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Existence of Hermitian—Yang—Mills metrics under
conifold transitions

MING-TAO CHUAN

We first study the degeneration of a sequence of Hermitian—Yang—
Mills metrics with respect to a sequence of balanced metrics on a
Calabi-Yau three-fold X that degenerates to the balanced metric
constructed by Fu-Li—Yau [14] on the complement of finitely many
(=1,—1)-curves in X. Then under some assumptions we show the
existence of Hermitian—Yang—Mills metrics on bundles with respect
to balanced metrics constructed by Fu-Li-Yau over a family of
three-folds X; with trivial canonical bundles. These three-folds X,
are obtained by performing conifold transitions on X.

1. Introduction

This paper is about the existence problem for Hermitian—Yang—Mills met-
rics on holomorphic vector bundles with respect to balanced metrics, when
conifold transitions are performed on the base Calabi—Yau three-folds.

The construction of canonical geometric structures on manifolds and
vector bundles has always been a very important problem in differential
geometry, especially in Kahler geometry. A class of manifolds that are the
main focus in this direction is the Kihler Calabi-Yau manifolds,! i.e., Kahler
manifolds with trivial canonical bundles. The Calabi conjecture that was
solved by Yau [43] in 1976 states that in every Kahler class of a Kéhler
Calabi—Yau manifold there is a unique representative which is Ricci-flat.

After the solution of the Calabi conjecture, Kéhler Calabi—Yau mani-
folds have undergone rapid developments, and the moduli spaces of Kahler
Calabi—Yau three-folds gradually became one of the most important area of
study. In the work of Todorov [37] and Tian [35] the smoothness of the mod-
uli spaces of Kahler Calabi—Yau manifolds in general dimensions was proved.
In the complex two-dimensional case, the moduli space of K3 surfaces is

'In this paper, by a Calabi-Yau manifold we mean a complex manifold with
trivial canonical bundle which may or may not be Kahler, and what is usually
called a Calabi—Yau manifold will now be a Kédhler Calabi—Yau manifold.
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known to be a 20-dimensional complex smooth irreducible analytic space,
with the algebraic K3 surfaces occupying a 19-dimensional reducible analytic
subvariety with countable irreducible components [23, 28, 38]. The global
properties of the moduli spaces of Kéhler Calabi—Yau three-folds remain
much less understood.

However, there was the proposal by Miles Reid [32] which states that the
moduli spaces of all Calabi—Yau three-folds can be connected by means of
taking birational transformations and smoothings on the Calabi—Yau three-
folds. This idea, later dubbed as “Reid’s Fantasy,” was checked for a huge
number of examples in [4, 7]. The processes just mentioned are called geo-
metric transitions in general, and the main focus in this paper is the most
studied example, namely the conifold transition, which was first considered
by Clemens [8] in 1982 and later caught the attention of the physicists start-
ing the late 1980s. It is described as follows. Let X be a smooth Calabi-
Yau three-fold containing a collection of mutually disjoint (—1,—1)-curves
Ci,...,Cy, ie., rational curves C; = P! with normal bundles in X isomor-
phic to Op:(—1) @ Op:1(—1). One can contract the C;’s to obtain a space
X with ordinary double points, and then under certain conditions given by
Friedman, Xy can be smoothed and one obtains a family of three-folds X;
with trivial canonical bundles.

Even when X is Kéhler, the manifolds X; may be non-Kahler, and it
was proved in [14] that they nevertheless admit balanced metrics, which we
denote by @;. In general, a Hermitian metric w on a complex n-dimensional
manifold is balanced if d(w™~1) = 0 [30]. Kéhler metrics are obviously bal-
anced metrics, but, unlike the Kéahler case, the existence of balanced metrics
is preserved under birational transformations [1]. Moreover, if the manifold
satisfies the d0-lemma, then the aforementioned existence is also preserved
under small deformations [16, 41]. What [14] shows is that it is also preserved
under conifold transitions provided X is Kéhler Calabi-Yau.

In this paper we would like to push further the above result on the
preservation of geometric structures after conifold transitions. Consider a
pair (X, ) where X is a Kihler Calabi-Yau three-fold with a Kihler metric
w, and £ is a holomorphic vector bundle endowed with a Hermitian—Yang—
Mills metric with respect to w. Denote the contraction of exceptional rational
curves mentioned above by 7 : X — X,. From the point of view of metric
geometry, such a contraction can be seen as a degeneration of Hermitian
metrics on X to a metric which is singular along the exceptional curves. In
fact, following the methods in [14], one can construct a family of smooth
balanced metrics {@g}tas0 on X such that &2 and w? differ by dd-exact
forms and, as a — 0, @, converges to a metric wy which is singular along the
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exceptional curves. The metric @y can also be viewed as a smooth metric on
X0,sm, the smooth part of Xj.
We have the following result which is the first main theorem.

Theorem 1.1. Let £ be an irreducible holomorphic vector bundle over a
Kdhler Calabi—Yau three-fold (X,w) such that ¢1(E) =0 and € is trivial on
a neighborhood of the exceptional rational curves C;. Suppose £ is endowed
with a HYM metric w.r.t. w.

Then there exists a HYM metric Hy on &|x, ., with respect to wo, and
there is a decreasing sequence {a;}2, converging to 0, such that there is a
sequence {Hy, }5°, of Hermitian metrics on € converging weakly in the Lb-
sense, for all p, to Hy on each compactly embedded open subset of Xoem,
where each H,, s HYM with respect to @q,.

Suppose that one can smooth the singular space Xy to X¢, and that the
bundle £ fits in a family of holomorphic bundles &; over Xy, i.e., the pair
(Xo, &) can be smoothed to (X, ). We ask the question of whether a
Hermitian—Yang—Mills metric with respect to the balanced metric @; exists
on the bundle &;. Note that the condition that £ is trivial in a neighborhood
of the exceptional rational curves C; implies that the bundles & would be
trivial in a neighborhood of the vanishing cycles. Also note that ¢1(&) =0
for any t # 0.

We now state the second main theorem of this paper.

Theorem 1.2. Let (X,w) be a smooth Kihler Calabi-Yau three-fold and
7: X — Xy be a contraction of mutually disjoint (—1, —1)-curves. Let € be
an irreducible holomorphic vector bundle over X with c1(€) = 0 that is trivial
in a neighborhood of the exceptional curves of w, and admits a Hermitian—
Yang—Mills metric with respect to w. Suppose that the pair (Xo,mE) can
be smoothed to a family of pairs (X, &) where Xy is a smooth Calabi—Yau
three-fold and & is a holomorphic vector bundle on X;.

Then for t # 0 sufficiently small, & admits a smooth Hermitian—Yang—
Mills metric with respect to the balanced metric @, constructed in [14].

For irreducible holomorphic vector bundles over a Kéhler manifold, the
existence of Hermitian—Yang—Mills metrics corresponds to the slope stabil-
ity of the bundles. For proofs of this correspondence, see [9, 10, 39]. On
a complex manifold endowed with a balanced metric, or more generally a
Gauduchon metric, i.e., a Hermitian metric w satisfying 99(w™ ') = 0, one
can still define the slopes of bundles and hence the notion of slope stability.
Under this setting, Li and Yau [24] proved the same correspondence.
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Another motivation for considering stable vector bundles over
non-Kéahler manifolds comes from physics. Kéhler Calabi—Yau manifolds
have always played a central role in the study of Supersymmetric String The-
ory, a theory that holds the highest promise so far concerning the unification
of the fundamental forces of the physical world. Among the many models in
Supersymmetric String Theory, the Heterotic String models [20, 40] require
not only a manifold with trivial canonical bundle but a stable holomor-
phic vector bundle over it as well. Besides using the Kéahler Calabi—Yau
three-folds as the internal spaces, Strominger also suggested to use a model
allowing nontrivial torsions in the metric. In [34], he proposed the following
system of equations for a pair (w, H) consisting of a Hermitian metric w on
a Calabi—Yau three-fold X and a Hermitian metric H on a vector bundle
E — X with ¢;(€) =0:

(1.1) FyAw?=0, Fy’=F;"=0,
(1.2) V100w = %(tr(Rw ARy) — tr(Fy A Fyy)),
(1.3) d*w = /~=1(0 — 90) In |||,

where R, is the full curvature of w and Fpy is the Hermitian curvature
of H. Equation (1.1) is simply the Hermitian—Yang—Mills equations for H.
Equation (1.2) is named the anomaly cancellation equation derived from
physics. In [25] it was shown that Equation (1.3) is equivalent to another
equation showing that w is conformally balanced:

d(|[Qllw?) = 0.

The system, although written down in 1986, was first shown to have
non-Kéhler solutions only in 2004 by Li and Yau [25] using perturbation
from a Kéhler solution. The first solutions to exist on manifolds which are
never Kéhler are constructed by Fu and Yau [17]. The class of three-folds
they considered were the T2-bundles over K3 surfaces constructed by Gold-
stein and Prokushkin [19]. Some non-compact examples have also been con-
structed by Fu et al.[15] on T2-bundles over the Eguchi-Hanson space. More
solutions are found in a recent preprint [2] using the perturbation method
developed in [25].

The present paper can also be viewed as a step following [14] in the
investigation of the relation between the solutions to Strominger’s system
on X and those on Xo and X;.
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This paper is organized as follows:

Section 2 sets up the conventions and contains more background
information of conifold transitions and Hermitian—Yang—Mills metrics over
vector bundles. Moreover, the construction of balanced metrics in [14] is
described in more details necessary for later discussions.

In Section 3 the uniform coordinate systems on Xy and on X; are intro-
duced, which are needed to show a uniform control of the constants in the
Sobolev inequalities and elliptic regularity theorems.

In Section 4 Theorem 1.1 is proved, and several boundedness results of
the HYM metric Hp in that theorem are discussed.

In Section 5 a family of approximate Hermitian metrics H; on & are
constructed, and some estimates on their mean curvatures are
established.

Section 6 describes the contraction mapping setup for the HYM equation
on the bundle &. Theorem 1.2 is proved here.

Section 7 deals with a proposition left to be proved from Section 6.

2. Backgrounds
2.1. Conifold transitions

Let X be a Kahler Calabi-Yau three-fold with a Kahler metric denoted
by w. Let |JC; be a collection of (=1, —1)-curves in X, and let X be the
three-fold obtained by contracting (J Cj, so X is a small resolution of Xj.
Xo has ordinary double points, which are the images of the curves C; under
the contraction. There is a condition given by Friedman which relates the
smoothability of the singular space X to the classes [C;] of the exceptional
curves in X:

Theorem 2.1 [12, 13]. If there are non-zero numbers \; such that the
class

(2.1) D> xlCil =0

mn H2(X, Qi() then a smoothing of Xq exists, i.e., there is a four-dimensional
complex manifold X and a holomorphic projection X — A to the disk A in
C such that the general fibers are smooth and the central fiber is Xy.
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The above theorem is also considered in [36] from a more differential
geometric point of view, and in [6] the condition (2.1) is discussed in the
obstructed case of the desingularization of Kéhler Calabi—Yau three-folds
with conical singularities.

The local geometry of the total space X near an ODP of Xj is described
in the following. For some ¢ > 0 and for

U={(zt) e Cx A|||z]| <2, 27 + 22+ 22+ 22 =t}

there is a holomorphic map = U — X respecting the projections to A and
A so that U is biholomorphic to its image. We will denote

Qii={2+2+22+22=tcCh

From the above description, a neighborhood of 0 in ()¢ models a neighbor-
hood of an ODP in Xj. For ¢ # 0, @, is called a deformed conifold. Through-
out this paper we will denote by r; the restriction of ||z|| to @Q; C C*, and
use the same notation for their pullbacks under =~ 1.

For each ODP p; of Xy, we have the biholomorphism =; : ﬁz — X as
above. Without loss of generality, we may assume that the images of the
Ei’s are disjoint. For a given t € A, define V;;(c) to be the image under
Zi of {(2,t) € C* x Ac|r(2) < ¢, 27 + 23 + 23 + 23 = t}, and define V;(c) =
U; Vii(c). Define Vi ;(Ry, R2) = V;i(R2)\Vi,i(Ry) for any 0 < Ry < Ry and
Vi(Ry1, R2) = U; Vii(R1, R2). Define Ui(c) := 7 (Vyi(c)) € X where 7 is
the small resolution 7 : X — X, and U(c) = \U; Ui(c). Finally, define X;[c] =
X \Vi(c). )

For each t # 0, it can be easily checked that r; > |t|> on @ and the
subset {r; = |t|2} C Q; is isomorphic to a copy of $3, which is usually called
the vanishing sphere. Each subset V;(c) is thus an open neighborhood of the
vanishing spheres.

Remark. In the rest of the paper we will always regard V;;(c) not only
as a subset of Xy, but also as a subset of ; via the map =; and the pro-
jection map from the set {(z,t) € C* x A |ri(2) < ¢,2? + 23 + 22 + 23 =t}
to C*.

We also use the same notation r; to denote a fixed smooth extension of
r; from V;(1) to X; so that ry < 3.
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The following description of ()¢ and @) will be useful in our discussion.
Denote ¥ = SO(4)/SO(2). Then there are diffeomorphisms

(2.2) o : 2 x (0,00) = Qosm such that ¢o(ASO(2),r9) = A J3%0 7
8

and

(2.3) é1: 3 % (1,00) — Q1\{r = 1} such that

cosh(3 cosh™(r?))

$1(ASO(2),11) = A | 1sinh(3 cosh™' (x))
0

0

Here Qo sm is the smooth part of o, and the variables ro and r; are indeed
the distances of the image points to the origin.

We can see in particular from (2.2) that ¢y describes @y as a cone over
Y. It is not hard to see that ¥ = S? x S3. However, the radial va2riable for
the Ricci-flat Kahler cone metric ge,0 on Qo is not rg, but pg = rg . In fact,
Jeo,0 Can be expressed as

(2-4) 9co,0 = (dr3)2 + I'ggEv

where gy is an SO(4)-invariant Sasaki-Einstein metric on X. The Kéhler
form of geo0 is given by weoo = \/—7185f0(r3) where fo(s) = %sg. In this
paper we will not use the variable pg.

In this paper, given a Hermitian metric g, the notation V, will always
refer to the Chern connection of g.

2.2. The Candelas—de la Ossa metrics

Candelas and de la Ossa [5] constructed a one-parameter family of Ricci-flat
Kahler metrics {geo,q/a > 0} on the small resolution Q of QQo. The space Q
is named the resolved conifold, and the parameter a measures the size of the
exceptional curve C'in Q Identifying Qo sm With Q\C biholomorphically via
the resolution map, the family {gcoqla > 0} converges smoothly, as a goes
to 0, to the cone metric geo0 on each compactly embedded open subset of
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Qo,sm, i.e., each open subset of Qpsm wWhose closure in (g is contained in
Qo,sm- The Kahler forms of the metrics g, Will be denoted by weo 4.

They also construct a Ricci-flat Kéhler metric g.,; on @Q; for each 0 #
t € A. Explicitly, the Kéhler form of gco is given by weo = V—190f,(r?)
where

L cosh*l(m) .
(2.5) fi(s) =275|t]s / (sinh(27) — 27)5 dT,
0
and it satisfies

(2.6) wiy = V=150 Ay,

where € is the holomorphic (3,0)-form on @, such that, on {z; # 0},
1
O = —dza Ndzg A dzsq, .
21

In this paper, the metrics g, With subscripts a will always denote the
Candelas—de la Ossa metrics on the resolved conifold Q, and the metrics
Jeo,t With subscripts ¢ will always denote the Candelas—de la Ossa metrics
on the deformed conifolds Q.

In the following we discuss the asymptotic behavior of the CO-metrics
Jeo,t- Consider the smooth map

DY x(1,00) — X x (0,00)
defined by
(A80(2),r1) = (AS0(2), ro(r1)),
where
ro(r1) = <;(sinh(2cosh—1(r§)) - 2cosh—1(r§))> '
Note that
(2.7) ry = (cosh(f " (2r()))2,
where f(s) = sinh(2s) — 2s.

Define x1 = ¢ o ® o 7!, which is a diffeomorphism from Q\{r; = 1}
t0 Qo .sm- Then ro(z1(z)) = ro(ri(x)) for x € Q1\{r1 = 1}. Define Y1 = 2 ".
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It is shown in [6] that the following holds for some constants D; i, Da 1, and
D3}, as rg — oo:

(28) Tﬂl(wco,l = Wco,05
. 2(-3-k
(2.9) V5 (X500 = o)l < Diarg Y,
2(-3—k
(2.10) Ve o (Tige01 = 9e0,0)lgeno < Dyrg ",
and
2(—3—k
(2.11) V5 O = Jo)lguns < Dagrg 7",

where J; is the complex structure on Q.
1 1
Let ¢ : Q1 — Q¢ be a map such that ¢ (z;) = t2z;. Here t2 can be either
of the two square roots of ¢. We then have

1 1
Yiry = [t|zry,  ire = |t|2r0,
w;,th == th7 w:QO = tQO?
2 2
77b;§k‘*dco,t = ‘t’3w00,17 cho,o = |t|3wco,07

2 2
w:gco,t = |t|39co,17 and Wgco,o = ’t’3gco,0-

(2.12)

The equality ¢fweos = |t|§wCO71 follows from the explicit formulas of the
Kéhler potentials (2.5) and the fact that the map vy is biholomorphic.
With this understood, ¥} gco,t = |t|% geo,1 then follows easily. The rest is triv-
ial. Note that Vy:, = VM%QCM =V, and Vyy =V =V
for t # 0.

Let ; = Yy ox1 09y ! which is understood as a diffeomorphism from
Qi\{r: = |t|%} to Qo,sm- Note that z; is independent of the choice of té, and

so {x¢}; form a smooth family. Define Yy = z; '

2
|t|§gco,1

Lemma 2.1. We have
*
Ly Weco,0 = Weo,t»

and for the same constants Dy, Doy and D3y as in (2.9) to (2.11), we
have, as rg — o0,

2(—3—k

VE (030 = Q0)guns < Drgltieg ™Y,
2(—3—k
IV (Y7 Geot — Geo0)lguns < Daltirg ™),

. 2(—3—k
VE (Y5 = Jo)lgus < Daltirg .

gco,O
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Proof. The first equation follows easily. From the rescaling properties (2.12)
we have, for w € X,

’vlgfcm(’rfﬁt — Q0)|geo o (W) = W’;co,o((tb{l)* 107 % — Qo) ges o (W)
= |[VE @7 T — Q0)lg., o (w)
= VB g (F0T — 470 sz, o (47 ()

(W (w))

= [V, o (tT12 — #Q0)| 2
= [tV (YT = D)l 43, (@ (w))

= [t|[t|73CHRIVE (T30 — Qo) o (07 (w))

< [5G Dy g (17 (w)) 5 3R = [ 750 Dy [t 5 G g (w) 337K

Gco,0
= D1,k|t|ro(w)§(_3_k)-

The other two estimates can be carried out in a similar manner. O

Using the explicit formula (2.7), the following lemma is elementary, and
the proof is omitted:

Lemma 2.2. As x € Q1\{r; = 1} goes to infinity, r1(z)ro(x1(x))~ goes
to 1. In particular, there is a constant A > 0 such that

% <ri(z)ro(z(z) < A

for any x € Q1 such that 1 < ri(x). As a result, by the rescaling relation
(2.12), for the same constant A we have

% < ri(2)ro(zi(z) " < A

for any z € Q; such that |t|z < ry(z).
Lemmas 2.1 and 2.2 imply

Corollary 2.1. There exists a constant Do > 0 such that for any z € Q4
with [t|? < ry(2),
IVE (X7 T — Jo)|rs g, (3(2)) < Dolt|ry(z)3(-3H

gco,O

for k=0,1.
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2.3. The balanced metrics constructed by Fu—Li—Yau

Using Mayer—Vietoris sequence, the change in the second Betti numbers
before and after a conifold transition is given in the following proposition:

Proposition 2.1 [32]. Let k be the mazimal number of homologically inde-
pendent exceptional rational curves in X. Then the second Betti numbers of
X and Xy satisfy the equations

ba(Xy) = bo(X) — k.

From this proposition one sees that the second Betti number drops after
each transition, and when it becomes 0, the resulting three-fold is never
Kahler. Because of this, when considering Reid’s conjecture, a class of three-
folds strictly containing the Kéhler Calabi—Yau ones have to be taken into
account. A particular question of interest would be finding out suitable geo-
metric structures that are possessed by every member in this class of three-
folds. One achievement in this direction is the work of [14] in which the
following theorem is proved:

Theorem 2.2. Let X be a Kdihler Calabi-Yau three-fold. Then after a
conifold transition, for sufficiently small t, X; admits a balanced metric.

In the following we review the results in [14] in more detail.

First, a balanced metric @y on Xogm is constructed by replacing the
original metric w near the ODPs with the CO-cone metric we, . One of the
main feature of this construction is that w? and & differ by a d9-exact form.
It is not hard to see that their construction can be used the construct a family
of balanced metrics {@eoqla > 0} on X converging smoothly, as a goes to 0,
to the metric &y on compactly embedded open subsets of X \UCi = Xosm,
such that w? and all (;}CQO’G differ by 9d-exact forms.

The main achievement in [14] is the construction of balanced metrics
@ on X;. Fix a smooth family of diffeomorphisms x; : Xt[%] — XO[%] that
such zp = id. Let p(s) be a decreasing cut-off function such that o(s) =1
when s < g and o(s) =0 when s > %. Define a cut off function gy on X
such that o|x,1) = 0, Q0|VO(%) =1 and Q0|V0(%71) = o(rp). Also define a cut

off function ¢ on X; such that gt\Xt[%] =z 0o and Qt|vt(%) = 1. Denote Q =
L:)g = 185(f085f0), and let

©; = f (0 —100(00 fo(r§) 90 fo(x3))) + 100 (0 f1(x7) 9D fi(x7)).
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We can decompose the four-form ®, = &' + ®>* + &, It is proved in [14]
that for t # 0 sufficiently small the (2,2) part <I>t’2 is positive and over Vy(3)
it coincides with w?, ;. Let w; be the positive (1,1)-form on X; such that
w? = <I>f 2. Neither w; nor w? is closed in general. The balanced metric @
constructed in [14] satisfies the condition @? = @f 2 10, + 0, where 6, is a

. . o 4
(2,2)-form satisfying the condition that, for any x > —3,

: K 2\ _
(2.13) fim I sup 93 = 0.

where ¢; is the Hermitian metric associated to w;. The proof of this limit
makes use of the expression

(2.14) 0; = 00* 0",

for a unique (2,3)-form 4, satisfying the equation Fy(vy;) = —8@% S and v L
ker E; where

E; = 000*0* + 0*00*0 + 0*0
and the x-operators are with respect to the metric g;. It was proved in [14]

that 9y = 0. Moreover, the (2, 3)-form 8@7}’3 is supported on X;[1], so there
is a constant C' > 0 independent of ¢ such that

(2.15) 188, < C|t].

We will denote |- |¢ the norm w.r.t. g, | - |cos the norm w.r.t. geo s, and
| - | the norm w.r.t. g;. We will denote dV; the volume w.r.t. g, dVeo: the
volume w.r.t. geo ¢, and dV the volume w.r.t. g;.

Because of (2.13) we have the following lemma concerning a uniformity
property between the metrics g; and geo -

Lemma 2.3. There exists a constant C > 1 such that for any small t # 0,
over the region V(1) we have

C g < oot < Cir.

Consequently, we have constants C, > 1 and Cy > 1 such that for any t # 0
small enough,

CrldVi < dVeoy < C1dV,
and
é2_1| : ‘t < ’ : |co,t < 02‘ : ’t-
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Now we introduce our conventions on (negative) Laplacians. Let w be a
Hermitian metric on X and n = dim¢ X. For any (1,1)-form ¢ on X, define
Ay = 22" For a smooth function f on X, define A, f = v/—1A,00f. In

w’!l
local coordinates, if w= Y ! gi5dzi Ndzj and ¢ = @;;dz; Adz;, then

vV—=1A,p = Qgijcpij. We denote A; := Ay, and A, = Ag, .

2.4. Hermitian—Yang—Mills equation

Let H be a Hermitian metric on a holomorphic vector bundle £ over a
complex manifold X endowed with a balanced metric g. Let V4 = 94 + 0
be an H-unitary connection on £. We denote by (-, -) g 4 the pointwise pairing
induced by H and g between the £-valued forms or the End(€)-valued forms.
The following proposition is will be used in later calculations.

Proposition 2.2 [27]. For hi, he € T'(End(&)), we have

/<8Ah1,8Ah2>H,g dV, = \/—1/ (AgDa0ah1, ha) g AV,
X X

and
/ (Oahns Daho)irg dVy = —/=1 / (Ay@adahn, ha) g AV,
X X

In a local holomorphic frame of £, the curvature of a connection V4 is
given by
Fy:=dA—ANA,
which is an End(€)-valued two-form. Given a Hermitian metric H over a

bundle &, the curvature for the Chern connection can then be locally com-
puted to be

Fy=00HH™").

Taking the trace of the curvature two-form with respect to a Hermitian
metric w, we obtain the mean curvature v/—1A,Fy of H. It is not hard to
see that /—1A, Fy is H-symmetric.

Definition 2.1. A Hermitian metric H on £ satisfies the Hermitian—Yang—
Mills equation with respect to w if

V1A Fg =M

for some constant A. Here I denotes the identity endomorphism of &£.
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Next we introduce slope stability. For a given Hermitian metric H on &,
the first Chern form of £ with respect to H is defined to be

V=T
2

trFy.
i

C1(5,H) =

It is independent of H up to a d0-exact form, and is a representative of the
topological first Chern class ¢;(E) € H?(X, C).
The w-degree of £ with respect to a Hermitian metric w is defined to be

deg,,(€) ::/ c(E,H) Aw' !
b's

where n = dimc X. This is not well defined for a general w. It is, however,
well defined for a Gauduchon metric w since 99(w™ 1) =0 and ¢ (€, H)
is independent of H up to dd-exact forms. In particular, the degree with
respect to a balanced metric is well defined. Note that the w-degree is a
topological invariant, i.e., depends only on ¢; (£), if w is balanced. We restrict
ourselves from now on to the case when w is Gauduchon.

For an arbitrary coherent sheaves F of Ox-modules of rank s > 0, we
define deg, (F) := deg,(det F) where det F := (A*F)** is the determinant
line bundle of F. We define the w-slope of F to be p,(F) := deg“’f(]:).

Definition 2.2. A holomorphic vector bundle £ is said to be w-(semi)stable
if p,(F) < (L)pw(E) for every coherent subsheaf F < & with 0 < rank F <
rank €.

A holomorphic vector bundle £ is said to be w-polystable if £ is a direct
sum of w-stable bundles all of which have the same w-slope.

The following theorem generalizing [39] was proved by Li and Yau [24]:

Theorem 2.3. On a complex manifold X endowed with a Gauduchon met-
ric w, a holomorphic vector bundle £ is w-polystable if and only if it admits
a Hermitian—Yang—Mills metric with respect to w.

2.5. Controls of constants

Let £ be a holomorphic vector bundle over a compact Hermitian manifold
(X,g9), H a Hermitian metric on £, and Vy 4, the connection on £ ® (Q1)®*
induced from the Chern connections of H and g. Let r be a smooth positive
function on X.
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We can define the following weighted norms on the usual Sobolev spaces
LY (&) over X: for each o € L} (€),

ol , = Z / eIV, ol Y,

We denote by L 1.5(€) the same space as LY (&) but endowed with the above
norm. Here dV is the volume form of g.
There are also the weighted C*-norms:

k
_2 2, 1
Iolley =3 sup =357, ol
=0

We denote by C”g(é’ ) the same space as C*(€) but endowed with the above
norm.

Now let {¢.: B, —» U, C X},cx be a system of complex coordinate
charts where each ¢, maps the Euclidean ball of radius p in C? centered at
0 homeomorphically to U,, an open neighborhood of z, such that ¢,(0) = z.
Over each U, define g to be r(z)_é g. Let go denote the standard FEuclidean
metric on B, C C? and V, the Euclidean derivatives.

For m > 0, let R,,, > 0 be constants such that for any z € X and y € U,,

(2.16) R—Or(z) <r(y) < Ror(z)
and
(2.17) IVa'r]g. (y) < Rmr(y).

For k£ > 0, let C; > 0 be constants such that for any z € X,

1 _
= Ye S @9 S COge

(2.18) G

over B, where g, is the Euclidean metric, and

(2.19) 1623llcx(B.,6.) < Ch-

We may deduce the following version of Sobolev Embedding Theorem.
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Theorem 2.4. For each l,p,q,r there exists a constant C > 0 depending
only on the constants R, and C}, above such that
Cllollr,

lollz;,, <

S =

whenever %S < Jqu_l and

Sl

lolley < Cllolzs
1 1
whenever 5 < qT.

The proof of the above result is standard. Simply put, we integrate over

z € X the Sobolev inequalities on each chart U,, and use the bounds (2.16)
0 (2.19) to help control the constants of the global inequalities.

In fact, the method of this proof is useful in controlling not only the
Sobolev constants, but the constants in elliptic estimates as well. Consider
a linear differential operator P : C*(E) — C*°(E) of order m on the space
of smooth sections of £. Assume also that P is strongly elliptic, i.e., its
principal symbol o (P) satisfies the condition that there is a constant A > 0
such that (o¢(P)(v),v) > A||v||* for any v € R” (r = rank &) and £ € R® with
norm |¢]| = 1.

Proposition 2.3. Assume there are constants A, > 0, k > 0, such that for

takes the form

olal
P= Z Aa 8w ... 0ws®

la|<m

in the coordinates (wy,wq,ws) € B, C C3, and the matriz-valued coefficient
functions A, satisfy

‘VSAOAQe < Ay

for all o and k. Here oo = (avy,...,05), o >0, are the multi-indices and
la] = a1 + -+ + ag.

Assume also that there is a Hermitian metric H on £ and constants
Cj. >0 for k>0, such that when H is mewed as a matriz-valued function
on U, under the above frames, we have Cj~ 'IT<H< CI and |VEH|, < C},
on U, for any k and z € X.
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Then there exists a constant C > 0 depending only on p, I, m, 3, \, Ag,
Ry, Cy and Cj, such that for any o € C*(E), we have
lolley,.,, , < CUP©)ey, +llollzz ,)-

+m,3 —

3. Uniform coordinate systems

In this section we will construct coordinate systems with special properties
over Xo¢m and over each X; for small ¢ # 0. Later we will mainly be using
the weighted Sobolev spaces and the discussions in Section 2 show that these
coordinate systems help providing uniform controls of constants appearing
in the weighted versions of Sobolev inequalities and elliptic estimates. The
use of weighted Sobolev spaces is now standard in the gluing constructions
or desingularization of spaces with conical singularities. See [26, 31] for more
details.
The main goal of this section is to prove the following theorem.

Theorem 3.1. There is a constant p > 0 such that, for any t (t can be
zero), at each point z € Xy (or z € Xogm when t =0), there is an open
neighborhood U, C X; (or U, C Xosm whent =0) of z and a diffeomorphic
map ¢ : B, — U, from the Euclidean ball of radius p in C3 centered at 0
to U, mapping 0 to z so that one has the following properties:

(i) There are constants R,, >0, m >0, such that for any t, z € X; (or
z € Xogm whent=0) and y € U,

(3.1) ];Ort(z) < ri(y) < Rors(2)

and

(3:2) [Ve're

0.(¥) < Ripre(y).

(ii) Over each U, define g to be rt(z)_ggt. Then for each k > 0, there is
a constant Cy, independent of t and z € X; (or z € Xogm whent =0)
such that

Ege < (b;k,z.{:]t < COge
0

over B,, and

(3.4) 167 2tllcr (5. 6.) < Ch-
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We first consider the following version of this theorem:

Theorem 3.2. Theorem 3.1 holds with B, understood as a Fuclidean ball
of radius p in RS centered at 0 and ge as the standard Euclidean metric on
B, C RS.

The proof of Theorem 3.2 begins with a version where X; are replaced
by Q¢ and g¢ by geo,t-

Proposition 3.1. There is a constant p > 0 such that, for any t (t can be
zero), at each point z € Q; (z € Qosm when t =0), there is an open neigh-
borhood U, C Q¢ (or U, C Qosm when t =0) of z and a diffeomorphic map
¢t 2 B, — U, from the Euclidean ball of radius p in RS centered at 0 to U,
mapping 0 to z so that one has the following properties:

(i) There are constants Ry, >0, m >0, such that for any t, z € Q; (or
2 € Qosm whent=0) and y € U,,

(3.5) 2) < 1uly) < Rari(2)

and

(3.6) Ve'ry

9.(Y) < Rinri(y).

(ii) Ower each U, define geo. to be rt(z)fégco,t. Then for each k > 1, there
is a constant Cy, independent of t and z € Q¢ (orz € Qosm whent =0)

such that
1 .
(3'7) Ege < Cbt,zgco,t < Coge
0
over B, and
(38) ||¢Zz§co,t||c"'(Bz,ge) < Ck.

Proof. While constructing the coordinate charts, we prove (3.5), (3.7) and
(3.8) first, leaving (3.6) to be discussed at the end.

We begin with the ¢ = 0 case. Choose p < 1 to be significantly smaller
then the injectivity radius of the metric gy from (2.4). Then at each point
p € X one has the coordinates @, : Bp — Y from the Euclidean ball of radius
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p in R® centered at 0 to ¥ mapping 0 to p and satisfying the properties that
there are constants Cj > 0, k > 0, independent of p such that

1. i -
(3.9) =G < ®p95 < Coge
Co

over Bp, and
(3.10) 12595 llen 5, 5) < Ch-

Here g, is the standard Euclidean metric on Bp. More explicitly, we can
simply choose a coordinate chart around one point in ¥ and then define the
coordinates around the other points of ¥ by using the transitive action of
SO(4) on X. Since the metric gy, is SO(4)-invariant, the above constants are
easily seen to exist.

For 2 € Qo sm with ¢y ' (x) = (p,ro(z)) € ¥ x (0,00), define

Ju + Bp x (=p,p) = ¥ x (0,00)

which maps (y,s) € B, x (—p, p) to jz(y, 8) = (®p(y), ro() ez%). Denote the
restriction of j, to B, C Bp X (=p, p) by the same notation. Then define
®0,2 : $0 0 Jz : By — Qo sm. Condition (3.5) is manifest.

We have

(3.11)
$0.29000 = (d(ro(2)5 €))? + ro(2)5 > Pgx = ro(z)s €*((ds)” + Ppgx).

By choosing p small so that % < e?* <2 for s € (—p, p). Using the identity
ge = (ds)? + Ge, one sees that the bound (3.7) for the ¢ = 0 case follows from
(3.9). Moreover, using the fact that the derivatives of e and (ds)? 4+ ®}gs
are bounded in the Euclidean norm on B,, the bound (3.8) for this case
follows.

Next we deal with the ¢ = 1 case. We will use the asymptotically conical
behavior of the deformed conifold metrics discussed in Section 2. Recall the
explicit diffeomorphism z; : Q1\{r; = 1} — Qo sm with inverse Y, and also
the estimate

2(3+k)

(312) |vlg€m,0( Tgco,l - gco,O) < D2,kr(;3

YGeco,0

for rg € (R, 00) where R > 0 is a large number. Let V;(R) be the compact
subset of @1 where r; < R. We will specify the choice of R later. It is easy
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to see that the desired neighborhood U, exists for w inside Vi(R). In fact,
for w € V1 (R) we can even choose B, to be a Euclidean ball of fixed small
radius in C3? with the real coordinates taken from the real and imaginary
parts of the complex coordinates. Therefore we focus on Q1\Vi(R).

For w € Q1\Vi(R), define

P10 := T10 Po g (w) : Bw — Q1\V1(R)

for each w € Q1\V1(R). Here we identify B, with B, . What we do
is defining the chart around w € Q1\Vi(R) by pushing forward the chart
around x1(w) via T1. Property (3.5) is clear in view of Lemma 2.2.

From the k = 0 case of (3.12) and (3.7) for the ¢t = 0 case, (3.7) holds for
t =1 for a constant independent of w € Q1\Vi(R) when R is large enough.

We have

(3'13) ¢>{,w(r1 (IU)_%gco,l) - rl(w)_%¢3,xl(w)(T1{gco,l - gco,(])
+ (rl(w)_%qﬁaxl(w)gcop)'

The second term in the RHS of (3.13) is dealt with in a way similar to
the t = 0 case as follows. By (3.11) we can write

1 (W) 75 GG  yeo0 = T1(w) TS0 (1 ()3 2 ((ds)® + Bs).
Lemma 2.2 implies that for R large enough we have

ey (w) s ro (w1 (w)) 3] < A,

where A is independent of w € Q1\Vi(R), and from this we obtain, as in the
t = 0 case,

(3.14) 1 (W) ™5 004, () Geo0lo*(B,,.g0) < Coyp-

Next we deal with the first term in the RHS of (3.13). Note that by
(3.12) and the bound (3.7) for ¢t = 0, we have, for any w € Q1\Vi(R) when
R is large enough,

(3.15) 1 (W) ™5 0 4, ) (VE  (TiGe01 — Geo0))llco(B00)

< Dy, sup (ri(w) sro(y)3).
y€x1(Uw)
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Here U, is the image of B, in (1. Note that from (3.5) (for the ¢ = 1 case)
and Lemma 2.2 one can deduce that

for w € @1\Vi(R) and for any y € z1(U,) if R is large enough.

Lemma 3.1. For each k > 0 there is a constant Cyj > 0 independent of
w € Q1\Vi(R) such that

H¢8,xl(w)(TTgco,1 - gco,o) HCk(Bw,ge)
3

< Cl,k Z qu(};,:cl(w)(vgw,o (TTgco,l - gco,O)) HCO(BH,,ge)'
=0

Proof. Recall the expression (3.11) for the pullback of geoo to By. Using
(3.9) and (3.10), an explicit calculation shows that the Christoffel symbols
of the cone metric gco0 and their derivatives are bounded in B, w.r.t. the

Euclidean norm by constants independent of w € Q1\Vi(R). The lemma now
follows easily. O

From this lemma we have for £ > 1

(3.16) 1 (w) 35 4, () (T19c0,1 = Geo0)low (B, g.) < Cok-

The required bound (3.8) for the ¢ =1 case then follow from (3.13),
(3.14) and (3.16).

We proceed to consider the case for general t # 0. For each point z =
Y (w) in Qy, denote U, = ¢4 (Uy,), B, = B,, and define ¢; , = 1 0 ¢1 4,. Then
{(U:, ¢¢.2)|z € Qt} is a coordinate system on (); and one can check that

(3.17) coe < ¢ 29cot < Coge
over B, and
(3.18) 191 29co tllcn(B..g.) < Ck

for the same constants C}, appearing in the t = 1 case.
Finally, we prove (3.6). In the t = 0 case, for y € U, we haverg = ro(z) e3?,
s € (—p, p), for values of rg, and (3.6) follows immediately.
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For the ¢t =1 case, recall the expression (2.7) of r; as a function of ry.
If a point y € U,, C @1 has coordinates (p,s) € By, then ri(y) =ri(s) =
ry(ro(z1(w)) e2®). From straight forward computation we can see that there
exist constants R}, m > 1, independent of w € @1 such that }%rl(s)’ <
R!,r1(s). This implies (3.6) for the t = 1 case. The general case follows easily
from a rescaling argument.

The proof of Proposition 3.1 is now complete. O

It’s not hard to deduce the following:

Corollary 3.1. For any fized 5 € R\{0}, there are constants R, > 0, m >
1, such that ]V;’lytrf < Rglrffgm on Q¢ for any t.

gco,t —_

The above proposition and the uniform geometry of | J, X;[1] together
imply

Proposition 3.2. Theorem 3.2 is true if g; is replaced by g;.

What we have now are charts B, endowed with some Euclidean
coordinates (y1,...,ys). In the following, we introduce holomorphic coor-
dinates (wi, w2, w3) on B, (with possibly a smaller common radius) so each
B can be regarded as a copy of the ball B, in Section 2.5. From the construc-
tion above for z € Xt\V,}(R\t]%, %) we can simply take w; = y; + v/—1y;3 for
1=1,2,3. For z € Vt(R|t|%, %), by our construction it is actually enough to
consider z € @)1 where ri(z) > R. Moreover, by the homogeneity property
of Q1 it is enough to consider

2_1 2 1
L <\/—1\/r12,0,0,\/r1; ) €Q.

The coordinates of each point (z1,...,24) € Q1 near z satisfy

Z = M1ZyMa,

where

_ (At vl —z3+ v —1zy
z3+vV—1za 21 —+—1z9 )’

ri(s)2—1 ri(s)2+1
(s) +\/ (=) 0
0

Zy=+v—1 \/ 2
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A [cos(Or+ ) eV IO —sin(9 4 ) eV
1 sin(01 + 7) V=191 cos(6; + ) e~ V-1(¥+61)

and
Mo — cos(f2 + ) e V1o gin(h, + o) eV 162
2 —sin(y + §) e V1 cos(hy + ey eV—19

for (61,02, ¢1, 2,1, 8) € B,, viewed as the ball of radius 0 < p < 1 in RS
3

centered at 0. Here rq(s) = ri(ro(x1(2)) ez?) as before, and (01, 02, ¢1, P2, )

form a local coordinate system on . Explicitly, we have (yi,...,ys) =

(01) 927 (z)la ¢27 1/]7 S)‘
Near the point

fr2 —1 lr2 +1
22(217"'124):<V_1 1770707 12 )GQI

we can let (z1,22,23) be local holomorphic coordinates. Using the above
explicit expressions, we can show that, for some p > 0 small enough indepen-
dent of z, on the ball B, the rescaled holomorphic coordinates (wy, wa, ws3) :=
r1(2)71(21, 22, 23) satisfy the following property that there exist constants
Ap >0and Ap; > 0for k> 1 and [ > 0 independent of z such that as func-
tions in coordinates (1, ...,76) on B, where w; = z; + /—1x;13,i = 1,2,3,

. . . OFy, ot Oz, .
the partial derivatives I, .0z, and Dz 0w, \ 9y .00, satisfy

8kyj

8’“ 81.%‘
<A d <A
=k an ‘ 0x;, ...0x;, <6yj1 ... 0yj, > ‘ = Sl

for k> 1 and [ > 0. Moreover, there is a constant Ag > 0 independent of z
such that
L _ 9y,---,v6)

Ao = o(z1,...,x6) < Ao
on B,.
These properties are not affected if we make a shift in the coordinates
(71,...,26), and we do so to have B, centered at the origin of R6 = C3,

We can easily see from the above properties that for some possibly smaller
choice of p > 0, the version of Theorem 3.1 with g; replaced by g; holds
on each B, endowed with the coordinates (wi,ws,ws) and with Ve now
understood as the Euclidean derivative w.r.t. (wy, wa, ws). This is what we’ll
always have in mind from now on when we work in the charts B,, and in
all our later calculations on B, the coordinates (wy,ws,ws) will always be
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understood as the choice of holomorphic coordinates introduced here unless
stated otherwise.

Remark. For simplicity, in the following we will identify B, with its image
U, under ¢; .. In particular, B, can also be regarded as a subset of X; if
z € Xy, and the pullback sign ¢; , will be omitted without causing confusion.

We proceed to prove the original version of Theorem 3.1. Recall that the
Hermitian form & of the balanced metric §: on X; satisfies &J? = wtz +0; + 6,
where 0; = 9*0*~y; for some (2,3)-form ~; satisfying the equations Ey(vy;) =
—8@,51’3 and 0y, = 0, where

Ey = 000*0* + 0*00*0 + 0*0

and the x-operators are with respect to the metric g;. Moreover, 8@; 3 s
supported on X;[1] and there is a constant C' > 0 such that

(3.19) 109, cx < C|t.

For an arbitrary Hermitian metric ¢ with Hermitian form w, in a complex
coordinate system (wy,ws,ws3) we have

W= — Z gizdw; A dw.

1<i,j<3

1 —_— —
w2:—§ > Gidwy Adwy A Adwi A+ Adwg A+ A dws A dids,
1<i,j<3

then each g;; is a polynomial in the G;;’s and det(Gij)fi. With this elemen-
tary fact in mind Theorem 3.1 follows from its version for g; and

Proposition 3.3. For given k > 0, there is a constant C' > 0 which may
depend on k such that

[re(2) 726t llox(rg.) < CIEI>

for any z € Xy when t # 0 sufficiently small. Here B, C B, is the ball cen-

tered at 0 with radius §.
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Proof. It is enough to prove for z € V}(%) Let Ag = 09* + 0*0 be the 0-
Laplacian w.r.t. g;. Over the region V(1) where g; is just the CO-metric

Jeo,t, We have Az6, = 0 since

and
(3.20) 80, = D00 0%y, = —Ey(y1) = 01> = 0.
The second equality of the second line follows because 0v; = 0.
The operator
rf Ag: T(X;, 0%?) — T(X,,0%?)
is elliptic. In general, given a (p,g)-form ¢ =3 1, 3 dwa, A--- Adg,,
Kodaira’s Bochner formula says

(D), 5, == 9" VaVita, 5

,ﬂ
q
+ Z Z Z aiﬁk Oél---Oéi—loéﬂéwl---Bk—lBBkﬂ---Bq
i=1 k=1 o,3
q
Z Z Rﬁk a1 Br—18Brs1---Bq
k=1

Applying this to ¢ = 0 = >0, .3,5,dWa, N dwa, A dwg, A dwg, and using

(3.20), we have

(3'21> rtg Zgﬁavavgealazﬁlﬁz - Z rtg (Raa152690¢02515
a,B a8

Oorads + Ba5 0ncsiz, + Bars”

01104515 alﬁ1 a0 asf

p 00410!552)
__ _B )
( 041062552 + Rﬁz 0011062/31/6> =0.

+ R<, A
> orp

The first term above can be written as

(3.22) )
nggﬁavavﬁealazﬁlﬁz rtdgﬁaaw 6w 0a1a26162

Oé,,@

+ remaining terms,
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where the remaining terms involve derivatives of 0, 3,3, of order 1 or less,
with coeflicients bounded as in Proposition 2.?31 for constants Ay independent

of z and t # 0. Note that the products of r} and the curvature terms in
(3.21) are bounded similarly. Therefore, 6, is the zero of the elliptic operator
4

r} Ay whose coefficients are bounded as in Proposition 2.3 for constants Ay
independent of z and t # 0. We use the Hermitian metric on Q2?2 induced
by ge. Then there are constants C, ;, > 0 such that

16211y

k+2

(B..g.) < CpillOcll2(s. 4.)

for z € Vi(%) (so B, C V() for p small enough, which we assume is the
case). Each C) . is independent of z and ¢ since we use the Euclidean metric
in each chart. By the usual Sobolev Theorem over the Euclidean ball (B, ge),
for p large enough one can get

10cll e (Br,g.) < CpillbillL2(s..g.)

= Cp </B |9t|52;edve> T < Cfo,kVOle(Bz)% SUp [

9o
for some constants CZ’) > 0 independent of z and ¢. Therefore,

(3.23) Ire(2) 750l o (B gy < Ch i Vole(B.) 7 sup [ry(2) 756,

z

Ge*

From (2.13) one sees easily that

2 <t

Gco,t —

|0

for t # 0 sufficiently small, and by Proposition 3.1 this implies

(3.24) re(2) 50,2 < Ct|5

|§e
for t # 0 sufficiently small. Now (3.23) and (3.24) complete the proof. [

In later section we will need the following result on the sup norm of 6;:

Proposition 3.4. There is a constant C' > 0 independent of t such that
_2
wt‘gt S Crt 3)|t|

Consequently, there is a constant C > 0 such that

_2
o7t = wi g, < Cry 2.
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Proof. Again, it is enough to consider over B, for z € V}(%) A similar dis-
cussion as in Proposition 3.3 shows that for each z € Vt(%) we have

(3.25)

sup 5§01l < Cltdlcxio. ) < Wil = € [ Ir0ave)

z Bz

=" (/B r§0t|§trt4th>2 <c” </V(1) \9t|§trt_3th>

It is proved in Lemma 17 of [14] that

1
2

/ 6,2 v, < © / (el2, + 108222 )avi
Vi(3) Xi[3]

for some constant C' > 0 independent of ¢. In view of (3.19), to prove the
proposition it is enough to show

/ e, dV; < Clt]?
X

for some constant C' > 0 independent of ¢. Suppose that there is a sequence
{ti;} converging to 0 such that

]2 /X e,

where a; > 0. Define 4, = |t;

2dV;, = a? — 0o when i — oo,

|~la; 1y, then

/ 50 2dVi =1 and By, (3n) = — [t "oy 081,
X,

i

Thus there exists a smooth (2,3)-form 4 on Xg¢m such that Ey(59) = 0 and
A, — 7o pointwise. Then one can prove that

/ Fo[*dVo =1 but 5o =0
Xo0,5m

as in [14] in exactly the same way, only noticing that in several places we use
the fact that |ti\_2a;2\6¢i’3[2 — 0 as i — oo. This completes the proof. [J
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4. HYM metrics on the vector bundle over X,

Let &£ be an irreducible holomorphic vector bundle over the Kahler Calabi—
Yau three-fold (X' ,w) as before. Our assumption on & is that it is trivial
over a neighborhood of the exceptional curves C;’s. By a rescaling of the
metric wp, we may assume that & is trivial over U(1) C X. As mentioned in
Section 2, over X there is a one-parameter family of balanced metrics @,
0 < a < 1, constructed as in [14]. Since for each a # 0 the (2,2)-forms &2
and w? differ by smooth 00-exact forms, the bundle £ is stable with respect
to all @, if it is so with respect to w. Assume that this is the case. Then by
the result of [24], there exists a HYM metric H, on £ with respect to w,.

In this section, H will be a metric such that H = I with respect to some
a constant frame over U(1) where € is trivial. By a constant frame we mean
the following: under an isomorphism &gy OUU), a holomorphic section
of € over U(1) can be viewed as a holomorph1c vector-valued function on
U(1). Then a constant frame {s1, ..., s,} is a set of such functions which are
(pointwise) linearly independent and each member s; is a constant (vector-
valued) function. A constant frame is in particular a holomorphic frame.

The metric H will serve as the reference metric. The constants appearing
in this section may depend on H. We will also often use implicitly the
identification X\ UCi = Xosm-

4.1. Proof of the first main theorem

The goal of this subsection is to prove the following theorem on the existence
of a HYM metric with respect to wg over £|x, ... The techniques we use are
largely based on [9-11, 33, 39].

Theorem 4.1. There is a smooth Hermitian metric Hy on E|x, . which
is HYM with respect to &g such that there is a decreasing sequence {a;}32,
converging to 0 for which a sequence {Hg,} of HYM metrics (w.r.t. &,,
respectively) converge weakly to Hy in the L-sense for all p on each com-
pactly embedded open subset of Xo¢m-

Proof. We begin with a boundedness result on the determinants of h, :=
H,H .

Lemma 4.1. After a rescaling H, by positive constants we can assume that
det hy are bounded from above and below by positive constants independent
of 0 <a<k1.
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Proof. Let ¢, be the unique smooth function on X satisfying

e

r

Aa(pa = — tr AQGFH

and [ padV, = 0 where dV, is the volume form of gq.

Claim. The sup norm of . is bounded by a constant independent of 0 <
a < 1.

Proof. First note that since Ay, Fiy = 0 on U(1), ¢4 is harmonic over U(1)
and so we have by the maximum principle supy ) |¢al < supx, 2| |¢@al-

Since w, is a balanced metric the Laplacian A, coincides (up to a con-
stant multiple) with the negative of the Laplace-Beltrami operator its associ-
ated Riemannian metric (see, e.g.,[18]). We thus have the Greens formula [3]:
for each = € Xo[%], 0<a<xkl, % <6< %, and smooth function f on X,

(4.1)

flz) = / Po sz, 9) f(4)dSa(y) + / Gus,y)Auf (y) dVi(y),
905 YEXo[0]

where G, 5(z,y) <0 is the Green’s function for A, over the region Xo[d],
and I'y 5 is the boundary normal derivative of G, 5(z,y) with respect to
y. Moreover, dS, is the volume form on 0X[d] with respect to the metric
induced from §,.

We apply the above formula to f = ¢,. Since the family of metrics
{@a|0 < @ < 1} are uniform over Xo[}] there is a constant K such that
forany 0 <a <1, 1 <6 <3, y€0Xo[0] and z € Xo[3],

|Fa,5($7 y)| < KO-

For the same reason there is a constant K7 > 0 such that
[ Guswp i) < Ky
y€Xo[9]

foranyxEXg[%],%S(Sg%, and 0 < a < 1.
Because Ay, Fj; = 0 over U(1), |2tr Ay, Fj| is bounded by a constant
K5 > 0 independent of a. Therefore we have

~

1
|Gas(z,y)Agpal < —Ga,6(937y)|;tr Ao, Fpl < =Ko Gag(z,y).
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We can conclude from the above bounds that

(42)  Jpalo) < Ko / (PaldS, — / Ky - Gagla,y)dVa(y)
0Xo|9] yE€Xo[0]

SKO/ |0a| dSq + K1 K.
0Xo|9]

Integrate (4.2) with respect to ¢ from % to % and use once again the
uniformity in the metrics over Xo[4] we obtain

(4.3) [pa(2)] < Ky (/ |90a|dva> + 4K Ko
Xo[2]\Xo[3]
< KiK;: (/ |%2dva> L AKL K,
X

for each = € Xg[%}. Here K5 is a common upper bound for the volumes of
X wor.t. Ja- Now, to prove the claim, we have to show that fX la|?dV, is
bounded by a constant independent of 0 < a < 1. For this we use the esti-
mates on the first eigenvalue of Laplacians due to Yau [42] which implies that
for a compact Riemannian manifold (X, g) of dimension n, if (i) diag, (X) <

Dy, (ii) Voly(X) > D5 and (iii) Ric(g) > (n — 1)K hold, then the number

ALBfqv,
)\1 = 1nf ‘fAng—Qf‘g
0£feC>=(X),[ fAV,=0 fo dVy

is bounded below by a constant depending only on D, Do and K. Here AEB
denotes the Laplace—Beltrami operator of g.

For the family of metrics {g,} on X, it is easy to see that the diameters
and volumes are bounded as in (i) and (ii) by the same constants D; and
D5. Note that in a neighborhood of the exceptional curves each member g,
is Ricci-flat, and so by the uniformity outside that neighborhood, condition
(iii) holds for a common value of K.

Therefore, there is a constant K¢ > 0 such that

. 1
/A la|?dV, < KG/ l0al| AupaldV, = K / [@al|=tr Ag, Fi|dV,
X X X r

< KGKQ/ ’(Pa|dva < 1:(61:{2}'{55 </1 ‘@a’QdVa> :
X X
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and hence

(/ |¢a\2dva> | < KoKK2.
X

This completes the proof of the claim. O

Define H, := e?H. Then it follows from the claim that to prove the
lemma, it is enough to show that the determinants of he := HaI:I; I have
common positive upper and lower bounds.

To do so first note that we have tr A; F 7, = 0. Then the proof of Propo-

sition 2.1 in [39] shows that this and the fact that Ag, Fy, = 0 imply det h,
is constant for each a. After a rescaling of H, by a positive constant, we can
assume det h, = 1, and the proof of Lemma 4.1 is complete. O

From now on we assume that the rescaling in the above lemma is done.
We next show a result on the C%-bound for tr h,.

Proposition 4.1. Assume that the integrals [ |log tr ha|? AV, have a com-
mon upper bound for 0 < a < 1. Then there is a constant Cy > 0 such that
forany 0 < a < 1,

—Cy < logtrh, < Cy.

Proof. First of all, we have the following inequality whose proof can be found
in [33]:

Lemma 4.2. Let Hy and Hy be two Hermitian metrics on a holomorphic
vector bundle € over a Hermitian manifold (X,w), and define h = HyHy'.
Then

(4.4) Aylogtrh > —(|AwFr,lm, + A FH, | 1H,)-
By Lemma 4.2, we have the inequality
(45) Aa log tr(ha) > _(|AL:)aFHa ’ﬁ + ’A‘:’aFﬁ’fI) = _’A@aFﬁ’fp

where the equality follows since H, is HYM with respect to @,.
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Over U(g) we have A, logtrhg > —|As, Fylg = 0 and so by Maximum
Principle we have

sup logtrh, < sup logtrh, < sup logtr hg,.
U(s) U (3) Xo[4]

Using the Green’s formula (4.2), we can show as in Lemma 4.1 that

(4.6) sup logtrh, < K’
Xo[$]

for some K’ >0 independent of 0 < a < 1 assuming that the integrals
J% |log tr ha|? dV, have a common upper bound. We thus have a common
upper bound for sup ¢ log tr h,.

Together with the fact that the determinants of h, are bounded from
above and below by positive constants independent of 0 < a < 1, this upper
bound also implies a common lower bound for logtr h, over X. The proof
is completed. O

Therefore, to get CV-estimate we prove

Proposition 4.2. There is a constant Cfy > 0 such that

/x |log tr he|?dV, < C}
for any 0 < a < 1.

Proof. The idea is basically the same as in the proof of Proposition 4.1

in [39]. Assume the contrary. Then there is a sequence {a}7°; converging to

0 such that limy_.o [ [log tr hg,|? dVa, = oco. Denote h(k) = hq, , and define

pr = e~ Mr where Mj, is the largest eigenvalue of log h(k). Then pph(k) < I.
The following inequality is proved in Lemma 4.1 of [39]:

Lemma 4.3. Suppose
Ao Frr + A,0((0h)h™1) =0

holds for a Hermitian metric H on a vector bundle £ over a Hermitian man-
ifold (X,w) and h € T(End(E)). Then for 0 < o <1, we have the inequality

-2 o 1 o o
\h™20uh’ |3, — gAw]h g < —(AFy,h%)g.
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In our case, because Ay, Fyy + Ao, 0((05ha)hgt) = Ao, Fr, = 0, apply
the above lemma to o = 1, we see immediately that

(4.7) —Aulhalg < Mo, Flglhal i < Krlhal g,

where K7 is a common upper bound for [Ag, Fyl -

Note that |hg|;; is subharmonic in U(§) because of the first inequal-
ity in (4.7) and the fact that Ay, Fy = 0 there. Maximum Principle then
implies that

sup |halg < sup |halg-
U(3) Xo[4]

8

From this observation and an iteration argument over Xo[2] on (4.7), we
can deduce that

0 |-

sup ‘ha|ﬁ < Kg (/ ’ha‘%[dva>
b'e Xo[4]

This implies

1
2

(4.8) 1< Kg (/ |pkh(k)|§1dvak>
Xol4]

for any k£ > 0.
As in page S275 of [39], one can show that

/j( ]Vﬁ(pkh(k))%’g% dVak < 4m)§(1x |A‘:’ak Fﬁ\ﬁ\/olak (X) < 4K7K5,

where K3 is as in the proof of Lemma 4.1.

Thus we see that the L2-norms of pyh(k) with respect to &, are bounded
by a constant independent of k. Because the sequence of metrics {@,, } are
uniformly bounded only on each compactly embedded open subset in X ¢,
a subsequence of the sequence {pih(k)} converges strongly on each subset of
this kind. After taking a sequence {U; CC X}; of exhausting increasing sub-
sets and use the diagonal argument, we obtain a subsequence {pg,h(k;)}i>1
of {prh(k)}x>1 and an H-symmetric endomorphism hu, of € which is the
limit of {pg, hi, |v, }i>1 in L?(U;, End(€)) for all I. From (4.8) one immediately
sees that hso is nontrivial.

Define h; = py, h(k;). The same argument shows that iy converges weakly
in the L? sense on each U; to some h7,. The uniform bound on the L?-norm
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of h gives the same bound on hZ, for all o. It follows that I — hZ, has a
weak limit in L? sense on each U; for some subsequence o — 0. We call the
limit 7. Similar to [39] except that we consider integrals over each Uj, we can
show that 7 gives a weakly holomorphic subbundle of £. More precisely [27],
there is a coherent subsheaf F of £ and an analytic subset S C X (contain-
ing the exceptional curves) such that S has codimension greater than 1
in X, the restriction of 7 to X\S is smooth and satisfies 7*# = 7 = 72 and
(I — 77)87r = 0, and finally, the restriction F” : f]X\S 7T|X\S(5|X\S) — &
is a holomorphic subbundle. The rank of F satisfies 0 < rank F < rank &.

Following the argument in [22, pp. 181-182] (see also Proposition 3.4.9
of [27]), we have

Cl(f/,fll) /\LD%

= lim det lim
Ho - 5—0 rank F Xo[6] Cl( ¢ f’ u) 61—>0 rank F Xo[6]

Here u is some smooth Hermitian metric on the holomorphic line bundle
det F over X, and H; is the Hermitian metric on the bundle F’ induced by
the metric H on . Using the above construction of m by convergence on the
U’s one can show by a slight modification of the arguments in [39] that

1
1i
55((1) rank F Xo[6)

Cl(f,,ffl) /\@g > 0.

Claim. For0<a <1, pg, (F)>0.

Proof. Tt is enough to show p, (F) = uo. From the construction of &g in [14],
we have

OF =W + By,

where W is a (2,2)-form supported outside U(1) and @ is a d0-exact (2,2)-
form which is defined only on X\ U C’Z, is supported in U(2)\ UC;, and
equals wcoO =2V/-1 100rs A \/—100rs on U( (1)\ U C;. The same construc-
tion gives w, such that

@y =V + O,

Where ®, is a smooth d0-exact (2,2)-form supported in U(3) which equals
CO a on U( )
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Denote the smooth (1,1)-form ¢;(det F,u) on X by ¢; and rank F by s.
From the above descriptions we have

1 1
o (F) = pio = lim — A (@2 — &F) = lim ~ A(Pg — @
to, (F) = po 6111(1)5 o c1 N (& — @) 6%8 o c1 A (Dq 0);
1 o1 1
= - g NPy — lim — g NPy =—1lim - c1 N\ Do,
S Jx 6—0 8§ Xo[6] 6—0 8§ X,[8]

where the last equality follows from the fact that, as smooth forms on X,
c1 is closed and @, is exact. One can write ¢; A ®g = d(c; /\5) wherqg is a
three-form supported on U(3)\ U C; which equals %(81‘5 — Jr3) AQ0rs on
U(1)\ U C;. By Stokes” Theorem, we have
1 9 1 — 4 —
(4.9) —lim - g NPy = — lim / c1 N (81'% —0rs) A s .
6—0 S Xo[0) §—08s dXo[d]
An explicit calculation on coordinate charts can then show that the last
limit is zero. U

Since pg, (€) = 0, we get from this claim a contradiction to the assump-
tion that &£ is stable with respect to @, and complete the proof of Proposi-
tion 4.2. Il

We continue with the proof of Theorem 4.1. Using H and §, one can
define Li-norms for h,. The next step is to give an L?-boundedness.

Proposition 4.3. The L3-norm of h, over X is bounded by some constant
Cy independent of 0 < a < 1.

Proof. The C°-boundedness obtained above and the common upper bound
in Vol,(X) imply that the L? norm of h, is bounded above by a constant
independent of a.

Choose a finite number of Hermitian metrics H® for 1 <v <k on
& which are constant in some holomorphic frame &|y (1) = O" over U(1),
such that for any smooth Hermitian metric K on &£ the entries of the
Hermitian matrix representing K are linear functions of tr(K (H®))~1),
1 < v < k, whose coefficients are constants depending only on H®). Denote

hY) = H,(H®)~1 1t is therefore enough to bound the integrals

/A |dtr B2 dV,
X

for1 <v<k.
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From Lemma 4.2 and the fact that H, is HYM w.r.t. @,, we have

(4.10)
Aglogtr b)) > — (|Ag, Frron lirer + [Aa, Flgon) = —|Ae, Frron | o,

from which we have the inequality
(411) —Aatr h((ly) § |A‘QQFH(1/) |H(u)tI' h((ly) S th[‘ h((ly)

for some constant Ky > 0. Here the last inequality follows from the fact that
Fy) is supported on X\U(1), where the &, are uniform.
Multiplying tr h((ly) on both sides of the inequality (4.11) and using inte-

gration by parts, we get
/ |dtrhg”)]§ dv, < Kg/ ltrh®) 2dV,.

Finally, write WY = hoH (H®)~1 and we see that the result follows from
the uniform C° bound of h,. O

Using the diagonal argument, the uniform boundedness of the L2-norm
of h, over X implies that there is a sequence {a;};>1 converging to 0 and
an H-symmetric endomorphism hg of £ which is the limit of {hq,|, }i>1 in
L?(U;, End(€&)) for all 1.

As in [9, 33|, we can then prove that the sequence {hg, }i>1 converges
in the C-sense to hg on each U;. Next we argue that there is a uniform
C'-bound for {hq, }i>1 over X. We need the following lemma, whose proof
will be given later.

Lemma 4.4. LetV be a Kdhler manifold endowed with o Ricci-flat Kahler
metric g, and let H be a HYM metric on a trivial holomorphic F bundle
over V w.r.t. g. Fix a trivialization of F and view H as a matriz-valued
function on V. Then

—Ag|0HH '[3, <0.
We apply this lemma to the the restriction of £ to U(1) under a trivi-

alization in which H = I. Also let H = H,, and g the restriction of g, to
U(1), where it coincides with the CO-metric on resolved conifold. Then we
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have

—A,, %,@i g, S0

OH, Hy '

and hence, by the Maximum Principle,

sup [0H,, H;*
U(1) '

2 —12
Ho, 4o, < sup \aHaiHai Ha, g,
oU (1) ’

Using the uniform C%-boundedness of H, and the fact that H = I, the
above inequality implies

H,ga;"

sup |8ﬁhm

g < Kio sup |8Ahz
U(1) H .G, vy o°

Therefore, it is enough to bound the maximum of [0y ha,| 7 5 over Xo [4].

Let x; € Xo[%] be a sequence of points such that

m; := sup |0ghg,
Xo[3]

2

9., = 191l g,, (%)-

Assume m; is unbounded. If {z;} has a converging subsequence with
limit in the interior of Xo[3], then one can argue as in [9, 33] and get
a contradiction. Thus, it is enough to get a uniform bound near (3X0[%].
For this we use Lemma 4.4 and an iteration argument to conclude that
SUDyX, (1] ‘8ﬁhai|H,gai is bounded by the L2-integral of |8Hhai‘ﬂ,gai in a
neighborhood of OXO[%], say Vo(%, %) This last integral is uniformly bounded
by Proposition 4.3. Thus if {z;} has a limit on OXO[%], m; is bounded, which
contradicts to the assumption. We therefore prove uniform C'-boundedness
for {hai}iZL

One can then obtain from this uniform C'-bound a uniform L}-bound
for {hq, }i>1 over each U as in [9, 33]. Then after taking a subsequence, we
may assume that h,, converges to hg weakly in the L} sense for all p over
each U;. This implies Ay Fy, =0 where Hy = hOI:I . By standard elliptic
regularity Hy is smooth.

The proof of Theorem 4.1 is now complete. (I

Remark. From Lemma 4.1 and Proposition 4.1 it is easy to see that the
largest eigenvalue of hg is bounded from above over Xg ¢, and lower eigen-
values of hg is bounded from below over Xggm. In particular, the C%-norm
of hg is bounded over Xggm.
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Proof of Lemma 4.4. The HYM equation takes the form
V—1A,0(0HH ™) = 0.

In local coordinates this is just

-~ 0 (O0H
iy H—l —0.
g 82j (821 > 0

In the following we denote 0; = % and 0; = %. Taking partial derivatives
on both sides of the above equation, we get

(4.12) ) ]
— 90 g5qg™ O5(O:HH ") + g 0;(0kO:H)H ™" — O; HH "9y HH ') = 0.

One can compute that

(O H)H' — 0, HH 'O, HH ™ = 0;(0,HH ') + O,HH ‘0, HH !
— O;HH Y0, HH ™ = (Oy)s(0c HH ™).

Note also that g %g—;: is the Christoffel symbol T’ }'Cq of g. Therefore (4.12)
becomes

(4.13) ~I%,gY0; (S HH™Y) + g7 05(0x); (O HHY) = 0.
Now, in local charts,
(4.14) —AgOHH '}, = —V/=1A000HH |3,
< —(V=IAV AV (OHH Y, 0HH V) pr g
— (OHH ™',V =TA Vi AV (OHH ) b .
Here A, : I'(V,End(F) @ Q! ® Q%) — I'(V, End(F) ® Q1) is the contrac-

tion of the two-form part with the Kéhler form w, of g. The operator
1,0 01 . .
Viig N Vi, is the composition

v
I'(V,End(F) @ Q') —% T(V,End(F) ® Q' @ Q%)
Vl,O
2% D(V,End(F) @ ' @ Q%' @ Q10) & I(V,End(F) @ Q' @ Qb1),
where the last map is the natural anti-symmetrization. The operator V(I)fg A
V]lfg is analogously defined.
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Write A = O0HH ' = Aydz, so Vg = Va4 Explicitly, we have

(4.15) ) )
V=IAV L AV (OHH ™) = —2(g"7(94)i0;5Ak)dzi + 29% (95 4i)Tyydn
=2(—g"70;(0a)i Ak + g% (85A4:) T}, ) dzr,

where we use the fact that
97(04)i05 A = g7 0;(02)iAr + (97 (Fa)j, Ak] = 9"70;(0a)i Ax

because d + A is a HYM connection. Now (4.13) and (4.15) together implies
that

(4.16) VEIAVE AV (OHHTY) = 0.
Next we compute /—1A ng A ng(aHH—l). We have

(4.17) V=IA NV AV (OHH™)
=2 (g (33(3,4)1-Ak)dzk — (054099} ok — Aig 0T} )
Note that
—85F2,q = —8} (giﬁakgpq) = —giﬁajakgﬁq + giggtﬁanEtakgﬁq

is the full curvature tensor Rfl of g. From the Bianchi identity and the fact
that g is Ricci flat, we have

(418)  —9¥05T}, = 9 Rys = 9 Ryp59® = g¥ R0 = Ripg™ = 0.
From (4.13) and (4.18) we then have
-1
(4.19) vV—1A ngAng(aHH )=0.
The result now follows from (4.14), (4.16) and (4.19). O
4.2. Boundedness results for Hg
We will now establish some boundedness results for Hy. The following C'-

boundedness for hg follows easily from the uniform C'-bound of the sequence
{hq, }i>1 which converges to hy.
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Proposition 4.4. There is a constant C1 >0 such that |V zholg , < C]
on Xosm-

Higher order bounds for Hy will be described in the uniform coordinate
system {(B;, ¢0,2)|z € Xosm} from Section 3.

Proposition 4.5. There are constants C;, > 0 for k > 0 such that in the
above coordinate system,

1holl e s 1.6,y < Ci
for each z € Xgsm.

Proof. 1t is enough to focus on Vj ¢m (1), where € is the trivial bundle. More-
over, by gauge invariance of the norm, it is enough to work under a holo-
morphic frame in which H = I. With this understood, hg is just Hy.

The result for the k£ = 0 cases is Proposition 4.1. For the k£ = 1 case, note
that by Proposition 4.4 we have locally

~OHy OH;
t Y} 0 ! 2.

Here * is w.r.t. I, and in this case Hj = Hy. Therefore, because the norm
4
ro(z) " 3go < Cyge where g is the Euclidean metric in (wy,ws, ws), we have

(4.20)
~OHy OH, s OHyOH s
tr (Gt G ) < Corr (ro(2)3 @) TG0 G20 ) < (ChPCon2) < Ko

for some constant K71 independent of z. This is the desired result for k£ = 1.
For the k > 2 case, note that the metric Hy is HYM, so in each coordinate
chart B, it satisfies the equation

1+ 5 0°Hy a7 0Hy o _,0Hy

3 = 3 J .
90 8wi8w]~ ro(z) 90 ow; 0 8wj

(4.21) ro(2)

By the k= 0,1 cases and Proposition 4.4 the right-hand side of (4.21) is
bounded by some constant independent of z € Vj ¢m(1). Moreover, there is
a constant A > 0 independent of z € V{4 (1) such that

(4.22) ro(2)5 (90)7€:&; > Mgl

over any B,. Therefore, by p. 15 of [21], the bounds in (4.20) and (4.22)
together with the estimates on the higher derivatives of ro(z) 3go from
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(3.4) imply that

[ Holl < Ko,

Ch 5 (BLge)
where B, C B, is the ball of radius g and K19 is a constant independent of
z. It is not hard to improve this to

| Hol < Ki3

C"2(B.,g.)

by considering the estimates over B, for y € B.\B,. What is important is
that this Cb2 (B., go) bound of Hy implies that the right-hand side of (4.21)
is bounded in the C%2 sense, and so by elliptic regularity we get

[ Holl < K,

C*3 (Bl.g.)

which can be improved to B, as before. Using bootstrap arguments, we can
obtain, for any k > 1, a constant C}, independent of z € Vj ¢m(1) such that

[ Hollcw(.,g.) < Ch-

Here the derivatives is w.r.t. the Euclidean derivatives. However, these are
also the derivatives w.r.t. go and H since H = I here. O

Let a be a number such that 0 < o < % We will specify the choice of
o later. If we restrict ourselves to the region Vo ($R[¢|*, 3R[t|*), where the
bundle £ is trivial, we have the following result which we will need in the
next section.

Proposition 4.6. For every small t and wy € Vo(3R|t|*, 3R|t|*), we have
”H()Ho(wt)_l — IHCZ“(BZJ:I,ge) < D|t|§0¢7

where D > 0 is a constant independent of t and z € Vo(3R|t|*, 3R|t|*). Here
Hy(wy) is viewed as a constant metric on g’Vo(thfla 3Rt ~ O,
2 b

Proof. We work in a holomorphic frame over Vy(3 R|t|*, 3R|t|*) under which
H =1, so Hp(wy) is constant a matrix. Because of the bound in the remark
before the proof of Lemma 4.4, it is enough to show that

| Ho — Ho(wt)|lc2(B. g.) < DIt[3*

for some constant D.
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Since |V g Hy g < C] for some constant C] and there is a constant
Ki5 >0 such that distg, (2, w;) < K15’t’§a for any small ¢t and z €
Vo(3R[t|*,3R|t|*), by the mean value theorem we have |Ho— Ho(w;)| <
K16]t|5* on Vo(3 RIt|*, 3R|t|*). For each z € Vo(3R|t|*, 3R|t|*) in each coor-
dinate chart B, we have

17 0%(Ho — Ho(wy))

H .
8wi671)j

An ) Y
(90) ow; 0

s

(4.23) ro(2)3 (o) =ro(2)

8’[@' '

Notice that Equation (4.20) actually implies that the right-hand side of
Equation (4.23) is bounded by (C})?Coro(z)5, which is less than Kj7|t|5®
for some constant K7 > 0. Therefore, in view of (3.4), by elliptic regularity

there is a constant Kis independent of ¢ and z € Vo(3R|t|%, 3R|t|*) such
that

| Ho — Ho(wt)‘|cl,%(B;7ge)
< Kig(|[RHS of (4.23)[|co(s.) + |[Ho — Ho(wr)|lco(s.))
< Kis(Ki7 + Kuo)[t]5°.

As in the proof of Proposition 4.5, this final estimate can be improved
2

to ||Hop — HU(wt)HCL%(B ) S Ki9|t|3“, and we use elliptic regularity once

again to get the desired Hound. O

5. The approximate Hermitian metrics on &; over X;
5.1. Construction of approximate metrics

In this subsection we construct approximate Hermitian metrics on &. We will
compare the estimates on the bundles &, each over a different manifold X;.
For this we first recall the smooth family of diffeomorphisms z; : Q;\{r; =
|t|%} — Qosm from Section 2. Recall also the fixed large number R > 1
from Section 3 (after (3.12)). For ¢ small, restricting to Vt(%R|t|%, 1) we get
a smooth family of injective maps

eV (%thﬁ, 1) — ¥ (%thﬁ, g) .

We can extend these to a smooth family of injective maps, still denoted
by x4:

v X, BRM%} — X, [iR\tﬂ .
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Next, choose a smooth family

E 5t|xt[;R|t|ﬂ - g|X0[iR|t|%]

of maps between smooth complex vector bundles which commute with x;
and are diffeomorphic onto the images.

In addition, we require the following condition on f;. Denote by (X, &)
the smoothing of the pair (Xy, 7€) mentioned in the introduction. By our
assumption on & the restriction of £ to V := Usea, Ve(1) is a trivial holomor-
phic bundle. Fix a holomorphic trivialization & |y = O, inducing the trivi-
alization |y, (1) = OTVO (1) inder which H = I, the r x r identity matrix.
With the induced holomorphic trivialization of Etly, 1y for all small ¢, we
require the family f; to be such that when restricting to Vt(%R|t\%, 3), we
get a map from the trivial rank r bundle to another trivial rank r bundle
which is the product of the map on the base and the identity map on the
C" fibers.

Over Xt[ R|t| 2] we let H} = f#Hy, the pullback of the HYM metric Hy
from Xo[1R[t| :]. Note that our choice of f; over V}(%thﬁ, 3) is one such
that f; becomes the pullback of vector-valued functions by ;. In partic-
ular, the pullback of a constant frame of g’:ct(Vt(ZR\tP,%)) by f; is again a
constant frame of &y, Rlt], )" Therefore, under some constant frame of

£
iz mnt 2y
can extend this constant frame of Etlv, 2R, sy naturally to one over Vi(3),

the pullback H; of H can be seen as an identity matrix. We

and we then can extend H; over Vi(2) by taking the identity matrix under
this constant frame. We then further extend H; over the whole X; to form
a smooth family. We still denote these extensions by Hy, and they will serve
as reference metrics on &;.

From Proposition 4.5 one can deduce

Lemma 5.1. There exists a constant C) such that for any t #0 and z €
X¢[R|t|2] we have Hf:hOHC’“(BZ,FIt,gt) < C.

In view of Theorem 3.1 and Proposition 3.1, we can deduce

Corollary 5.1. There exists a constant C|

Vi(R|t|2, 3), we have

such that for any t over

k

Z |rtgj gco t(ft hO)

J=0

<y
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For a such that 0 < a < % and t small, the image of the restriction of
to Vi(R|t|*, 2R|t|*) lies in V(3 R[t|*, 3R|t|*). For w; as in Proposition 4.6,
define Hj := f(Ho(w¢)) to be the constant metric on &y, agj¢e) (W.r.t. a
constant frame).

Then by Proposition 4.6 we immediately get

Lemma 5.2. There is a constant D >0 such that for any t and z €
Vi(RIt|“, 2R|t|Y), we have

-1 2
\H(H))™ - I||CQ(BZ7HMQS) < D|t|3“.
Now let 74(s) be a smooth increasing cutoff function on R! such that

) 1, s> 2R|t|*z,
0, s<R|t|*z,

and such that its [th derivative %t(l) satisfies |%t(l)| < I~('l|t|(%*a)l for I > 1 for
-~ 1

a constant K; > 0 independent of ¢. Define 74 = 7¢(|t|”2r¢), which is a cutoff

function on X;, and define the approximate Hermitian metric to be

Hy = (1 —7)H] 4+ 7H = (I +7(H/'(H)™* — I))H].

Remark. The metric H; is just an interpolation between f;Hy and H| =
fi (Ho(wt)). Because the determinant f;"hg is bounded uniformly both from
above and below, the common C%bound of ffho w.r.t. H; in Lemma 5.1

implies that the norms |- [y, and |- |4 are in fact equivalent (uniformly
in t). /

The following estimates for H; are analogous to those for Hy in Propo-
sition 4.5. They follow from that proposition with the help of Corollary 3.1.

Proposition 5.1. There are constants Cy > 0 for k > 0 such that

IlHt(ﬁt)AHCk(Bz,Ht,ge) < Ck

for each z € X;.
5.2. Bounds for the mean curvatures

The following proposition gives the bounds for the mean curvatures
vV —1Ay, Fg, of the approximate metrics H;.
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Proposition 5.2. There are constants Ay, > 0 and Zj, > 0 such that for t
small enough, we have the following:

(1) For any z € Xy and k > 1,

(5.1) e Ao Frll v, g0y < b

(5.2) It Ao, Fi | i, < Zo max{[t)59, ¢[*~2%)
and
(3)
(5.3) 1Aa Fr s xm.5) < Zy, max{[t]*, [¢]'"5).

Proof. The first estimates (5.1) follow from Theorem 3.1 and Proposition 5.1.
For (5.2), first of all we have

(5.4) A(DtFHt =0on Vt(R’t’a)

because H; = H{ there and Hj is a flat metric.
Next consider the annulus V;(R|t|%, 2R|t|*). Let

hy =1+ n(H{(H))™" = I),
then we have
A, Fr, = Ao, F; 4+ Az, 000m:hy () ™) = Ag, 00 ki (hy) ™).

Now, on each local coordinate chart B, N Vy(R|t|%, 2R|t|%), compute in
a frame under which Hj is constant, we have

(5.5)

v Ao, (0m by (h})™Y) = v} Ao, O((Oh), — OH|(H}) ™ ), + hjoH,(H]) ™) (h) ™)
vy A, D(Oh, (M) ™)

vy Ao, OR(hy) " ARy (hy) ™Y + v A, AR, (hy) L.
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To bound the derivatives of h; we need to bound the derivatives of ;. The
first order derivative of 73 can be bounded as

~ _1 _1
g T (It 2re)[t]72 Vere g,
< Kl’tﬁfawfé - Rir; < K1 Ri|t| °r; < 2K R R,

(5.6) VT,

where (3.2) is used. The last inequality follows from the fact that the support
of V7 is contained in V;(Rt|%, 2R|t|V).
Similarly, the second order derivative of 7, can be bounded as

(5.7) V27|, < 4K2R? + 2K 1 RoR.
From (5.6), (5.7) and Lemma 5.2 we can obtain the estimates

’ahﬂﬁt,ge = [O(re(HY/(H}) ™ — D)lg, g
< Verilg. [HY ()™ = 11, + mlVe(H (H) ™ g,
< 2K RiR- D|t|3* + D|t|3* < (2K R R+ 1)D - |t]3®

and

00y, < V2o | HY ()™ — I, + mlV2H!HD ) g,
+ 2| Verilg. Ve (HY (H) ™l g, ,.
< (4K2R? 4+ 2K RyR) - D|t|3% + D|t|3* + 2- 2K R\ R - D|t|5°
< (AK,R? + 2K, RoR + 4K, Ry R+ 1) - D|t]3°.

Ge

4 4
In local charts, the term r} Ag, contributes to r? g, ! which is bounded by
Theorem 3.1. Therefore, from expression (5.5) we can now conclude that

07 Az, Fir, | g, = |vi A, 00 hi(hy) ™) g, < Zalt]5®

on Vi(R|t|*, 2R|t|*) for some constant Z; > 0 independent of t.
From the remark before Proposition 5.1 we get

(5.8) It Ao, F |, < Zo)t]5®

on Vi(R|t|*,2R|t|*) for some constant Zz > 0 independent of t.
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We now estimate the L§7_4—norm of vV=1Ag,Fu, on Vi(R|t|*, 2R|t|*)
with respect to g; and Hy.

8
3 k ..—4
/ ‘r;A@tFHJHtrt dw
Vi(R[t]~,2R][t]*)
_ LI k=4
- rt |rt @tFHt’Htrt ‘/t
Vi(RIt]~,2R[t|~)

< R Zg'”iak/ r, v, < (2R)3FZ5 % 2,
Vi (RIt|*,2R]t|)

where Zs > 1 is an upper bound for f%( rt_4dVi for any t # 0 small.

RJt|~2R|t|*)
Thus

(5.9) Ao Fu, Lk virige 2Rl o) < (2R)S ZoZs|t**

We proceed to consider the region V;(2R|t|%,2). We will first give a
pointwise estimate on the mean curvature of the Hermitian metric Hy =
f#Hy. We will use 0; and 9; to emphasize that they are the 0- and O-
operators on X;, respectively. The calculation will be done under the specific
choices of frames as mentioned before Lemma 5.1. With these choices, we
have H; = I and fifHo can be regarded as the pullback by z; of a matrix-
valued function representing Hy. Since constant frames are holomorphic,
the curvature of fHy can be computed using this pullback matrix-valued
function which we still denote by f;Hj.

Lemma 5.3. There is a constant Z, > 0 independent of t such that
v} A, (304 (f Ho) (7 Ho) ™M) |y, < Za- Ity

on Vi(2R|t|%, %)

Proof. We expand and get

(5.10) (O (fF Ho)(ff Ho)™ ") = (810 (ff Ho))(ff Ho) ™" + 0,(f; Ho)
A (ffHo) ™ 0u(f; Ho)(ff Ho) ™"
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We compute

(5.11)
004 (f{ Ho) = —\/Q_Tthd(ft*Ho) = —\/;Tthff(dHo)

= i Ho)) — Yol — a0y o)
= L g o)) Yl a5 )
= f; @) — Vo al( — o) 7 o).

Similarly,

(512 07 Ho) = F7(0Ho) — Yo (- 3 o) (),

.03 B Ho) = @) + Y~ ot (A

Plug in (5.11), (5.12) and (5.13) to (5.10), we get

801 Ho (£ Ho) ™)
= 7 @odoHo) 7 o)™ Yl — o) 7 aHO) - (£ Ho) ™
+ (ff8oHo)(f{ Ho) ™" A (f{doHo)(f{ Ho) ™"

5= (ff 00 Ho)(f Ho) ™ A [(Je — 7 Jo) f{ (dHo)] (f; Ho) ™"

;_\

2
-1

- 7[(% — xfJo) f{ (dHo)(f{ Ho) ™" A (ff GoHo)(ff Ho) ™"

[(Je = @i Jo) f7 (dHo))(fi Ho) ™" A [(Jy — a7 Jo) fi" (dHo)] (i Ho) ™
= 7 (90(doHo(Ho)™))) — Ed[(Jt — a1 Jo) f (dHo)] - (f{ Ho) ™
o~ (ff 80Ho) (f; Ho) ™" N [(Je — i Jo) fi (dHo)] (f{ Ho) ™"
— 5 [(Je — @ Jo) f (dHo)](ff Ho) ™ A (f; 9o Ho)(f; Ho) ™"

+ i[(Jt ziJo) fi (dHo)(f{ Ho) ™" A [(Je — 27 Jo) £ (dHo)) (f; Ho) ™"
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Therefore we have
(5.14)
v A DO (f7 Ho) (7 Ho) ™)l .
< \PEA@tff(go(aoHo(Ho)_l))|gt
S Asy (U — i Jo) £ (AHO)] - (£ o)™,
+ 5’1“5’ Ap, [(f700Ho) (ff Ho) ™ A (e — = Jo) £ (dHo)(ff Ho) 1l g,
oI A [0 — aJ0) 7 (dHO) (7 Ho) ™ A (77 00 Ho) (7 Ho) I,

1 s * * * —
+ Z’rf Az, [[(Jr — x5 Jo) f7 (dHo)|(f{ Ho) !
A (Je = @ Jo) £ (dHo))(ff Ho) 'l g,
Note that because f[t = I under the chosen frame, we have ffHy = fho.

Using the bounds in Proposition 4.5, we can estimate the first term on the
RHS of (5.14) in each coordinate chart B, as

(5.15) |rt Ag, [ (O0(8oHo(Ho) ™)l g,
< |Pt3szaoff(ao(aoHo(Ho)_l))|p1t
I (B, = Aaga) 7 Gol@Ho(Ho) ),
< Z5’rt fi (30(30H0(H0) 1))|gt,gw7t 0t = 2wl geons
< Zs! £ (90(9Ho(Ho) ™ Nl co(p.te g ) " 198 — Voo
< Z2 £ (D06 Ho(Ho) ™l 1 g0y - C"ltIEs

2

< Zs’éo(aoHO(HO)_l))‘co (Bay(2),H,g0) ‘t‘r;E

Geo,t

_2
< Zg(||H0||C2 B, (= )7H gL) + ”HOHCI B. e )Hg )) |t|rt ?

< Zo(Ch + (C)Itlr, * < Zuolte;.

where Proposition 3.4 and the equation in Lemma 2.1 are applied. We have
also used the fact that

Ag:ao f7(00(00Ho(Ho) ™)) = ff (A, (0(00Ho(Ho) ")) =0

since Hy is HYM with respect to the balanced metric @y on Xo gm.
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The second term on the RHS of (5.14) is bounded as
(5.16)

e Mg, dl(Js — 2 Jo) f7 (dHO)] - (f7 Ho) ™|,

< Sl A (T — 23 T0) FF @HO)] - (7 o),
b gl (e, — Aa )l — 33 J0) fF @) - (7 Ho)

< Zulri A, dl(Ji — 27 Jo) [ (dHo)]| g,

geoe |07 (T = 27 J0) £ (AHO) g, .,

~1 -1
+ Z11|wt — Weo t

S 212(1 + ’ajt_l - w_l gco,t). rtg‘vgco,t({]t - x:‘]-()) gco,t’rtgd(ft*HO)‘I:[“gcoﬁt

co,t

J
+ | Je — a7 o ngrS Vi P HO) g,
7=0
To proceed, let Vy:4 ., — V., be the difference between the two con-

nections. It is in fact the difference between the Christoffel symbols of Y} gco ¢
and geo,0. From the explicit formulas of Christoffel symbols in terms of the
metrics and Proposition 3.1, for some universal constans D7 > 0 and Dy > 0
we have

(5.17)

‘VTtgcot - gcoo‘Ttgcot > Dl(’gco odgco 0|Ttg(‘of + |Ttgco dYE tgco,t)

S DQI't 3.
Now, by Corollary 2.1 we have

(5.18) 1y — 2t Jo

Geco,t — ’T Jt JO’Ttgcot — Do‘t‘r
and by (5.17) we have

(5.19)
|Vgco,1, (Jt - l’: JO) |gco,t
<V oo (T3 Tt = J0) |7 g
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< Voo (Yidt = J0) 1 geoe + 1V Y1000 = Voo (Tidt — Jo) |11 geo
_8

< Doltlr, * + Vg0 = VieoolTige, 1Tt It — Jolrigen.
_8 _8

< Do‘t‘rt 54+ DQD()‘t‘I't 3.

2 2 Z]' .
We also have |r} d(ft*HO)’Ht,gco,t < Cfand };_g|r} v‘;co,t(ft*HO)‘IfIhgco,t

< CY from Corollary 5.1, and |&; ' — wc_o{t oot < C"[t|5 from Proposition

3.4. Plug these, (5.18) and (5.19) into (5.16) we get

(5:20) (7 H) ™' Aaydl( — 0 (dHO)] g,
< Zis(1+ C"|#13)(xf (Do + DaDo)ltlr, * - COf + Doltlr;® - C3)
< Zysltlr 2
The third term on the RHS of (5.14) is bounded as
(5.21)
S| Mg, [(fF B0 Ho) (f; Ho) ™" A (e — 2 Jo) 7 (dHo) ] (ff Ho) ™'l g,
< 103 A (U780 Ho) (f7 o)™ A (e — a7.J0) 7 (dH)(f7 Ho) 15,
3 I07 (Mee, — Aa (7 B0 Ho) (17 Ho)™
A (e = 2 Jo) f (dHo)|(f; Ho) ]l 4,
< Z1a(1 4+ 107 = wotlgen) - It — 27 Jo

< Zya(1+ C"|t]5) - Dolt|e;2 - (CF)? < Zuslt|r; 2,

2
= 2
Geort |rt3 d(f; Ho) H,\geot

where (5.18) and Corollary 5.1 have been used again.

The last two terms on the RHS of (5.14) are also bounded by Zi|t|r; >
by similar discussion. This together with (5.14), (5.15), (5.20) and (5.21)
complete the proof of Lemma 5.3. O

We continue with the proof of Proposition 5.2. From the remark before
Proposition 5.1 we get, for V;(2R[t|*, 2), that

(5.22)  [rpAs, Fu,|m, = v As, (0:(0(fF Ho) - (ff Ho)™")|m, < Zarlt|r;?

for some constant Z17 > 0. Consequently, in this region we have

(5.23) Iri Ao, Fo, o, < Zi7 -

< 4R2 ’t’1—2a
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and one can estimate

(5.24)
8 B ap 4 B
/ v} A, F, |,y *dV, =/ i [rf A, Fi, |3y xy dV;
Vi (2R[t]*,2) Vi (2R[t]*,2)
ik _ _ % 2k
<z [ v < 2zl [
Vi (2R]t|*,2) r;=2R|t|*
3 23,2
< Z8 Zaslt]" - —(2R) 75|t sk,
2k
We thus obtain
(5.25) 1Az, Fr s vierige, 2500 < Ziolt]' 5%

This ends the discussion on the region V;(2R[t|%, 3). As for the region X;[2],
because the geometry is uniform there it is easy to see that

(5.26) Iri Ao, Fr, |5, < Zao - |t]
and
(5.27) 1As Fr Iy, x21g0.m) < Z20klt]

when t is small.

Finally, from (5.4), (5.8), (5.23) and (5.26) we get (5.2), and from (5.4),
(5.9), (5.25) and (5.27) we get (5.3). The proof of Proposition 5.2 is complete
now. O]

Remark. From now on we fix a = %. Then we have

(5.28) rf Ao, Fra |1, < Zolt|
and
(5.29) 1A, Fr, s, g < ZyJt]1.

6. Contraction mapping argument

Our background Hermitian metric on & as constructed in Section 5 is
dNenoted by H;. Let H; be another Hermitian metric on & and write h =
Hth_l = I 4+ h where h is Hi;-symmetric.
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It is known that the mean curvature
V —1A@tht =/ —1A@t5((8[-[t (I + h))([ + h)_l) =+ —1AthFHt

of ﬁt is ﬁt—symmetric.

To make it Hy;-symmetric, consider a positive square root of lEItH; L
denoted by (fIth_ 1)%. More explicitly, write h = P~'DP where D is diag-
onal with positive eigenvalues, then (.ﬁ[tﬂt_l)% — P (I +D):P.

Remark. Write (ﬁIth_l)% = I + u(h). Then it is easy to see that the linear
part of u(h) in h is h.

After twisting the mean curvature above by I + u(h), we obtain
(6.1) V=L +u(h) ™ [Ao, (O, (I + W)L +h)™) + Ag, FJ(I + u(h),
which is H;-symmetric. The equation
V1A, Fy =0
is equivalent to the equation
V=1 +u(h)) " [As,0((8m, (I + h))(I +h)™Y) + Az, F, (I + u(h)) = 0,
which can be written in the form
Li(h) = Qi(h),

where
Li(h) = \/—1(A@t58ch + %[A@FH” h])

is a linear map from
Hermpy, (End(&;)) := { Hi-symmetric endomorphisms of & }
to itself, and

6.2

(Qt()h) = —V/—1(I +u(h)) " (Ag,005,h)(I + )~ (I + u(h))
+V=1A5,00y,h — V=11 + u(h))"*As, (O, h - (I +h)~*
AOh - (I+h)" YT +u(h)) — vV=1(I +u(h)) " Ag, Frr, (I + u(h))
— L[Ag, Frr,, h)).

In the above formulas, we use the fact that $h is the linear part of u(h).
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Notice that since

/ <\/—1 (A@taach—i- ;[A&';tFHHh]> ,I> dVi =0
X

H,

we have an induced map from

HermY; (End(&;))

:= { Hi-symmetric endomorphisms of & which are orthogonal to I}

to itself. Because (6.1) is a H;-symmetric endomorphisms of & which are
orthogonal to I, we see the same is true for Q;(h). In this section h will
always be a section for the bundle Hermy; (End(&;)).

We consider the contraction mapping problem via weighted norms intro-
duced in Section 2. The metrics that define these norms and all the pointwise
norms will be w.r.t. the balanced metrics g; on X; and the Hermitian met-
rics Hy on &, and the connections we use are always the Chern connections
of H;. Therefore we remove g and H; from the subscripts of the norms for
simplicity unless needed.

As in Section 2, we now consider the following norms defined on the
usual Sobolev space Lf(Herm}; (End(&;))):

B

l
_25+2j . _
s, = 30 [t av
j=0" Xt

As before, we use L;f 5 to denote Lf B(Herm%,t (End(&:))) for simplicity. We
also consider the norm

k
Ihllcs == sup [r=5P+5I v,
E = X,

and use C’g to denote Cg(Herm%,t (End(&))). The following Sobolev inequal-
ities will be used in our discussion:

Proposition 6.1. For each l,p,q,r there exists a constant C' > 0 indepen-
dent of t such that for any section h of Hermy; (End(&)),

1Pllz;, < CliRllz:

LB —
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+ 2L and

< 6

= =

whenever % <

S

Ihles < Clihllzs
whenever % < qT_l. Here the norms are with respect to Hy and gy.
We now begin the discussion on the properties of the operator L;.
Lemma 6.1. For any given 0 < v < 1 and t # 0 small enough, we have
Ihllzz , < 8t 1Le(A) 2z,
In particular, the operator Ly is injective on L%ﬁZ(Herm%t (End(&))).

Proof. Later in Proposition 7.1 we will show that for arbitrarily given v > 0,

we have
2
[PllLz , < [t]7" P Om, ol L2

0,—2 — 0,—2

for t # 0 small enough. Using this one easily deduce that

2
1Pllzz _, < 207" [y Om, bl 2

1,-2 — 0,-2

for t # 0 small enough. Now

Brmi. :/ (O, h, gz, ) th:/ (V—1A,89y,h, h) dV
.

—1
< [ L) = Y o P Bl v
< / (La(h)|[B] Vi + / 112 A, Fi,| dVi.
t Xt

From (5.28) we have |r} Ag, Fpy,| < Zo|t|%. Therefore we can bound

/ (1|, Fir,| dV; = / e B2 [rs A, Fig, v 4V
X X

~ 4 ~
< 2ol [ IeinPrtavi < Zofe g

X
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Using this bound, we now have

2
IRz, <A™l 0mhlZs

<= ([ 1zl avi+ Zojs 1 )

<> ([ i tav )" ([ winetan)

T+ AZolt| B,
< ALz IRz, + AZoltl >R .

2

Therefore for v < 1 and t # 0 small enough such that 47|t~ < %, we
have the desired result. O

We conclude from this that for k& > 6, the operator L; : LQ?Q — L'O“,f 418
injective.

The operator L; is also surjective. First of all, Az, 00y, is a self-adjoint
Fredholm operator, so it has index zero. Second, since for each t # 0, Ay, F,
is a smooth function on Xy, the operator

h — %[A@tFHt,h]

from LQ?Q to L§774 is a compact operator. Therefore L; has index zero, and
the injectivity of L; implies its surjectivity. Let the inverse be denoted by P;.

Proposition 6.2. There exist constants Z, > 0 such that forany 0 <v <
1 and t # 0 small enough,

(6.3) I, < Zu(—tog )3l ILeh) s .

2
Consequently, the norm of the operator P; : L’57_4 — L§7_2 1s bounded as
1P| < Zi(—log )z ]t

Proof. From the estimates of §; in Theorein 3.1, the estimates of H; in
Proposition 5.1, and the estimates (5.1) of v} Az, Fp, in Proposition 5.2, we
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can apply Proposition 2.3 to the operator rj L, and obtain
IRlzs, < Co (If L) g, + IRz ) < Gk (1E@llgg_, + Rlzs_,)

for constans CA',’i, > 0 independent of t. By Lemma 6.1 and Hélder inequality,

(6.4) [Ihll7 S64It|_4”/ e Le(h)[Pr, v,
0,-2 X,

1*% 8 %
< 64t </ 1 rt4th> (/ \rg’Lt(h)|kr;4dV;>

< ZJt1™ (= log [t) ' ILe(m)I1 7,
< ZgltI ™ (= log [t [ Le(M)II7

for ¢ # 0 small. The claim follows now. O

Now we consider the contraction mapping problem for the map
Up: Ly _y — L5 5, Us(h) = Pi(Qu(h)).

Here Q:(h) is given in (6.2).

Take (3 to be a number such that 0 < B — 2 < 1. We restrict ourselves
to a ball B(f') of radius ]t]* centered at 0 inside L2 _o, and show that Uy is
a contraction mapping from the ball into itself when ¢ # 0 is small enough.

Proposition 6.3. For each k large enough, there is a constant Z’ > 0 such
that when t # 0 is small enough the opemtor h = Qt(h) maps the ball of
radius \t\ 5 in Lk

)5 in L§ 4

Proof. Note that when k is large enough one has the Sobolev embedding
L§’72 < C1,. Proposition 6.1 implies the existence of a constant C5" inde-
pendent of ¢ such that

(6.5) Ihllor, < CRPIIR] Ly

2, —2"

’ 4 ’
In this case, ||h|zx < \t\% implies in particular that |h|r} < C’Zb]tl%, and
hence '

(6.6) |h| < C3P

Therefore, because 0 < 3’ — 2, when t # 0 is small it makes sense to take
the inverse of I 4+ h and I + u(h), and there are constants Z] and Zj such
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that, for ¢ £ 0 small,

(6.7) \(I+u(h))‘1(Aat33ch)(I+h)‘1(1+u( ) — V- Awﬁaﬂth\
< 71190, h||h| < Z,CPJ|° h| < ZLCPIH T |V b

and
(6.8)  max{[hl, [I+u(h)|, [(I +u(h)™', [I+hl, [(T+h)7} < Z.
From the expression (6.2) for Q; we can bound it as

(6.9)

Qe (P)| < (I +u(h)) ™ (Ao, 00m,h)(I + h) " (I + u(h)) — V=1Az,00m,h)|
+ (I 4+ u(h)) Ag, (O, h - (I + k)" AT 4+ h) (I 4 u(h))|
+|((I+U( )7 1A, Frr, [|(T + w(h))| + |h||Ag, Fr, |

< ZICPI T VLA + (Z5) 4V i, b2 + ((Z3)% + Z5) A, Frr,|

where (6.7) and (6.8) are used.
Now we estimate the L§’74—n0rm of [V} h| and |V, h|?. First of all we
have

v2 h k o %(2+2)v2 hk —4dv < h k
93kl = [ eVl av; < a5,

, X, ,
and hence

B8
(6.10) V3, Alllg , < Pl , < It

0,—4 — 2,—-2

Next, we estimate

k -3k _2(2+1)2 k.—4 2
Pl = [ e e tave <
t

By Proposition 6.1 we have, for large k, ||h||z2r

1,-2 —

A Al 2
< Oy, <GPPI

for some constant Ck independent of ¢t. Thus we get

(6.11)
_2 A 1 . A [1’7—2
IV a APl _, <175 RIZ, < (G227 < ()%

8
2=
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From the remark after Proposition 5.2, we have for some constants
Zy >0

= 3 = s_pg B8
(6.12) [Ae, Fr, oy, < Ziltls < Zilt]s™ = [t] =

Note that for 0 < 8 —2 < 1, %—%>%>0. We fix such a 3.
Now, from (6.9), (6.10), (6.11) and (6.12) we have

(6.13)
1Qi)llzs_, < (ZIC + (Z)* - ()2 + (Z)* + Z5) 2) 05 - I

for ¢ # 0 small enough. O

Fix 3’ as in Proposition 6.3 and choose v < %B’ — % in Proposition 6.2,
then for t # 0 sufficiently small, U; maps B(3') to itself. Next we show

Proposition 6.4. U; is a contraction mapping on B(8') for t #0 small
enough.

Proof. We first show that when ¢ # 0 is small enough and k large enough,
there are constants Z;/ > 0 such that for any h; and hy contained in B(f'),
we have

B =2

o |lhy = hallrs -

2

(6.14) 1Q¢(h1) = Qe(ha) s, < Z{ It

As discussed in Proposition 6.3, for i = 1,2 when |h;| € B(") we have

hi| < CsP|t %52 for some constants C5P. In this case there is a constant Z
k k 3
independent of t such that

(7 + 7)™ (I +u(hn) = (1 + ho) (I +u(h))| < Zg|hy — hal,
(1 +u(hy) ™ = (I +u(he)) ™Y < Zilha — hal,
(6.15)  |(I +u(h1)) — (I +u(h2))] < Zslh1 — hal,
(1 +hy) ™ = (I +ho) 7| < Zglha — hal,
|

u(h1) — u(hg)| < Zglhy — hol.



736 Ming-Tao Chuan

Using these bounds, the bounds in (6.8), and the expression in (6.2) for
Q:(h), it is not hard to see that for some constant Zj we have

(6.16) |Q¢(h1) — Q¢(h2)]
< Zy((|1A,00m,11| + |As,00m, ha|)|h1 — h|
+ (|h1] + |h2])|As, 005, (h1 — hs)|
+ (Va1 * + [V, ha|*) |h1 — hol
+ (Va |+ Vi he|) [V, (b — ho)| + [Ag, Fp, |1 — hal)

< Z(1t175 (| A5, 0m,h1| + |A5,00m, ha| + |Az, Fa,|)|ri (hy — ho)]
F TS (Vi + [V he|?) g (hy — ho)
75 (I P Vg |+ vy Vg, ha)rFV i, (b — hy)
+ (|h1] + |h2|)|As, 00w, (h1 — h2)]),

4
where in the last line we use the fact that |75|_§rt3 > 1 on X;. Therefore

(6.17)
1Qu(h1) — Qu(ha)ll s,
< Zy(It 75 (| A2, 000, | s,

+ 185,00m,ha g, + 1Mo, Far, g ) Sup vf (h1 — ha)|
2 4 4
H SNV ik P, + |||Vch2|2||L§,,4)S;P v} (h1 — ha)|
+ 75 ey *Viahall |+ IIYFVHtMHLg,,)S;p 07V i, (hi — ha)

B'—2

+ 26371t 1| Az, 000, (ha — ho)llze ),

where (6.6) is used to bound |h1| + |ha|.
The first term in the RHS of (6.17) is bounded as

(6.18)
[t175 (1A2, 00, b || s, + 1Az, 00, holls

4
+ IIAthHtIILgA)S;p v (h1 — ho)|

B=2
= |

~ 2 37/ ~
< (24 Zi)lt| 75|t 7 |ha = hallco, = (24 Ze)C3P[t] 5 [|ha — hal|ps

2,-2

for t small enough. Here we have used (6.10), (6.12) and (6.5).
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The second term in the RHS of (6.17) is bounded as

(6.19) 5 NV kP les, + IV ah2s ) SUp vf (h1 — ho)|
_2 A =2 g
< Jt[75 2G5 1t - [1ha = halleo,
~ 28’ -4
< 2ACPCPI 5 ([P — hal

2,-2

for ¢ small enough. Here (6.11) and (6.5) are used.
To bound the third term in the RHS of (6.17), we first estimate that,

B
for [[hllps_, < t]%,

2
_2
I il = [ Vbl tavi <
Pt Xt
and hence
_2 4
ey 3Vl , < Ibllzs , < 5.

Therefore we have

(6.20)

2 -2 -2
¢~5 <||rt Vi hallps , + 1y SVch2HL’g,,4) Sup t7V i, (b1 — )]

B8'—2
3

B
< 20t 73t Flhn = hallor, < 260175 [lha = hall

—2’

where the above estimate and (6.5) are used.
Finally, it is easy to see that the last term in (6.17) is also bounded as

B8'— B’ —2
3 3

(6.21) 2G5 [|Ag,00m, (b1 — ho)l| s, < 2C°[t 5 by = hall1g

Plugging (6.18), (6.19), (6.20) and (6.21) into (6.17) proves (6.14).

Recall that we have chosen v < ¢ — 1. Therefore (6.14) and the bound
for the norm of P; given in Proposition 6.2 show that for ¢ 0 small enough
U, is a contraction mapping, as desired. O

Using the contraction mapping theorem on Uy : B(8') — B(f'), we have
now proved

Theorem 6.1. Fort # 0 sufficiently small, the bundle & admits a smooth
Hermitian—Yang—Mills metric with respect to the balanced metric Q.
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7. Proposition 7.1
What remains to be proved is the following proposition.

Proposition 7.1. For each v > 0, we have
[ winav < [ o npav
X X

fort #0 small.

We can regard this proposition as a problem of smallest eigenvalue of a
self-adjoint operator. Consider the pairing

(hi,ho)rz 3:/ v} (h, ho)g,r; *dV;.
One can compute

/ <ach17ach2>Hm§tdW

t

:/ (V—=1A;,00p,h1, ha) g, dV;
Xy

= / I'tg <\/ —1I’EAL;,t58ch1, h2>Htrt_4d‘/t = <\/ —1I'EA‘;,t58ch1, h2>L3,72‘

From this we see that the operator /—1r}A;,d0y, is self-adjoint on the
space L(2)7_2(Herm9{t (End(&))).-
Define the number

Jx, 101, h?dV;
)\t = —_——

= in —.
0#heL] _,(Hermy,, (End(&y))) th |h|2rt_§d‘/t

It is not hard to show that the above infimum is achieved at those h satisfying

(7.1) V—=1r} Ay, 00,h = \ih,

i.e., h is an eigenvector of the operator v/—1r} Az, 09y, corresponding to the
smallest non-zero eigenvalue \; on L%ﬁQ(Herm%t (End(&;))). For each t # 0
let hy be such an element which satisfies [|hf|z , = 1.



Existence of HYM metrics under conifold transitions 739

Proof. Our goal is to show that for each v > 0 one has A\; > |t|” when t # 0
is small. Suppose such a bound does not exist. Then for some v > 0 there is
a sequence {t,} converging to 0 such that \; < |t,|”. The endomorphisms
hy, introduced above satisfy

(7.2) V=1IrsAg, 00y, by = Anhn,
(7.3) / 2=t dV, = 1
Xn
and
(7.4) / 1001, b 2dViy < [tn]”.
Xn

Here we use the notations r, wy,, H, and A, to denote r; , & , Hy, and A\
respectively. In the following we will replace the subscripts t,, with n.

For each fixed § > 0 and n sufficiently large, because the Riemannian
manifold (X,,[d],®,) has uniform geometry, and because the coefficients in
the Equations (7.2) are uniformly bounded, there is a constant C' indepen-
dent of large n such that

n?

Vol 2z, 28 < Cllbmllzo,op < € ( /X |hn12r—3dvn) <

n

where C’ depends only on 0 and p. For p large enough we see that
[hnllc2(x,[26)) 18 bounded independent of n. Therefore by using the diagonal
argument, there is a subsequence of {h,} converging to an Hy-symmetric
endomorphism £ in the C! sense over each compactly embedded open subset
of Xoem. From (7.4) one sees that Oh = 0 over Xo,sm- But then h is a holo-
morphic endomorphism of &| NUCy and by Hartog’s Theorem it extends

to a holomorphic endomorphism of £ over X. Since € is irreducible, the
existence of a HYM metric on £ implies that it is stable and hence simple.
Therefore h = I for some constant .

Lemma 7.1. There exists an 0 < 1 < é and a constant Cg > 0 such that
for any 0 < 4§ < i and large n,

/ |hy2r™3dV, < Cro6%.
Vo (9)
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Let us assume the lemma first. Then we have

/ L[>~ 5dVy = lim hPr5dVy = lim lim |hn|?r~5dV,
X0 em —0.Jx,[6) 0n—=00 Jx [5]

> lim lim (1 — Cp6%) =

d—0 n—oo

On the other hand,

/ |h|?r~ 5dVp = lim lim | A |1~ 5dV, < hm lim 1 =1,

d—0n—oo X, [5] 0 n—oo

so we have

/ IhPPrsdvy = 1.
Xo,sm

Since h = pl, this implies that

—1
(7.5) uf? = <rank(5)/X r—idvo> .

On the other hand, note that for each 6 > 0,

/ trh dVp
Xo[0]

= lim
n—oo

|u|rank(E)Voly(Xo[d]) = / tr hy, dV;,
X, [0]

Because
/ tr h, dV, = 0,
Xn
we have
(7.6)
|pe|rank(E)Volp(Xop[d]) = lim / trhy, dVy| = lim / tr hy, dV),
n—oo Xn [(ﬂ n—oo Vﬂ((s)

< C; lim ( / \than>

< Cy lim / \halr5dV, | < Cs6".

Now choose § small enough such that

N =

(7.7) Volo(Xo[8]) > £ Volo(Xo)



Existence of HYM metrics under conifold transitions 741

and
_a N 2C36"
. k ad .
(7.8) (ran (€) /Xm ' VO) ~ rank(€)Volo(Xo)
We see that a contradiction arises from (7.5) to (7.8). We have thus shown
Proposition 7.1. U

Proof of Lemma 7.1. First of all, by Holder inequality,

2

/ |hn|2r—f§dvng< / |hn|3r_3‘an) ( / r_4+6Lan> .
Vi (9) Va(3) Vi (5)

Because

1

/ v 0qY, | < Css™,
Vi (9)

it is enough to prove that

Va(d)

for some constant Cy > 0.

The proof makes use of Michael-Simon’s Sobolev inequality [29] which
we now describe. Let M be an m-dimensional submanifold in RY. Denote
the mean curvature vector of M by H. Then for any nonnegative function
f on M with compact support, one has

(7.9) ( /anf%dvg,;) < Cm) [ (Vilyy +HIf) V.

where C'(m) is a constant depending only on m. Here all metrics and norms
are the induced ones from the Euclidean metric on C*. We denote this
induced metric by gg. Do not confuse this metric with the metric g, appear-
ing in earlier sections. In our case M is the space Vt(%) identified as part of
the submanifold Q; € C*. As pointed out in [14], the relations between the
volumes and norms for the CO-metric geo+ and those for the induced metric
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gg are

(7.10) Vg, = 5, 2dVy,
and

(7.11) ’vf|‘(2]E S Ort_g|vf gco,t

for any smooth function f on Vt(g)

Let 7(r) be a cutoff function defined on V,,(1) such that 7(r) = 1 when
r < 1 and 7(r) = 0 when r > . Extend it to X,, by zero. From (7.10) we
have

2
(7.12) / |hnPr ™ dVeo < = / \hn e 273AV,,
Vi 3 v

i)

where dV¢, 5, is the volume form with respect to the CO-metric weot, -
Moreover, using Holder inequality, one can deduce from (7.9) that

</vn(l> fgvaE)

2

[SIIN]

sc/ V12, dV,,
Va(3)

and using (7.10) and (7.11) we get

(7.13) <AUMm>s@A(

where | - |co, is the used to denote |- |4, , .
Apply (7.13) to f = |hp|r " 57, and then together with (7.12) (and
Lemma 2.3) we have

(7.14)
< / |hn|3r_3Lan>
V(%)
<0 ( /
V(%)

1
m\gq

co,n

1) |vf|2 r%dvgco,m

1
2

2
3

w
o
VR
Wl N

Ihnl3r3Lcho,n> <C
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<Co [ V(i) Ry Vi,

1
n\2

< 3Cs / 19 ol 22272V
e

2

+306/
Va(

n\2

+3Cs / NPT VTG dVeo .

ni\2

2 V™52, 72T dVeg
1
1

co,n

The third term on the RHS of (7.14) is an integral over V,(3,3) in
which the support of V7 lies. From (7.3) one sees that it is bounded by
some constant C7 > 0 independent of n. Later whenever we encounter an
integral with a derivative of 7 in the integrant, we will bound it by a constant
for the same reason.

Because h,, is H,-hermitian symmetric, Oh,, = (0g, hyn)*#~, and so the
first term on the RHS of (7.14) can be bounded as

(7.15) /V (

1
2

< / (O, Tony O11, hcom + (Ohuy Ol eon )T 272 dVeo
Vi (

g %)

= 2/ <8thn’ aHnhn>co,nr_2L7—2dV;:o,n < 03|tn’V_L
Va(3)

: IV || [0,r ™2 T2 d Vo0,

for some constant Cs > 0 independent of n. The last inequality follows from
(7.4) and Lemma 2.3. We now fix an ¢ such that 0 < ¢ < min{},v}. Then
we see that as n goes to infinity, this term goes to zero.

Finally we deal with the second term on the RHS of (7.14). It can be
bounded as

(7.16) /V (

1
n\2

| [ | VX752 703 Voo < Cs / o x5 72 Voo,
V. (L

2

for some constant Cg > 0. hence it is enough to bound the term on the right.
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To do so, we introduce the notation ¢ = r~2, and denote 8}% =0n, +
0log paA\. We can estimate

0< / (Ohn, Ohp)g, d2m2d Vs,
Va(3)
< —/ (V=1Az, 0% Oh, hp)dor2dVy, + Cr
Va(3) "
= / —(V=TAy, 897 Ohpy + V—TA5, 005 hn, hn)por2dV,
Vi(3) ! "
+ / (V=1Ay, 0097 hyyy hp)or2dViy + Cr.
Va(2) "
One can compute that

V=1Ag, 857 Ohy + V1A, 0072 Iy,
= —[V~1As, Fa, hu] + (V=1A5,00108 2)hn,

and so we have

0< / (V=TAg, i, ), ) — (V=T A, 00108 $2) s, hn) o7V,
Va(3)
+ / <8}’ffnhn, 8}?ﬂhn>gn¢27'2dvn + Cr
Va(3)
< 2/ |As, Frr ||hn|?dor2dV, +2/
Va(d)

ni\2

b [ ol0goal, — V=TAz, 0010 6ol dur Vi + C

w(3)

|08, b2 27°dV,
H

n(2

To proceed, we use the bound [Ag Fiy | < Zor~3|t,|t from the remark at
the end of Section 5 to deal with the first term. We use (7.4) to take care of
the second term. Finally, we have

|01og qﬁg\gn < 3.2r % and V—1Ag, 001og ¢y > irs,
which follow from (bottom of) p. 31 of [14] together with the observation

/=100 1og ¢ > 0 and the crude estimate %gco’t < Gt < 2gco,s ON Vt(%) for t
sufficiently small.
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Thus

0< 220\tn|i/ |22 3 o72dV, + 20ty |
w(3)

+ / (612 — 1) | |25 po72dV, + Cr
Va(d)

< (2Zltal® + 6% 1) / | P75 724V, + 20t + Cu.

2

Recall that 0 < ¢ < min{g,v} is fixed. Let n be large so that
2Z0|tn| % 4 61> — 1 < 0,
and we see from above that

(7.17) / (o Pr=2= 272V, < C (1)
Va(d)

2

for some constant C(¢) > 0 depending on ¢.
From (7.14), (7.15), (7.16) and (7.17) the proof is complete. O
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