[(Jt − x∗tJ0)f∗t (dH0)].

Similarly,

∂t(f∗t H0) = f∗t (∂0H0) −
√−1

2
(Jt − x∗tJ0)f∗t (dH0),(5.12)

∂̄t(f∗t H0) = f∗t (∂̄0H0) +
√−1

2
(Jt − x∗tJ0)f∗t (dH0).(5.13)

Plug in (5.11), (5.12) and (5.13) to (5.10), we get

∂̄t(∂t(f∗t H0)(f∗t H0)−1)

= f∗t (∂̄0∂0H0)(f∗t H0)−1 −
√−1

2
d[(Jt − x∗tJ0)f∗t (dH0)] · (f∗t H0)−1

+ (f∗t ∂0H0)(f∗t H0)−1 ∧ (f∗t ∂̄0H0)(f∗t H0)−1

+
√−1

2
(f∗t ∂0H0)(f∗t H0)−1 ∧ [(Jt − x∗tJ0)f∗t (dH0)](f∗t H0)−1

−
√−1

2
[(Jt − x∗tJ0)f∗t (dH0)](f∗t H0)−1 ∧ (f∗t ∂̄0H0)(f∗t H0)−1

+
1
4
[(Jt − x∗tJ0)f∗t (dH0)](f∗t H0)−1 ∧ [(Jt − x∗tJ0)f∗t (dH0)](f∗t H0)−1

= f∗t (∂̄0(∂0H0(H0)−1))) −
√−1

2
d[(Jt − x∗tJ0)f∗t (dH0)] · (f∗t H0)−1

+
√−1

2
(f∗t ∂0H0)(f∗t H0)−1 ∧ [(Jt − x∗tJ0)f∗t (dH0)](f∗t H0)−1

−
√−1

2
[(Jt − x∗tJ0)f∗t (dH0)](f∗t H0)−1 ∧ (f∗t ∂̄0H0)(f∗t H0)−1

+
1
4
[(Jt − x∗tJ0)f∗t (dH0)](f∗t H0)−1 ∧ [(Jt − x∗tJ0)f∗t (dH0)](f∗t H0)−1
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Therefore we have

|r
4
3
t Λω̃t

∂̄t(∂t(f∗t H0)(f∗t H0)−1)|Ĥt

(5.14)

≤ |r
4
3
t Λω̃t

f∗t (∂̄0(∂0H0(H0)−1))|Ĥt

+
1
2
|r

4
3
t Λω̃t

d[(Jt − x∗tJ0)f∗t (dH0)] · (f∗t H0)−1|Ĥt

+
1
2
|r

4
3
t Λω̃t

[(f∗t ∂0H0)(f∗t H0)−1 ∧ [(Jt − x∗tJ0)f∗t (dH0)](f∗t H0)−1]|Ĥt

+
1
2
|r

4
3
t Λω̃t

[[(Jt − x∗tJ0)f∗t (dH0)](f∗t H0)−1 ∧ (f∗t ∂̄0H0)(f∗t H0)−1]|Ĥt

+
1
4
|r

4
3
t Λω̃t

[[(Jt − x∗tJ0)f∗t (dH0)](f∗t H0)−1

∧ [(Jt − x∗tJ0)f∗t (dH0)](f∗t H0)−1]|Ĥt

Note that because Ĥt = I under the chosen frame, we have f∗t H0 = f∗t h0.
Using the bounds in Proposition 4.5, we can estimate the first term on the
RHS of (5.14) in each coordinate chart Bz as

|r
4
3
t Λω̃t

f∗t (∂̄0(∂0H0(H0)−1))|Ĥt
(5.15)

≤ |r
4
3
t Λx∗

t ω̂0f
∗
t (∂̄0(∂0H0(H0)−1))|Ĥt

+ |r
4
3
t (Λω̃t

− Λx∗
t ω̂0)f

∗
t (∂̄0(∂0H0(H0)−1))|Ĥt

≤ Z5|r
4
3
t f

∗
t (∂̄0(∂0H0(H0)−1))|Ĥt,gco,t

· |ω̃−1
t − x∗tω

−1
co,0|gco,t

≤ Z6|f∗t (∂̄0(∂0H0(H0)−1))|C0(Bz,Ĥt,ḡco,t)
· |ω̃−1

t − ω−1
co,t|gco,t

≤ Z7|f∗t (∂̄0(∂0H0(H0)−1))|C0(Bz,Ĥt,ge)
· C ′′|t|r−

2
3

t

≤ Z8|∂̄0(∂0H0(H0)−1))|C0(Bxt(z),Ĥ,ge)
· |t|r−

2
3

t

≤ Z9(‖H0‖C2(Bxt(z),Ĥ,ge)
+ ‖H0‖2

C1(Bxt(z),Ĥ,ge)
) · |t|r−

2
3

t

≤ Z9(C ′
2 + (C ′

1)
2)|t|r−

2
3

t ≤ Z10|t|r−2
t ,

where Proposition 3.4 and the equation in Lemma 2.1 are applied. We have
also used the fact that

Λx∗
t ω̂0f

∗
t (∂̄0(∂0H0(H0)−1)) = f∗t (Λω̂0(∂̄0(∂0H0(H0)−1))) = 0

since H0 is HYM with respect to the balanced metric ω̂0 on X0,sm.
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The second term on the RHS of (5.14) is bounded as

1
2
|r

4
3
t Λω̃t

d[(Jt − x∗tJ0)f∗t (dH0)] · (f∗t H0)−1|Ĥt

(5.16)

≤ 1
2
|r

4
3
t Λωco,t

d[(Jt − x∗tJ0)f∗t (dH0)] · (f∗t H0)−1|Ĥt

+
1
2
|r

4
3
t (Λωco,t

− Λω̃t
)d[(Jt − x∗tJ0)f∗t (dH0)] · (f∗t H0)−1|Ĥt

≤ Z11|r
4
3
t Λωco,t

d[(Jt − x∗tJ0)f∗t (dH0)]|Ĥt

+ Z11|ω̃−1
t − ω−1

co,t|gco,t
|r

4
3
t d[(Jt − x∗tJ0)f∗t (dH0)]|Ĥt,gco,t

≤ Z12(1 + |ω̃−1
t − ω−1

co,t|gco,t
)·
⎛

⎝r
2
3
t |∇gco,t

(Jt − x∗tJ0)|gco,t
|r

2
3
t d(f

∗
t H0)|Ĥt,gco,t

+ |Jt − x∗tJ0|gco,t

2∑

j=0

|r
2
3
j

t ∇j
gco,t

(f∗t H0)|Ĥt,gco,t

⎞

⎠ .

To proceed, let ∇Υ∗
t gco,t

−∇gco,0 be the difference between the two con-
nections. It is in fact the difference between the Christoffel symbols of Υ∗

t gco,t
and gco,0. From the explicit formulas of Christoffel symbols in terms of the
metrics and Proposition 3.1, for some universal constans D1 > 0 and D2 > 0
we have

|∇Υ∗
t gco,t

−∇gco,0 |Υ∗
t gco,t

≤ D1(|g−1
co,0dgco,0|Υ∗

t gco,t
+ |Υ∗

t g
−1
co,tdΥ

∗
t gco,t|Υ∗

t gco,t
)

(5.17)

≤ D2r
− 2

3
t .

Now, by Corollary 2.1 we have

(5.18) |Jt − x∗tJ0|gco,t
≤ |Υ∗

tJt − J0|Υ∗
t gco,t

≤ D0|t|r−2
t

and by (5.17) we have

|∇gco,t
(Jt − x∗tJ0)|gco,t

(5.19)

≤ |∇Υ∗
t gco,t

(Υ∗
tJt − J0)|Υ∗

t gco,t
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≤ |∇gco,0(Υ
∗
tJt − J0)|Υ∗

t gco,t
+ |(∇Υ∗

t gco,t
−∇gco,0)(Υ

∗
tJt − J0)|Υ∗

t gco,t

≤ D0|t|r−
8
3

t + |∇Υ∗
t gco,t

−∇gco,0 |Υ∗
t gco,t

· |Υ∗
tJt − J0|Υ∗

t gco,t

≤ D0|t|r−
8
3

t +D2D0|t|r−
8
3

t .

We also have |r
2
3
t d(f

∗
t H0)|Ĥt,gco,t

≤ C ′′
1 and

∑2
j=0 |r

2
3
j

t ∇j
gco,t(f∗t H0)|Ĥt,gco,t

≤ C ′′
2 from Corollary 5.1, and |ω̃−1

t − ω−1
co,t|gco,t

≤ C ′′|t| 23 from Proposition
3.4. Plug these, (5.18) and (5.19) into (5.16) we get

1
2
|(f∗t H0)−1r

4
3
t Λω̃t

d[(Jt − x∗tJ0)f∗t (dH0)]|Ĥt
(5.20)

≤ Z12(1 + C ′′|t| 23 )(r
2
3
t (D0 +D2D0)|t|r−

8
3

t · C ′′
1 +D0|t|r−2

t · C ′′
2 )

≤ Z13|t|r−2
t .

The third term on the RHS of (5.14) is bounded as

1
2
|r

4
3
t Λω̃t

[(f∗t ∂̄0H0)(f∗t H0)−1 ∧ [(Jt − x∗tJ0)f∗t (dH0)](f∗t H0)−1]|Ĥt

(5.21)

≤ 1
2
|r

4
3
t Λωco,t

[(f∗t ∂̄0H0)(f∗t H0)−1 ∧ [(Jt − x∗tJ0)f∗t (dH0)](f∗t H0)−1]|Ĥt

+
1
2
|r

4
3
t (Λωco,t

− Λω̃t
)[(f∗t ∂̄0H0)(f∗t H0)−1

∧ [(Jt − x∗tJ0)f∗t (dH0)](f∗t H0)−1]|Ĥt

≤ Z14(1 + |ω̃−1
t − ω−1

co,t|gco,t
) · |Jt − x∗tJ0|gco,t

· |r
2
3
t d(f

∗
t H0)|2Ĥt,gco,t

≤ Z14(1 + C ′′|t| 23 ) ·D0|t|r−2
t · (C ′′

1 )2 ≤ Z15|t|r−2
t ,

where (5.18) and Corollary 5.1 have been used again.
The last two terms on the RHS of (5.14) are also bounded by Z16|t|r−2

t

by similar discussion. This together with (5.14), (5.15), (5.20) and (5.21)
complete the proof of Lemma 5.3. �

We continue with the proof of Proposition 5.2. From the remark before
Proposition 5.1 we get, for Vt(2R|t|α, 3

4), that

(5.22) |r
4
3
t Λω̃t

FHt
|Ht

= |r
4
3
t Λω̃t

(∂̄t(∂t(f∗t H0) · (f∗t H0)−1))|Ht
≤ Z17|t|r−2

t

for some constant Z17 > 0. Consequently, in this region we have

(5.23) |r
4
3
t Λω̃t

FHt
|Ht

≤ Z17 · 1
4R2

|t|1−2α
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and one can estimate

∫

Vt(2R|t|α, 3
4
)
|r

8
3
t Λω̃t

FHt
|kHt

r−4
t dVt =

∫

Vt(2R|t|α, 3
4
)
r

4
3
k

t |r
4
3
t Λω̃t

FHt
|kHt

r−4
t dVt

(5.24)

≤ Zk17

∫

Vt(2R|t|α, 3
4
)
r

4
3
k

t (|t|r−2
t )kr−4

t dVt ≤ Zk17Z18|t|k
∫ 3

4

rt=2R|t|α
r
− 2

3
k−1

t drt

≤ Zk17Z18|t|k · 3
2k

(2R)−
2
3
k|t|− 2

3
αk.

We thus obtain

(5.25) ‖Λω̃t
FHt

‖Lk
0,−4(Vt(2R|t|α, 3

4
),g̃t,Ht) ≤ Z19|t|1− 2

3
α.

This ends the discussion on the region Vt(2R|t|α, 3
4). As for the region Xt[34 ],

because the geometry is uniform there it is easy to see that

(5.26) |r
4
3
t Λω̃t

FHt
|Ht

≤ Z20 · |t|

and

(5.27) ‖Λω̃t
FHt

‖Lk
0,−4(Xt[

3
4
],g̃t,Ht) ≤ Z20,k|t|

when t is small.
Finally, from (5.4), (5.8), (5.23) and (5.26) we get (5.2), and from (5.4),

(5.9), (5.25) and (5.27) we get (5.3). The proof of Proposition 5.2 is complete
now. �

Remark. From now on we fix α = 3
8 . Then we have

(5.28) |r
4
3
t Λω̃t

FHt
|Ht

≤ Z̃0|t| 14

and

(5.29) ‖Λω̃t
FHt

‖Lk
0,−4(Xt,g̃t,Ht) ≤ Z̃k|t|

3
4 .

6. Contraction mapping argument

Our background Hermitian metric on Et as constructed in Section 5 is
denoted by Ht. Let H̃t be another Hermitian metric on Et and write h̃ =
H̃tH

−1
t = I + h where h is Ht-symmetric.
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It is known that the mean curvature
√−1Λω̃t

FH̃t
=

√−1Λω̃t
∂̄((∂Ht

(I + h))(I + h)−1) +
√−1Λω̃t

FHt

of H̃t is H̃t-symmetric.
To make it Ht-symmetric, consider a positive square root of H̃tH

−1
t ,

denoted by (H̃tH
−1
t )

1
2 . More explicitly, write h = P−1DP where D is diag-

onal with positive eigenvalues, then (H̃tH
−1
t )

1
2 = P−1(I +D)

1
2P .

Remark. Write (H̃tH
−1
t )

1
2 = I + u(h). Then it is easy to see that the linear

part of u(h) in h is 1
2h.

After twisting the mean curvature above by I + u(h), we obtain

(6.1)
√−1(I + u(h))−1[Λω̃t

∂̄((∂Ht
(I + h))(I + h)−1) + Λω̃t

FHt
](I + u(h)),

which is Ht-symmetric. The equation
√−1Λω̃t

FH̃t
= 0

is equivalent to the equation
√−1(I + u(h))−1[Λω̃t

∂̄((∂Ht
(I + h))(I + h)−1) + Λω̃t

FHt
](I + u(h)) = 0,

which can be written in the form

Lt(h) = Qt(h),

where
Lt(h) =

√−1(Λω̃t
∂̄∂Ht

h+ 1
2 [Λω̃t

FHt
, h])

is a linear map from

HermHt
(End(Et)) := {Ht-symmetric endomorphisms of Et}

to itself, and

Qt(h) = −√−1(I + u(h))−1(Λω̃t
∂̄∂Ht

h)(I + h)−1(I + u(h))
(6.2)

+
√−1Λω̃t

∂̄∂Ht
h−√−1(I + u(h))−1Λω̃t

(∂Ht
h · (I + h)−1

∧ ∂̄h · (I + h)−1)(I + u(h)) −√−1((I + u(h))−1Λω̃t
FHt

(I + u(h))
− 1

2 [Λω̃t
FHt

, h]).

In the above formulas, we use the fact that 1
2h is the linear part of u(h).
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Notice that since
∫

X

〈√−1
(

Λω̃t
∂̄∂Ht

h+
1
2
[Λω̃t

FHt
, h]
)

, I

〉

Ht

dVt = 0

we have an induced map from

Herm0
Ht

(End(Et))
:= {Ht-symmetric endomorphisms of Et which are orthogonal to I}

to itself. Because (6.1) is a Ht-symmetric endomorphisms of Et which are
orthogonal to I, we see the same is true for Qt(h). In this section h will
always be a section for the bundle Herm0

Ht
(End(Et)).

We consider the contraction mapping problem via weighted norms intro-
duced in Section 2. The metrics that define these norms and all the pointwise
norms will be w.r.t. the balanced metrics g̃t on Xt and the Hermitian met-
rics Ht on Et, and the connections we use are always the Chern connections
of Ht. Therefore we remove g̃t and Ht from the subscripts of the norms for
simplicity unless needed.

As in Section 2, we now consider the following norms defined on the
usual Sobolev space Lkl (Herm0

Ht
(End(Et))):

‖h‖Lk
l,β

=

⎛

⎝
l∑

j=0

∫

Xt

|r−
2
3
β+ 2

3
j

t ∇jh|kt r−4
t dVt

⎞

⎠

1
k

.

As before, we use Lkl,β to denote Lkl,β(Herm0
Ht

(End(Et))) for simplicity. We
also consider the norm

‖h‖Ck
β

:=
k∑

j=0

sup
Xt

|r− 2
3
β+ 2

3
j∇jh|t

and use Ckβ to denote Ckβ(Herm0
Ht

(End(Et))). The following Sobolev inequal-
ities will be used in our discussion:

Proposition 6.1. For each l, p, q, r there exists a constant C > 0 indepen-
dent of t such that for any section h of Herm0

Ht
(End(Et)),

‖h‖Lr
l,β

≤ C‖h‖Lp
q,β
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whenever 1
r ≤ 1

p ≤ 1
r + q−l

6 and

‖h‖Cl
β
≤ C‖h‖Lp

q,β

whenever 1
p <

q−l
6 . Here the norms are with respect to Ht and g̃t.

We now begin the discussion on the properties of the operator Lt.

Lemma 6.1. For any given 0 < ν � 1 and t �= 0 small enough, we have

‖h‖L2
1,−2

≤ 8|t|−2ν‖Lt(h)‖L2
0,−4

.

In particular, the operator Lt is injective on L2
2,−2(Herm0

Ht
(End(Et))).

Proof. Later in Proposition 7.1 we will show that for arbitrarily given ν > 0,
we have

‖h‖L2
0,−2

≤ |t|−ν‖r
2
3
t ∂Ht

h‖L2
0,−2

for t �= 0 small enough. Using this one easily deduce that

‖h‖L2
1,−2

≤ 2|t|−ν‖r
2
3
t ∂Ht

h‖L2
0,−2

for t �= 0 small enough. Now

‖r
2
3
t ∂Ht

h‖2
L2

0,−2
=
∫

Xt

〈∂Ht
h, ∂Ht

h〉 dVt =
∫

Xt

〈√−1Λω̃t
∂̄∂Ht

h, h〉 dVt

≤
∫

Xt

|Lt(h) −
√−1

2
[Λω̃t

FHt
, h]‖h| dVt

≤
∫

Xt

|Lt(h)‖h| dVt +
∫

Xt

|h|2|Λω̃t
FHt

| dVt.

From (5.28) we have |r
4
3
t Λω̃t

FHt
| ≤ Z̃0|t| 14 . Therefore we can bound

∫

Xt

|h|2|Λω̃t
FHt

| dVt =
∫

Xt

|r
4
3
t h|2|r

4
3
t Λω̃t

FHt
|r−4
t dVt

≤ Z̃0|t| 14
∫

Xt

|r
4
3
t h|2r−4

t dVt ≤ Z̃0|t| 14 ‖h‖2
L2

1,−2
.
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Using this bound, we now have

‖h‖2
L2

1,−2
≤ 4|t|−2ν‖r

2
3
t ∂Ht

h‖2
L2

0,−4

≤ 4|t|−2ν

(∫

Xt

|Lt(h)‖h| dVt + Z̃0|t| 14 ‖h‖2
L2

1,−2

)

≤ 4|t|−2ν

(∫

Xt

|r
8
3
t Lt(h)|2r−4

t dVt

) 1
2
(∫

Xt

|r
4
3
t h|2r−4

t dVt

) 1
2

+ 4Z̃0|t| 14−2ν‖h‖2
L2

1,−2

≤ 4|t|−2ν‖Lt(h)‖L2
0,−4

‖h‖L2
1,−2

+ 4Z̃0|t| 14−2ν‖h‖2
L2

1,−2
.

Therefore for ν � 1 and t �= 0 small enough such that 4Z̃0|t| 14−2ν ≤ 1
2 , we

have the desired result. �

We conclude from this that for k ≥ 6, the operator Lt : Lk2,−2 → Lk0,−4 is
injective.

The operator Lt is also surjective. First of all, Λω̃t
∂̄∂Ht

is a self-adjoint
Fredholm operator, so it has index zero. Second, since for each t �= 0, Λω̃t

FHt

is a smooth function on Xt, the operator

h→ 1
2 [Λω̃t

FHt
, h]

from Lk2,−2 to Lk0,−4 is a compact operator. Therefore Lt has index zero, and
the injectivity of Lt implies its surjectivity. Let the inverse be denoted by Pt.

Proposition 6.2. There exist constants Ẑk > 0 such that for any 0 < ν �
1 and t �= 0 small enough,

(6.3) ‖h‖Lk
2,−2

≤ Ẑk(− log |t|) 1
2 |t|−2ν‖Lt(h)‖Lk

0,−4
.

Consequently, the norm of the operator Pt : Lk0,−4 → Lk2,−2 is bounded as

‖Pt‖ ≤ Ẑk(− log |t|) 1
2 |t|−2ν .

Proof. From the estimates of g̃t in Theorem 3.1, the estimates of Ht in
Proposition 5.1, and the estimates (5.1) of r

4
3
t Λω̃t

FHt
in Proposition 5.2, we
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can apply Proposition 2.3 to the operator r
4
3
t Lt, and obtain

‖h‖Lk
2,−2

≤ Ĉk

(
‖r

4
3
t Lt(h)‖Lk

0,−2
+ ‖h‖L2

0,−2

)
≤ Ĉ ′

k

(
‖Lt(h)‖Lk

0,−4
+ ‖h‖L2

0,−2

)

for constans Ĉ ′
k > 0 independent of t. By Lemma 6.1 and Hölder inequality,

‖h‖2
L2

0,−2
≤ 64|t|−4ν

∫

Xt

|r
8
3
t Lt(h)|2r−4

t dVt(6.4)

≤ 64|t|−4ν

(∫

Xt

1 · r−4
t dVt

)1− 2
k
(∫

Xt

|r
8
3
t Lt(h)|kr−4

t dVt

) 2
k

≤ Z ′
0|t|−4ν(− log |t|)1− 2

k ‖Lt(h)‖2
Lk

0,−4

≤ Z ′
0|t|−4ν(− log |t|)‖Lt(h)‖2

Lk
0,−4

.

for t �= 0 small. The claim follows now. �
Now we consider the contraction mapping problem for the map

Ut : Lk2,−2 → Lk2,−2, Ut(h) = Pt(Qt(h)).

Here Qt(h) is given in (6.2).
Take β′ to be a number such that 0 < β′ − 2 � 1. We restrict ourselves

to a ball B(β′) of radius |t| β′
3 centered at 0 inside Lk2,−2, and show that Ut is

a contraction mapping from the ball into itself when t �= 0 is small enough.

Proposition 6.3. For each k large enough, there is a constant Ẑ ′
k > 0 such

that when t �= 0 is small enough the operator h �→ Qt(h) maps the ball of
radius |t| β′

3 in Lk2,−2 into the ball of radius Ẑ ′
k|t|

β′−2
3 · |t| β′

3 in Lk0,−4.

Proof. Note that when k is large enough one has the Sobolev embedding
Lk2,−2 ↪→ C1−2. Proposition 6.1 implies the existence of a constant Csb

k inde-
pendent of t such that

(6.5) ‖h‖C1
−2

≤ Csb
k ‖h‖Lk

2,−2
.

In this case, ‖h‖Lk
2,−2

< |t| β′
3 implies in particular that |h|r

4
3
t < Csb

k |t| β′
3 , and

hence

(6.6) |h| < Csb
k |t| β′−2

3 .

Therefore, because 0 < β′ − 2, when t �= 0 is small it makes sense to take
the inverse of I + h and I + u(h), and there are constants Z ′

1 and Z ′
2 such
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that, for t �= 0 small,

|(I + u(h))−1(Λω̃t
∂̄∂Ht

h)(I + h)−1(I + u(h)) −√−1Λω̃t
∂̄∂Ht

h|(6.7)

≤ Z ′
1|∂̄∂Ht

h‖h| ≤ Z ′
1C

sb
k |t| β′−2

3 |∂̄∂Ht
h| ≤ Z ′

1C
sb
k |t| β′−2

3 |∇2
Ht
h|

and

(6.8) max{|h|, |I + u(h)|, |(I + u(h))−1|, |I + h|, |(I + h)−1|} < Z ′
2.

From the expression (6.2) for Qt we can bound it as

|Qt(h)| ≤ |(I + u(h))−1(Λω̃t
∂̄∂Ht

h)(I + h)−1(I + u(h)) −√−1Λω̃t
∂̄∂Ht

h|
(6.9)

+ |(I + u(h))−1Λω̃t
(∂Ht

h · (I + h)−1 ∧ ∂̄h(I + h)−1)(I + u(h))|
+ |((I + u(h))−1| · |Λω̃t

FHt
||(I + u(h))| + |h||Λω̃t

FHt
|

≤ Z ′
1C

sb
k |t| β′−2

3 |∇2
Ht
h| + (Z ′

2)
4|∇Ht

h|2 + ((Z ′
2)

2 + Z ′
2)|Λω̃t

FHt
|

where (6.7) and (6.8) are used.
Now we estimate the Lk0,−4-norm of |∇2

Ht
h| and |∇Ht

h|2. First of all we
have

‖|∇2
Ht
h|‖kLk

0,−4
=
∫

Xt

|r
2
3
(2+2)

t ∇2
Ht
h|kr−4

t dVt ≤ ‖h‖kLk
2,−2

and hence

(6.10) ‖|∇2
Ht
h|‖Lk

0,−4
≤ ‖h‖Lk

2,−2
≤ |t| β′

3 .

Next, we estimate

‖|∇Ht
h|2‖kLk

0,−4
=
∫

Xt

r
− 4

3
k

t r
2
3
(2+1)2k

t |∇Ht
h|2kr−4

t dVt ≤ |t| 23k‖h‖2k
L2k

1,−2

By Proposition 6.1 we have, for large k, ‖h‖L2k
1,−2

≤ Ĉsb
k ‖h‖Lk

2,−2
≤ Ĉsb

k |t| β′
3

for some constant Ĉsb
k independent of t. Thus we get

‖|∇Ht
h|2‖Lk

0,−4
≤ |t|− 2

3 ‖h‖2
L2k

1,−2
≤ (Ĉsb

k )2|t| 13 (2β′−2) < (Ĉsb
k )2|t| β′−2

3 |t| β′
3 .

(6.11)
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From the remark after Proposition 5.2, we have for some constants
Z̃k > 0

(6.12) ‖Λω̃t
FHt

‖Lk
0,−4

≤ Z̃k|t|
3
4 ≤ Z̃k|t|

3
4
− β′

3 |t| β′
3 .

Note that for 0 < β′ − 2 � 1, 3
4 − β′

3 > β′−2
3 > 0. We fix such a β′.

Now, from (6.9), (6.10), (6.11) and (6.12) we have

‖Qt(h)‖Lk
0,−4

≤
(
Z ′

1C
sb
k + (Z ′

2)
4 · (Ĉsb

k )2 + ((Z ′
2)

2 + Z ′
2)Z̃k

)
|t| β′−2

3 · |t| β′
3

(6.13)

for t �= 0 small enough. �

Fix β′ as in Proposition 6.3 and choose ν < 1
6β

′ − 1
3 in Proposition 6.2,

then for t �= 0 sufficiently small, Ut maps B(β′) to itself. Next we show

Proposition 6.4. Ut is a contraction mapping on B(β′) for t �= 0 small
enough.

Proof. We first show that when t �= 0 is small enough and k large enough,
there are constants Ẑ ′′

k > 0 such that for any h1 and h2 contained in B(β′),
we have

(6.14) ‖Qt(h1) −Qt(h2)‖Lk
0,−4

≤ Ẑ ′′
k |t|

β′−2
3 ‖h1 − h2‖Lk

2,−2
.

As discussed in Proposition 6.3, for i = 1, 2 when |hi| ∈ B(β′) we have
|hi| < Csb

k |t| β′−2
3 for some constants Csb

k . In this case there is a constant Z ′
3

independent of t such that

|(I + h1)−1(I + u(h1)) − (I + h2)−1(I + u(h2))| ≤ Z ′
3|h1 − h2|,

|(I + u(h1))−1 − (I + u(h2))−1| ≤ Z ′
3|h1 − h2|,

|(I + u(h1)) − (I + u(h2))| ≤ Z ′
3|h1 − h2|,

|(I + h1)−1 − (I + h2)−1| ≤ Z ′
3|h1 − h2|,

|u(h1) − u(h2)| ≤ Z ′
3|h1 − h2|.

(6.15)
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Using these bounds, the bounds in (6.8), and the expression in (6.2) for
Qt(h), it is not hard to see that for some constant Z ′

4 we have

|Qt(h1) −Qt(h2)|(6.16)
≤ Z ′

4((|Λω̃t
∂̄∂Ht

h1| + |Λω̃t
∂̄∂Ht

h2|)|h1 − h2|
+ (|h1| + |h2|)|Λω̃t

∂̄∂Ht
(h1 − h2)|

+ (|∇Ht
h1|2 + |∇Ht

h2|2)|h1 − h2|
+ (|∇Ht

h1| + |∇Ht
h2|)|∇Ht

(h1 − h2)| + |Λω̃t
FHt

||h1 − h2|)
≤ Z ′

4(|t|−
2
3 (|Λω̃t

∂̄∂Ht
h1| + |Λω̃t

∂̄∂Ht
h2| + |Λω̃t

FHt
|)|r

4
3
t (h1 − h2)|

+ |t|− 2
3 (|∇Ht

h1|2 + |∇Ht
h2|2)|r

4
3
t (h1 − h2)|

+ |t|− 2
3 (|r−

2
3

t ∇Ht
h1| + |r−

2
3

t ∇Ht
h2|)|r2

t∇Ht
(h1 − h2)|

+ (|h1| + |h2|)|Λω̃t
∂̄∂Ht

(h1 − h2)|),

where in the last line we use the fact that |t|− 2
3 r

4
3
t ≥ 1 on Xt. Therefore

‖Qt(h1) −Qt(h2)‖Lk
0,−4

(6.17)

≤ Z ′
4(|t|−

2
3 (‖Λω̃t

∂̄∂Ht
h1‖Lk

0,−4

+ ‖Λω̃t
∂̄∂Ht

h2‖Lk
0,−4

+ ‖Λω̃t
FHt

‖Lk
0,−4

) sup
Xt

|r
4
3
t (h1 − h2)|

+ |t|− 2
3 (‖|∇Ht

h1|2‖Lk
0,−4

+ ‖|∇Ht
h2|2‖Lk

0,−4
) sup
Xt

|r
4
3
t (h1 − h2)|

+ |t|− 2
3 (‖r−

2
3

t ∇Ht
h1‖Lk

0,−4
+ ‖r−

2
3

t ∇Ht
h2‖Lk

0,−4
) sup
Xt

|r2
t∇Ht

(h1 − h2)|

+ 2Csb
k |t| β′−2

3 ‖Λω̃t
∂̄∂Ht

(h1 − h2)‖Lk
0,−4

),

where (6.6) is used to bound |h1| + |h2|.
The first term in the RHS of (6.17) is bounded as

|t|− 2
3 (‖Λω̃t

∂̄∂Ht
h1‖Lk

0,−4
+ ‖Λω̃t

∂̄∂Ht
h2‖Lk

0,−4

(6.18)

+ ‖Λω̃t
FHt

‖Lk
0,−4

) sup
Xt

|r
4
3
t (h1 − h2)|

≤ (2 + Z̃k)|t|−
2
3 |t| β′

3 ‖h1 − h2‖C0
−2

= (2 + Z̃k)Csb
k |t| β′−2

3 ‖h1 − h2‖Lk
2,−2

for t small enough. Here we have used (6.10), (6.12) and (6.5).
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The second term in the RHS of (6.17) is bounded as

|t|− 2
3 (‖|∇Ht

h1|2‖Lk
0,−4

+ ‖|∇Ht
h2|2‖Lk

0,−4
) sup
Xt

|r
4
3
t (h1 − h2)|(6.19)

≤ |t|− 2
3 · 2(Ĉsb

k )2|t| β′−2
3 |t| β′

3 · ‖h1 − h2‖C0
−2

≤ 2(Ĉsb
k )2Csb

k |t| 2β′−4
3 ‖h1 − h2‖Lk

2,−2

for t small enough. Here (6.11) and (6.5) are used.
To bound the third term in the RHS of (6.17), we first estimate that,

for ‖h‖Lk
2,−2

≤ |t| β′
3 ,

‖r−
2
3

t ∇Ht
h‖kLk

0,−4
=
∫

Xt

|r2
t∇Ht

h|kr−4
t dVt ≤ ‖h‖kLk

2,−2

and hence

‖r−
2
3

t ∇Ht
h‖Lk

0,−4
≤ ‖h‖Lk

2,−2
≤ |t| β′

3 .

Therefore we have

|t|− 2
3

(
‖r−

2
3

t ∇Ht
h1‖Lk

0,−4
+ ‖r−

2
3

t ∇Ht
h2‖Lk

0,−4

)
sup
Xt

|r2
t∇Ht

(h1 − h2)|(6.20)

≤ 2|t|− 2
3 |t| β′

3 ‖h1 − h2‖C1
−2

≤ 2Csb
k |t| β′−2

3 ‖h1 − h2‖Lk
2,−2

,

where the above estimate and (6.5) are used.
Finally, it is easy to see that the last term in (6.17) is also bounded as

(6.21) 2Csb
k |t| β′−2

3 ‖Λω̃t
∂̄∂Ht

(h1 − h2)‖Lk
0,−4

≤ 2Csb
k |t| β′−2

3 ‖h1 − h2‖Lk
2,−2

.

Plugging (6.18), (6.19), (6.20) and (6.21) into (6.17) proves (6.14).
Recall that we have chosen ν < 1

6β
′ − 1

3 . Therefore (6.14) and the bound
for the norm of Pt given in Proposition 6.2 show that for t �= 0 small enough
Ut is a contraction mapping, as desired. �

Using the contraction mapping theorem on Ut : B(β′) → B(β′), we have
now proved

Theorem 6.1. For t �= 0 sufficiently small, the bundle Et admits a smooth
Hermitian–Yang–Mills metric with respect to the balanced metric ω̃t.
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7. Proposition 7.1

What remains to be proved is the following proposition.

Proposition 7.1. For each ν > 0, we have
∫

Xt

|r
4
3
t h|2r−4

t dVt ≤ |t|−ν
∫

Xt

|∂Ht
h|2dVt

for t �= 0 small.

We can regard this proposition as a problem of smallest eigenvalue of a
self-adjoint operator. Consider the pairing

〈h1, h2〉L2
0,−2

:=
∫

Xt

r
8
3
t 〈h1, h2〉Ht

r−4
t dVt.

One can compute
∫

Xt

〈∂Ht
h1, ∂Ht

h2〉Ht,g̃t
dVt

=
∫

Xt

〈√−1Λω̃t
∂̄∂Ht

h1, h2〉Ht
dVt

=
∫

Xt

r
8
3
t 〈
√−1r

4
3
t Λω̃t

∂̄∂Ht
h1, h2〉Ht

r−4
t dVt = 〈√−1r

4
3
t Λω̃t

∂̄∂Ht
h1, h2〉L2

0,−2
.

From this we see that the operator
√−1r

4
3
t Λω̃t

∂̄∂Ht
is self-adjoint on the

space L2
0,−2(Herm0

Ht
(End(Et))).

Define the number

λt := inf
0�=h∈L2

0,−2(Herm0
Ht

(End(Et)))

∫
Xt

|∂Ht
h|2dVt

∫
Xt

|h|2r−
4
3

t dVt

.

It is not hard to show that the above infimum is achieved at those h satisfying

(7.1)
√−1r

4
3
t Λω̃t

∂̄∂Ht
h = λth,

i.e., h is an eigenvector of the operator
√−1r

4
3
t Λω̃t

∂̄∂Ht
corresponding to the

smallest non-zero eigenvalue λt on L2
0,−2(Herm0

Ht
(End(Et))). For each t �= 0

let ht be such an element which satisfies ‖ht‖L2
0,−2

= 1.
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Proof. Our goal is to show that for each ν > 0 one has λt > |t|ν when t �= 0
is small. Suppose such a bound does not exist. Then for some ν > 0 there is
a sequence {tn} converging to 0 such that λtn ≤ |tn|ν . The endomorphisms
htn introduced above satisfy

√−1r
4
3 Λω̃n

∂̄∂Hn
hn = λnhn,(7.2)

∫

Xn

|hn|2r− 4
3dVn = 1(7.3)

and

(7.4)
∫

Xn

|∂Hn
hn|2dVn ≤ |tn|ν .

Here we use the notations r, ω̃n, Hn and λn to denote rtn , ω̃tn , Htn and λtn ,
respectively. In the following we will replace the subscripts tn with n.

For each fixed δ > 0 and n sufficiently large, because the Riemannian
manifold (Xn[δ], ω̃n) has uniform geometry, and because the coefficients in
the Equations (7.2) are uniformly bounded, there is a constant C indepen-
dent of large n such that

‖hn‖Lp
3(Xn[2δ]) ≤ C‖hn‖L2(Xn[δ]) ≤ C ′

(∫

Xn

|hn|2r− 4
3dVn

) 1
2

≤ C ′,

where C ′ depends only on δ and p. For p large enough we see that
‖hn‖C2(Xn[2δ]) is bounded independent of n. Therefore by using the diagonal
argument, there is a subsequence of {hn} converging to an H0-symmetric
endomorphism h in the C1 sense over each compactly embedded open subset
of X0,sm. From (7.4) one sees that ∂̄h = 0 over X0,sm. But then h is a holo-
morphic endomorphism of E|X̂\⋃ Ci

, and by Hartog’s Theorem it extends
to a holomorphic endomorphism of E over X̂. Since E is irreducible, the
existence of a HYM metric on E implies that it is stable and hence simple.
Therefore h = μI for some constant μ.

Lemma 7.1. There exists an 0 < ι < 1
6 and a constant C10 > 0 such that

for any 0 < δ < 1
4 and large n,

∫

Vn(δ)
|hn|2r− 4

3dVn ≤ C10δ
2ι.
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Let us assume the lemma first. Then we have
∫

X0,sm

|h|2r− 4
3dV0 = lim

δ→0

∫

X0[δ]
|h|2r− 4

3dV0 = lim
δ→0

lim
n→∞

∫

Xn[δ]
|hn|2r− 4

3dVn

≥ lim
δ→0

lim
n→∞(1 − C10δ

2ι) = 1.

On the other hand,
∫

X0,sm

|h|2r− 4
3dV0 = lim

δ→0
lim
n→∞

∫

Xn[δ]
|hn|2r− 4

3dVn ≤ lim
δ→0

lim
n→∞ 1 = 1,

so we have ∫

X0,sm

|h|2r− 4
3dV0 = 1.

Since h = μI, this implies that

(7.5) |μ|2 =

(

rank(E)
∫

X0,sm

r−
4
3dV0

)−1

.

On the other hand, note that for each δ > 0,

|μ|rank(E)Vol0(X0[δ]) =

∣
∣
∣
∣
∣

∫

X0[δ]
trh dV0

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

∫

Xn[δ]
trhn dVn

∣
∣
∣
∣
∣
.

Because ∫

Xn

trhn dVn = 0,

we have

|μ|rank(E)Vol0(X0[δ]) = lim
n→∞

∣
∣
∣
∣
∣

∫

Xn[δ]
trhn dVn

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

∫

Vn(δ)
trhn dVn

∣
∣
∣
∣
∣

(7.6)

≤ C1 lim
n→∞

(∫

Vn(δ)
|hn|2dVn

) 1
2

≤ C2 lim
n→∞

(∫

Vn(δ)
|hn|2r− 4

3dVn

) 1
2

≤ C3δ
ι.

Now choose δ small enough such that

(7.7) Vol0(X0[δ]) ≥ 1
2
Vol0(X0)
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and

(7.8)

(

rank(E)
∫

X0,sm

r−
4
3dV0

)− 1
2

>
2C3δ

ι

rank(E)Vol0(X0)
.

We see that a contradiction arises from (7.5) to (7.8). We have thus shown
Proposition 7.1. �

Proof of Lemma 7.1. First of all, by Hölder inequality,

∫

Vn(δ)
|hn|2r− 4

3dVn ≤
(∫

Vn( 1
4
)
|hn|3r−3ιdVn

) 2
3
(∫

Vn(δ)
r−4+6ιdVn

) 1
3

.

Because
(∫

Vn(δ)
r−4+6ιdVn

) 1
3

≤ C3δ
2ι,

it is enough to prove that

(∫

Vn( 1
4
)
|hn|3r−3ιdVn

) 2
3

≤ C4

for some constant C4 > 0.
The proof makes use of Michael–Simon’s Sobolev inequality [29] which

we now describe. Let M be an m-dimensional submanifold in R
N . Denote

the mean curvature vector of M by H. Then for any nonnegative function
f on M with compact support, one has

(7.9)
(∫

M
f

m

m−1dVgE

)

≤ C(m)
∫

M
(|∇f |gE

+ |H|f) dVgE
,

where C(m) is a constant depending only on m. Here all metrics and norms
are the induced ones from the Euclidean metric on C

4. We denote this
induced metric by gE . Do not confuse this metric with the metric ge appear-
ing in earlier sections. In our case M is the space Vt(1

2) identified as part of
the submanifold Qt ⊂ C

4. As pointed out in [14], the relations between the
volumes and norms for the CO-metric gco,t and those for the induced metric
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gE are

(7.10) dVgco,t
= 2

3r
−2
t dVgE

and

(7.11) |∇f |2gE
≤ Cr

− 2
3

t |∇f |2gco,t

for any smooth function f on Vt( δ2).
Let τ(r) be a cutoff function defined on Vn(1) such that τ(r) = 1 when

r ≤ 1
4 and τ(r) = 0 when r ≥ 1

2 . Extend it to Xn by zero. From (7.10) we
have

(7.12)
∫

Vn( 1
4
)
|hn|3r−3ιdVco,n ≤ 2

3

∫

Vn( 1
2
)
|hn|3r−3ι−2τ3dVgE

,

where dVco,n is the volume form with respect to the CO-metric ωco,tn .
Moreover, using Hölder inequality, one can deduce from (7.9) that

(∫

Vn( 1
2
)
f3dVgE

) 2
3

≤ C

∫

Vn( 1
2
)
|∇f |2gE

dVgE
,

and using (7.10) and (7.11) we get

(7.13)

(∫

Vn( 1
2
)
f3dVgE

) 2
3

≤ C5

∫

Vn( 1
2
)
|∇f |2co,nr

4
3dVgco,n

,

where | · |co,n is the used to denote | · |gco,tn
.

Apply (7.13) to f = |hn|r−ι− 2
3 τ , and then together with (7.12) (and

Lemma 2.3) we have

(∫

Vn( 1
4
)
|hn|3r−3ιdVn

) 2
3

(7.14)

≤ C̃
2
3
1

(∫

Vn( 1
4
)
|hn|3r−3ιdVco,n

) 2
3

≤ C̃
2
3
1

(
2
3

∫

Vn( 1
2
)
(|hn|r−ι− 2

3 τ)3dVgE

) 2
3
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≤ C6

∫

Vn( 1
2
)
|∇(|hn|r−ι− 2

3 τ)|2co,nr
4
3dVco,n

≤ 3C6

∫

Vn( 1
2
)
|∇|hn||2co,nr−2ιτ2dVco,n

+ 3C6

∫

Vn( 1
2
)
|hn|2|∇r−ι−

2
3 |2co,nτ2r

4
3dVco,n

+ 3C6

∫

Vn( 1
2
)
|hn|2r−2ι|∇τ |2co,ndVco,n.

The third term on the RHS of (7.14) is an integral over Vn(1
4 ,

1
2) in

which the support of ∇τ lies. From (7.3) one sees that it is bounded by
some constant C7 > 0 independent of n. Later whenever we encounter an
integral with a derivative of τ in the integrant, we will bound it by a constant
for the same reason.

Because hn is Hn-hermitian symmetric, ∂̄hn = (∂Hn
hn)∗Hn , and so the

first term on the RHS of (7.14) can be bounded as

∫

Vn( 1
2
)
|∇|hn||2co,nr−2ιτ2dVco,n(7.15)

≤
∫

Vn( 1
2
)
(〈∂Hn

hn, ∂Hn
hn〉co,n + 〈∂̄hn, ∂̄hn〉co,n)r−2ιτ2dVco,n

= 2
∫

Vn( 1
2
)
〈∂Hn

hn, ∂Hn
hn〉co,nr−2ιτ2dVco,n ≤ C̃3|tn|ν−ι

for some constant C̃3 > 0 independent of n. The last inequality follows from
(7.4) and Lemma 2.3. We now fix an ι such that 0 < ι < min{1

6 , ν}. Then
we see that as n goes to infinity, this term goes to zero.

Finally we deal with the second term on the RHS of (7.14). It can be
bounded as

(7.16)
∫

Vn( 1
2
)
|hn|2|∇r−ι−

2
3 |2co,nτ2r

4
3dVco,n ≤ C8

∫

Vn( 1
2
)
|hn|2r−2ι− 4

3 τ2dVco,n

for some constant C8 > 0. hence it is enough to bound the term on the right.
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To do so, we introduce the notation φ2 = r−2ι, and denote ∂φ2

Hn
= ∂Hn

+
∂ log φ2∧. We can estimate

0 ≤
∫

Vn( 1
2
)
〈∂̄hn, ∂̄hn〉g̃n

φ2τ
2dVn

≤ −
∫

Vn( 1
2
)
〈√−1Λω̃n

∂φ2

Hn
∂̄hn, hn〉φ2τ

2dVn + C7

=
∫

Vn( 1
2
)
−〈√−1Λω̃n

∂φ2

Hn
∂̄hn +

√−1Λω̃n
∂̄∂φ2

Hn
hn, hn〉φ2τ

2dVn

+
∫

Vn( 1
2
)
〈√−1Λω̃n

∂̄∂φ2

Hn
hn, hn〉φ2τ

2dVn + C7.

One can compute that

√−1Λω̃n
∂φ2

Hn
∂̄hn +

√−1Λω̃n
∂̄∂φ2

Hn
hn

= −[
√−1Λω̃n

FHn
, hn] + (

√−1Λω̃n
∂̄∂ log φ2)hn,

and so we have

0 ≤
∫

Vn( 1
2
)
〈[√−1Λω̃n

FHn
, hn], hn〉 − 〈(√−1Λω̃n

∂̄∂ log φ2)hn, hn〉φ2τ
2dVn

+
∫

Vn( 1
2
)
〈∂φ2

Hn
hn, ∂

φ2

Hn
hn〉g̃n

φ2τ
2dVn + C7

≤ 2
∫

Vn( 1
2
)
|Λω̃n

FHn
||hn|2φ2τ

2dVn + 2
∫

Vn( 1
2
)
|∂Hn

hn|2g̃n
φ2τ

2dVn

+
∫

Vn( 1
2
)
(2|∂ log φ2|2g̃n

−√−1Λω̃n
∂̄∂ log φ2)|hn|2φ2τ

2dVn + C7

To proceed, we use the bound |Λω̃n
FHn

| ≤ Z̃0r−
4
3 |tn| 14 from the remark at

the end of Section 5 to deal with the first term. We use (7.4) to take care of
the second term. Finally, we have

|∂ log φ2|2g̃n
< 3ι2r−

4
3 and

√−1Λω̃n
∂̄∂ log φ2 > ιr−

4
3 ,

which follow from (bottom of) p. 31 of [14] together with the observation√−1∂̄∂ log φ2 ≥ 0 and the crude estimate 1
2gco,t ≤ g̃t ≤ 2gco,t on Vt(1

2) for t
sufficiently small.
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Thus

0 ≤ 2Z̃0|tn| 14
∫

Vn( 1
2
)
|hn|2r− 4

3φ2τ
2dVn + 2|tn|ν−ι

+
∫

Vn( 1
2
)
(6ι2 − ι)|hn|2r− 4

3φ2τ
2dVn + C7

≤ (2Z̃0|tn| 14 + 6ι2 − ι)
∫

Vn( 1
2
)
|hn|2r−2ι− 4

3 τ2dVn + 2|tn|ν−ι + C4.

Recall that 0 < ι < min{1
6 , ν} is fixed. Let n be large so that

2Z̃0|tn| 14 + 6ι2 − ι < 0,

and we see from above that

(7.17)
∫

Vn( 1
2
)
|hn|2r−2ι− 4

3 τ2dVn ≤ C(ι)

for some constant C(ι) > 0 depending on ι.
From (7.14), (7.15), (7.16) and (7.17) the proof is complete. �
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[4] P. Candelas, P. Green and T. Hübsch, Rolling among Calabi–Yau vacua,
Nucl. Phys. B330 (1990), 49–102.

[5] P. Candelas and X. de la Ossa, Comments on conifolds, Nucl. Phys. B.
342 (1990), 246–268.

[6] Y.-M. Chan, Desingularizations of Calabi–Yau 3-folds with conical sin-
gularities. II. The obstructed case, Q. J. Math. 60(1) (2009), 1–44.

[7] T.-M. Chiang, B. Greene, M. Gross and Y. Kanter, Black hole con-
densation and the web of Calabi–Yau manifolds, S-duality and Mirror
Symmetry (Trieste, 1995), Nucl. Phys. B Proc. Suppl. 46 (1996), 82–95.

[8] C.H. Clemens, Double solids, Adv. in Math. 47 (1983), 107–230.

[9] S.K. Donaldson, Anti self-dual Yang–Mills connections over complex
algebraic surfaces and stable vector bundles, Proc. London Math.
Soc. (3) 50(1) (1985), 1–26.

[10] S.K. Donaldson, Infinite determinants, stable bundles and curvature,
Duke Math. J. 54(1) (1987), 231–247.

[11] S.K. Donaldson, Boundary value problems for Yang–Mills fields, J.
Geom. Phys. 8(1–4) (1992), 89–122.

[12] R. Friedman, Simultaneous resolution of three-fold double points, Math.
Ann. 274 (1986), 671–689.

[13] R. Friedman, On three-folds with trivial canonical bundle, Complex
Geometry and Lie Theory (Sundance, UT, 1989), Proc. Sympos. Pure
Math. 53, Amer. Math. Soc., Providence, RI, 1991, 103–134.

[14] J.-X. Fu, J. Li and S.-T. Yau, Balanced metrics on non-Kähler Calabi–
Yau three-folds, J. Differential Geom. 90(1) (2012), 81–130.

[15] J.-X. Fu, L.-S. Tseng and S.-T. Yau, Local Heterotic torsional models,
Comm. Math. Phys. 289(3) (2009), 1151–1169.

[16] J.-X. Fu and S.-T. Yau, A note on small deformations of balanced man-
ifolds, C. R., Math., Acad. Sci. Paris 349(13–14) (2011), 793–796.



Existence of HYM metrics under conifold transitions 747

[17] J.-X. Fu and S.-T. Yau, The theory of superstring theory with flux on
non-Kähler manifolds and the complex Monge–Ampére equation, J. Dif-
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