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The Seiberg–Witten equations on manifolds with

boundary I: the space of monopoles and their

boundary values

Timothy Nguyen

In this paper, we study the Seiberg–Witten equations on a com-
pact 3-manifold with boundary. Solutions to these equations are
called monopoles. Under some simple topological assumptions, we
show that the solution space of all monopoles is a Banach mani-
fold in suitable function space topologies. We then prove that the
restriction of the space of monopoles to the boundary is a sub-
mersion onto a Lagrangian submanifold of the space of connec-
tions and spinors on the boundary. Both these spaces are infinite
dimensional, even modulo gauge, since no boundary conditions are
specified for the Seiberg–Witten equations on the 3-manifold. We
study the analytic properties of these monopole spaces with an eye
towards developing a monopole Floer theory for three-manifolds
with boundary, which we pursue in [10].
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Nomenclature

A(X) the space of spinc connections on the manifold X
B a typical spinc connection, usually on a 3-manifold
Bs,p a Besov space. Used as a prefix, it denotes closure with respect to

said topology
C a Coulomb slice in T
C(X) the smooth configuration space of spinc connections and spinors

on the manifold X
Cs,p(X) the Bs,p(X) configuration space on X
d• the operator associated to the infinitesimal action of the gauge

group at • ∈ C(X)
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d∗
• the formal adjoint of d•
E∂X abbreviation for the restriction of a bundle E on

X to ∂X
E• a chart map for • ∈ M, M, or L
E1

• the nonlinear part of the chart map E•
F(B,Ψ) a local straightening map for M at (B,Ψ)
FΣ,(B,Ψ) a local straightening map for L at rΣ(B,Ψ)
G(X) the gauge group of transformations on X
G∂(X) the gauge group of transformations that are the

identity on ∂X
Hs,p a Bessel potential space (otherwise known as frac-

tional Sobolev spaces). Used as a prefix, it denotes
closure with respect to said topology

Hs abbreviation for Hs,2

H(B,Ψ) the Hessian of a configuration (B,Ψ) ∈ C(Y ).
˜H(B,Ψ) the augmented Hessian of a configuration (B,Ψ)
J(B,Ψ), J(B,Ψ),t the subspace of T given by the infinitesimal action

of G(Y ) and G∂(Y ), respectively
JΣ the compatible complex structure on TΣ

J̃Σ the compatible complex structure on ˜TΣ

K(B,Ψ), K(B,Ψ),n the orthogonal complement of J(B,Ψ) and J(B,Ψ),t

in T(B,Ψ), respectively
K(Y ) the bundle over C(Y ) whose fiber over (B,Ψ) is

K(B,Ψ)

L(Y ), Ls−1/p,p(Y ) the tangential boundary values of the space of
monopoles M and Ms,p on Y , respectively

M(Y ), Ms,p(Y ) the space of all monopoles in C(Y ) and Cs,p(Y ),
respectively

M(Y ), M s,p(Y ) the space of all monopoles on Y in C(Y ) and
Cs,p(Y ), respectively, that are in global Coulomb
gauge

ν the outward unit normal vector field to Y
ω the symplectic form on TΣ

ω̃ the symplectic form on ˜T
P+

(B,Ψ) the “Calderon projection” of the Hessian H(B,Ψ)

˜P+
(B,Ψ) the Calderon projection of the augmented Hessian

˜H(B,Ψ)

P(B,Ψ) the “Poisson operator” of the Hessian H(B,Ψ)
˜P(B,Ψ) the Poisson operator of the augmented Hessian

˜H(B,Ψ)
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ΠK(B,Ψ) the projection onto K• through J•,t
Ψ a spinor
ρ Clifford multiplication on Y
q the quadratic map associated to the Seiberg–

Witten map SW3

rΣ the tangential restriction map
r the full restriction map
# some pointwise bilinear multiplication operation
∗ the Hodge star operator on Y
∗̌ the Hodge star operator on Σ = ∂Y
s a spinc structure
S the spinor bundle on Y
SW3 the Seiberg–Witten map in three dimensions
T• the tangent space T•C(X) for a configuration • ∈

C(X)
T , T s,p the space Ω1(Y ; iR) ⊕ Γ(S) and itsBs,p(Y ) closure,

isomorphic to any tangent space of C(Y ) and
Cs,p(Y ), respectively

TΣ, T s,p
Σ the space Ω1(Σ; iR) ⊕ Γ(SΣ) and its Bs,p(Σ)

closure, isomorphic to any tangent space of C(Σ)
and Cs,p(Σ), respectively

˜T the augmented space ˜T ⊕ Ω0(Y ; iR)
˜TΣ the augmented space TΣ ⊕ Ω0(Σ; iR) ⊕ Ω0(Σ; iR)
Y a 3-manifold
X a manifold or a Banach space
X̃s,p

(B,Ψ), X
s,p
(B,Ψ) subspaces of ˜T s,p and T s,p on which ˜H(B,Ψ) and

H(B,Ψ) are invertible, respectively

0. Introduction

The Seiberg–Witten equations, introduced by Witten in [21], yield interest-
ing topological invariants of closed three- and four-dimensional manifolds
and have led to many important developments in low-dimensional topol-
ogy during the last two decades. On a closed 4-manifold X, the Seiberg–
Witten equations are a system of nonlinear partial differential equations for
a connection and spinor on X. When X is of the form R × Y with Y a
closed 3-manifold, a dimensional reduction leads to the three-dimensional
Seiberg–Witten equations on Y . These latter equations are referred to as
the monopole equations. Solutions to these equations are called monopoles.
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For both three- and four-dimensional manifolds, the topological invariants
one obtains require an understanding of the moduli space of solutions to the
Seiberg-Witten equations. On a closed 4-manifold X, the Seiberg–Witten
invariant for X is computed by integrating a cohomology class over the mod-
uli space of solutions. On a closed 3-manifold Y , one obtains the monopole
invariants for Y from studying the monopole Floer homology of Y . This
involves taking the homology of a chain complex whose differential counts
solutions of the Seiberg–Witten equations on R × Y that connect two
monopoles on Y . For further background and applications, see, e.g.,
[6, 8, 11].

In this paper and its sequel [10], we study the Seiberg–Witten equations
on manifolds with boundary. In this first paper, we study the monopole
equations on 3-manifolds with boundary, where no boundary conditions are
specified for the equations. Specifically, as is done in the case of a closed 3-
manifold, we study the geometry of the space of solutions to the monopole
equations. However, unlike in the closed case, where one hopes to achieve
a finite-dimensional (in fact zero-dimensional) space of monopoles modulo
gauge, the space of monopoles on a 3-manifold with boundary, even mod-
ulo gauge, is infinite dimensional, since no boundary conditions are imposed.
Moreover, we study the space obtained by restricting the space of monopoles
to the boundary. Under the appropriate assumptions (see the main theorem),
we show that the space of monopoles and their boundary values are each
Banach manifolds in suitable function space topologies. We should empha-
size that studying the monopole equations on a 3-manifold with boundary
poses some rather unusual problems. This is because the linearization of the
three-dimensional Seiberg–Witten equations are not elliptic, even modulo
gauge. This is in contrast to the four-dimensional Seiberg–Witten equa-
tions, whose moduli space of solutions on 4-manifolds with boundary has
been studied in [6]. What we therefore have in our situation is a nonelliptic,
nonlinear system of equations with unspecified boundary conditions. We will
address the nonellipticity of these equations and other issues in the outline
at the end of this introduction.

The primary motivation for studying the space of boundary values of
monopoles is that the resulting space, which is a smooth Banach manifold
under the appropriate hypotheses, provides natural boundary conditions for
the Seiberg–Witten equations on 4-manifolds with boundary. More precisely,
consider the Seiberg–Witten equations on a cylindrical 4-manifold R × Y ,
where ∂Y = Σ, and let Y ′ be any manifold such that ∂Y ′ = −Σ and Y ′ ∪Σ Y
is a smooth closed oriented Riemannian 3-manifold. We impose as boundary
condition for the Seiberg–Witten equations on R × Y the following: at every
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time t ∈ R, the configuration restricted to the boundary slice {t} × Σ lies in
the space of restrictions of monopoles on Y ′, i.e., the configuration extends to
a monopole on Y ′. This boundary condition has its geometric origins in the
construction of a monopole Floer theory for the 3-manifold with boundary
Y . We discuss these issues and the analysis behind the associated boundary
value problem in the sequel [10].

In order to state our main results, let us introduce some notation (see
Section 1 for a more detailed setup). So that we may work within the frame-
work of Banach spaces, we need to consider the completions of smooth con-
figuration spaces in the appropriate function space topologies. The function
spaces one usually considers are the standard Sobolev spaces Hk,p of func-
tions with k derivatives lying in Lp. However, working with these spaces
alone is inadequate because the space of boundary values of a Sobolev space
is not a Sobolev space (unless p = 2). Instead, the space of boundary values
of a Sobolev space is a Besov space, and so working with these spaces will
be inevitable when we consider the space of boundary values of monopoles.
Thus, while we may work with Sobolev spaces on Y , we are forced to work
with Besov spaces on Σ. However, to keep the analysis and notation more
uniform, we will mainly work with Besov spaces on Y instead of Sobolev
spaces (although nearly all of our results adapt to Sobolev spaces on Y ),
which we are free to do since the space of boundary values of a Besov space
is again a Besov space. Moreover, since Besov spaces on 3-manifolds will be
necessary for the analysis in [10], as 3-manifolds will arise as boundaries of
4-manifolds, it is essential that we state results here for Besov spaces and
not just for Sobolev spaces. On the other hand, there will be places where we
want to explicitly restate1 our results on Besov spaces in terms of Sobolev
spaces (we will need both the Besov and Sobolev space versions of the anal-
ysis done in this paper in [10]), so that the separation of Besov spaces from
Sobolev spaces on Y is not completely rigid, see Remark 3.2. With these con-
siderations then, if Y is a 3-manifold with boundary Σ, consider the Besov
spaces Bs,p(Y ) and Bs,p(Σ), for s ∈ R and p ≥ 2. The definition of these
spaces along with their basic properties are summarized in Appendix C.
When p = 2, we have Bs,2 = Hs,2, the usual fractional order Sobolev space
of functions with s derivatives belonging to L2 (usually denoted just Hs).
For p �= 2, the Besov spaces are never Sobolev spaces of functions with s
derivatives in Lp. The reader unfamiliar with Besov spaces can comfortably

1Besov spaces and Sobolev spaces are “nearly identical” in the sense of
Remark C.1, so that having proven results for one of these types of spaces, one
automatically obtains them for the other type.
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set p = 2 on a first reading of this paper. Moreover, since we will be working
with low fractional regularity, the reader may also set s equal to a sufficiently
large integer to make a first reading simpler.

Let Y be endowed with a spinc structure s. The spinc structure yields
for us the configuration space

Cs,p(Y ) = Cs,p(Y, s) := Bs,p(A(Y ) × Γ(S))

on which the monopole equations are defined. Here Γ(S) is the space of
smooth sections of the spinor bundle S = S(s) on Y determined by s, A(Y ) =
A(Y, s) is the space of smooth spinc connections on S, and the prefix Bs,p

denotes that we have taken the Bs,p(Y ) completions of these spaces. The
monopole equations are defined by the equations

(0.1) SW3(B,Ψ) = 0,

where SW3 is the Seiberg–Witten map given by (1.2). Here, s and p are
chosen sufficiently large so that these equations are well defined (in the
sense of distributions). Define

(0.2) Ms,p(Y, s) = {(B,Ψ) :∈ Cs,p(Y, s) : SW3(B,Ψ) = 0}

to be space of all solutions to the monopole equations in Cs,p(Y ). Fixing a
smooth reference connection Bref ∈ A(Y ), let
(0.3)

Ms,p(Y, s) = {(B,Ψ) ∈ Cs,p(Y, s) : SW3(B,Ψ) = 0, d∗(B −Bref) = 0}

denote the space of Bs,p(Y ) monopoles in Coulomb gauge with respect to
Bref .

On the boundary Σ, we can define the boundary configuration space in
the Bs,p(Σ) topology,

Cs,p(Σ) = Cs,p(Σ, s) := Bs,p(A(Σ) × Γ(SΣ)),

where SΣ is the bundle S restricted to Σ, and A(Σ) is the space of spinc

connections on SΣ. For s > 1/p, we have a restriction map

rΣ : Cs,p(Y ) → Cs−1/p,p(Σ),
(B,Ψ) 	→ (B|Σ,Ψ|Σ),

(0.4)

which restricts a connection B ∈ A(Y ) and spinor Ψ ∈ Γ(S) to Σ. Observe
that when p = 2, this is the usual trace theorem on Hs spaces, whereby the
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trace of an element of Hs(Y ) belongs to Hs−1/2(Σ). Thus, we can define the
space of boundary values of the space of monopoles

(0.5) Ls−1/p,p(Y, s) := rΣ(Ms,p(Y, s)) ⊂ Cs−1/p,p(Σ).

We will refer to all the spaces Ms,p, Ms,p, and Ls−1/p,p as monopole spaces.
The boundary configuration space C(Σ) carries a natural symplectic

structure. Indeed, the space C(Σ) is an affine space modeled on Ω1(Σ; iR) ⊕
Γ(SΣ), and we can endow C(Σ) with the constant symplectic form

ω((a, φ), (b, ψ)) =
∫

Σ
a ∧ b+

∫

Σ
Re (φ, ρ(ν)ψ),

(a, φ), (b, ψ) ∈ Ω1(Σ; iR) ⊕ Γ(SΣ).
(0.6)

Here, ρ(ν) is Clifford multiplication by the outward unit normal ν to Σ
and the inner product on spinors is induced from the Hermitian metric on
SΣ. The symplectic form (0.6) extends to a symplectic form on C0,2(Σ),
the L2 configuration space on the boundary. Since Cs,p(Σ) ⊂ C0,2(Σ) when
s > 0 and p > 2, these latter spaces are also symplectic Banach configuration
spaces (in the sense of Appendix A.2).

Let det(s) = Λ2S(s) denote the determinant line bundle of the spinor
bundle and let c1(s) = c1(det(s)) denote its first Chern class. Then under
suitable restrictions on s and Y , our main theorem gives us the following
relations among our Besov monopole spaces:2

Main Theorem. Let Y be a smooth compact oriented Riemannian 3-
manifold with boundary3 Σ and let s be a spinc structure on Y . Suppose
either c1(s) is nontorsion or else H1(Y,Σ) = 0. Let p ≥ 2 and s > max
(3/p, 1/2). Then we have the following:

(i) The spaces Ms,p(Y, s) and Ms,p(Y, s) are closed4 Banach submanifolds
of Cs,p(Y ).

2The main theorem also holds with the Besov space Bs,p(Y ) on Y replaced with
the function space Hs,p(Y ). The space Hs,p(Y ) is a known as a Bessel-potential
space and for s a nonnegative integer, Hs,p(Y ) = W s,p(Y ) is the usual Sobolev
space of functions having s derivatives in Lp(Y ), 1 < p <∞. Thus, the Hs,p(Y )
can be regarded as fractional Sobolev spaces for s not an integer. See Appendix C
and Remark 3.2.

3We always assume the boundary Σ to be nonempty. It need not be connected
however.

4For Banach submanifolds modeled on an infinite-dimensional Banach space (see
Definition B.1), we use the adjective closed only to denote that the submanifold is
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(ii) If furthermore, s > 1/2 + 1/p, then Ls−1/p,p(Y, s) is a closed Lagran-
gian submanifold of Cs−1/p,p(Σ). The restriction maps

rΣ : Ms,p(Y, s) → Ls−1/p,p(Y, s),(0.7)

rΣ : Ms,p(Y, s) → Ls−1/p,p(Y, s)(0.8)

are a submersion and covering map, respectively. The fiber of (0.8) is
isomorphic to the lattice H1(Y,Σ). In particular, if H1(Y,Σ) = 0, then
(0.8) is a diffeomorphism.

(iii) Smooth configurations are dense in Ms,p(Y, s), Ms,p(Y, s), and
Ls−1/p,p(Y, s).

Thus, in particular, our main theorem tells us that our monopole spaces
are smooth Banach manifolds for a certain range of s and p. Let us make
some remarks on the condition s > max(3/p, 1/2). We need s > 3/p because
then Bs,p(Y ) embeds into the space C0(Y ) of continuous functions on Y .
This allows us to use the unique continuation results stated in the appendix.
Unfortunately, for p ≤ 3, this means we need s > 1, which does not seem
optimal since the monopole equations only involve one derivative. For p > 3,
we can take s < 1, in which case, the monopole equations are defined only in
a weak sense (in the sense of distributions). We consider this low regularity
case because it arises in the boundary value problem studied in [10]. Specif-
ically, we will use the Lagrangian submanifold Ls−1/p,p as a boundary con-
dition for the four-dimensional Seiberg–Witten equations. Here, Lagrangian
means that every tangent space to Ls−1/p,p is a Lagrangian subspace of the
tangent space to Cs−1/p,p(Σ), i.e., the tangent space to Ls−1/p,p is isotropic
and has an isotropic complement with respect to the symplectic form (0.6).
The Lagrangian property is important because it arises in the context of self-
adjoint boundary conditions. These issues will be further pursued in [10]. We
should note that the analysis of the monopole equations needs to be done
rather carefully at low regularity, since managing the function space arith-
metic that arises from multiplying low regularity configurations becomes
an important issue. In fact, the low regularity analysis is unavoidable if
one wishes to prove the Lagrangian property for Ls−1/p,p, since we need
to understand the family of symplectic configuration spaces Cs−1/p,p(Σ) as

closed as a topological subspace. For finite-dimensional manifolds, closed in addi-
tion means that the manifold is compact and has no boundary. As an infinite-
dimensional Banach manifold is never even locally compact, this distinction in
terminology should cause no confusion.
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lying inside the strongly symplectic configuration space C0,2(Σ), the space
of L2 configurations on Σ (see Appendix A.2 and also Remark 1.1). If one
does not care about the Lagrangian property, then the main theorem with
s large can be proven without having to deal with low regularity issues. At
low regularity, the requirements s > 1/2 and s > 1/2 + 1/p in the theorem
are other technicalities that have to do with achieving transversality and
obtaining suitable a priori estimates for monopoles (see Section 3). Let us
also note that statement (iii) in the main theorem, which establishes the
density of smooth monopoles in the monopole spaces, is not at all obvi-
ous. Indeed, our monopole spaces are not defined to be Besov closures of
smooth monopoles, but as seen in (0.2), they arise from the zero set of the
map SW3 defined on a Banach space of configurations. This way of defining
our monopole spaces is absolutely necessary if we are to use the essential
techniques from Banach space theory, such as the inverse function theorem.
However, since our monopole spaces are not linear Banach spaces, and since
they are infinite-dimensional modulo gauge, some work must be done to
show that a Besov monopole can be approximated by a smooth monopole.

Let us make the simple remark that our theorem is nonvacuous due to
the following example:

Example 0.1. Suppose c1(s) is torsion. Then every flat connection on
det(s) yields a solution of the monopole equations (where the spinor com-
ponent is identically zero). If H1(Y,Σ) = 0, the main theorem implies that
the monopole spaces are smooth nonempty Banach manifolds. In fact, using
Theorem 3.2, one can describe a neighborhood of any configuration in the
space of monopoles on Y , in particular, a neighborhood of a flat connection.

Our main theorem will be proved in Theorems 3.1 and 3.3. In addition to
these, we have Theorems 3.2 and 3.4, which describe for us certain analytic
properties of the local chart maps of our monopole spaces. These properties
are not only of interest in their own right, since our monopole spaces are
infinite-dimensional Banach manifolds, but they will play an essential role
in [10].

Finally, let us also remark that our methods, and hence our theorems,
carry over straightforwardly if we perturb the Seiberg–Witten equations by
a smooth coclosed 1-form η. That is, we consider the equations

(0.9) SW3(B,Ψ) = (η, 0).
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We have the following result:

Corollary 0.1. Suppose either c1(s) �= i
π [∗η] or else H1(Y,Σ) = 0. Then

all the conclusions of the main theorem remain true for the monopole spaces
associated to the perturbed monopole equations (0.9).

Thus, for any s, the corresponding perturbed spaces of monopoles will be
smooth for generic coclosed perturbations. Moreover, these monopole spaces
will be nonempty for many choices of η, since given any smooth configuration
(B,Ψ) such that Ψ lies in the kernel of DB, the Dirac operator determined
by B (see Section 1), we can simply define η to be the value of SW3(B,Ψ),
in which case (B,Ψ) automatically solves (0.9).

Outline of paper: This paper is organized as follows. In Section 1, we define
the basic setup for the monopole equations on Y . In Section 2, we establish
the foundational analysis to handle the linearization of the monopole equa-
tions. This primarily involves understanding the various gauge-fixing issues
involved as well as understanding how elliptic operators behave on mani-
folds with boundary. The presence of a boundary makes this latter issue
much more difficult than the case when there is no boundary. Indeed, on a
closed manifold, elliptic operators are automatically Fredholm when acting
between standard function spaces (e.g., Sobolev spaces and Besov spaces).
On the other hand, on a manifold with boundary, the kernel of an elliptic
operator is always infinite dimensional. To fully understand the situation, we
need to use the pseudodifferential tools summarized in Appendix D, which
allows us to handle elliptic boundary value problems on a variety of function
spaces, in particular, Besov spaces of low regularity. From this, what we will
find is that the tangent spaces to our monopole spaces are given essentially
by the range of pseudodifferential projections. Having established the linear
theory, we use it in Section 3 to study the nonlinear monopole equations
and prove our main results concerning the monopole spaces. The appendix
summarizes and synthesizes many of the analytic results needed in the main
body of the paper, including the basic definitions and properties of the func-
tion spaces we use.

As we pointed out earlier, the linearization of the three-dimensional
Seiberg–Witten equations is unfortunately not elliptic, even modulo gauge.
To work around this, we embed these equations into an elliptic system
and use tools from elliptic theory to derive results for the original equa-
tions from the enlarged system. This procedure is described in Section 2.3,
where issues regarding ellipticity and gauge-fixing intertwine. Furthermore,
when we restrict to the boundary, passing from the enlarged elliptic system
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back to the original nonelliptic system involves a symplectic reduction, and
so there is also an important interplay of symplectic functional analysis
in what we do.

1. The basic setup

We give a quick overview of the setup for the Seiberg–Witten equations on
a 3-manifold. For a more detailed setup, see [6]. Let Y be a smooth compact
oriented Riemannian 3-manifold with boundary Σ. A spinc structure s on Y
is a choice of U(2) principal bundle over Y that lifts the SO(3) frame bundle
of Y . The space of all spinc structures on Y is a torsor over H1(Y ; Z). Any
given spinc structure s determines for us a spinor bundle S = S(s) over Y ,
which is the two-dimensional complex vector bundle over Y associated to
the U(2) bundle corresponding to s. Endow S with a Hermitian metric.
From this, we obtain Clifford multiplication bundle maps ρ : TY → End(S)
and ρ : T ∗Y → End(S), where the two are intertwined by the fact that the
Riemannian metric gives a canonical isomorphism TY ∼= T ∗Y . The map ρ
extends complex linearly to a map on the complexified exterior algebra of
T ∗Y and we choose ρ so that ρ maps the volume form on Y to the identity
automorphism on S. This determines the spinor bundle S = (S, ρ) uniquely
up to isomorphism.

Fix a spinc structure s for the time being on Y . Only later in Section 3
will we impose restrictions on s. A spinc connection on S is a Hermitian
connection ∇ on S for which Clifford multiplication is parallel, i.e., for all
Ψ ∈ Γ(S) and e ∈ Γ(TY ), we have ∇(ρ(e)Ψ) = ρ(∇LCe)Ψ + ρ(e)∇Ψ, where
∇LC denotes the Levi–Civita connection. Let A(Y ) denote the space of spinc

connections A(Y ) on Y . The difference of any two spinc connections acts on
a spinor via Clifford multiplication by an imaginary-valued 1-form. Thus,
given any fixed spinc connection B0 ∈ A(Y ), we can identify

A(Y ) = {B0 + b : b ∈ Ω1(Y ; iR)},

so that A(Y ) is an affine space over Ω1(Y ; iR).
Let

C(Y ) = C(Y, s) = A(Y ) × Γ(S)

denote the configuration space of all smooth spinc connections and smooth
sections of the spinor bundle S. It is an affine space modeled on Ω1(Y ; iR) ⊕
Γ(S). By abuse of notation we let the inner product (·, ·) denote the fol-
lowing items: the Hermitian inner product on S, linear in the first factor,
the Hermitian inner product on complex differential forms induced from the
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Riemannian metric on Y , and finally the real inner product on Ω1(Y ; iR) ⊕
Γ(S) induced from the real part of the inner products on each factor.

The Seiberg–Witten equations on Y are given by the pair of equations

1
2
∗ FBt + ρ−1(ΨΨ∗)0 = 0,

DBΨ = 0,
(1.1)

where (B,Ψ) ∈ C(Y ). Here Bt is the connection induced from B on the
determinant line bundle det(s) = Λ2(S) of S, the element FBt ∈ Ω2(Y, iR)
is its curvature, and ∗ is the Hodge star operator on Y . For any spinor Ψ,
the term (ΨΨ∗)0 ∈ End(S) is the trace-free Hermitian endomorphism of S
given by the trace-free part of the map ϕ 	→ (ϕ,Ψ)Ψ. Since ρ maps Ω1(Y ; iR)
isomorphically onto the space of trace-free Hermitian endomorphisms of S,
then ρ−1(ΨΨ∗)0 ∈ Ω1(Y ; iR) is well defined. Finally, DB : Γ(S) → Γ(S) is
the spinc Dirac operator associated to the spinc connection B, i.e., in local
coordinates, we have DB =

∑3
i=1 ρ(ei)∇B,ei

where ∇B is the spinc covariant
derivative associated to B and the ei form a local orthonormal frame of
tangent vectors.

Altogether, the left-hand side of (1.1) defines for us a Seiberg–Witten
map

SW3 : C(Y ) → Ω1(Y ; iR) × Γ(S),

(B,Ψ) 	→
(

1
2
∗ FBt + ρ−1(ΨΨ∗)0, DBΨ

)

.
(1.2)

Thus, solutions to the Seiberg–Witten equations are precisely the zero set of
the map SW3. We will refer to a solution of the Seiberg–Witten equations
as a monopole. Let

(1.3) M(Y, s) = {(B,Ψ) ∈ C(Y ) : SW3(B,Ψ) = 0}

denote the solution space of all monopoles on Y . Fixing a smooth reference
connection Bref ∈ A(Y ) once and for all, let

(1.4) M(Y, s) = {(B,Ψ) ∈ C(Y ) : SW3(B,Ψ) = 0, d∗(B −Bref) = 0}

denote the space of all smooth monopoles that are in Coulomb gauge with
respect to Bref . Without any assumptions, the spaces M(Y, s) and M(Y, s)
are just sets, but we will see later, by transversality arguments, that these
spaces of monopoles are indeed manifolds under suitable assumptions on Y
and s. Since ∂Y = Σ is nonempty and no boundary conditions have been
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specified for the equations defining M(Y, s) and M(Y, s), these spaces will
be infinite dimensional, even modulo the full gauge group. Note that the
space M(Y, s) is obtained from M(Y, s) through a partial gauge fixing,
see Section 2.1.

Let the boundary Σ be given the usual orientation induced from that of
Y , i.e., if ν is the outward normal vector field along Σ and dV is the oriented
volume form on Y , then ν�dV yields the oriented volume form on Σ. On the
boundary Σ, we have the configuration space

C(Σ) = A(Σ) × Γ(SΣ),

where SΣ is the bundle S restricted to Σ, and A(Σ) is the space of spinc

connections on SΣ. We have a restriction map

rΣ : C(Y ) → C(Σ),
(B,Ψ) 	→ (B|Σ,Ψ|Σ).

(1.5)

From this, we can define the space of (tangential) boundary values of the
space of monopoles

(1.6) L(Y, s) = rΣ(M(Y, s)).

Observe that the space L(Y, s) is nonlocal in the sense that its elements,
which belong to C(Σ), are not defined by equations on Σ. Indeed, L(Y, s)
is determined by the full Seiberg–Witten equations in the interior of the
manifold. This makes the analysis concerning the manifold L(Y, s) rather
delicate, since one has to control both the space M(Y, s) and the behavior
of the map rΣ.

Ultimately, we want our manifolds to be Banach manifolds, and so we
must complete our smooth configuration spaces in the appropriate func-
tion space topologies. As explained in the introduction, the topologies most
suitable for us are the Besov spaces Bs,p(Y ) and Bs,p(Σ) on Y and Σ, respec-
tively, where s ∈ R and p ≥ 2. These are the familiar Hs spaces when p = 2
and for p �= 2, the Besov spaces are never Sobolev spaces, i.e., spaces of
functions with a specified number of derivatives lying in Lp. Nevertheless,
much of the analysis we will do applies to Sobolev spaces as well, since
the analysis of elliptic boundary value problems is flexible and applies to
a wide variety of function spaces. To keep the notation minimal, we work
mainly with Besov spaces and make a general remark at the end about how
statements generalize to Sobolev spaces and other spaces (see Remark 3.2).
The Besov spaces, other relevant function spaces, and their properties are
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summarized in the appendix. On a first reading, one may set p = 2 and s a
large number, say a large integer, wherever applicable, so that the function
spaces are as familiar as desired.

Thus, for p ≥ 2 and s ∈ R, we consider the Besov spaces Bs,p(Y ) and
Bs,p(Σ) of scalar-valued functions on Y and Σ, respectively. These topologies
induce topologies on vector bundles over Y and Σ in the natural way, and
so we may define the Besov completions of the configuration spaces

Cs,p(Y ) = Bs,p(Y ) closure of C(Y ),(1.7)
Cs,p(Σ) = Bs,p(Σ) closure of C(Σ).(1.8)

Of course, when defining Besov norms on the space of connections in the
above, we have to first choose a (smooth) reference connection, which then
identifies the Besov space of connections with the Besov space of 1-forms.

For s, p such that the Seiberg–Witten equations make sense on Cs,p(Y )
(in the sense of distributions), we have the monopole spaces

Ms,p(Y, s) = {(B,Ψ) ∈ Cs,p(Y ) : SW3(B,Ψ) = 0},(1.9)

Ms,p(Y, s) = {(B,Ψ) ∈ Cs,p(Y ) : SW3(B,Ψ) = 0, d∗(B −Bref) = 0}
(1.10)

in Cs,p(Y ). Observe that for the range of s and p that are relevant for us,
namely p ≥ 2 and s > max(3/p, 1/2), the Seiberg–Witten equations are well
defined on Cs,p(Y ). This follows from Corollary C.1 and Theorem C.7.

For s > 1/p, the restriction map (1.5) extends to a map

(1.11) rΣ : Cs,p(Y ) → Cs−1/p,p(Σ),

and so we can define

Ls−1/p,p(Y, s) := rΣ(Ms,p(Y, s)).

Having defined our monopole spaces in the relevant topologies, we now begin
the study of their properties as Banach manifolds. With s and Y fixed, we
will often write M(Y ) or simply M instead of M(Y, s). Likewise for the other
monopole spaces.

Remark 1.1. In the remainder of this paper, we will be stating results for
various values of s and p. Unless stated otherwise, we will always assume

(1.12) 2 ≤ p <∞.
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Many of the statements of this paper are phrased in such a way that the
range of permissible s and p is quite large and moreover, several topologies
are often simultaneously involved (e.g., Lemma 2.3). This is not merely an
exercise in function space arithmetic and there are several important reasons
for stating our results this generally.

First, we will need to work in the low regularity regime with s < 1 for
applications in [10]. In particular, when a first-order operator acts on a
configuration with regularity s < 1, we obtain a configuration with nega-
tive regularity and hence our results must be stated in enough generality to
account for this. Second, as mentioned in the introduction, the Lagrangian
property of Ls−1/p,p, even at high regularity (i.e., large s), requires an
analysis of the Ls−1/p,p at low regularity. Indeed, among all the spaces
Cs,p(Σ), only C0,2(Σ) is modeled on a strongly symplectic Hilbert space (see
Appendix A.2), and we will need to study all the symplectic spaces Cs,p(Σ),
s > 0, as subspaces of the space C0,2(Σ). Thus, in a fundamental way, we
will generally be considering multiple topologies simultaneously. Observe
that from these considerations, it is necessary to have the pseudodifferential
tools summarized in Appendix D. Indeed, we need to understand elliptic
boundary value problems at low (even negative) regularity, and further-
more, we have to deal with the fact that there is no trace map C1/2,2(Y ) →
C0,2(Σ).

Hence, it is natural to state our results for a range of s and p that
are as flexible as possible. In fact, based on the function space arithmetic
alone, many of the proofs involved are natural for the range s > 3/p say
(since then Bs,p(Y ) is an algebra), and it would be unnatural to restrict the
range of s based on the particular applications we have in mind. Finally,
it may be desirable to sharpen the range of s and p considered in this
paper and so we try to state our results in a sufficiently general way at the
outset.

Notation 1.1. Given any space X of configurations over a manifold X = Y
or Σ, we write Bs,pX to denote the closure of X with respect to the Bs,p(X)
topology. We define LpX, C0X and Hs,pX similarly. For brevity, we may
refer to just the function space which defines the topology of a configuration,
e.g., if X is a space of configurations on Y , we may say an element u ∈ Bs,pX

belongs to Bs,p(Y ) or just Bs,p for short. If E is a vector bundle over a space
X, we write Bs,p(E) as shorthand for Bs,pΓ(E), the closure of the space
Γ(E) of smooth sections of E in the topology Bs,p(X). If X has bound-
ary, we write E∂X to denote E|∂X , the restriction of the bundle E to the
boundary ∂X.
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From now on, we will make free use of the basic properties of the function
spaces employed in this paper (multiplication and embedding theorems in
particular), all of which can be found in the appendix.

2. Linear theory

To study our monopole spaces, we first study their linearization, that is,
their formal tangent spaces. This involves studying the linearization of the
Seiberg–Witten map. Furthermore, since we have an action of a gauge group,
we must take account of this action in our framework. This section therefore
splits into three subsections. In the first section, we study the gauge group
and how it acts on the space of configurations. Next, we study how this
action decomposes the tangent space to the configuration space into natu-
ral subspaces. Finally, we apply these decompositions to the study of the
linearized Seiberg–Witten equations, where modulo gauge and other modi-
fications, we can place ourselves in an elliptic situation.

2.1. The gauge group

The gauge group G = G(Y ) = Maps(Y, S1) is the space of smooth maps
g : Y → S1, where we regard S1 = {eiθ ∈ C : 0 ≤ θ < 2π}. Elements of the
gauge group act on C(Y ) via

(2.1) (B,Ψ) 	→ g∗(B,Ψ) = (B − g−1dg, gΨ).

It is straightforward to check that the Seiberg–Witten map SW3 is gauge
equivariant (where gauge transformations act trivially on Ω1(Y ; iR)). In par-
ticular, the space of solutions to the Seiberg–Witten equations is gauge
invariant.

The gauge group decomposes into a variety of important subgroups,
which will be important for the various kinds of gauge fixing we will be
doing. First, observe that π0(G), the number of connected components of G,
satisfies

π0(G) ∼= H1(Y ; 2πiZ).(2.2)

The correspondence (2.2) is given by

(2.3) g 	→ [g−1dg],
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where the latter denotes the cohomology class of the closed 1-form g−1dg.
Among subgroups of the gauge group, one usually considers the group
of harmonic gauge transformations, i.e., gauge transformations such that
g−1dg ∈ ker d∗. However, on a manifold with boundary, ker(d+ d∗) is infi-
nite dimensional and we need to impose some boundary conditions.

On a manifold with boundary, Hodge theory tells us that we can make
the following identifications between cohomology classes and harmonic forms
with the appropriate boundary conditions5

H1(Y ; R) ∼= {α ∈ Ω1(Y ) : da = d∗a = 0, ∗a|Σ = 0},(2.4)

H1(Y,Σ; R) ∼= {α ∈ Ω1(Y ) : da = d∗a = 0, a|Σ = 0.}.(2.5)

In fact, we have two different Hodge decompositions, given by

Ω1(Y ) = im d⊕ im ∗ dn ⊕H1(Y ; R)(2.6)

= im dt ⊕ im ∗ d⊕H1(Y,Σ; R).(2.7)

where

dn : {a ∈ Ω1(Y ) : ∗a|Σ = 0} → Ω2(Y ),(2.8)

dt : {α ∈ Ω0(Y ) : α|Σ = 0} → Ω1(Y ).(2.9)

Any gauge transformation g in the identity component of the gauge group
Gid(Y ) lifts to the universal cover of S1 and so it can be expressed as g = eξ

for some ξ ∈ Ω0(Y ; iR). For such g, we have g−1dg = dξ, and thus we see that
G/Gid is isomorphic to the integer lattice inside ker d/im d, which establishes
the correspondence (2.2). Corresponding to the two cohomology groups (2.4)
and (2.5), we can consider the following two subgroups of the harmonic gauge
transformations

Gh,n(Y ) = {g ∈ G : g−1dg ∈ ker d∗, ∗dg|Σ = 0},(2.10)

Gh,∂(Y ) = {g ∈ G : g−1dg ∈ ker d∗, g|Σ = 1}.(2.11)

5For a differential form a over a manifold X with boundary, a|∂X always denotes
the differential form on ∂X obtained via the restriction of those components tan-
gential to ∂X. Otherwise, given a section u of a general vector bundle over X,
u|X denotes the restriction of u to the boundary, which therefore has values in the
bundle restricted to the boundary. This clash of notation should not cause confu-
sion since it will always be clear which restriction map we are using based on the
context.
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The group (2.10) is isomorphic to S1 ×H1(Y ; Z), where the S1 factor
accounts for constant gauge transformations, and the group (2.11) is iso-
morphic to the integer lattice H1(Y,Σ; Z) inside (2.5).

Next, we have the subgroup

G⊥(Y ) =
{

eξ ∈ Gid :
∫

Y
ξ = 0

}

.

Thus, identifying constant gauge transformations with S1, we have the
decompositions

Gid(Y ) = S1 × G⊥(Y ),
G(Y ) = Gh,n(Y ) × G⊥(Y ).

We have the following additional subgroups of the gauge group consisting
of gauge transformations whose restriction to the boundary is the identity:

G∂(Y ) = {g ∈ G(Y ) : g|Σ = 1},(2.12)
Gid,∂(Y ) = Gid(Y ) ∩ G∂(Y ).(2.13)

Thus, we have

(2.14) G∂(Y ) = Gh,∂(Y ) × Gid,∂(Y )

and

(2.15) TidGid,∂(Y ) = {ξ ∈ Ω0(Y ; iR) : ξ|Σ = 0}.

Since we consider the completion of our configuration spaces in Besov
topologies, we must do so for the gauge groups as well. Thus, let Gs,p(Y )
denote the completion of G(Y ) in Bs,p(Y ) and similarly for the other gauge
groups.

Lemma 2.1. For s > 3/p, the Bs,p(Y ) completions of G(Y ) and its sub-
groups are Banach Lie groups. If in addition s > 1/2, these groups act
smoothly on Cs−1,p(Y ).

Proof. For s > 3/p, the multiplication theorem, Theorem C.7, implies
Bs,p(Y ) is a Banach algebra. Thus, Gs,p(Y ) is closed under multiplication
and has a smooth exponential map. The second statement follows from (2.1),
Theorem C.7 and the fact that d : Bs,p(Y ) → Bs−1,pΩ1(Y ) for all s ∈ R by
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Corollary C.1. Here the requirement s > 1/2 comes from the fact that we
need s+ (s− 1) > 0 in Theorem C.7. �

Fix a smooth reference connection Bref . From this, we obtain the
Coulomb slice and Coulomb–Neumann slice through Bref , given by

C
s,p
C (Y ) = {(B,Ψ) ∈ Cs,p(Y ) : d∗(B −Bref) = 0},(2.16)

C
s,p
Cn

(Y ) = {(B,Ψ) ∈ Cs,p : d∗(B −Bref) = 0, ∗(B −Bref)|Σ = 0},(2.17)

(s > 1/p),

respectively. The next lemma tells us that we can find gauge transformations
which place any configuration into either of the above slices.

Lemma 2.2. Let s+ 1 > max(3/p, 1/2). The action of the gauge group
gives us the following decompositions of the configuration space:

(i) We have6

Cs,p(Y ) = Gs+1,p
id,∂ (Y ) × C

s,p
C (Y ).(2.18)

(ii) Suppose in addition s > 1/p. Then we have

Cs,p(Y ) = Gs+1,p
⊥ (Y ) × C

s,p
Cn

(Y ).(2.19)

Proof. (i) Since s+ 1 > max(3/p, 1/2), the previous lemma implies Gs+1
id,∂ (Y )

is a Banach Lie group and it acts on Cs,p(Y ). If u = eξ ∈ Gs+1,p
id,∂ puts a con-

figuration (Bref + b,Ψ) into the Coulomb slice through Bref , then ξ satisfies

(2.20)

{

Δξ = d∗b ∈ Bs−1,p(Y ; iR),
ξ|Σ = 0.

The Dirichlet Laplacian is an elliptic boundary value problem and since
s+ 1 > 1/p, we may apply Corollary D.1, which shows that we have an
elliptic estimate

‖ξ‖Bs+1,p ≤ C(‖Δξ‖Bs,p + ‖ξ‖Bs,p)

for ξ satisfying (2.20). A standard computation shows that the kernel and
cokernel of the Dirichlet Laplacian is zero, and so we have existence and
uniqueness for the Dirichlet problem. This implies the decomposition.

6The direct products appearing in (2.18) and (2.19) mean that the gauge group
factor acts freely on the subspace appearing in the second factor so that the space
on the left is equal to the resulting orbit space obtained from the right-hand side.
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(ii) The analysis is the same, only now we have a homogeneous Neumann
Laplacian problem for ξ:

(2.21)

{

Δξ = d∗b ∈ Bs−1,p(Y ; iR),
∗dξ|Σ = ∗b|Σ ∈ Bs−1/p,pΩ2(Σ; iR).

Since the Neumann Laplacian is an elliptic boundary value problem, we can
apply Corollary D.1 again. The inhomogeneous Neumann problem Δξ = f
and ∂νξ = g has a solution if and only if

∫

Y f +
∫

Σ g = 0, and this solution
is unique up to constant functions. Since we always have

∫

Y d
∗b+

∫

Σ ∗b = 0,
then (2.21) has a unique solution ξ ∈ Bs+1,p(Y ) subject to

∫

Y ξ = 0. The
decomposition now follows. �

In light of Lemma 2.2, we can regard the quotient of Cs,p(Y ) by the
gauge groups Gs+1,p

id,∂ and Gs+1,p
⊥ as subspaces of Cs,p(Y ), namely, those con-

figurations in Coulomb and Coulomb–Neumann gauge with respect to Bref .

Remark 2.1. In gauge theory, one usually also considers the quotient of the
configuration space by the entire gauge group. In our case (which is typical)
the quotient space is singular since different elements of the configuration
space have different stabilizers. Namely, if (B,Ψ) ∈ C(Y ) is such that Ψ �≡ 0,
then it has trivial stabilizer, whereas if Ψ ≡ 0, then it has stabilizer S1, the
constant gauge transformations. In the former case, such a configuration is
said to be irreducible, otherwise it is reducible. We will not need to consider
the quotient space by the entire gauge group in this paper, and we will only
need to consider the decompositions in Lemma 2.2.

2.2. Decompositions of the tangent space

The action of the gauge group on the configuration space induces a decom-
position of the tangent space to a configuration (B,Ψ) into the subspace
tangent to the gauge orbit through (B,Ψ) and its orthogonal complement.
More precisely, let

(2.22) T(B,Ψ) := T(B,Ψ)C(Y ) = Ω1(Y ; iR) ⊕ Γ(S)

be the smooth tangent space to a smooth configuration (B,Ψ). Define the
operator

d(B,Ψ) : Ω0(Y ; iR) → T(B,Ψ),

ξ 	→ (−dξ, ξΨ)
(2.23)
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and let

(2.24) J(B,Ψ) := imd(B,Ψ) ⊂ T(B,Ψ)

be its image. Then observe that J(B,Ψ) is the tangent space to the gauge
orbit at (B,Ψ). Indeed, this follows from differentiating the action (2.1) at
the identity. We also have the adjoint operator

d∗
(B,Ψ) : T(B,Ψ) → Ω0(Y ; iR),

(b, ψ) 	→ −d∗b+ iRe (iΨ, ψ)
(2.25)

and we define the subspace

(2.26) K(B,Ψ) := kerd∗
(B,Ψ) ⊂ T(B,Ψ).

On a closed manifold, K(B,Ψ) is the L2 orthogonal complement of imd(B,Ψ).
In this case, the orthogonal decomposition of T(B,Ψ) into the spaces J(B,Ψ)

and K(B,Ψ) plays a fundamental role in the analysis of [6]. In our case, since
we have a boundary, we will impose various boundary conditions on these
spaces, and the resulting spaces will play a very important role for us too.
Moreover, we will take the appropriate Besov completions of these spaces.

Thus, let (B,Ψ) ∈ Ct,q(Y ) be any configuration of regularity Bt,q(Y ),
where t ∈ R and q ≥ 2. For s ∈ R and p ≥ 2, let

(2.27) T s,p
(B,Ψ) := Bs,p(Ω1(Y ; iR) ⊕ Γ(S))

be the Besov closure of T(B,Ψ). It is independent of (B,Ψ) and is equal to the
tangent space T(B,Ψ)C

s,p(Y ) when (s, p) = (t, q). So long as we have bounded
multiplication maps

Bt,q(Y ) ×Bs+1,p(Y ) → Bs,p(Y ),(2.28)

Bt,q(Y ) ×Bs,p(Y ) → Bs−1,p(Y ),(2.29)

then we can define maps

d(B,Ψ) : Bs+1,pΩ0(Y ; iR) → T s,p
(B,Ψ),

ξ 	→ (−dξ, ξΨ),

d∗
(B,Ψ) : T s,p

(B,Ψ) → Bs−1,pΩ0(Y ; iR)

(b, ψ) 	→ −d∗b+ iRe (iΨ, ψ),
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respectively. In particular, if (t, q) = (s, p) and s> 3/p, then by Theorem C.7,
the multiplications (2.28) and (2.29) are bounded.

Thus, when (2.28) and (2.29) hold, define the following subspaces of
T s,p

(B,Ψ):

J s,p
(B,Ψ) = im

(

d(B,Ψ) : Bs+1,pΩ0(Y ; iR) → T s,p
(B,Ψ)

)

,(2.30)

J s,p
(B,Ψ),⊥ =

{

(−dξ, ξΨ) ∈ J s,p
(B,Ψ) :

∫

Y
ξ = 0]

}

,(2.31)

J s,p
(B,Ψ),t = {(−dξ, ξΨ) ∈ J s,p

(B,Ψ) : ξ|Σ = 0},(2.32)

Ks,p
(B,Ψ) = ker

(

d∗
(B,Ψ) : T s,p

(B,Ψ) → Bs−1,pΩ0(Y ; iR)
)

,(2.33)

Ks,p
(B,Ψ),n = {(b, ψ) ∈ Ks,p

(B,Ψ) : ∗b|Σ = 0}.(2.34)

Observe that when (B,Ψ) ∈ Cs,p(Y ), then J s,p
(B,Ψ), J

s,p
⊥ , J s,p

(B,Ψ),t are the tan-
gent spaces to the gauge orbit of (B,Ψ) in Cs,p determined by the gauge
groups Gs+1,p(Y ), Gs+1,p

⊥ (Y ) and Gs+1,p
∂ (Y ), respectively. Note that the

subscript t appearing in J s,p
(B,Ψ),t is a label to denote that the (tangential)

restriction of ξ to the boundary vanishes; it is not to be confused with a
real parameter. This is consistent with the notation used in (2.9). Like-
wise, the subscript n appearing in Ks,p

(B,Ψ),n and (2.8) denotes that the ele-
ments belonging to these spaces have normal components for their 1-form
parts equal to zero on the boundary. We also have the linear Coulomb and
Coulomb–Neumann slices:

Cs,p
(B,Ψ) = {(b, ψ) ∈ T s,p

(B,Ψ) : d∗b = 0},(2.35)

Cs,p
(B,Ψ),n = {(b, ψ) ∈ T s,p

(B,Ψ) : d∗b = 0, ∗b|Σ = 0}.(2.36)

The following lemma is essentially the linear version of Lemma 2.2. The
statement is only mildly more technical in that one may consider the base-
point (B,Ψ) and the tangent space T(B,Ψ) in different topologies. We do
this because we will need to consider topologies on T(B,Ψ) that are weaker
than the regularity of (B,Ψ), which occurs, for example, when we apply
differential operators to elements of T s,p

(B,Ψ) when (B,Ψ) ∈ Cs,p(Y ), thereby
obtaining spaces such as T s−1,p

(B,Ψ) . These spaces and their decompositions will
become important for us in the next section, when we study the linearized
Seiberg–Witten equations and try to recast them in a form in which they
become elliptic.
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Lemma 2.3. Let s+ 1 > 1/p and let (B,Ψ) ∈ Ct,q(Y ), where t > 3/q, q ≥
2 are such that (2.28) and (2.29) hold. In particular, if q = p, then we need
t ≥ s and t > max(−s, 3/p).

(i) We have the following decompositions:

T s,p
(B,Ψ) = J s,p

(B,Ψ),t ⊕Ks,p
(B,Ψ),(2.37)

T s,p
(B,Ψ) = J s,p

(B,Ψ),t ⊕ Cs,p
(B,Ψ).(2.38)

(ii) If in addition s > 1/p, then

T s,p
(B,Ψ) = J s,p

(B,Ψ),⊥ ⊕ Cs,p
(B,Ψ),n.(2.39)

If Ψ �≡ 0, then furthermore

T s,p
(B,Ψ) = J s,p

(B,Ψ) ⊕Ks,p
(B,Ψ),n.(2.40)

Proof. We first prove (2.37). Given (b, ψ) ∈ T s,p
(B,Ψ), consider the boundary

value problem

(2.41)

{

Δ(B,Ψ)ξ = f ∈ Bs−1,p(Y ; iR),
ξ|Σ = 0,

where f = d∗
(B,Ψ)b and

(2.42) Δ(B,Ψ) := d∗
(B,Ψ)d(B,Ψ) = Δ + |Ψ|2.

We have d∗
(B,Ψ)b ∈ Bs−1,p(Y ; iR) since we have a bounded multiplication

Bt,p(Y ) ×Bs,p(Y ) → Bs−1,p(Y ) by the hypotheses. Likewise, since we have
a bounded map Bt,p(Y ) ×Bs+1,p(Y ) → Bs,p(Y ), we see that multiplication
by |Ψ|2 ∈ Bt,p(Y ) is a compact perturbation of Δ : Bs+1,p(Y ) → Bs−1,p(Y ).
Thus, the Dirichlet boundary value problem (2.41) is Fredholm for s+ 1 >
1/p (where the requirement on s is so that Dirichlet boundary conditions
make sense, cf. Corollary D.1). Moreover, since |Ψ|2 is a positive multiplica-
tion operator, a simple computation shows the existence and uniqueness of
(2.41). Indeed, if Δα = −|Ψ|2α and α|Σ = 0, then repeated elliptic boostrap-
ping for the inhomogeneous Dirichlet Laplacian shows that α ∈ Bt+2,q(Y ) ⊆
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B2,2(Y ) since t > 0 and q ≥ 2. Then

0 =
∫

Y
(Δ(B,Ψ)α, α) = ‖∇α‖2

L2(Y ) + ‖Ψα‖2
L2(Y ),

which implies α is constant. Hence, α = 0 since α|Σ = 0. Thus, the operator
appearing on the left-hand side of (2.41) has trivial kernel and since the
adjoint problem of (2.41) is itself, we see that (2.41) has trivial cokernel
as well. Thus, the existence and uniqueness of (2.41) is established. Let
Δ−1

(B,Ψ),t denote the solution map of (2.41). We have shown that Δ−1
(B,Ψ),t :

Bs−1,p(Y ) → Bs+1,p(Y ) is bounded. The projection onto J s,p
(B,Ψ),t through

Ks,p
(B,Ψ) is now seen to be given by

(2.43) ΠJ s,p
(B,Ψ),t

= d(B,Ψ)Δ
−1
(B,Ψ),td

∗
(B,Ψ)

and it is bounded on T s,p
(B,Ψ) since d(B,Ψ) : Bs+1,pΩ0(Y ; iR) → Bs,pΩ1(Y ; iR)

is bounded. This gives us the decomposition (2.37). Similarly, we get the
decomposition (2.38) if we replace Δ(B,Ψ) with Δ in the above.

For (ii), if we consider the inhomogeneous Neumann problem for Δ(B,Ψ)

instead of the Dirichlet problem, proceeding as above yields (2.40), when
Ψ �≡ 0, a similar computation shows that we get existence and uniqueness.
Here, we need s > 1/p so that s+ 1 > 1 + 1/p and the relevant Neumann
boundary condition makes sense. Similarly, considering the inhomogeneous
Neumann problem for Δ yields (2.39). �

For any s, t ∈ R, we can define the Banach bundle

(2.44) T s,p(Y ) → Ct,p(Y )

whose fiber over every (B,Ψ) ∈ Ct,p(Y ) is the Banach space T s,p
(B,Ψ). Of

course, all the T s,p
(B,Ψ) are identical, so the bundle (2.44) is trivial. If s = t,

then (2.44) is the tangent bundle of Ct,p(Y ). If s, t satisfy the hypotheses of
the previous lemma, decomposing each fiber T s,p

(B,Ψ) according to the decom-
position (2.37) defines us Banach subbundles of T s,p(Y ). This is the content
of the below proposition, where we specialize to a range of parameters rele-
vant to the situations we will encounter later, e.g., see Lemma 3.1.

Proposition 2.1. Let s > 3/p. If max(−s,−1 + 1/p) < s′ ≤ s, then the
Banach bundles

J s′,p
t (Y ) → Cs,p(Y ),

Ks′,p(Y ) → Cs,p(Y ),
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whose fibers over (B,Ψ) ∈ Cs,p(Y ) are J s′,p
(B,Ψ),t and Ks′,p

(B,Ψ), respectively, are
complementary subbundles of T s′,p(Y ).

Proof. The restrictions on s and s′ ensure that we can apply Lemma 2.3.
From this, one has to check that the resulting decomposition

T s′,p′

(B,Ψ) = J s′,p′

(B,Ψ),t ⊕Ks′,p′

(B,Ψ)

varies continuously with (B,Ψ) ∈ Cs,p(Y ). For this, it suffices to show that
the projection ΠJ s′,p

(B,Ψ),t

given by (2.43), with range J s′,p
(B,Ψ),t and kernel Ks′,p

(B,Ψ),

varies continuously with (B,Ψ) ∈ Cs,p(Y ). Once we prove that J s′,p
t (Y ) is

a subbundle, it automatically follows that Ks′,p(Y ) is a (complementary)
subbundle, since then the complementary projection

(2.45) ΠKs′,p
(B,Ψ)

= 1 − ΠJ s′,p
(B,Ψ),t

onto Ks′,p
(B,Ψ) varies continuously with (B,Ψ).

From the multiplication theorem, Theorem C.7, since

Δ(B,Ψ),t : {ξ ∈ Bs′+1,p(Y ; iR) : ξ|Σ = 0} → Bs′−1,p(Y ; iR)

varies continuously with (B,Ψ) ∈ Bs,p(Y ) and is an isomorphism for all
(B,Ψ), its inverse Δ−1

(B,Ψ),t also varies continuously. Likewise, d∗
(B,Ψ) :

T s′,p
(B,Ψ) → Bs′−1,pΩ0(Y ; iR) and d(B,Ψ) : Bs′+1,pΩ0(Y, iR) → T s′,p

(B,Ψ) vary con-
tinuously with (B,Ψ) ∈ Cs,p(Y ). This establishes the required continuity of
ΠJ s′,p

(B,Ψ)
= d(B,Ψ)Δ

−1
(B,Ψ),td

∗
(B,Ψ) with respect to (B,Ψ). �

The Banach bundle Ks′,p(Y ), with s′ = s− 1 will be used to establish
transversality properties of the Seiberg–Witten map SW3, see Theorem 3.1.

2.3. The linearized Seiberg–Witten equations

In this section, we study the linearization of the Seiberg–Witten map SW3 to
prove basic properties concerning the (formal) tangent space to our monopole
spaces on Y and their behavior under restriction to the boundary. If the lin-
earization of the Seiberg–Witten equations was elliptic, this would be quite
straightforward from the analysis of elliptic boundary value problems, the
relevant results of which are summarized in the appendix. However, because
the Seiberg–Witten equations are gauge invariant, its linearization is not
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elliptic and we have to do some finessing to account for the gauge invariance.
To do this, we make fundamental use of the subspaces and decompositions
of the previous section.

Before we get started, let us note that our main theorem of this section,
Theorem 2.1, proves a bit more than what is needed to prove our main the-
orems. Indeed, it is mostly phrased in such a way that the results of this
section can be tied into the general framework of the pseudodifferential anal-
ysis of elliptic boundary value problems in Appendix D.1 (see the discussion
preceding Theorem 2.1). Moreover, some of the consequences of Theorem
2.1 will only be put to full use in [10]. Thus, the reader should regard this
section as a general framework for studying the Hessian and augmented
Hessian operators, (2.50) and (2.54), whose kernels are equal to the tan-
gent spaces to M and M, respectively, via (2.51) and (2.55). Much of this
framework consists in the construction of pseudodifferential-type operators
associated with the Hessian and augmented operators, namely the Calderon
projection and Poisson operators, see Lemma 2.8 and Definition 2.2. For the
augmented Hessian, an elliptic operator, these operators are defined as in
Definition D.3, and for the nonelliptic Hessian, they are defined by analogy
in Definition 2.2. In a few words, the significance of these operators is that
they relate the kernel of the (augmented) Hessian with the kernel’s bound-
ary values in a simple and uniform way across multiple topologies. This is
what allows us to relate the tangent spaces to M and M with the tangent
spaces to L, the latter being the boundary values of the kernels of the Hes-
sian operators via (2.52). Unfortunately, the infinite-dimensional nature of
all spaces involved and the presence of multiple topologies makes the work
we do quite technical. As a suggestion to the reader, it would be best to first
absorb the main ideas of Appendix D.1 and to understand the statements
of Lemma 2.8 and Theorem 2.1 before plunging into the details.

Let

T = Ω1(Y ; iR) ⊕ Γ(S)(2.46)

be a fixed copy of the tangent space T(B,Ψ) = T(B,Ψ)C(Y ) to any smooth con-
figuration (B,Ψ) ∈ C(Y ).7 Thus, all the subspaces of T(B,Ψ), namely J(B,Ψ),
K(B,Ψ) and their associated subspaces defined in the previous section, may

7There is no real distinction between T and a particular tangent space T(B,Ψ) to
a configuration, since C(Y ) is an affine space. However, when we study the spaces
M and M as subsets of C(Y ) in Section 3, we will reintroduce base points when we
have a particular tangent space in mind. For now, we drop basepoints to minimize
notation.
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be regarded as subspaces of T that depend on a configuration (B,Ψ) ∈ C(Y ).
We let

(2.47) C = {(b, ψ) ∈ T : d∗b = 0}

denote the Coulomb-slice in T . Likewise, let

TΣ = Ω1(Σ; iR) ⊕ Γ(SΣ)(2.48)

denote a fixed copy of the tangent space to any smooth configuration of C(Σ).
The restriction map (1.5) on configuration spaces induces a restriction map
on the tangent spaces

rΣ : T → TΣ,

(b, ψ) 	→ (b|Σ, ψ|Σ).
(2.49)

From (1.2), the linearization of the Seiberg–Witten map SW3 at a con-
figuration (B,Ψ) ∈ C(Y ) yields an operator

H(B,Ψ) : T → T ,

H(B,Ψ) =
(

∗d 2iIm ρ−1(·Ψ∗)0
ρ(·)Ψ DB

)

(2.50)

which acts on the tangent space T to (B,Ψ). We call the operator H(B,Ψ) the
Hessian.8 The Hessian operator is a formally self-adjoint first-order operator.
For any monopole (B,Ψ) ∈ SW−1

3 (0), we (formally) have that the tangent
spaces to our monopole spaces M and L are given by

T(B,Ψ)M = kerH(B,Ψ),(2.51)
TrΣ(B,Ψ)L = rΣ(kerH(B,Ψ)).(2.52)

Indeed, this is just the linearization of (1.3) and (1.6). Thus, understanding
M and L at the linear level is the same as understanding the kernel of
H(B,Ψ).

Unfortunately, H(B,Ψ) is not elliptic, which follows from a simple exam-
ination of its symbol. In fact, this nonellipticity follows a priori from the
equivariance of the Seiberg–Witten map under gauge transformations. In
particular, since the zero set of SW3 is gauge invariant, then the lineariza-
tion H(B,Ψ) at a monopole (B,Ψ) annihilates the entire tangent space to

8On a closed manifold, H(B,Ψ) would in fact be the Hessian of the Chern–Simons–
Dirac functional, see [6].
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the gauge orbit at (B,Ψ), i.e., the subspace J(B,Ψ) ⊂ T . Furthermore, even
if we were to account for this gauge invariance by say, placing configura-
tions in Coulomb-gauge, i.e., if we were instead to consider the operator
H(B,Ψ) ⊕ d∗ : T → T ⊕ Ω0(Y ; iR), we still would not have an elliptic opera-
tor in the usual sense.

However, there is a simple remedy for this predicament. Following [6],
the operator H(B,Ψ) naturally embeds as a summand of an elliptic operator.
Namely, if we enlarge the space T to the augmented tangent space

(2.53) ˜T := T ⊕ Ω0(Y ; iR),

then we can consider the augmented Hessian9

˜H(B,Ψ) : ˜T → ˜T ,

˜H(B,Ψ) =
(

H(B,Ψ) −d
−d∗ 0

)

.
(2.54)

The augmented Hessian is a formally self-adjoint first-order elliptic operator,
as one can easily verify. This operator takes into account Coulomb gauge
fixing via the operator d∗ : Ω1(Y ; iR) → Ω0(Y ; iR), while ensuring ellipticity
by adding in the adjoint operator d : Ω0(Y ; iR) → Ω1(Y ; iR). The advantage
of studying the operator ˜H(B,Ψ) is that we may apply the pseudodifferen-
tial tools from Appendix D.1 to understand the kernel of ˜H(B,Ψ) and its
boundary values. Moreover, we have (formally) that

(2.55) T(B,Ψ)M = ker( ˜H(B,Ψ)|T ).

The space of boundary values for ˜T is the space

(2.56) ˜TΣ := TΣ ⊕ Ω0(Σ; iR) ⊕ Ω0(Σ; iR).

9In [6], the operators d(B,Ψ) and d∗
(B,Ψ) are used in the definition of ˜H(B,Ψ)

instead of −d and −d∗, respectively. Our definition reflects the fact that we will
work with Coulomb slices C(B,Ψ) instead of the slices K(B,Ψ) inside T . The presence
of the minus signs on −d and −d∗ in ˜H(B,Ψ) lies in the relationship between ˜H(B,Ψ)

and the linearization of the four-dimensional Seiberg–Witten equations, see [10].
Thus, the augmented Hessian operator is not an ad hoc extension of the Hessian
operator but is tied to the underlying geometry of the problem.
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Indeed, one can see that ˜T |Σ ∼= ˜TΣ via the full restriction map r : ˜T → ˜TΣ

given by

r : Ω1(Y ; iR) ⊕ Γ(S) ⊕ Ω0(Y ; iR)

→ Ω1(Σ; iR) ⊕ Γ(SΣ) ⊕ Ω0(Σ; iR) ⊕ Ω0(Σ; iR),(2.57)
(b, ψ, α) 	→ (b|Σ, ψ|Σ,−b(ν), α|Σ),

where in (2.57), the term b(ν) denotes contraction of the 1-form b with the
outward normal ν to Σ. Thus, the two copies of Ω0(Σ; iR) in ˜TΣ are meant to
capture the normal component of Ω1(Y ; iR) and the trace of Ω0(Y ; iR) along
boundary. The map rΣ : T → TΣ appears as the first factor of the map r,
and it is the tangential part of the full restriction map. Since we can regard
T ⊂ ˜T , then by restriction, the map r also maps T to ˜TΣ.

As usual, we can consider the Besov completions of all the spaces involved.
Thus, we have the spaces

Cs,p, T s,p, ˜T s,p, T s,p
Σ , ˜T s,p

Σ

which we use to denote the Bs,p completions of their corresponding smooth
counterparts. The restriction maps rΣ and r extend to Besov completions in
the usual way. We also have the spaces J s,p

(B,Ψ), K
s,p
(B,Ψ), and their subspaces

from the previous section, which we may all regard as subspaces of T s,p.
The plan for the rest of this section is as follows. First, we investigate the

kernel of the elliptic operator ˜H(B,Ψ). We do this first for smooth (B,Ψ),
in which case the tools from Appendix D.1 apply, and then we consider
nonsmooth (B,Ψ), in which case modifications must be made. Here, one
has to keep track of the function space arithmetic rather carefully. Next, we
will relate the kernel of ˜H(B,Ψ) to the kernel of H(B,Ψ) and see how these
spaces behave under the restriction maps r and rΣ, respectively. For this,
we place these results under the conceptual framework of Appendix D.1 by
way of using the Calderon projection and Poisson operator associated to
an elliptic operator. For the Hessian H(B,Ψ), the main technical issue here
is its nonellipticity (i.e., gauge invariance). The results of our analysis are
summarized in the main theorem of this section, Theorem 2.1.10

10The complexity of the function space arithmetic in this section can minimized
if one does not care about the symplectic properties of the spaces involved, namely,
the Lagrangian properties in Lemma 2.7 and Theorem 2.1(i). See Remark 2.2.
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We organize the preceding notation into the below diagram, since it will
be used consistently for the rest of this paper:

˜T ˜T = T ⊕ Ω0(Y ; iR)

T T = Ω1(Y ; iR) ⊕ Γ(S)

˜H(B,Ψ) ��

H(B,Ψ) ��
��

��

��

��

˜T ˜TΣ = TΣ ⊕ Ω0(Σ; iR) ⊕ Ω0(Σ; iR)

T TΣ = Ω1(Σ; iR) ⊕ Γ(SΣ)

r ��

rΣ ��
��

��

��

��

(2.58)

In studying the augmented Hessian operators ˜H(B,Ψ) for smooth (B,Ψ) ∈
C(Y ), observe that they all differ by bounded zeroth-order operators. Indeed,
if we write (b, ψ) = (B1,Ψ1) − (B0,Ψ0), then

˜H(B1,Ψ1) − ˜H(B0,Ψ0) = (b, ψ)#,

where (b, ψ)# is the multiplication operator given by

(b, ψ)# : T → T ,
(b′, ψ′) 	→ (2iIm ρ−1(ψ′ψ∗)0, ρ(b)ψ′).

(2.59)

In general, we will use # to denote any kind of pointwise multiplication
map. Let Bref be our fixed smooth reference connection. Define

˜H0 := ˜H(Bref ,0)

= Ddgc ⊕DBref ,(2.60)

where DBref : Γ(S) → Γ(S) is the Dirac operator on spinors determined by
Bref and Ddgc is the div-grad curl operator

(2.61) Ddgc :=
(

∗d −d∗
−d 0

)

: Ω1(Y ; iR) ⊕ Ω0(Y ; iR) � .



596 Timothy Nguyen

The operator Ddgc is also a Dirac operator. Thus, the operator ˜H0 is a Dirac
operator and every other ˜H(B,Ψ) is a zeroth-order perturbation of ˜H0. Our
first objective therefore is to understand the operator ˜H0.

Let us quickly review some basic properties about general Dirac oper-
ators (a more detailed treatment can be found in [2]). Let D be any Dirac
operator acting on sections Γ(E) of a Clifford bundle E over Y endowed
with a connection compatible with the Clifford multiplication. Here, by a
Dirac operator, we mean any operator equal to “the” Dirac operator on
E (the operator determined by the Clifford multiplication and compatible
connection) plus any zeroth-order symmetric operator. Let (·, ·) denote the
(real or Hermitian) inner product on E. Working in a collar neighborhood of
[0, ε] × Σ of the boundary, where t ∈ [0, ε] is the inward normal coordinate,
we can identify Γ(E|[0,ε]×Σ) with Γ([0, ε],Γ(EΣ)), the space of t-dependent
sections with values in Γ(EΣ). Under this identification, we can write any
Dirac operator D as

(2.62) D = Jt

(

d

dt
+ Bt + Ct

)

,

where Jt, Bt, and Ct are t-dependent operators acting on Γ(EΣ). The opera-
tor Jt (which is Clifford multiplication by d/dt) is a skew-symmetric bundle
automorphism satisfying J2

t = −id, the operator Bt is a first-order elliptic
self-adjoint operator, and Ct is a zeroth-order bundle endomorphism.

Definition 2.1. We call B0 : Γ(EΣ) → Γ(EΣ) the tangential boundary oper-
ator associated to D.

Observe that the above definition is only well defined up to a symmetric
zeroth-order term. By abuse of terminology, we may also refer to the family
of operators Bt in (2.62) as tangential boundary operators as well.

The significance of the decomposition (2.62) is that the space of bound-
ary values of the kernel of D is, up to a compact error, determined by the
operator B0. More precisely, we have the following picture. Since B0 is a first
order self-adjoint elliptic operator, the space Γ(EΣ) decomposes as

(2.63) Γ(EΣ) = Z+
B0

⊕Z−
B0

⊕Z0
B0
,

the positive, negative and zero spectral subspaces of B0, respectively. More-
over, since the projections onto these subspaces are given by pseudodif-
ferential operators, we get a corresponding decomposition on the Besov



The Seiberg–Witten equations on manifolds with boundary I 597

space completion:

(2.64) Bs,p(EΣ) = Bs,pZ+
B0

⊕Bs,pZ−
B0

⊕Bs,pZ0
B0
,

for all s ∈ R and 1 < p <∞. If we let D : Bs,p(E) → Bs−1,p(E), then we can
consider the boundary values of its kernel r(kerD) ⊂ Bs−1/p,p(EΣ). Then
what we have is that the spaces r(kerD) and Bs−1/p,pZ+

B0
are commensu-

rate, that is, they differ by a compact perturbation11 (see Definition A.1).
Furthermore, from Proposition D.1, we have that r(kerD) is a Lagrangian
subspace of the boundary data space Bs−1/p,p(EΣ), where the symplectic
form on the Banach space Bs−1/p,p(EΣ) is given by Green’s formula12 for D:

(2.66)
∫

Σ
Re (u,−J0v) = Re (u,Dv)L2(Y ) − Re (Du, v)L2(Y ).

Summarizing, we have

Lemma 2.4. The Cauchy data space r(ker D) ⊂ Bs−1/p,p(EΣ) is a Lagran-
gian subspace commensurate with Bs−1/p,pZ+

B0
. Furthermore, for s > 1/p,

the space kerD is complemented in Bs,p(E).

The last statement follows from Corollary D.2. Thus, while r(ker D) is a
space determined by the entire operator D on Y , it is “close” to the subspace
Bs−1/p,pZ+

B0
, which is completely determined on the boundary.

Let us now apply the above general framework to our Hessian operators.
Let B denote the tangential boundary operator for ˜H0. By (2.60), B splits

11More precisely, the range of r(ker D) and Z+
B0

is given by the range of
pseudodifferential projections, and these projections have the same principal sym-
bol. See, e.g.,[2, 14, 15].

12For a general first-order differential operator A acting on sections Γ(E) over a
manifold X, Green’s formula for A is the adjunction formula

(2.65) (u,Av)L2(X) − (A∗u, v)L2(X) =
∫

∂X

(r(u),−Jr(v)),

where A∗ is the formal adjoint of A. The map J : E∂X → E∂X is a bundle endomor-
phism on the boundary and it is determined by A. Hence, (2.66) is an “integration
by parts” formula for A. If E is a Hermitian vector bundle, we will always take the
real part of (2.65) in order to get a real valued pairing on the boundary.



598 Timothy Nguyen

as a direct sum of the tangential boundary operators

Bdgc : Ω1(Σ; iR) ⊕ Ω0(Σ; iR) ⊕ Ω0(Σ; iR) �
BS : Γ(SΣ) �,

for Ddgc and DBref , respectively. For the div-grad-curl operator Ddgc, we can
compute the tangential boundary operator and its spectrum rather explic-
itly. As before, we work inside a collar neighborhood [0, ε] × Σ of the bound-
ary of Y , with the inward normal coordinate given by t ∈ [0, ε], and we
choose coordinates so that the metric is of the form dt2 + g2

t , where gt is a
family of Riemannian metrics on Σ. We can write b ∈ Ω1(Y ) as b = a+ βdt,
where a ∈ Γ([0, ε),Ω1(Σ)) and β ∈ Γ([0, ε),Ω0(Σ)). Let ∗̌ denote the Hodge
star on Σ with respect to g0, and let dΣ be the exterior derivative on Σ.

So with the above notation, we have the following lemma concerning
Ddgc (where for notational simplicity, we state the result for real-valued
forms):

Lemma 2.5. Let Y be a 3-manifold with boundary Σ oriented by the out-
ward normal. Then with respect to (a, β, α) ∈ Γ([0, ε),Ω1(Σ) ⊕ Ω0(Σ) ⊕ Ω0

(Σ)) near the boundary, the div-grad-curl operator can be written as Ddgc =
Jdgc( d

dt + Bdgc,t + Cdgc,t) as in (2.62), where13

Jdgc =

⎛

⎝

−∗̌ 0 0
0 0 −1
0 1 0

⎞

⎠ ,(2.67)

Bdgc = Bdgc,0 =

⎛

⎝

0 dΣ ∗̌dΣ

d∗Σ 0 0
−∗̌dΣ 0 0

⎞

⎠ .(2.68)

The positive, negative and zero eigenspace decompositions for Bdgc are
given by

Z±
dgc = Z±

e ⊕Z±
c ,(2.69)

:= span

⎧

⎨

⎩

⎛

⎝

|λ|−1dΣfλ2

±fλ2

0

⎞

⎠

⎫

⎬

⎭

⊕ span

⎧

⎨

⎩

⎛

⎝

|λ|−1∗̌dΣfλ2

0
±fλ2

⎞

⎠

⎫

⎬

⎭

,(2.70)

Z0
dgc = H1(Σ; R) ⊕H0(Σ; R) ⊕H0(Σ; R),(2.71)

13Note the signs, since t is the inward normal coordinate.
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where the fλ2 span the nonzero eigenfunctions of Δ = d∗ΣdΣ and Δfλ2 =
λ2fλ2.

Let Ω0
⊥(Σ) = {α ∈ Ω0(Σ) :

∫

α = 0} be the span of the nonzero eigen-
functions of Δ. Then for every s ∈ R, and 1 < p <∞, Bs,pZ±

e is the graph of
the isomorphism ±dΣΔ−1/2 : Bs,pΩ0

⊥(Σ) → Bs,pim dΣ. Similarly, the spaces
Bs,pZ±

c are graphs of the isomorphisms ±∗̌dΣΔ−1/2 : Bs,pΩ0
⊥(Σ) →

Bs,pim ∗̌dΣ.

Proof. The proof is by direct computation. �
Altogether, we have the following spectral decompositions:

˜TΣ = Z+ ⊕Z− ⊕Z0,(2.72)

Ω1(Σ; iR) ⊕ Ω0(Σ; iR) ⊕ Ω = Z+
dgc ⊕Z−

dgc ⊕Z0
dgc,(2.73)

Γ(SΣ) = Z+
S ⊕Z−

S ⊕Z0
S ,(2.74)

corresponding to the positive, negative and zero spectral subspaces of B,
Bdgc and BS , respectively. Since B = Bdgc ⊕ BS , we obviously have

(2.75) Z• = Z•
dgc ⊕Z•

S , • ∈ {+,−, 0}.

In particular, we have

Z+ = Z+
dgc ⊕Z+

S(2.76)

= Z+
e ⊕Z+

c ⊕Z+
S ,(2.77)

by Lemma 2.5. All the above decompositions hold when we take Besov
closures. In light of Lemma 2.4, the explicit decomposition (2.77) will be
important for us in the analysis to come.

Next, we work out the associated symplectic data for ˜H0 on the bound-
ary, following the general picture described previously. Namely, Green’s for-
mula (2.66) for the Dirac operator ˜H0 induces a symplectic form on the
boundary data space ˜TΣ. Moreover, because ˜H0 is a Dirac operator, the
endomorphism −J0 is a compatible complex structure for the symplectic
form. Explicitly, the symplectic form is

ω̃ : ˜TΣ ⊕ ˜TΣ → R,

ω̃((a, φ, α1, α0), (b, ψ, β1, β0))(2.78)

=
∫

Σ
a ∧ b+

∫

Σ
Re (φ, ρ(ν)ψ) −

∫

Σ
(α1β0 − α0β1),
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and the compatible complex structure is

J̃Σ : ˜TΣ → ˜TΣ,

(a, φ, α1, α0) 	→ (−∗̌a,−ρ(ν)φ,−α0, α1).
(2.79)

Observe that since ˜H0 = H(Bref ,0) ⊕−(d+ d∗), the symplectic form and com-
patible complex structure above are a direct sum of those corresponding
to the operators H(Bref ,0) and (d+ d∗). In particular, Green’s formula for
H(Bref ,0) = ∗d⊕DBref yields the symplectic form

ω : TΣ ⊕ TΣ → R,

ω((a, φ), (b, ψ)) =
∫

Σ
a ∧ b+

∫

Σ
Re (φ, ρ(ν)ψ)

(2.80)

and compatible complex structure

JΣ : TΣ → TΣ,

(a, φ) 	→ (−∗̌a,−ρ(ν)φ).
(2.81)

Since the tangent space to C(Σ) at any configuration is a copy of TΣ, we
see that ω gives us a constant symplectic form on C(Σ). This symplectic
form extends to C0,2(Σ), the L2 closure of the configuration space, and since
Bs,p(Σ) ⊆ B0,2(Σ) = L2(Σ) for all s > 0 and p ≥ 2, we also get a constant
symplectic form on the Besov configuration spaces Cs,p(Σ). From now on, we
will always regard Cs,p(Σ) as being endowed with this symplectic structure.
Likewise, we always regard ˜T s,p

Σ as being endowed with the symplectic form
(2.78). Indeed, the symplectic forms ω and ω̃ are the appropriate ones to
consider, since they are the symplectic forms induced by the Hessian and
augmented Hessian operators, respectively.

Having studied the particular augmented Hessian operator ˜H0 = ˜H(Bref ,0),
we now study general augmented Hessian operators ˜H(B,Ψ). Here, (B,Ψ) ∈
Cs,p(Y ) is an arbitrary possibly nonsmooth configuration. Suppose we have a
bounded multiplication Bs,p(Y ) ×Bt,q(Y ) → Bt−1,q(Y ), for some t ∈ R and
q ≥ 2. It follows that ˜H(B,Ψ) : ˜T t,q → ˜T t−1,q and H(B,Ψ) : T t,q → T t−1,q are
bounded maps. To keep the topologies clear, we will often use the notation

Ht,q
(B,Ψ) : T t,q → T t−1,q,

˜Ht,q
(B,Ψ) : ˜T t,q → ˜T t−1,q,



The Seiberg–Witten equations on manifolds with boundary I 601

so that the superscripts on the operators specify the regularity of the domains.
The next two lemmas tell us that ker ˜Ht,q

(B,Ψ) and r(ker ˜Ht,q
(B,Ψ)) are compact

perturbations of ker ˜Ht,q
0 and r(ker ˜Ht,q

0 ), respectively, for (t, q) in a certain
range. We also give a more concrete description of this perturbation using
Lemma A.1.

Lemma 2.6. Let s > 3/p. Let (B,Ψ) ∈ Cs,p(Y ) and suppose t ∈ R and q ≥
2 are such that we have a bounded multiplication map Bs,p(Y ) ×Bt,q(Y ) →
Bt′−1,q(Y ), where t′ > 1/q and t ≤ t′ ≤ t+ 1.

(i) We have that ker ˜Ht,q
(B,Ψ) is commensurate with ker ˜Ht,q

0 and the restric-

tion map r : ker ˜Ht,q
(B,Ψ) → ˜T t−1/q,q

Σ is bounded. More precisely, we have
the decomposition

(2.82) ker ˜Ht,q
(B,Ψ) = {x+ ˜Tx : x ∈ X ′

0} ⊕ F,

where X ′
0 ⊆ ker ˜Ht,q

0 has finite codimension, ˜T : X ′
0 → ˜T t′,q and F ⊆

˜T t′,q is a finite-dimensional subspace. Moreover, one can choose as
a complement for X ′

0 ⊂ ker ˜Ht,q
0 a space that is spanned by smooth

elements.

(ii) The space ker ˜Ht,q
(B,Ψ) varies continuously14 with (B,Ψ) ∈ Cs,p(Y ).

Proof. (i) Let (b, ψ) = (B −Bref ,Ψ). The multiplication map (b, ψ)# =
˜H(B,Ψ) − ˜H0 given by (2.59) yields a bounded map

(2.83) (b, ψ)# : ˜T t′,q → ˜T t′−1,q

by hypothesis. This map is a compact operator since it is the norm limit of
(bi, ψi)#, with (bi, ψi) smooth. Each of the operators (bi, ψi)# is compact,
since it is a bounded operator on ˜T t′,q and the inclusion ˜T t′,q ↪→ ˜T t′−1,q is
compact by Theorem C.6. Since the space of compact operators is norm
closed, this proves (2.83) is compact.

Since t′ > 1/q, then ker ˜Ht′,q
0 is complemented in ˜T t′,q by Corollary D.2.

Let X1 ⊂ ˜T t′,q be any such complement. Thus,

(2.84) ˜H0 : X1 → ˜T t′−1,q

14See Definition A.3.
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is injective. It is also surjective by unique continuation, Theorem E.2. Hence
(2.84) is an isomorphism and the map

(2.85) ˜H(B,Ψ) : X1 → ˜T t′−1,q,

being a compact perturbation of an isomorphism, is Fredholm. This allows
us to write the kernel of ˜Ht,q

(B,Ψ) perturbatively as follows.
Let x ∈ ker ˜Ht,q

(B,Ψ). Then ˜H0x = (b, ψ)#x ∈ T t′−1,q and we can define

x1 = −
(

˜Ht′,q
0 |X1

)−1
(b, ψ)#x ∈ X1 ⊂ ˜T t′,q.

Then if we define x0 = x− x1 ∈ ˜T t,q, we have

˜H0x0 = ˜H0(x− x1)

=
(

˜H(B,Ψ) − (b, ψ)#
)

x− ˜H0x1

= −(b, ψ)#x+ (b, ψ)#x
= 0.

Hence, x0 ∈ ker ˜Ht,q
0 . Thus, we have decomposted x ∈ ker ˜Ht,q

(B,Ψ) as x = x0 +
x1, where x0 ∈ ker ˜Ht,q

0 is in the kernel of a smooth operator and x1 ∈ ˜T t′,q

is more regular (for t′ > t). We also have

0 = ˜H(B,Ψ)x(2.86)

= ˜H(B,Ψ)(x1 + x0)

= ˜H(B,Ψ)x1 + (b, ψ)#x0.

By the above, we know that ˜H(B,Ψ) : X1 → ˜T t′−1,q is Fredholm. Thus, from
(2.86), we see that there exists a subspaceX ′

0 ⊆ ker ˜Ht,q
0 of finite codimension

such that for all x0 ∈ X ′
0, there exists a solution x1 ∈ X1 to (2.86). This

solution is unique up to some finite-dimensional subspace F ⊂ X1; in fact
F is just the kernel of (2.85). This proves the decomposition (2.82), where
the map ˜T is given by

˜T : X ′
0 → X ′

1,

x0 	→ −( ˜H(B,Ψ)|X′
1
)−1(b, ψ)#x0,

(2.87)

where X ′
1 is any complement of F ⊂ X1. The map ˜T is compact since the

map (b, ψ)# is compact. The rest of the statement now follows, since the
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restriction map r : ker ˜Ht,q
0 → ˜T t−1/q,q

Σ is bounded by Theorem D.2(i), and
r : ˜T t′,q → ˜T t′−1/q,q

Σ ⊂ ˜T t−1/q,q
Σ is bounded since t′ > 1/q. Moreover, since

smooth elements are dense in ker ˜Ht,q
0 by Corollary D.2, any finite-

dimensional complement for X ′
0 ⊆ ker ˜Ht,q

0 can be replaced by a complement
that is spanned by smooth elements if necessary.

(ii) Let (B0,Ψ0) ∈ Cs,p(Y ). By Definition A.3, we have to show that
ker ˜Ht,q

(B,Ψ) is a graph over ker ˜Ht,q
(B0,Ψ0)

for (B,Ψ) close to (B0,Ψ0). We do the

same thing as in (i). LetX2 be any complement of ker ˜Ht′,q
(B0,Ψ0)

in ˜T t′,q, which

exists since ker ˜Ht′,q
(B0,Ψ0)

is commensurate with ker ˜Ht′,q
0 by (i), and the latter

space is complemented. Then ˜H(B0,Ψ0) : X2 → ˜T t′−1,q is an isomorphism. For
(B,Ψ) sufficiently close to (B0,Ψ0), the map ˜H(B,Ψ) : X2 → ˜T t′−1,q is injec-
tive, hence surjective (the index is invariant under compact perturbations),
and therefore an isomorphism. Then from the above analysis,

(2.88) ker ˜Ht,q
(B,Ψ) = {x+ ˜T(B,Ψ)x : x ∈ ker ˜Ht,q

(B0,Ψ0)
},

where

˜T(B,Ψ) : ker ˜Ht,q
(B0,Ψ0)

→ X2,(2.89)

x 	→ −( ˜H(B,Ψ)|X2)
−1(b, ψ)#x(2.90)

and (b, ψ) = (B −B0,Ψ − Ψ0). The map ˜T(B,Ψ) varies continuously with
(B,Ψ) ∈ Cs,p(Y ) near (B0,Ψ0). �

Remark 2.2. In applications of the above lemma, instead of (t, q) satisfy-
ing the very general hypothesis,
(2.91)

(i) t ∈ R, q ≥ 2,

(ii) the multiplication Bs,p(Y ) ×Bt,q(Y ) → Bt′−1,q(Y ) is bounded,
where t′ > 1/q and t ≤ t′ ≤ t+ 1,

⎫

⎪

⎬

⎪

⎭

we will primarily only need the cases

(2.92) (t, q) ∈ {(s+ 1, p), (s, p), (1/2, 2)} ,

with corresponding values

(2.93) (t′, q) ∈ {(s+ 1, p), (s+ 1, p), (1/2 + ε, 2)} , ε > 0.
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The last case of (2.92) arises because we want to consider the space of
boundary values in the L2 topology, i.e., the spaces T 0,2

Σ and ˜T 0,2
Σ . In this

particular case, the above lemma allows us to conclude that for (B,Ψ) ∈
Cs,p(Y ), we still get bounded restriction maps r : ker ˜H1/2,2

(B,Ψ) → ˜T 0,2
Σ , just

like in the case where (B,Ψ) is smooth via Theorem D.2. The boundedness
of this map will be important when we perform symplectic reduction on
Banach spaces in the proof of Theorem 2.1. The case (t, q) = (s+ 1, p) will
be important for Proposition 2.2 and its applications in Section 3. In what
follows, we will consider the operators ˜Hs,p

(B,Ψ) but they equally well apply
to ˜Ht,q

(B,Ψ) in light of the analysis in Lemma 2.6, for t, q satisfying (2.91).

Lemma 2.7. Let s > 3/p. For any (B,Ψ) ∈ Cs,p(Y ), we have the following:

(i) The Cauchy data space r(ker ˜Hs,p
(B,Ψ)) is a Lagrangian subspace of

˜T s−1/p,p
Σ commensurate with Bs−1/p,pZ+ and it varies continuously

with (B,Ψ).

(ii) We have a direct sum decomposition ˜T s−1/p,p
Σ = r(ker ˜Hs,p

(B,Ψ)) ⊕
J̃Σr(ker ˜Hs,p

(B,Ψ)).

Proof. (i) For any (B,Ψ) ∈ Cs,p(Y ), the space r(ker ˜Hs,p
(B,Ψ)) is isotropic since

˜Hs,p
(B,Ψ) is formally self-adjoint. Since s > 3/p, then (B,Ψ) ∈ L∞(Y ) and we

can apply the unique continuation theorem, Theorem E.1, which implies that
r : ker ˜Hs,p

(B,Ψ) → ˜T s−1/p,p
Σ is injective. In fact, it is an isomorphism onto its

image, since this is true for r : ker ˜Hs,p
0 → ˜T s−1/p,p

Σ (by Theorem D.2(i) and
unique continuation applied to the smooth operator ˜Hs,p

0 ) and ker ˜Hs,p
(B,Ψ)

is a compact perturbation of ker ˜Hs,p
0 by Lemma 2.6. Hence, we get that

˜L
s−1/p,p
(B,Ψ) := r(ker ˜Hs,p

(B,Ψ)) varies continuously with (B,Ψ), since ker ˜Hs,p
(B,Ψ)

varies continuously by Lemma 2.6 and r : ker ˜Hs,p
(B,Ψ) → ˜T s−1/p,p

Σ is an iso-

morphism onto its image. For (B,Ψ) smooth, we know that ˜L
s−1/p,p
(B,Ψ) ⊂

˜T s−1/p,p
Σ is a Lagrangian subspace by Proposition D.1. By continuity then,

˜L
s−1/p,p
(B,Ψ) is a Lagrangian for all (B,Ψ) ∈ Cs,p(Y ). Moreover, all the ˜L

s−1/p,p
(B,Ψ)

are commensurate with one another, in particular, with r(ker ˜Hs−1/p,p
0 ), and

this latter space is commensurate with Bs−1/p,pZ+ by Lemma 2.4.
(ii) When (B,Ψ) is smooth, this follows from Proposition D.1. Now we

use the continuity of the Lagrangians with respect to (B,Ψ) ∈ Cs,p(Y ) for
the general case. �
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We want to apply the previous results concerning the augmented Hessian
˜H(B,Ψ) to deduce properties about the Hessian H(B,Ψ). To place these results
in a context similar to the pseudodifferential picture in Appendix D.1, let
us recall some more basic properties concerning the smooth operator ˜H0.
By Theorem D.2, the operator ˜H0, by virtue of it being a smooth elliptic
operator, has a Calderon projection ˜P+

0 and a Poisson operator ˜P0. These
operators satisfy the following properties. The map ˜P+

0 is a projection of the
boundary data ˜T s−1/p,p

Σ onto r(ker ˜Hs,p
0 ), the boundary values of ker ˜Hs,p

0 ,
and the map ˜P0 is a map from the boundary data ˜T s−1/p,p

Σ into ker( ˜Hs,p
0 ) ⊂

˜T s,p. Moreover, the maps r : ker ˜Hs,p
0 → r(ker ˜Hs,p

0 ) and ˜P0 : r(ker ˜Hs,p
0 ) →

ker ˜Hs,p
0 are inverse to one another, and r ˜P0 = ˜P+

0 . This implies that the map
π̃0 := ˜P0r : ˜T s,p → ker( ˜Hs,p

0 ) is a projection. We also have that
im ˜P+

0 = r(ker ˜Hs,p
0 ) is a Lagrangian subspace of Bs−1/p,p

˜TΣ by
Proposition D.1.

For a general nonsmooth (B,Ψ) ∈ Cs,p, we have ˜Hs,p
(B,Ψ) is a compact per-

turbation of the smooth elliptic operator ˜Hs,p
0 . The previous lemmas imply

that ker ˜Hs,p
(B,Ψ) and r(ker ˜Hs,p

(B,Ψ)) are compact perturbations of ker ˜Hs,p
0

and r(ker ˜Hs,p
0 ), respectively, and moreover, we still have unique continu-

ation, i.e., r : ker ˜Hs,p
(B,Ψ) → ˜T s−1/p,p

Σ is an isomorphism onto its image. It
follows that there exists a Calderon projection ˜P+

(B,Ψ) and Poisson operator
˜P(B,Ψ) for ˜Hs,p

(B,Ψ) as well, which satisfy the same corresponding proper-
ties (see Lemma A.1). We also have a projection π̃(B,Ψ) := ˜P(B,Ψ)r : ˜T s,p →
ker ˜Hs,p

(B,Ψ). We summarize this in the following lemma and diagram:

Lemma 2.8. Let s > 3/p and (B,Ψ) ∈ Cs,p(Y ). Then there exists a
Calderon projection ˜P+

(B,Ψ) : ˜T s−1/p,p
Σ → r(ker ˜Hs,p

(B,Ψ)) and a Poisson opera-

tor ˜P(B,Ψ) : ˜T s−1/p,p
Σ → ker ˜Hs,p

(B,Ψ). The maps r : ker ˜H(B,Ψ) → r(ker ˜Hs,p
(B,Ψ))

and ˜P(B,Ψ) : r(ker ˜Hs,p
(B,Ψ)) → ker ˜Hs,p

(B,Ψ) are inverse to one another, and
r ˜P(B,Ψ) = ˜P+

(B,Ψ).

ker ˜Hs,p
(B,Ψ)

r

��

˜T s,p
π̃(B,Ψ)��

r

��

˜Hs,p
(B,Ψ) ��

˜T s−1,p

r(ker ˜Hs,p
(B,Ψ))

˜P(B,Ψ)

��

˜T s−1/p,p
Σ

˜P+
(B,Ψ)

��

(2.94)
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In studying the Hessian Hs,p
(B,Ψ) we want to establish similar results as in

Lemmas 2.7 and 2.8. These results are summarized in the main theorem of
this section.

Theorem 2.1. Let s > max(3/p, 1/2) and let (B,Ψ) ∈ Ms,p(Y ). Suppose
H(B,Ψ) : T s,p → Ks−1,p

(B,Ψ) is surjective.15 Then we have the following:

(i) The space rΣ(kerHs,p
(B,Ψ)) is a Lagrangian subspace of T s−1/p,p

Σ com-
mensurate with Bs−1/p,p(im d⊕Z+

S ). Moreover, we have the direct sum
decomposition

(2.95) T s−1/p,p
Σ = rΣ(kerHs,p

(B,Ψ)) ⊕ JΣrΣ(kerHs,p
(B,Ψ)).

(ii) Define

P+
(B,Ψ) : T s−1/p,p

Σ → rΣ(kerHs,p
(B,Ψ))(2.96)

to be the projection onto rΣ(kerHs,p
(B,Ψ)) through JΣrΣ(kerHs,p

(B,Ψ)) as
given by (2.95). Let π+ : TΣ → im d⊕Z+

S denote the orthogonal pro-
jection onto im d⊕Z+

S through the complementary space ker d∗ ⊕
(Z−

S ⊕Z0
S). Then π+, being a pseudodifferential projection, extends to

a bounded map on T s−1/p,p
Σ , and it differs from the projection P+

(B0,Ψ0)
by an operator

(2.97) (P+
(B,Ψ) − π+) : T s−1/p,p

Σ → T s−1/p+1,p
Σ

which smooths by one derivative.

(iii) There exists a unique operator

P(B,Ψ) : T s−1/p,p
Σ → ker(H(B,Ψ)|Cs,p)(2.98)

that satisfies rΣP(B,Ψ) = P+
(B,Ψ). The maps rΣ : ker(H(B,Ψ)|Cs,p) →

rΣ(kerHs,p
(B,Ψ)) and P(B,Ψ) : rΣ(kerHs,p

(B,Ψ)) → ker(H(B,Ψ)|Cs,p) are
inverse to one another. Furthermore, let (B(t),Ψ(t)) be a continuous
(resp. smooth) path in Ms,p(Y ) such that H(B(t),Ψ(t)) : T s,p →
Ks−1,p

(B(t),Ψ(t)) is surjective for all t.

15This holds under the assumption (3.1). See Lemma 3.1.
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(iv) Then kerHs,p
(B(t),Ψ(t)) and rΣ(kerHs,p

(B(t),Ψ(t))) are continuously (resp.
smoothly) varying families of subspaces.16 Consequently, the corre-
sponding operators P+

(B(t),Ψ(t)) and P(B(t),Ψ(t)) vary continuously (resp.
smoothly) in the operator norm topologies.

Keeping Ms,p(Y ) fixed, the statements in (i), (iii) and (iv) remain true if
we replace the Bs,p(Y ) and Bs−1/p,p(Σ) topologies on all vector spaces with
the Bt,q(Y ) and Bt−1/q,q(Σ) topologies, respectively, where t, q satisfy (2.92)
or more generally (2.91). If we do the same for (ii), everything also holds
except that the map (2.97) smooths by t′ − t derivatives.

The theorem implies we have the following corresponding diagram for the
Hessian H(B,Ψ):

ker(H(B,Ψ)|Cs,p)

rΣ

��

T s,p
π(B,Ψ)��

rΣ

��

Hs,p
(B,Ψ) �� T s−1,p

rΣ(kerHs,p
(B,Ψ))

P(B,Ψ)

��

T s−1/p,p
ΣP+

(B,Ψ)

��

(2.99)

Here, π(B,Ψ) := P(B,Ψ)rΣ is a projection of T s,p onto ker(H(B,Ψ)|Cs,p).

Definition 2.2. By abuse of language, we call the operators P+
(B,Ψ) and

P(B,Ψ) defined in Theorem 2.1 the Calderon projection and Poisson opera-
tor associated to Hs,p

(B,Ψ), respectively (even though Hs,p
(B,Ψ) is not an elliptic

operator), due to their formal resemblance to Calderon and Poisson opera-
tors for elliptic operators (as seen in the diagrams (2.94) and (2.99)).

Note that the Calderon projection P+
(B,Ψ) and Poisson operator P(B,Ψ)

we define above are unique, since we specified their kernels. In the general
situation of an elliptic operator (such as ˜Hs,p

(B,Ψ) above) one usually only
specifies the range of the Calderon projection, in which case, the projection
is not unique (see also Remark D.3). Our particular choice of kernel for
P+

(B,Ψ) is made so that P+
(B,Ψ) is nearly pseudodifferential, in the sense of

the smoothing property (2.97). This property will be used in [10], where
analytic properties of the tangent spaces to the Lagrangian Ls−1/p,p and the
projections onto them become crucial.

16See Definition A.3.
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Remark 2.3. The continuous (resp. smooth) dependence of P+
(B,Ψ) and

P(B,Ψ) in Theorem 2.1(iii) with respect to (B,Ψ), as well as all other con-
tinuous dependence statements appearing in the rest of this paper, will only
attain their true significance in [10]. There, we will consider paths of con-
figurations, and so naturally, we will have to consider time-varying objects.
For brevity, we will only make statements regarding continuous dependence
from now on, though they can all be adapted to smooth dependence with
no change in argument.

Proving Theorem 2.1 is essentially deducing diagram (2.99) from dia-
gram (2.94). Let us first make sense of the hypotheses of the theorem. From
Lemma 2.3, in order for Ks−1,p

(B,Ψ) to be well defined when (B,Ψ) ∈ Cs,p(Y ),
we need s > max(1 − s, 3/p), which means we need s > max(3/p, 1/2). This
explains the first hypothesis. Next, observe that for (B,Ψ) ∈ M(Y ) a smooth
monopole, we have

J(B,Ψ) ⊆ kerH(B,Ψ),(2.100)
imH(B,Ψ) ⊆ K(B,Ψ).(2.101)

One can verify this directly by a computation or reason as follows. As
previously discussed, the Seiberg–Witten map (1.2) is gauge equivariant
and hence its set of zeros is gauge invariant. Thus, the derivative of SW3

along the gauge orbit of a monopole vanishes. This is precisely (2.100). For
(2.101), observe that the range of H(B,Ψ) annihilates J(B,Ψ),t by (2.100)
and since H(B,Ψ) is formally self-adjoint. From the orthogonal decomposi-
tion T = J(B,Ψ),t ⊕K(B,Ψ), we conclude that imH(B,Ψ) ⊆ K(B,Ψ). We want
to establish similar properties on Besov spaces. Namely, we want

J s,p
(B,Ψ) ⊆ kerHs,p

(B,Ψ),(2.102)

imHs,p
(B,Ψ) ⊆ Ks−1,p

(B,Ψ).(2.103)

However, this follows formally from (2.100) and (2.101) as long as we can
establish on Besov spaces the appropriate mapping properties of the dif-
ferentiation and multiplication involved in verifying (2.102) and (2.103)
directly. Thus, (2.102) holds because the map ˜H(B,Ψ) : T s,p → T s−1,p is
bounded when s > 3/p. Likewise, (2.101) holds because d∗

(B,Ψ) : T s−1,p →
Bs−2,pΩ0(Y ; iR) is bounded when s > max(3/p, 1/2). In drawing these con-
clusions, as done everywhere else in this paper, we make essential use of
Corollary C.1 and Theorem C.7.



The Seiberg–Witten equations on manifolds with boundary I 609

Thus, from (2.103), we see that the hypotheses of Theorem 2.1 make
sense. In fact, for (B,Ψ) ∈ Ms,p(Y ), we have the following result concerning
the range of Hs,p

(B,Ψ):

Lemma 2.9. Let (B,Ψ) ∈ Ms,p(Y ). Then imHs,p
(B,Ψ) ⊆ Ks−1,p

(B,Ψ) and Hs,p
(B,Ψ) :

T s,p → Ks−1,p
(B,Ψ) has closed range and finite-dimensional cokernel.

Proof. It remains to prove the final statement. Pick any elliptic boundary
condition for the operator ˜Hs,p

(B,Ψ) such that one of the boundary condi-
tions for (b, ψ, α) ∈ ˜T s,p is α|Σ = 0. Such a boundary condition is possible,
since the subspace Bs−1/p,p(TΣ ⊕ Ω0(Σ; iR) ⊕ 0) of ˜T s−1/p,p

Σ with vanish-
ing 0 ⊕ 0 ⊕Bs−1/p,pΩ0(Σ) component contains subspaces Fredholm17 with
r(kerHs,p

(B,Ψ)) by Lemmas 2.4, 2.5 and (2.77). For such a boundary con-
dition, observe that im ( ˜Hs,p

(B,Ψ)) ∩ Ks−1,p
(B,Ψ) ⊆ imHs,p

(B,Ψ). This is because if
dα ∈ Ks−1,p

(B,Ψ) with α|Σ = 0, then dα = 0. Since we chose elliptic boundary
conditions for ˜Hs,p

(B,Ψ), this means im ˜Hs,p
(B,Ψ) ⊆ ˜T s−1,p

(B,Ψ) is closed and has finite
codimension, which implies im ( ˜Hs,p

(B,Ψ)) ∩ Ks−1,p
(B,Ψ) is also closed and has finite

codimension in Ks−1,p
(B,Ψ). Hence, the same is true for imHs,p

(B,Ψ). �

Next, we relate the kernel of Hs,p
(B,Ψ) to the kernel of ˜Hs,p

(B,Ψ) along with
their respective boundary values.

Lemma 2.10. Let s > max(3/p, 1/2) and (B,Ψ) ∈ Ms,p(Y ).

(i) We have a decomposition

kerHs,p
(B,Ψ) = ker(H(B,Ψ)|Cs,p) ⊕ J s,p

(B,Ψ),t,(2.104)

ker ˜Hs,p
(B,Ψ) = ker(H(B,Ψ)|Cs,p) ⊕ Γs,p

0 ,(2.105)

where Γs,p
0 ⊆ ˜T s,p is the graph of a partially defined map Θ0 : kerΔ ���

T s,p, where Δ is the Laplacian on Bs,pΩ0(Y ; iR), and the domain of
Θ0 has finite codimension.

17See Definition A.2.
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(ii) We have

rΣ(kerHs,p
(B,Ψ)) = rΣ(ker(H(B,Ψ)|Cs,p)),(2.106)

r(ker ˜Hs,p
(B,Ψ)) = r(ker(H(B,Ψ)|Cs,p)) ⊕ Γ̌s−1/p,p

0 ,(2.107)

where Γ̌s−1/p,p
0 = r(Γs,p

0 ) is the graph of a partially defined map Θ̌0 :
0 ⊕ 0 ⊕Bs−1/p,pΩ0(Σ; iR) ��� T s−1/p,p

Σ and the domain of Θ̌0 has finite
codimension.

(iii) We have r(kerHs,p
(B,Ψ)) is commensurate with Bs−1/p,p(Z+

e ⊕Z+
S ) and

rΣ(kerHs,p
(B,Ψ)) is commensurate with Bs−1/p,p(im d⊕Z+

S ).

Proof. (i) The first decomposition (2.104) follows from (2.38) and J s,p
(B,Ψ),t ⊂

kerHs,p
(B,Ψ). For (2.105), observe that ker(H(B,Ψ)|Cs,p

(B,Ψ)
) = ker ˜H(B,Ψ)|T s,p .

Thus, the elements of ker ˜Hs,p
(B,Ψ) that do not lie in ker ˜H(B,Ψ)|T s,p have

nonzero Bs,pΩ0(Y ; iR) components. To find them, we need to solve the
equation

(2.108) H(B,Ψ)(b, ψ) − dα = 0,

with α nonzero. Since imHs,p
(B,Ψ) ⊆ Ks−1,p

(B,Ψ) by the previous lemma, we need
dα ∈ Ks−1,p

(B,Ψ), whence α ∈ kerΔ. Since imHs,p
(B,Ψ) has finite codimension in

Ks−1,p
(B,Ψ) by Lemma 2.9, then (2.108) has a solution (b, ψ) for all α in some

subspace of ker Δ of finite codimension. The (b, ψ) is unique up to an element
of kerHs,p

(B,Ψ). Thus, picking a complement18 of kerHs,p
(B,Ψ) in T s,p

(B,Ψ) specifies
for us a map Θ0 : kerΔ ��� T s,p whose graph Γs,p

0 is a complementary sub-
space of ker( ˜H(B,Ψ)|T s,p

(B,Ψ)
) in ker ˜Hs,p

(B,Ψ), and which parametrizes solutions
to (2.108).

(ii) This follows from applying rΣ and r to (i). The graph property of
Γ̌s−1/p,p

0 comes from noting that any element of Γs,p
0 is uniquely determined

by the 0 ⊕ 0 ⊕Bs−1/p,pΩ0(Σ; iR) component of its image under r. This fol-
lows from considering the homogeneous Dirichlet problem for Δ, namely

Δα = 0,
α|Σ = β.

18The reasoning used in the proof of Lemma 2.9 shows that H(B,Ψ) : T s,p →
Ks−1,p

(B,Ψ) has a right parametrix. This implies that kerHs,p
(B,Ψ) ⊂ T s,p is comple-

mented.
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This problem has a unique solution for every β.
(iii) By Lemma 2.4, we have r(ker ˜Hs,p

(B,Ψ)) is commensurate with
Bs−1/p,pZ+. Let

π0 : ˜T s−1/p,p
Σ → 0 ⊕ 0 ⊕Bs−1/p,pΩ0(Σ; iR)

denote the coordinate projection onto the last 0-form factor in ˜T s−1/p
Σ . By

Lemma 2.5 and (ii), we have

π0 : Bs−1/p,pZ+
c → 0 ⊕ 0 ⊕Bs−1/p,pΩ0(Σ; iR),

π0 : Bs−1/p,pΓ̌0 → 0 ⊕ 0 ⊕Bs−1/p,pΩ0(Σ; iR)

are Fredholm. We now apply Lemma A.3 with X = ˜T s−1/p,p
Σ and comple-

mentary subspaces

X1 = T s−1/p,p
Σ ⊕Bs−1/p,pΩ0(Σ; iR) ⊕ 0,

X0 = 0 ⊕ 0 ⊕Bs−1/p,pΩ0(Σ; iR).

Let U = r(ker ˜Hs,p
(B,Ψ)) and V = Bs−1/p,pZ+ in the lemma. Then from that

lemma and (ii), we conclude that r(ker(H(B,Ψ)|Cs,p)) = U ∩X1 is commen-
surate with Bs−1/p,p(Z+

e ⊕Z+
S ) = V ∩X1. This proves the first part of (iii).

For the second part, consider the coordinate projection of X1 onto T s−1/p,p
Σ .

This restricts to an isomorphism of V ∩X1 onto its image Bs−1/p,p(im d⊕
Z+
S ), by Lemma 2.5. It follows that this projection maps U ∩X1 onto a space

commensurate with V ∩X1, and this space is precisely rΣ(kerHs,p
(B,Ψ)). �

Corollary 2.1. Let (B,Ψ) ∈ Ms,p(Y ) and suppose H(B,Ψ) : T s,p → Ks−1,p
(B,Ψ)

is surjective. Then

(i) the maps Θs,p
0 and Θ̌s−1/p,p

0 are defined everywhere;

(ii) rΣ : ker(H(B,Ψ)|Cs,p) → T s−1/p,p
Σ is an isomorphism onto its image.

Proof. (i) This follows from the constructions of Θ0 and Θ̌0 in the previous
lemma.

(ii) By unique continuation, the map r : ker( ˜Hs,p
(B,Ψ)) → ˜T s−1/p,p

Σ is an
isomorphism onto its range. By restriction, it follows that

(2.109) r : ker( ˜H(B,Ψ)|Cs,p) → ˜T s−1/p,p
Σ
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is injective. To prove (ii), it suffices to show that

(2.110) rΣ : ker( ˜H(B,Ψ)|Cs,p) → T s−1/p,p
Σ

is injective, since ˜H(B,Ψ)|Cs,p = H(B,Ψ)|Cs,p . So suppose (2.110) is not injec-
tive. Since (2.109) is injective, this means there is an element of the form
((0, 0), α, 0) ∈ r(ker( ˜H(B,Ψ)|Cs,p)) with α ∈ Bs−1/p,pΩ0(Σ) nonzero. On the
other hand, r(ker ˜Hs,p

(B,Ψ)) is a Lagrangian subspace of ˜T s−1/p,p
Σ by Lemma 2.7.

This contradicts (i), since if Θ̌s−1/p,p
0 is defined everywhere, then (0, 0, α, 0)

cannnot symplectically annihilate Γ̌s−1/p,p
0 . Indeed, the spaces 0 ⊕ Ω0(Σ) ⊕ 0

and 0 ⊕ 0 ⊕ Ω0(Σ) are symplectic conjugates with respect to the symplectic
form (2.78). �

Proof of Theorem 2.1: (i) We will apply the method of symplectic reduction,
via Theorem A.1 and Corollary A.2. By Lemma 2.6, we may consider the
operators ˜H1/2,2

(B,Ψ) and H1/2,2
(B,Ψ), their kernels and the restrictions of these latter

spaces to the boundary. Indeed, let us verify the hypotheses of Lemma 2.6.
Since p ≥ 2, we have the embedding Bs,p(Σ) ⊆ Bs−ε,2(Σ) for any ε > 0 by
Theorem C.6. Choose ε small enough so that s− ε > 1/2 + ε. Then (t, q) =
(1/2, 2) and t′ = 1

2 + ε satisfies the hypotheses of Lemma 2.6 since we have
Bs−ε,2(Y ) ×B1/2,2(Y ) → Bt′−1,2(Y ).

Let U = L2(TΣ ⊕ Ω0(Σ; iR) ⊕ 0). It is a coisotropic subspace of the
strongly symplectic Hilbert space L2

˜TΣ = ˜T 0,2
Σ . If we apply Theorem A.1

to the Lagrangian L = r(ker ˜H1/2,2
(B,Ψ)), the symplectic reduction of L with

respect to U is precisely rΣ(ker ˜H1/2,2
(B,Ψ)) by Lemma 2.10(ii). It follows that

rΣ(kerH1/2,2
(B,Ψ)) is a Lagrangian inside U ∩ J̃ΣU = L2TΣ. We would like to

make the corresponding statement in the Besov topologies. By
Lemma 2.10(iii), we know that rΣ(kerHs,p

(B,Ψ)) is commensurate withBs−1/p,p

(im d⊕Z+
S ). On the other hand, we have that Bs−1/p,p(im d⊕Z+

S ) and
JΣB

s−1/p,p(im d⊕Z+
S ) are Fredholm in T s−1/p,p

Σ . Indeed, the Hodge decom-
position implies im d and im ∗ d are Fredholm in Bs−1/p,pΩ1(Σ; iR), and
since ρ(ν) interchanges the positive and negative eigenspaces Z+

S and Z−
S of

the tangential boundary operator BS associated to the spinor Dirac opera-
tor DBref , we have that the Bs−1/p,p(Σ) closures of Z+

S and ρ(ν)Z+
S = Z−

S
are Fredholm in Bs−1/p,pΓ(S). That these decompositions are Fredholm in
Besov topologies follow from the fact these spaces are given by the range of
pseudodifferential projections whose principal symbols are complementary
projections, and pseudodifferential operators are bounded on Besov spaces.
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We now apply Corollary A.2, with X = T 0,2
Σ and Y = T s−1/p,p

Σ , to conclude
that rΣ(kerHs,p

(B,Ψ)) is a Lagrangian subspace of Bs−1/p,pTΣ.
(ii) By Lemma 2.7 and (i), r(ker ˜Hs,p

0 ) is commensurate with Bs−1/p,pZ+

and rΣ(kerHs,p
0 ) is commensurate with Bs−1/p,p(im d⊕Z+

S ), respectively.
Since ˜H0 is smooth, then we can even say more: there exist pseudodifferential
projections onto r(ker ˜Hs,p

0 ) and Bs−1/p,pZ+ that have the same principal
symbol, which means that their difference is a pseudodifferential operator of
order −1. It follows that the projection of r(ker ˜Hs,p

0 ) onto any complement19

of Bs−1/p,pZ+ is smoothing of order one. Consequently, letting U s−1/p,p =
Bs−1/p,p(TΣ ⊕ Ω0(Σ; iR) ⊕ 0), then the projection of r(ker ˜Hs,p

0 ) ∩ U onto
any complement of Bs−1/p,pZ+ ∩ U is smoothing of order one. (Here, we
use the fact that U s−1/p,p +Bs−1/p,pZ+ has finite codimension in ˜T s−1/p,p

Σ .)
Applying symplectic reduction with respect to U s−1/p,p, it follows that the
projection of rΣ(kerHs,p

0 ) onto any complement of Bs−1/p,p(im d⊕Z+
S ) is

smoothing of order one.
For a nonsmooth configuration (B,Ψ), we also want to show that the

projection of rΣ(kerHs,p
(B,Ψ)) onto any complement of Bs−1/p,p(im d⊕Z+

S )
is smoothing of order one. Then this will imply the corresponding property
with respect to the pair of spaces JΣ(rΣ(kerHs,p

(B,Ψ))) and Bs−1/p,pJΣ(im d⊕
Z+
S ), the latter being of finite codimension in Bs−1/p,p(ker d∗ ⊕ (Z+

S ⊕Z0
S)).

We can then apply Lemma A.4(ii) while noting Remark A.1, to conclude
that the projection P+

(B0,Ψ0)
differs from π+ by a operator that is smoothing

of order one.
Thus, by our first step, it suffices to show that the projection of

rΣ(kerHs,p
(B,Ψ)) onto any complement of rΣ(kerHs,p

0 ) smooths by one deriva-
tive. This follows however from Lemma 2.6. Indeed, we can take (t, q) = (s, p)
and t′ = s+ 1 in Lemma 2.6, and since there exists a projection of ker ˜Hs,p

(B,Ψ)

onto a complement of ker ˜Hs,p
0 that smooths by one derivative, the corre-

sponding statement is true for the spaces rΣ(kerHs,p
(B,Ψ)) and rΣ(kerHs,p

0 ).
Here, it is important that all finite-dimensional errors involved are spanned
by elements that are smoother by one derivative (so that the finite rank
projection onto the space spanned by these elements smooths by one deriva-
tive), which is guaranteed by Lemma 2.6. From these properties, one can

19More precisely, in what follows, when we speak of some unspecified comple-
mentary subspace, we mean one defined by a pseudodifferential projection. This is
convenient because pseudodifferential operators preserve regularity, i.e., they map
Bt,q(Σ) to itself for all t, q ∈ R, and so we never lose any smoothness once we have
gained it.
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now apply Lemma A.4(ii), with

X = T s−1/p,p
Σ ,

U0 = Bs−1/p,p
(

im d⊕Z+
S

)

,

U1 = Bs−1/p,p
(

ker d∗ ⊕ (Z−
S ⊕Z0

S)
)

,

V1 = rΣ(kerHs,p
(B,Ψ)),

V2 = JΣ(rΣ(kerHs,p
(B,Ψ))).

In our case, we know that X = U0 ⊕ U1 = V0 ⊕ V1, and that the Ui and Vi

are commensurate, i = 0, 1, where the compact error is smoothing of order
one. Thus, by Remark A.1, P+

(B0,Ψ0)
= πV0,V1 and π+ = πU0,U1 differ by an

operator that smooths of order one.
(iii) Let

πSR : r(kerHs,p
(B,Ψ)) → rΣ(kerHs,p

(B,Ψ))

be the symplectic reduction as in (i), i.e., πSR is the map which projects
r(kerHs,p

(B,Ψ)) ⊂ ˜T s−1/p,p
Σ onto rΣ(kerHs,p

(B,Ψ)), induced by the projection
˜T s−1/p,p
Σ → T s−1/p,p

Σ onto the first factor. This map is an isomorphism by
Corollary 2.1(ii). Hence, π−1

SR exists and is bounded. Define

P(B,Ψ) = ˜P(B,Ψ)(πSR)−1P+
(B,Ψ),(2.111)

where ˜P(B,Ψ) is the Poisson operator of ˜Hs,p
(B,Ψ). By construction, P+

(B,Ψ) :

T s−1/p,p
Σ → rΣ(kerHs,p) and P̃(B,Ψ)(πSR)−1 : rΣ(kerHs,p) → ker(H(B,Ψ)|Cs,p).

Thus, P(B,Ψ) : T s−1/p,p
Σ → ker(H(B,Ψ)|Cs,p) and rΣP(B,Ψ) = P+

(B,Ψ). Moreover,

from Corollary 2.1(ii), it follows that P(B,Ψ) : T s−1/p,p
Σ → ker(H(B,Ψ)|Cs,p)

and rΣ : ker(H(B,Ψ)|Cs,p) → T s−1/p,p
Σ are inverse to each other.

(iv) We establish the smooth case, with the continuous case being exactly
the same. It is easy to check that all the subspaces and operators involved in
the construction of the maps in (ii) and (iii) vary smoothly with (B(t),Ψ(t)).
Indeed, since Ks−1,p(Y ) is a bundle, by Proposition 2.1, we can locally iden-
tify its fibers, i.e., the maps

ΠKs−1,p
(B0,Ψ0)

: Ks−1,p
(B(t),Ψ(t)) → Ks−1,p

(B0,Ψ0)

are all isomorphisms for all (B(t),Ψ(t)) sufficiently Bs,p(Y ) close to a fixed
(B0,Ψ0). Then restricting to t on a small interval for which this is the
case, then we have kerH(B(t),Ψ(t)) = ker

(

ΠKs−1,p
(B0,Ψ0)

H(B(t),Ψ(t))

)

, and ΠKs−1,p
(B0,Ψ0)
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Hs,p
(B(t),Ψ(t)) : T s,p → Ks−1,p

(B0,Ψ0)
are all surjective for all t. From this, it follows

that kerHs,p
(B(t),Ψ(t)) varies smoothly, and since J s,p

(B(t),Ψ(t)) ∈ kerHs,p
(B(t),Ψ(t))

for all t, this implies ker(H(B(t),Ψ(t))|Cs,p vary smoothly. Indeed, one argues
as in Lemma 2.6 for the continuity of ker ˜Hs,p

(B,Ψ) with respect to (B,Ψ),
only now we have in addition that all objects vary smoothly. Since rΣ :
ker(H(B(t),Ψ(t))|Cs,p) → T s−1/p,p

Σ is an isomorphism onto its image for all t, it
follows that rΣ(kerHs,p

(B(t),Ψ(t))) varies smoothly. Since this holds for all t on
small intervals, it holds for all t along the whole path.

To prove the final statement, we observe that all the above methods
apply to ˜Ht,q

(B,Ψ) and Ht,q
(B,Ψ) without modification in light of Lemma 2.6. See

also Remark 2.2. �
We conclude this section with some important results that will be used

later.

Lemma 2.11. Let (B,Ψ) ∈ Ms,p(Y ), assume all the hypotheses of Theo-
rem 2.1, and suppose (t, q) satisfies (2.92) or more generally (2.91). Then
the space

(2.112) L
t−1/q,q
(B,Ψ) := JΣrΣ(kerHt,q

(B,Ψ)) ⊕Bt−1/q,qΩ0(Σ) ⊕ 0

is a complementary Lagrangian for r(ker ˜Ht,q
(B,Ψ)) in ˜T t−1/q,q

Σ . The space

L
t−1/q,q
(B,Ψ) varies continuously with (B,Ψ) ∈ Ms,p(Y ) (as long as Hs,p

(B,Ψ) :
T s,p → Ks−1,p

(B,Ψ) is always surjective).

Proof. By Theorem 2.1(i), JΣrΣ(kerHt,q
(B,Ψ)) and rΣ(kerHt,q

(B,Ψ)) are comple-

mentary Lagrangians in T t−1/q,q
Σ . By Lemma 2.10(ii) and Corollary 2.1(i), it

is now easy to see that (2.112) is a complement of r(ker ˜Ht,q
(B,Ψ)) in ˜T t−1/q,q

Σ .
Since rΣ(kerHt,q

(B,Ψ)) depends continuously on (B,Ψ) ∈ Ms,p(Y ) by Theo-
rem 2.1(iv), the last statement follows. �

For t > 1/q, define

˜Xt,q
(B,Ψ) = {(b, ψ, α) ∈ ˜T t,q : r(b, ψ, α) ∈ JΣrΣ(kerHt,q

(B,Ψ))(2.113)

⊕Bt−1/q,qΩ0(Σ) ⊕ 0},

the subspace of ˜T t,q whose boundary values lie in (2.112). Likewise, define

(2.114) Xt,q
(B,Ψ) = Ct,q ∩ ˜Xt,q

(B,Ψ) ⊂ T t,q.
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By the above lemma, the domains ˜Xt,q
(B,Ψ) and Xt,q

(B,Ψ) are such that their
boundary values under r and rΣ are complementary to the boundary values
of ker ˜Ht,q

(B,Ψ) and kerHt,q
(B,Ψ), respectively. Thus, we expect these domains

to be ones on which the operators ˜Ht,q
(B,Ψ) and Ht,q

(B,Ψ) are invertible elliptic
operators. This is exactly what the following proposition tells us.

Proposition 2.2. Let (B,Ψ) ∈ Ms,p(Y ) and assume all the hypotheses of
Theorem 2.1. Let t > 1/q and q ≥ 2 satisfy (2.92) or more generally (2.91).
Then the maps

˜H(B,Ψ) : ˜Xt,q
(B,Ψ) → ˜T t−1,q,(2.115)

H(B,Ψ) : Xt,q
(B,Ψ) → Kt−1,q

(B,Ψ)(2.116)

are isomorphisms. Moreover, we have the commutative diagram

˜Xt,q
(B,Ψ)

˜T t−1,q

Xt,q
(B,Ψ) Kt−1,q

(B,Ψ)

˜H(B,Ψ) ��

H(B,Ψ) ��
��

��

��

��

(2.117)

In particular, we can take (t, q) = (s+ 1, p) in the above.
The previous statements all remain true if ˜Xt,q

(B,Ψ) and Xt,q
(B,Ψ) are replaced

with ˜Xt,q
(B′,Ψ′) and Xt,q

(B′,Ψ′), respectively, for (B′,Ψ′) ∈ Ms,p in a sufficiently
small Bs,p(Y ) neighborhood of (B,Ψ).

Proof. The map ˜H(B,Ψ) : ˜T t,q → ˜T t−1,q is surjective, by unique continua-
tion, and by restricting to ˜Xt,q

(B,Ψ), we have eliminated the kernel. Indeed, r :

ker ˜Ht,q
(B,Ψ) → ˜T t−1/q,q

Σ is an isomorphism onto its image and r(ker ˜Ht,q
(B,Ψ)) ∩

Lt,q
(B,Ψ) = 0, whence ker ˜Ht,q

(B,Ψ) ∩ ˜Xt,q = 0. This proves (2.115) is an isomor-
phism. For (2.116), the same argument shows that (2.116) is injective. Indeed,
rΣ : ker(H(B,Ψ)|Ct,q) → T t−1/q,q

Σ is injective by Corollary 2.1(ii) and
Remark 2.2, and

rΣ(kerH(B,Ψ)|Ct,q) ∩ rΣXt,q = rΣ(kerHt,q
(B,Ψ)) ∩ JΣrΣ(kerHt,q

(B,Ψ))) = 0

by Theorem 2.1(i). It remains to show that (2.116) is surjective. We already
know that H(B,Ψ) : T t,q → Kt−1,q

(B,Ψ) is surjective by assumption. So given any
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(a, φ) ∈ T s,p, we need to find a (b, ψ) ∈ Xt,q
(B,Ψ) such that H(B,Ψ)(b, ψ) =

H(B,Ψ)(a, φ). Without loss of generality, we can suppose (a, φ) ∈ Ct,q by
(2.38) and since J t,q

(B,Ψ),t ⊆ kerHt,q
(B,Ψ). Since the condition (b, ψ) ∈ Xt,q

(B,Ψ)
imposes no restriction on the normal component of b at the boundary, we
only need to make sure that rΣ(b, ψ) ∈ JΣrΣ(kerHt,q

(B,Ψ)). Since we have a
decomposition

T t−1/q,q
Σ = rΣ(kerHt,q

(B,Ψ)) ⊕ JΣrΣ(kerHt,q
(B,Ψ)),

we can write rΣ(a, φ) = (a0, φ0) + (a1, φ1) with respect to the above decom-
position. Now let (b, ψ) = (a, φ) − P(B,Ψ)(a0, φ0), where P(B,Ψ) is the Pois-
son operator of Ht,q

(B,Ψ) with range equal to ker(H(B,Ψ)|Ct,q) as given by
Theorem 2.1. It follows that (b, ψ) ∈ Xt,q

(B,Ψ), since rΣ(b, ψ) = (a1, φ1) ∈ JΣrΣ

(kerHt,q
(B,Ψ)) and that (b, ψ) ∈ Ct,q since both (a, φ) and P(B,Ψ)(a0, φ0) belong

to Ct,q. Thus, (b, ψ) ∈ Xt,q
(B,Ψ) and we have Ht,q

(B,Ψ)(b, ψ) = Ht,q
(B,Ψ)(a, φ). So

(2.116) is surjective, hence an isomorphism.
The commutativity of the diagram (2.117) now readily follows since

(2.115) is an isomorphism which extends the isomorphism (2.116). Finally,
for the last statement, we know that the space ˜Xt,q

(B,Ψ) varies continuously

with (B,Ψ) since the space L
t−1/q,q
(B,Ψ) varies continuously. Since J t,q

(B,Ψ),t ⊆
˜Xt,q

(B,Ψ) for all (B,Ψ), it follows that

Xt,q
(B,Ψ) = ΠCt,q

(B,Ψ)
{x ∈ T t,q : r(x) ∈ L

t−1/q,q
(B,Ψ) },

where ΠCt,q
(B,Ψ)

is the projection of T t,q onto Ct,q
(B,Ψ) given by (2.38). From

this, we see that Xt,q
(B,Ψ) varies continuously since Lt,q

(B,Ψ) and J t,q
(B,Ψ),t vary

continuously. The continuity of X̃t,q
(B,Ψ) and Xt,q

(B,Ψ) with respect to (B,Ψ)
implies the last statement. �

The above proposition will be important when study the analytic prop-
erties of the spaces Ms,p(Y ) and Ms,p(Y ) in the next section, where we will
need to consider the inverse of the operator (2.116). The point is that by
restricting the domain of the Hessian operator H(B,Ψ), it becomes invertible
and its inverse smooths by one derivative in a certain range of topologies
depending on the regularity of the configuration (B,Ψ). Thus, the inverse of
H(B,Ψ) behaves like a pseudodifferential operator of order −1 in this range,
which is what one would formally expect since H(B,Ψ) is a first-order oper-
ator. In particular, for (B,Ψ) smooth, we have the following corollary:
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Corollary 2.2. If (B,Ψ) ∈ M is smooth, then for all q ≥ 2 and t > 1/q,
the maps

˜H(B,Ψ) : ˜Xt,q
(B,Ψ) → ˜T t−1,q,(2.118)

H(B,Ψ) : Xt,q
(B,Ψ) → Kt−1,q

(B,Ψ)(2.119)

are isomorphisms.

3. The space of monopoles

Having studied the linear theory of the Hessian operators ˜H(B,Ψ) and H(B,Ψ)

in the previous section, we now study the space of Besov monopoles Ms,p(Y, s)
and Ms,p(Y, s) on Y . Under suitable hypotheses, we show that these spaces
are Banach manifolds and their local coordinate charts obey important ana-
lytic properties. Moreover, we show that smooth monopoles are dense in
the spaces Ms,p(Y, s) and Ms,p(Y, s), so that these Banach manifolds are
Besov completions of the smooth monopole spaces M(Y, s) and M(Y, s),
respectively. These analytic properties are crucial for the analysis in [10].

Notation 3.1. Recall that T s,p
(B,Ψ) = T(B,Ψ)C

s,p(Y ) is the tangent space to a
configuration (B,Ψ) ∈ Cs,p(Y ). Since all these tangent spaces are identical,
in the previous section we worked within one fixed copy and called it T s,p.
Now that we will work on the configuration space level, it is appropriate to
keep track of the basepoint at times and we reintroduce this into our notation,
though there really is no gain or loss of information by adding or dropping
the basepoint from our notation.

Recall that we have fixed a spinc structure s from the start, which up to
now, has not played any role in the analysis we have done. We now consider
the following assumption:

(3.1) c1(s) is nontorsion or H1(Y,Σ) = 0.

The following lemma is the fundamental reason to make the above assump-
tion:

Lemma 3.1. Suppose (3.1) holds. Let s > max(3/p, 1/2). Then for every
(B,Ψ) ∈ Ms,p(Y, s), we have H(B,Ψ) : T s,p

(B,Ψ) → Ks−1,p
(B,Ψ) is surjective.

Proof. There are two cases s > 1 and s ≤ 1. We deal with the latter case,
with the more regular case s > 1 being similar. So for s < 1, there are two
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main steps. First, we proceed as in the proof of Theorem E.2 to show that any
element in the cokernel of H(B,Ψ) : T s,p

(B,Ψ) → Ks−1,p
(B,Ψ) must be more regular,

in fact, it must lie in Ks+1,p
(B,Ψ). This follows because an element in the cokernel

of H(B,Ψ) satisfies an overdetermined elliptic boundary value problem, and
thus we can bootstrap its regularity. Once we have enough regularity, we
can integrate by parts, which shows that any element (b, ψ) ∈ Ks+1,p

(B,Ψ) in the
cokernel of Hs,p

(B,Ψ) must satisfy H(B,Ψ)(b, ψ) = 0 and rΣ(b, ψ) = 0. From here,
the second step is to apply the unique continuation theorem, Corollary E.1,
to deduce that the cokernel of Hs,p

(B,Ψ) is zero.
For the first step, by Lemma 2.9, we know that H(B,Ψ) : T s,p

(B,Ψ) → Ks−1,p
(B,Ψ)

has closed range and finite-dimensional cokernel. Let (b, ψ) ∈ T 1−s,p′

(B,Ψ) , p′ =
p/(p− 1), be an element in the dual space of Ks−1,p

(B,Ψ) which annihilates

imHs,p
(B,Ψ). Indeed, we have that T 1−s,p′

(B,Ψ) is the dual space of T s−1,p
(B,Ψ) by The-

orem C.4. Next, we have the topological decomposition

(3.2) T 1−s,p′

(B,Ψ) = J 1−s,p′

(B,Ψ),t ⊕K1−s,p′

(B,Ψ) .

This follows from the decomposition (2.37), since one can check that the
map (2.43), by duality, is bounded on T 1−s,p′

(B,Ψ) . More precisely, by our choice
of s, we have the multiplication maps

Bs,p(Y ) ×Bs,p(Y ) → Bs,p(Y ),

Bs,p(Y ) ×Bs−1,p(Y ) → Bs−1,p(Y ),

which by duality means that the multiplications

Bs,p(Y ) ×B−s,p′
(Y ) → B−s,p′

(Y ),(3.3)

Bs,p(Y ) ×B1−s,p′
(Y ) → B1−s,p′

(Y )(3.4)

are also bounded. Thus, repeating the proof of (2.37) shows that there
exists a bounded projection of T 1−s,p′

(B,Ψ) onto J 1−s,p′

(B,Ψ) through K1−s,p′

(B,Ψ) , for

(B,Ψ) ∈ Cs,p(Y ). This proves (3.2). Since J 1−s,p′

(B,Ψ),t and Ks−1,p
(B,Ψ),t annihilate

each other, we see can choose our annihilating element (b, ψ) ∈ K1−s,p′

(B,Ψ) since
im (Hs,p

(B,Ψ)) ⊆ Ks−1,p
(B,Ψ). Moreover, the fact that (b, ψ) annihilates im (Hs,p

(B,Ψ))
also means that H(B,Ψ)(b, ψ) = 0 (weakly, i.e., as a distribution). Altogether
then, we see that we have the weak equation

(3.5) ˜H0(b, ψ) = (B −Bref ,Ψ)#(b, ψ).
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Everything now proceeds as in the bootstrapping argument in Theorem E.2,
but with modifications since the multiplication term is not smooth. Because
of the multiplication (3.4), we have (B −Bref ,Ψ)#(b, ψ) ∈ ˜T 1−s,p′

. By Theo-
rem D.1(i), rΣ(b, ψ) ∈ T 1−s−1/p′,p′

Σ is well defined. Applying Green’s formula
to the symmetric operator H(B,Ψ), we obtain for all (a, φ) ∈ T that

0 = (H(B,Ψ)(a, φ), (b, ψ))L2(Y ) − ((a, φ),H(B,Ψ)(b, ψ))L2(Y )(3.6)
= −ω(rΣ(a, φ), rΣ(b, ψ)).

In the first line, we used that (b, ψ) annihilates im (H(B,Ψ)) and H(B,Ψ)

(b, ψ) = 0 (weakly). In the second line, we use that rΣ(b, ψ) ∈ T 1−s−1/p′,p′

Σ is
well defined. Since (3.6) holds for all (a, φ) ∈ T , we have rΣ(b, ψ) = 0. This
boundary condition together with (3.5) implies that we have an overdeter-
mined elliptic boundary value problem (cf. Proposition 2.2, we have r(b, ψ) ∈
0 ⊕B1−s−1/p′,p′

Ω0(Σ; iR) ⊕ 0). By Theorem D.1, this means we gain a deriva-
tive and so (b, ψ) ∈ T 2−s,p′

(B,Ψ) . This implies (B −B0,Ψ)#(b, ψ) is more regular
than an element of T 1−s−1/p′,p′

, and we can elliptic bootstrap again. We keep
on boostrapping until we obtain (b, ψ) ∈ T s+1,p

(B,Ψ) , which is one derivative more
regular than the maximum regularity of (3.5) since (B,Ψ) ∈ Ms,p(Y ). Thus,
(b, ψ) ∈ Ks+1,p

(B,Ψ) is now a strong solution to H(B,Ψ)(b, ψ) = 0.
We can now use Corollary E.1, since Ks+1,p

(B,Ψ) ⊂ K1,2
(B,Ψ), as p ≥ 2. This

theorem implies the following. Either (b, ψ) = 0, in which case the coker-
nel of H(B,Ψ) : T s,p

(B,Ψ) → Ks−1,p
(B,Ψ) is zero, or else (B,Ψ) = (B, 0) and ψ ≡ 0,

b ∈ H1(Y,Σ; iR). In the former case, our map H(B,Ψ) : T s,p
(B,Ψ) → Ks−1,p

(B,Ψ) is
surjective and we are done. For the latter case, we apply assumption (3.1).
In case c1(s) is nontorsion, det(s) admits no flat connections, hence, we can-
not have a reducible configuration (B,Ψ) = (B, 0) to be a monopole, else
Bt would be a flat connection on det(s). In case H1(Y,Σ) = 0, then we see
(b, ψ) = 0 and the Hessian is surjective. This proves the lemma. �

Assumption 3.1. For the rest of this paper, we assume (3.1) holds.

So let us fix Y and s satisfying (3.1), and write Ms,p = Ms,p(Y, s) and
Ms,p = Ms,p(Y, s) for short. The conclusion of the lemma guarantees that
we have transversality for the monopole equations. This implies the following
theorem:

Theorem 3.1. For s > max(3/p, 1/2), Ms,p and Ms,p are closed subman-
ifolds of Cs,p(Y ).
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Proof. For any smooth (B,Ψ) ∈ C(Y ), one can verify directly that SW3

(B,Ψ) ∈ K(B,Ψ).20 Thus when (B,Ψ) ∈ Cs,p(Y ), we have SW3(B,Ψ) ∈
Ks−1,p

(B,Ψ), since the map d∗
(B,Ψ) : T s−1,p

(B,Ψ) → Bs−2,pΩ0(Y ; iR) is still bounded by
our choice of s. Proceeding as in [6, Chapter 12], we can therefore think of
SW3 : Cs,p(Y ) → Ks−1,p(Y ) as a section of the Banach bundle Ks−1,p(Y ) →
Cs,p(Y ) (see Proposition 2.1). The previous lemma shows that SW3 is trans-
verse to the zero section. More precisely, from Proposition 2.1, we have
that Ks−1,p(Y ) → Cs,p(Y ) is Banach bundle complementary to the bundle
J s−1,p

t (Y ) → Cs,p(Y ), which means that for any configuration (B0,Ψ0) ∈
Cs,p(Y ), there exists a neighborhood U of (B0,Ψ0) in Cs,p(Y ) such that

(3.7) ΠKs−1,p
(B0,Ψ0)

: Ks−1,p
(B,Ψ) → Ks−1,p

(B0,Ψ0)

is an isomorphism for all (B,Ψ) ∈ U. Here, ΠKs−1,p
(B0,Ψ0)

: T s−1,p
(B,Ψ) → Ks−1,p

(B0,Ψ0)
is

the projection through J s−1,p
(B0,Ψ0),t

given by (2.45). Thus, if SW3(B0,Ψ0) = 0,
we consider the map

(3.8) f = ΠKs−1,p
(B0,Ψ0)

SW3 : U → Ks−1,p
(B0,Ψ0)

.

Then f(B,Ψ) = 0 if and only if SW3(B,Ψ) = 0, and at such a monopole,
we have

(3.9) D(B,Ψ)f = ΠKs−1,p
(B0,Ψ0)

Hs,p
(B,Ψ) : T s,p

(B,Ψ) → Ks−1,p
(B0,Ψ0)

.

By Lemma 3.1, H(B,Ψ) : T s,p
(B,Ψ) → Ks−1,p

(B,Ψ) is surjective, and so since (3.7) is
an isomorphism, this means D(B,Ψ)f is surjective for all (B,Ψ) ∈ U. Thus,
we can apply the implicit function theorem to conclude that f−1(0) is a sub-
manifold of Cs,p(Y ). Since we can apply the preceding local model near every
monopole, it follows that Ms,p = SW−1

3 (0) ⊂ Cs,p(Y ) is globally a smooth

20This is no coincidence. On a closed-manifold Y , the Seiberg–Witten
equations are the variational equations for the Chern–Simons–Dirac func-
tional, see [6]. In other words, SW3(B,Ψ) is the gradient of the Chern–
Simons–Dirac functional CSD, i.e., the differential of CSD at (B,Ψ) satisfies
D(B,Ψ)CSD(b, ψ) = (SW3(B,Ψ), (b, ψ)) so that SW3(B,Ψ) vanishes precisely at the
critical points of CSD. When ∂Y is nonempty, we still have D(B,Ψ)CSD(b, ψ) =
(SW3(B,Ψ), (b, ψ)) = 0 for (b, ψ) vanishing on the boundary, in particular, for
(b, ψ) ∈ J(B,Ψ),t. Since CSD is invariant under the gauge group Gid,∂(Y ), this
means (SW3(B,Ψ), (b, ψ)) = 0 for all (b, ψ) ∈ J(B,Ψ),t. So SW3(B,Ψ) ∈ K(B,Ψ), the
orthogonal complement.
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Banach submanifold. Lemma 2.2 implies that we have the product decom-
position

(3.10) Ms,p = Gs+1,p
id,∂ (Y ) ×Ms,p.

Thus Ms,p is also a submanifold of Cs,p(Y ), since Gs+1,p
id,∂ (Y ) is a smooth

Banach Lie group by Lemma 2.1. The closedness of Ms,p and Ms,p readily
follows from the fact that these two spaces are defined as the zero set of
equations. �

Remark 3.1. Note that we can take the open neighborhood U ⊂ Cs,p(Y )
of (B0,Ψ0) to contain a ball in the L2(Y ) topology (so that U is a very large
open subset of Cs,p(Y )). Indeed, this is because Ks−1,p

(B1,Ψ1)
and J s−1,p

(B0,Ψ0),t
are

complementary for any (B1,Ψ1) in a sufficiently small L2(Y ) neighborhood
of (B0,Ψ0), and so the map (3.7) is an isomorphism for (B,Ψ) = (B1,Ψ1).
To show this, it suffices to show that

(3.11) Ks−1,p
(B1,Ψ1)

∩ J s−1,p
(B0,Ψ0),t

= 0.

Indeed, this will show that (3.7) injective. However, it must also be an
isomorphism, since Ks−1,p

(B,Ψ) varies continuously with (B,Ψ) ∈ Cs,p(Y ) as a
consequence of Proposition 2.1. Namely, since (3.7) is an isomorphism for
(B,Ψ) = (B0,Ψ0), then if it is injective for all (B,Ψ) = (B(t),Ψ(t)) along
a path in Cs,p(Y ) joining (B0,Ψ0) to (B1,Ψ1), then it must also be an iso-
morphism for all such (B,Ψ).

We now show (3.11). Note that an element of Ks−1,p
(B1,Ψ1)

∩ J s−1,p
(B0,Ψ0),t

is
determined by a ξ ∈ Bs,pΩ0(Y ; iR) that solves

Δξ + Re (Ψ1,Ψ0)ξ = 0,(3.12)
ξ|Σ = 0.(3.13)

Using elliptic regularity for the Dirichlet Laplacian, we bootstrap the regu-
larity of ξ to obtain ξ ∈ B2,2Ω2(Y ; iR). Writing Δ + (Ψ1,Ψ0) = Δ + |Ψ0|2 +
Re (Ψ1 − Ψ0,Ψ0), we see that the operator Δ + (Ψ1,Ψ0) is a perturbation
of the operator

Δ + |Ψ0|2 : B2,2Ω0
t (Y ; iR) → L2Ω0(Y ; iR),

whose domain B2,2Ω0
t (Y ; iR) consists of those α ∈ B2,2Ω0(Y ; iR) such that

α|Σ = 0. We showed that this latter operator is invertible in the proof of



The Seiberg–Witten equations on manifolds with boundary I 623

Lemma 2.3. It follows that if the multiplication operator Re (Ψ1 − Ψ0,Ψ0)
has small enough norm, as a map from B2,2(Y ) to L2(Y ), then the operator
Δ + Re (Ψ1,Ψ0) remains invertible and the only solution to (3.12) and (3.13)
is ξ = 0. We have

‖Re (Ψ1 − Ψ0,Ψ0)α‖L2(Y ) ≤ ‖Ψ1 − Ψ0‖L2(Y )‖Ψ0‖L∞(Y )‖α‖L∞(Y )

(3.14)

≤ C‖Ψ1 − Ψ0‖L2(Y )‖Ψ0‖Bs,p(Y )‖α‖B2,2(Y )

since both Bs,p(Y ) and B2,2(Y ) embed into L∞(Y ). Hence, if ‖Ψ1 −
Ψ0‖L2(Y ) is sufficiently small, we see that the only solution to (3.12) and
(3.13) is ξ = 0, which establishes (3.11).

Theorem 3.1 proves the first part of our main theorem. However, to
better understand the analytic properties of these monopole spaces, we want
to construct explicit charts for our manifolds Ms,p and Ms,p. Furthermore,
we want to show that smooth monopoles are dense in these spaces. These
properties are not only of interest in their own right but will be essential
in [10].

In a neighborhood of (B,Ψ) ∈ Ms,p, the Banach manifolds Ms,p and
Ms,p are modeled on their tangent spaces at (B,Ψ), namely kerHs,p

(B,Ψ)

and ker(H(B,Ψ)|Cs,p) = ker( ˜H(B,Ψ)|T s,p), respectively. Moreover, the tangent
space to our manifolds at (B,Ψ) are the range of operators which are “nearly
pseudodifferential.” Indeed, in the previous section, we constructed a Pois-
son operator P(B,Ψ) whose range is ker( ˜H(B,Ψ)|T s,p). Since this operator is
constructed from the Calderon projection P+

(B,Ψ) and the Poisson operator
P̃+

(B,Ψ) for the augmented Hessian ˜H(B,Ψ), both of which differ from pseu-
dodifferential operators by a compact operator, it is in this sense that P(B,Ψ)

is close to being pseudodifferential.
Let (B1,Ψ1), (B0,Ψ0) ∈ Cs,p(Y ) and write (b, ψ) = (B1 −B0,Ψ1 − Ψ0).

Then we have the difference equation

SW3(B1,Ψ1) − SW3(B0,Ψ0) = H(B0,Ψ0)(b, ψ) + (ρ−1(ψψ∗)0, ρ(b)ψ),
(3.15)

which reflects the fact that SW3 is a quadratic map. The linear part, is
of course, given by the Hessian, and its quadratic part is just a pointwise
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multiplication map. Thus, we define the bilinear map

q : T × T → T ,

q((b1, ψ1), (b2, ψ2)) =
(

ρ−1(ψ1ψ
∗
2)0,

1
2
(

ρ(b1)ψ2 + ρ(b2)ψ1

)

)

(3.16)

which as a quadratic function enters into the Seiberg–Witten map via (3.15).
The map q extends to function space completions as governed by the multi-
plication theorems. Observe that q is a bounded map on T s,p since Bs,p(Y )
is an algebra. This is key, because the Seiberg–Witten map SW3 is the sum
of a first-order differential operator and a zeroth-order operator, and using
Proposition 2.2, we have elliptic regularity for the linear part of the operator
on suitable domains.

From these observations, we can prove the following important lemma
which we will need to show that smooth monopoles are dense in Ms,p.

Lemma 3.2. Let s > max(3/p, 1/2). Let (B0,Ψ0) ∈ Ms,p. Then Bs+1,p(Y )
configurations are dense in the affine space (B0,Ψ0) + T(B0,Ψ0)Ms,p.

Proof. Pick any smooth (B1,Ψ1) ∈ CC(Y ) in Coulomb-gauge with respect
to Bref . Let (b, ψ) = (B1 −B0,Ψ1 − Ψ0). Then from (3.15) together with the
Coulomb-gauge condition, we have

(3.17) ˜Hs,p
(B0,Ψ0)

(b, ψ) = SW3(B1,Ψ1) − q((b, ψ), (b, ψ)),

where on the right-hand side the first term is smooth and the second term
is in T s,p. Applying Proposition 2.2 with (t, q) = (s+ 1, p), we see that
(b, ψ) ∈ (b′, ψ′) + ker( ˜H(B0,Ψ0)|T s,p) for some (b′, ψ′) ∈ Xs+1,p

(B0,Ψ0)
⊆ T s+1,p. In

other words, if we invert ˜Hs,p
(B0,Ψ0)

in (3.17), we find that (b, ψ) is equal to a
smoother element (b′, ψ′), modulo an element of the kernel of ˜Hs,p

(B0,Ψ0)
|T s,p . It

remains to show that Bs+1,p(Y ) configurations are dense in the latter space.
First, we have Bs+1,p(Y ) configurations are dense in ker ˜Hs,p

(B0,Ψ0)
⊂ ˜T s,p

by Corollary D.2 and Lemma 2.6. Similarly, Bs+1,p(Y ) configurations are
dense in Γ0, the subspace given by (2.105). This follows from the con-
struction of Γ0. First, we have Γ0 is a graph of the map Θ0, which is
defined over kerΔ ⊆ Bs,pΩ0(Y ; iR), and smooth configurations are dense
in kerΔ by Corollary D.2. We now apply Proposition 2.2 with (t, q) =
(s+ 1, p), since the map Θ0 is defined by inverting the Hessian. Altogether,
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we see that Bs+1,p(Y ) configurations are dense in Γ0. Because of the decom-
position (2.105), it now follows from the density of Bs+1,p(Y ) configura-
tions in ker ˜Hs,p

(B0,Ψ0)
and Γ0 that Bs+1,p(Y ) configurations are dense in

ker( ˜H(B0,Ψ0)|T s,p) = T(B0,Ψ0)Ms,p.
Altogether, we have shown that (B0,Ψ0) + T(B0,Ψ0)Ms,p = (B1,Ψ1) +

(b′, ψ′) + T(B0,Ψ0)Ms,p, where (B1,Ψ1) is smooth, (b′, ψ′) ∈ T s+1,p, and
Bs+1,p(Y ) configurations are dense in T(B0,Ψ0)Ms,p. This proves the lemma.

�
From Theorem 2.1, given (B0,Ψ0) ∈ Ms,p, we have a projection

π(B0,Ψ0) = P(B0,Ψ0)rΣ : T s,p
(B0,Ψ0)

→ T(B0,Ψ0)M
s,p onto the tangent space

T(B0,Ψ0)M
s,p for any (B0,Ψ0) ∈ Ms,p. Thus, locally Ms,p is the graph of

a map from T(B0,Ψ0)M
s,p to any complementary subspace in T s,p

(B0,Ψ0)
. We

wish to describe the analytic properties of this local graph model in more
detail. First, we record the following simple lemma which describes for us
natural complementary subspaces for T(B0,Ψ0)M

s,p.

Lemma 3.3. Let s > max(3/p, 1/2). Given any (B0,Ψ0) ∈ Ms,p, we have
the direct sum decomposition

(3.18) T s,p
(B0,Ψ0)

= T(B0,Ψ0)M
s,p ⊕Xs,p

(B,Ψ)

for any (B,Ψ) ∈ Ms,p sufficiently Bs,p(Y ) close to (B0,Ψ0), where Xs,p
(B,Ψ)

is defined as in (2.114).

Proof. By Lemma 3.1, H(B0,Ψ0) : T s,p
(B0,Ψ0)

→ Ks−1,p
(B0,Ψ0)

is surjective. Thus,
(3.18) follows readily from T(B0,Ψ0)M

s,p = kerHs,p
(B0,Ψ0)

and H(B0,Ψ0) :
Xs,p

(B,Ψ) → Ks−1,p
(B0,Ψ0)

being an isomorphism by Proposition 2.2. Note also that
Xs,p

(B,Ψ) is the kernel of the projection π(B,Ψ) : T s,p → T(B,Ψ)Ms,p. �

Using any one of above complementary subspaces for T(B0,Ψ0)M
s,p (we

will always use Xs,p
(B0,Ψ0)

for simplicity), we can describe the Banach man-
ifold Ms,p locally as follows. In the proof of Theorem 3.1, we introduced
the local defining function f in (3.8) on a neighborhood U ⊂ Cs,p(Y ) so that
Ms,p ∩ U = f−1(0). In other words, we used the implicit function theorem
for f to obtain Ms,p. On the other hand, we can describe Ms,p in an equiva-
lent way using the inverse function theorem, as in the framework of Theorem
B.1, whereby Ms,p is given locally by the preimage of an open set under dif-
feormophism rather than the preimage of a regular value of a surjective map.
This means we need to construct a local straightening map as in Definition
B.2. Following the same ansatz in Theorem B.1, we have the following:
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Lemma 3.4. Let (B0,Ψ0) ∈ Ms,p, and let X = T s,p
(B0,Ψ0)

, X0 = T(B0,Ψ0)M
s,p

and X1 = Xs,p
(B0,Ψ0)

. We have X = X0 ⊕X1 and define the map

F(B0,Ψ0) : X0 ⊕X1 → X,

x = (x0, x1) 	→ x0 + (H(B0,Ψ0)|X1)
−1ΠKs−1,p

(B0,Ψ0)
SW3

(

(B0,Ψ0) + x
)

.

(3.19)

(i) Then F(B0,Ψ0)(0) = 0, D0F(B0,Ψ0) = 0, and F(B0,Ψ0) is a local diffeo-
morphism in a Bs,p(Y ) neighborhood of 0.

(ii) There exists an open set V ⊂ X containing 0 such that for any x ∈ V ,
we have (B0,Ψ0) + x ∈ Ms,p if and only if F(B0,Ψ0)(x) ∈ X0. We can
choose V to contain an L2(Y ) ball, i.e., there exists a δ > 0 such that

V ⊇ {x ∈ X : ‖x‖L2(Y ) < δ}.

Furthermore, we can choose δ = δ(B0,Ψ0) uniformly for all (B0,Ψ0)
in a sufficiently small L∞(Y ) neighborhood of any configuration in
Ms,p.

(iii) If (B0,Ψ0) ∈ Ms,p then for any x ∈ V ∩ Cs,p
(B0,Ψ0)

, we have (B0,Ψ0) +
x ∈ Ms,p if and only if F(B0,Ψ0)(x) ∈ X0 ∩ Cs,p

(B0,Ψ0)
.

Proof. (i) We have F(B0,Ψ0)(0) = 0 since SW3(B0,Ψ0) = 0. Furthermore, the
differential of F(B0,Ψ0) at 0 is the identity map by construction; more explic-
itly,

(D0F(B0,Ψ0))(x) = x0 + (H(B0,Ψ0)|X1)
−1ΠKs−1,p

(B0,Ψ0)
H(B0,Ψ0)(x)

= x0 + (H(B0,Ψ0)|X1)
−1H(B0,Ψ0)(x) = x0 + x1.

So by the inverse function theorem, F(B0,Ψ0) is a local diffeomorphism in a
Bs,p(Y ) neighborhood of 0.

(ii) Observe that F(B0,Ψ0)(x) ∈ X0 if and only if the second term of (3.19),
which lies in X1, vanishes. Let (B,Ψ) = (B0,Ψ0) + x. Then for x in a small
L2(Y ) neighborhood of 0 ∈ X, call it V , we know by Remark 3.1 that (3.7)
is an isomorphism. Since SW3

(

(B0,Ψ0) + x
)

∈ Ks−1,p
(B,Ψ) and (H(B0,Ψ0)|X1)

−1

is an isomorphism, it follows that the second term of (3.19) vanishes if and
only if SW3

(

(B0,Ψ0) + x
)

vanishes, i.e., if and only if (B0,Ψ0) + x ∈ Ms,p.
Equation (3.14) shows that the size of this L2(Y ) ball depends only on
‖Ψ0‖L∞(Y ), and this implies the continuity statement for δ.
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(iii) Since X1 ⊂ Cs,p
(B0,Ψ0)

by (2.114), we have that F(B0,Ψ0)(x) ∈ Cs,p
(B0,Ψ0)

if and only if x0 ∈ Cs,p
(B0,Ψ0)

. Then (iii) now follows from the previous steps
via intersection with Cs,p

(B0,Ψ0)
. �

Thus, the map F(B0,Ψ0) in the above lemma is a local straightening map
for Ms,p (where we translate by the basepoint (B0,Ψ0) so that we can regard
Ms,p as living inside the Banach space T s,p

(B0,Ψ0)
) such that its restriction

to Cs,p
(B0,Ψ0)

yields a local straightening map for Ms,p if (B0,Ψ0) ∈ Ms,p.
In Theorem 3.2, we will show, in the precise sense of Definition B.2 that
F(B0,Ψ0) is a local straightening map for Ms,p within a “large” neighborhood
of (B0,Ψ0), where large means that the open set contains a ball in a topology
weaker than the ambient Bs,p(Y ) topology. First, we need another important
lemma, which allows us to redefine F(B0,Ψ0) on weaker function spaces:

Lemma 3.5. Let (B0,Ψ0) ∈ Ms,p for s > max(3/p, 1/2).

(i) If x ∈ T s,p
(B0,Ψ0)

, then we can write F(B0,Ψ0)(x) as

F(B0,Ψ0)(x) = x+ (H(B0,Ψ0)|Xs+1,p
(B0,Ψ0)

)−1ΠKs,p
(B0,Ψ0)

q(x, x)(3.20)

=: x+Q(B0,Ψ0)(x, x),(3.21)

where q is the quadratic multiplication map given by (3.16).

(ii) The map (H(B0,Ψ0)|Xs+1,p
(B0,Ψ0)

)−1ΠKs,p
(B0,Ψ0)

: T s,p → T s+1,p extends to a
bounded map

(3.22) (H(B0,Ψ0)|Xs+1,p
(B0,Ψ0)

)−1ΠKs,p
(B0,Ψ0)

: LqT → H1,qT

for any 1 < q <∞.

(iii) Let 3 ≤ q ≤ ∞. For x ∈ LqT(B0,Ψ0), define F(B0,Ψ0)(x) by (3.21). Then
F(B0,Ψ0) : LqT(B0,Ψ0) → LqT(B0,Ψ0) is a local diffeomorphism in a Lq(Y )
neighborhood of 0.

Proof. (i) With x = (x0, x1) as in Lemma 3.4, we have

F (x) = x0 + (H(B0,Ψ0)|Xs,p
(B0,Ψ0)

)−1ΠKs−1,p
(B0,Ψ0)

SW3

(

(B0,Ψ0) + x
)

(3.23)

= x0 + (H(B0,Ψ0)|Xs,p
(B0,Ψ0)

)−1ΠKs−1,p
(B0,Ψ0)

(

H(B0,Ψ0)(x) + q(x, x)
)

= x0 + x1 + (H(B0,Ψ0)|Xs,p
(B0,Ψ0)

)−1ΠKs−1,p
(B0,Ψ0)

q(x, x).
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Next, since Bs,p(Y ) is an algebra, then q(x, x) ∈ T s,p. It follows that in
(3.23), we may replace ΠKs−1,p

(B0,Ψ0)
with ΠKs,p

(B0,Ψ0)
. From Proposition 2.2, we

know that we have isomorphisms

H(B0,Ψ0) : Xs,p
(B0,Ψ0)

→ Ks−1,p
(B0,Ψ0)

,

H(B0,Ψ0) : Xs+1,p
(B0,Ψ0)

→ Ks,p
(B0,Ψ0)

,

from which it follows that if y ∈ Ks,p
(B0,Ψ0)

, then H−1
(B0,Ψ0)

(y) ∈ Xs+1,p
(B0,Ψ0)

. The
decomposition (3.20) now follows.

(ii) First, we note that Lemma 2.3 extends to Sobolev spaces, since its
proof, which involves studying elliptic boundary value problems, carries over
verbatim to Sobolev spaces (see Appendix Appendix D) so long as the requi-
site function space multiplication works out. In this case, we want ΠKs,p

(B0,Ψ0)

to yield a bounded map on LqT , in which case, the bounded multiplications
that we want are the boundedness of

Bs,p(Y ) ×H1,q(Y ) → Lq(Y ),(3.24)

Bs,p(Y ) × Lq(Y ) → H−1,q(Y ),(3.25)

cf. (2.28) and (2.29). However, these are straightforward, because we have the
embedding Bs,p(Y ) ↪→ L∞(Y ), and we have the obvious bounded multipli-
cation L∞(Y ) × Lq(Y ) → Lq(Y ), which therefore trivially imply the above
multiplications.

From this, it remains to show that (H(B0,Ψ0)|Xs+1,p
(B0,Ψ0)

)−1 extends to a
bounded map LqT → H1,qT . However, the exact same considerations show
that this is the case due to the boundedness of the above multiplication
maps.

(iii) We have a bounded multiplication map Lq(Y ) × Lq(Y ) → Lq/2(Y ),
and for q ≥ 3, we have the Sobolev embedding H1,q/2(Y ) ↪→ Lq(Y ). Hence
(ii) implies that the map F(B0,Ψ0) is bounded on LqT for q ≥ 3. Since
F(B0,Ψ0)(0) = 0 and D0F(B0,Ψ0) = id, the inverse function theorem implies
F(B0,Ψ0) is a local diffeomorphism in a Lq(Y ) neighborhood of 0. �

Thus, from now on, we may work with the expression (3.21) for F(B0,Ψ0)

since it coincides with (3.19) when the latter is well defined.
Given the local straightening map F(B0,Ψ0) and the various properties

it obeys above, we now import the abstract point of view in Appendix
Appendix B into our particular situation to construct charts for Ms,p. This
gives us the following picture for a neighborhood of the monopole space
Ms,p. At any (B0,Ψ0) ∈ Ms,p, letting X1 = Xs,p

(B0,Ψ0)
be a complement of
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Figure 1: A local chart map for Ms,p at (B0,Φ0).

T(B0,Ψ0)M
s,p as in Lemma 3.3, then near (B0,Ψ0), the space Ms,p(Y ) is

locally the graph of a map, which we denote by E1
(B0,Ψ0)

, from a neighbor-
hood of 0 in T(B0,Ψ0)M

s,p to X1 (see Figure 1). The local chart map we
obtain in this way for Ms,p(Y ) is precisely the induced chart map of the
local straightening map F(B0,Ψ0) above, in the sense of Definition B.3. In
addition, we show that the map E1

(B0,Ψ0)
is smoothing, due to the fact that

the lower order term Q(B0,Ψ0) occurring in F(B0,Ψ0), as defined in (3.21),
is smoothing, i.e., it maps T s,p

(B0,Ψ0)
to T s+1,p

(B0,Ψ0)
. Moreover, for any q > 3,

we show that F(B0,Ψ0) is a local straightening map in some Lq(Y ) neigh-
borhood of (B0,Ψ0). Consequently, the induced chart maps we obtain yield
charts for Lq(Y ) neighborhoods of Ms,p, which are large neighborhoods when
viewed within the ambient Bs,p(Y ) topology. This latter property will be
very important in [10], and it is the analog of how the local Coulomb slice
theorems for nonabelian gauge theory allow for gauge fixing within large
neighborhoods (i.e., neighborhoods defined with respect to a weak norm) of
a reference connection (see, e.g.,[19, Theorem 8.1]).21

We have the following theorem:

Theorem 3.2. Assume s > max(3/p, 1/2).

(i) Let (B0,Ψ0) ∈ Ms,p and X1 = Xs,p
(B0,Ψ0)

be a complement of T(B0,Ψ0)

Ms,p in T s,p
(B0,Ψ0)

. Then there exists a neighborhood U of 0 ∈ T(B0,Ψ0)

21Such gauge-fixing properties are important for issues related to compactness,
since in proving a compactness theorem, one considers a sequence of configurations
that are bounded in some norm, hence strongly convergent along a subsequence
but with respect to a weaker norm. If one wants to gauge fix the elements in the
convergent subsequence, one therefore needs a gauge-fixing theorem on balls defined
with respect to the weaker norm.
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Ms,p and a map E1
(B0,Ψ0)

: U → X1 such that the map

E(B0,Ψ0) : U → Ms,p,(3.26)

x 	→ (B0,Ψ0) + x+ E1
(B0,Ψ0)

(x)

is a diffeomorphism of U onto an open neighborhood of (B0,Ψ0) in
Ms,p. We have E1

(B0,Ψ0)
(0) = 0, D0E

1
(B0,Ψ0)

= 0 and furthermore, the
map E1

(B0,Ψ0)
smooths by one derivative, i.e., E1

(B0,Ψ0)
(x) ∈ T s+1,p

(B0,Ψ0)
for

all x ∈ U .

(ii) Let q > 3. We can choose U such that both U and its image E(B0,Ψ0)(U)
contain Lq(Y ) neighborhoods, i.e., there exists a δ > 0, depending on
(B0,Ψ0), such that

U ⊇ {x ∈ T(B0,Ψ0)M
s,p : ‖x‖Lq(Y ) < δ},

E(B0,Ψ0)(U) ⊇ {(B,Ψ) ∈ Ms,p : ‖(B,Ψ) − (B0,Ψ0)‖Lq(Y ) < δ}.

The constant δ can be chosen uniformly in (B0,Ψ0), for all (B0,Ψ0) in
a sufficiently small L∞(Y ) neighborhood of any configuration in Ms,p.

(iii) If (B0,Ψ0) ∈ Ms,p, then the map E(B0,Ψ0) restricted to U ∩ Cs,p
(B0,Ψ0)

is
a diffeomorphism onto a neighborhood of (B0,Ψ0) in Ms,p.

(iv) The smooth monopole spaces M and M are dense in Ms,p and Ms,p,
respectively.

Proof. (i–ii) Given q > 3, consider F(B0,Ψ0) as defined by (3.21). By
Lemma 3.5(iii), F(B0,Ψ0) has a local inverse F−1

(B0,Ψ0)
defined in an Lq neigh-

borhood, call it Vq, of 0 ∈ LqT(B0,Ψ0). First, we show that F−1
(B0,Ψ0)

(equiva-
lently, F(B0,Ψ0)) is regularity preserving, namely, that F−1

(B0,Ψ0)
(x) ∈ T s,p

(B0,Ψ0)

if and only if x ∈ T s,p
(B0,Ψ0)

∩ Vq. In one direction, suppose F−1
(B0,Ψ0)

(x) belongs
to T s,p

(B0,Ψ0)
. Then since F(B0,Ψ0) is continuous on T s,p

(B0,Ψ0)
, then x = F(B0,Ψ0)

(F−1
(B0,Ψ0)

(x)) ∈ T s,p
(B0,Ψ0)

. In the other direction, if x ∈ T s,p
(B0,Ψ0)

, we apply
(3.21) to obtain

F−1
(B0,Ψ0)

(x) = x−Q(B0,Ψ0)(F
−1
(B0,Ψ0)

(x), F−1
(B0,Ψ0)

(x)).

A priori, we only know that F−1
(B0,Ψ0)

(x) ∈ LqT(B0,Ψ0). However, in the above,
we have x ∈ T s,p

(B0,Ψ0)
and Q(B0,Ψ0)(x) ∈ H1,q/2T by Lemma 3.5. When q > 3,

then Q(B0,Ψ0) always gains for us regularity, and so we can bootstrap the
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regularity of F−1
(B0,Ψ0)

(x) until it has the same regularity as x. Thus, this
shows that x ∈ T s,p if and only if F−1

(B0,Ψ0)
(x) ∈ T s,p.

Shrink Vq if necessary so that Vq ∩ T s,p ⊂ V2, where V2 is defined to be
the open set in Lemma 3.4(ii). This is possible since V2 contains an L2(Y )
ball and q > 2. Then if we let V = Vq ∩ T s,p, then V satisfies the key prop-
erty of Lemma 3.4(ii), namely if x ∈ V , then (B0,Ψ0) + x ∈ Ms,p if and only
if F (x) ∈ X0. The key step we have done here is that we have shown that
F−1

(B0,Ψ0)
is well defined on the open set V , so that F(B0,Ψ0) becomes a local

straightening map for Ms,p within the neighborhood V of (B0,Ψ0) ∈ Ms,p.
Indeed, with just Lemma 3.4, we would only know that F(B0,Ψ0) is a straight-
ening map for a small Bs,p(Y ) neighborhood of (B0,Ψ0) ∈ Ms,p, which is
what we get when we apply the inverse function theorem for F(B0,Ψ0) as a
map on T s,p. Here, by rewriting F(B0,Ψ0) in Lemma 3.5 in a way that makes
sense on Lq, we get an Lq open set on which we have the inverse F−1

(B0,Ψ0)
.

The smoothing property of Q(B0,Ψ0) allows us to conclude the regularity
preservation property of F−1

(B0,Ψ0)
, i.e., it preserves the Bs,p(Y ) topology, so

that altogether, the map F(B0,Ψ0) is a straightening map for Ms,p on the
large open set V ⊂ T s,p.

Once we have the local straightening map F(B0,Ψ0), the construction of
induced chart maps for Ms,p now follows from the general picture described
in the appendix. Letting U = F (V ) ∩X0, the map E(B0,Ψ0) is given by

(3.27) E(B0,Ψ0)(x) = (B0,Ψ0) + F−1
(B0,Ψ0)

(x), x ∈ U.

The map E1
(B0,Ψ0)

(x) is just the nonlinear part of E(B0,Ψ0)(x), and it is given
by

E1
(B0,Ψ0)

(x) = F−1
(B0,Ψ0)

(x) − x(3.28)

= −Q(B0,Ψ0)(F
−1
(B0,Ψ0)

(x), F−1
(B0,Ψ0)

(x)), x ∈ U.(3.29)

The smoothing property of E1
(B0,Ψ0)

now readily follows from the smoothing
property ofQ(B0,Ψ0). By construction, U contains an Lq(Y ) ball since V does.
This implies E(B0,Ψ0)(U) contains an Lq(Y ) neighborhood of (B0,Ψ0) ∈
Ms,p(Y ), since M ∩ ((B0,Ψ0) + V ) = E(B0,Ψ0)(U).

Finally, the local uniform dependence of δ can be seen as follows. First,
the constant δ of Lemma 3.4 can be chosen uniformly for (B0,Ψ0) in a
small L∞(Y ) neighborhood of any configuration in Ms,p. Next, the map
F(B0,Ψ0) : LqT → LqT varies continuously as (B0,Ψ0) varies in the L∞(Y )
topology. It follows from the construction of V that we can find a fixed δ
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such that V contains a δ-ball in the Lq(Y ) topology as (B0,Ψ0) varies inside
a small L∞(Y ) ball. We have now established all statements in (i–ii).

(iii) This follows from the above and Lemma 3.4(iii).
(iv) By Lemma 3.2 and the smoothing property of E1

(B0,Ψ0)
, we have

that Ms+1,p is dense in Ms,p. Iterating this in s, we see that M is dense in
Ms,p. Since smooth gauge transformations are dense in the space of gauge
transformations, it follows from the decomposition Ms,p = Gs+1,p

id,∂ (Y ) ×Ms,p

that M is dense in Ms,p as well. �
Retracing through the steps in the proof of Theorem 3.2, one sees that

the chart maps for Ms,p define bounded maps on weaker function spaces.
This allows us to extend these chart maps to Lq(Y ) balls inside the closures
of the tangent spaces to Ms,p in weaker topologies. This yields for us the
following important corollary:

Corollary 3.1. Let (B0,Ψ0) ∈ Ms,p. Let 1/p ≤ t ≤ s and pick q ≥ 3 accor-
ding to the following: for t = 1/p, set q = 3; else for t > 1/p, choose q > 3
such that Bt,p ↪→ Lq(Y ). Consider the open subset

U t,p = {x ∈ Bt,p(T(B0,Ψ0)M
s,p) : ‖x‖Lq(Y ) < δ}

of Bt,p(T(B0,Ψ0)M
s,p), the Bt,p closure of T(B0,Ψ0)M

s,p.

(i) For δ sufficiently small, E(B0,Ψ0) extends to a bounded map E(B0,Ψ0) :
U t,p → Ct,p(Y ). It is a diffeomorphism onto its image and is therefore
a submanifold of Ct,p(Y ) contained in Mt,p.

(ii) The constant δ can be chosen uniformly for (B0,Ψ0) in a sufficiently
small L∞(Y ) ball around any configuration of Ms,p.

The corresponding results hold also for Ms,p. Finally, all the previous state-
ments hold with the Bt,p(Y ) topology replaced with the Ht,p(Y ) topology.

Proof. We only do the lowest regularity case t = 1/p, since the case t >
1/p is simpler and handled in a similar way. For t = 1/p, then in try-
ing to mimic the proof of Theorem 3.2, we show that the map F(B0,Ψ0) :
L3T(B0,Ψ0) → L3T(B0,Ψ0) preserves B1/p,p(Y ) regularity on a small L3(Y )
neighborhood of 0.

In one direction, starting with x ∈ T 1/p,p
(B0,Ψ0)

, we want to show that F(B0,Ψ0)

(x) ∈ T 1/p,p
(B0,Ψ0)

. This means we must show that Q(B0,Ψ0) is bounded on T t,p.
We have the embedding B1/p,p(Y ) ↪→ L3p/2(Y ). Hence, we have a multiplica-
tion map B1/p,p(Y ) ×B1/p,p(Y ) ↪→ L3p/4(Y ). Next, the projection ΠKs,p

(B0,Ψ0)
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onto Ks,p
(B0,Ψ0)

extends to a bounded map on L3p/4T since (B0,Ψ0) is
sufficiently regular (see the proof of Lemma 3.5). Finally when we apply
the inverse Hessian, we get an element of H1,3p/4(Y ) (Proposition 2.2 gen-
eralizes to Sobolev spaces, see Remark 3.2). Since we have an embedding
H1,3p/4(Y ) ↪→ B1−1/p,p(Y ) ⊆ B1/p,p(Y ), this shows that Q(B0,Ψ0) is bounded
on B1/p,p(Y ). In the other direction, suppose x ∈ L3T(B0,Ψ0) and F(B0,Ψ0)

(x) ∈ T 1/p,p
(B0,Ψ0)

. In this situation, we have Q(B0,Ψ0)(x) ∈ H1,3/2T(B0,Ψ0), which

embeds into T 1/p,p
(B0,Ψ0)

, and so it follows that x ∈ T 1/p,p
(B0,Ψ0)

. (For t > 1/p, we do
not have Q(B0,Ψ0)(x) ∈ T t,p

(B0,Ψ0)
, which is why we need q > 3 so that we have

room to elliptic bootstrap.)
All the steps in Theorem 3.2 follow through as before to prove the

corollary for t = 1/p. The arithmetic for the Ht,p spaces yields the same
result. �

3.1. Boundary values of the space of monopoles

Define the space of tangential boundary values of monopoles

(3.30) Ls−1/p,p(Y, s) = rΣ(Ms−1/p,p(Y, s)).

By (3.10), we also have

(3.31) Ls−1/p,p(Y, s) = rΣ(Ms,p(Y, s)).

With Y and s fixed and satisfying (3.1), we simply write Ls−1/p,p =
Ls−1/p,p(Y, s).

We know that Ms,p is a manifold for s > max(3/p, 1/2) by Theorem 3.1.
Under further restrictions on s, we will see that Ls−1/p,p is also a manifold
and the restriction map rΣ : Ms−1/p,p → Ls−1/p,p is a covering map with
fiber Gh,∂(Y ), which, as defined in (2.11), is the gauge group of harmonic
gauge transformations which restrict to the identity on Σ. Furthermore, this
covering map implies that the chart maps for Ms,p push forward under rΣ
to chart maps for the manifold Ls−1/p,p. Consequently, the nice analytic
properties of the chart maps for Ms,p in Theorem 3.2 induce chart maps for
Ls−1/p,p that have similar desirable analytic properties.

First, we establish several important lemmas.

Lemma 3.6. For s > max(3/p, 1/2), rΣ : Ms,p → Cs−1/p,p(Σ) is an
immersion.
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Proof. This is just Corollary 2.1(ii). �
The following important lemma allows us to control the norm of a

monopole on Y in terms of the norm of its restriction on Σ.

Lemma 3.7. Let s− 1/p > 1/2 or s ≥ 1 if p = 2. Then there exists a con-
tinuous function μs,p : R

+ → R
+ such that for any (B,Ψ) ∈ Ms,p, we can

find a gauge transformation g ∈ Gh,∂(Y ) such that

(3.32) ‖g∗(B −Bref ,Ψ)‖Bs,p(Y ) ≤ μs,p

(

‖rΣ(B −Bref ,Ψ)‖Bs−1/p,p(Σ)

)

.

Proof. For the moment, assume (B,Ψ) ∈ C(Y ) is any smooth configuration.
Define the following quantities:

Ean(B,Ψ) =
1
4

∫

Y
|FBt |2 +

∫

Y
|∇BΨ|2 +

1
4

∫

Y
(|Ψ|2 + (s/2))2 −

∫

Y

s2

16
,

(3.33)

Etop(B,Ψ) = −
∫

Σ
(D∂

BΨ,Ψ) +
∫

(H/2)|Ψ|2.
(3.34)

Here s is the scalar curvature of Y , H is the mean curvature of Σ and D∂
B

is the boundary Dirac operator

(D∂
BΨ)|Σ = (ρ(ν)−1DBΨ)|Σ − (∇B,νΨ)|Σ + (H/2)Ψ|Σ,

where ∇B is the spinc covariant derivative determined by B. Thus, D∂
B only

involves differentiation along the directions tangential to Σ.
If we view (B,Ψ) as a time-independent configuration for the four-

dimensional Seiberg–Witten equations (see the discussion before
Theorem E.3), then the above quantities are the analytic and topological
energy of (B,Ψ), respectively, as defined in [6]. According to [6, Proposition
4.5.2], we have the energy identity

(3.35) Ean(B,Ψ) = Etop(B,Ψ) + ‖SW3(B,Ψ)‖2
L2(Y ).

Observe that

Etop(B,Ψ) ≤ C
(

‖Ψ‖2
B1/2,2(Σ) + ‖Ψ‖2

L3(Σ)‖(B −Bref)|Σ‖L3(Σ) + ‖Ψ‖2
L2(Σ)

)

≤ C ′‖rΣ(B −Bref ,Ψ)‖3
B1/2,2(Σ)

for some constants C,C ′ independent of (B,Ψ). Here we used the embedding
B1/2,2(Σ) ↪→ L3(Σ).
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In what follows, we will use x � y to denote x ≤ Cy for some constant
C that does not depend on the configuration (B,Ψ). Now consider a smooth
solution of the three-dimensional Seiberg–Witten equations. Then we have
SW3(B,Ψ) = 0, and so it follows that

(3.36) Ean(B,Ψ) � ‖rΣ(B −Bref ,Ψ)‖3
B1/2,2(Σ).

From this and the definition of Ean(B,Ψ), we get the a priori bound

(3.37) ‖Ψ‖L4(Y ) � 1 + ‖rΣ(B −Bref ,Ψ)‖3
B1/2,2(Σ).

If (B,Ψ) ∈ Ms,p is not smooth, we can approximate (B,Ψ) by smooth
configurations by Theorem 3.2(iii). We have rΣ(B −Bref ,Ψ) ∈ T s−1/p,p

Σ ↪→
T s−1/p−ε,2

Σ for any ε > 0 by Theorem C.6. Since s > 1/2 + 1/p, we can choose
ε so that s− 1/p− ε > 1/2. Thus, we have uniform control over theB1/2,2(Σ)
norm of the tangential boundary values of an approximating sequence
to (B,Ψ). Thus, taking the limit, we see that (3.37) also holds for (B,Ψ) ∈
Ms,p(Y ).

Our remaining task is to use the a priori control (3.37) and the elliptic
estimates for the Seiberg–Witten equations in Coulomb gauge to bootstrap
our way to the estimate (3.32). By Corollary D.1, we have the following
elliptic estimate on 1-forms b:

‖b‖Bt,q(Y ) � ‖db‖Bt−1,q(Y ) + ‖d∗b‖Bt−1,q(Y ) + ‖b|Σ‖Bt−1/q,q(Σ) + ‖bh‖Bt−1,q(Y ),

(3.38)

where bh is the orthogonal projection of b onto the finite-dimensional space

(3.39) H1(Y,Σ; iR) ∼= {a ∈ Ω1(Y ; iR) : da = d∗a = 0, a|Σ = 0}.

Here t > 1/q and q ≥ 2.
Now let (B,Ψ) ∈ Ms,p be any configuration. Since it is in in the Coulomb

slice determined by Bref , then equation (E3.38) implies

‖(B −Bref)‖Bt,q(Y ) � ‖FBt − FBt
ref
‖Bt−1,q(Y ) + ‖rΣ(B −Bref)‖Bt−1/q,q(Σ)

(3.40)

+ ‖(B −Bref)h‖Bt−1,q(Y ),

where t, q will be chosen later. Since Dirichlet boundary conditions are
overdetermined for the smooth Dirac operator DBref , we have the elliptic
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estimate

(3.41) ‖Ψ‖Bt,q(Y ) � ‖DBrefΨ‖Bt−1,q(Y ) + ‖Ψ‖Bt−1/q,q(Σ).

There exists an absolute constant C such that for any configuration (B0,Ψ0),
we can find a gauge transformation g ∈ Gh,∂(Y ) such that g∗(B0,Ψ0) satisfies
‖(g∗(B0 −Bref))h‖Bt−1,q(Y ) ≤ C, since the quotient of H1(Y,Σ; iR) by the
lattice Gh,∂(Y ) is a torus. To keep notation simple, redefine (B,Ψ) by such a
gauge transformation. Such a gauge transformation preserves containment
in Ms,p since the monopole equations are gauge invariant and the Coulomb-
slice is preserved by Gh,∂(Y ). So using the bound ‖(B −Bref)h‖Bt−1,q(Y ) ≤ C
and the identity SW3(B,Ψ) = 0, the bounds (3.40) and (3.41) become

‖(B −Bref)‖Bt,q(Y ) � ‖Ψ2‖Bt−1,q(Y ) + ‖(B −Bref)|Σ‖Bt−1/q,q(Σ) + 1,(3.42)

‖Ψ‖Bt,q(Y ) � ‖ρ(B −Bref)Ψ‖Bt−1,q(Y ) + ‖Ψ‖Bt−1/q,q(Σ).(3.43)

We will use these estimates, bootstrapping in t and q and using the a priori
control (3.37), to get the estimate (3.32).

Let us first consider the case p = 2 and s ≥ 1. Letting t = 1 and q = 2,
(3.42) and (3.37) yield

‖B −Bref‖B1,2(Y ) � 1 + ‖Ψ‖L4(Y ) + ‖(B −Bref)|Σ‖B1/2,2(Σ)

� 1 + ‖rΣ(B −Bref ,Ψ)‖3
B1/2,2(Σ).

This yields control over ‖B −Bref‖L4(Y ) since we have the embedding B1,2

(Y ) ↪→ L6(Y ). Using this estimate in (3.43) with t = 1, q = 2, to control
ρ(B −Bref), we have

‖Ψ‖B1,2(Y ) � ‖B −Bref‖L4(Y )‖Ψ‖L4(Y ) + ‖Ψ‖B1/2,2(Σ)

� 1 + ‖rΣ(B −Bref ,Ψ)‖6
B1/2,2(Σ).

This proves the estimate for s = 1. The estimate (3.32) for s ≥ 1 now follows
from boostrapping the elliptic estimates (3.42) and (3.43) in t. Indeed, once
we gain control over ‖(B,Ψ)‖Bt,q(Y ), we can control the quadratic terms
‖Ψ2‖Bt′−1,q(Y ) and ‖ρ(B −Bref)Ψ‖Bt′−1,q(Y ) for some t′ > t as long as t′ ≤ s.
After finitely many steps of bootstrapping, we get (3.32), where the function
μs,p can be computed explicitly if desired.

For p > 2 and s ≥ 1, we use the embedding Cs−1/p,p(Σ) ↪→ Cs−1/p−ε,2(Σ),
for any ε > 0. From the previous case, we find that we can control
‖(B,Ψ)‖Bs,2(Y ) in terms of ‖(B,Ψ)‖Bs−1/2,2(Σ). Since Bs,2(Y ) ⊆ B1,2(Y ) ↪→
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L6(Y ), the quadratic terms in (3.42) and (3.43) lie in L3(Y ). Since we have
the embedding L3(Y ) ⊂ B0,q(Y ), where q = max(3, p), we can repeat the
bootstrapping process (in t) as in the previous case to the desired estimate
(3.32) for any s ≥ 1 and p ≤ 3. Suppose p > 3. Then with q = 3 in the pre-
vious step, we have established (3.42) and (3.43) with t = 1 and q = 3. Since
B1,3(Y ) ↪→ Lq(Y ) for any q <∞, we have control of the quadratic terms of
(3.42) and (3.43) in Lp for any p <∞. Thus, we have the estimates (3.42)
and (3.43) for t = 1 and q = p, since Lp(Y ) ⊆ B0,p(Y ). We can then boot-
strap in t to the estimate (3.32) for any s ≥ 1 and p <∞. Thus, we have
taken care of the case s ≥ 1 and all p ≥ 2.

Finally, suppose s < 1 and p > 2. We employ the same strategy of boot-
strapping in q until we get to p. Since s− 1/p > 1/2, we have Bs−1/p,p(Σ) ↪→
B1/2,2(Σ) and so we have control of ‖(B −Bref ,Ψ)‖B1,2(Y ) and ‖(B −Bref ,
Ψ)‖L6(Y ) in terms of ‖(B −Bref)|Σ‖B1/2,2(Σ). Let 1/2 < t = s < 1 and q =
min(3, p) in (3.42) and (3.43). We have control of the quadratic terms on the
right-hand side since L3(Y ) ⊂ B0,q(Y ) ⊂ Bs−1,q(Y ), since s− 1 ≤ 0. Thus,
we have the control (3.32) for p = q. If p ≤ 3, we are done. Else p > 3 and
we bootstrap in q. Indeed, starting with q1 = 3, we have a map Bs,qi(Y ) ×
Bs,qi(Y ) → B2s−3/qi,qi(Y ) ↪→ Lqi+1(Y ) ⊆ Bs−1,qi+1(Y ), where qi+1 = qi/
(2(1 − sqi)) > qi. Using (3.42) and (3.43), we thus bootstrap to the esti-
mate (3.32) with p = qi+1 from the estimate (3.32) with p = qi. The qi keep
increasing until after finitely many steps, we get to the desired p, thereby
proving (3.32). �

The next lemma tells us that any two monopoles that have the same
restriction to Σ are gauge equivalent on Y .

Lemma 3.8. Let s > max(3/p, 1/2). If (B1,Ψ1), (B2,Ψ2) ∈ Ms,p and rΣ
(B1,Ψ1) = rΣ(B2,Ψ2), then (B1,Ψ1) and (B2,Ψ2) are gauge equivalent on
Cs,p(Y ).

Proof. Because of (3.10), without loss of generality, we can suppose (B1,Ψ1),
(B2,Ψ2) ∈ Ms,p. There are two cases to consider. In the first case, one
and hence both the configurations are reducible. Indeed, if say (B1,Ψ1) is
reducible, then Ψ2|Σ = Ψ1|Σ = 0. Since DB2Ψ2 = 0, by unique continuation
for DB2 , we have Ψ2 ≡ 0 so that (B2,Ψ2) is also reducible. In this reducible
case, then B1 and B2 are both flat connections and so by (3.1), we must
have H1(Y,Σ) = 0. Since d(B1 −B2) = d∗(B1 −B2) = 0 and by hypothesis
(B1 −B2)|Σ = 0, we must then have B1 −B2 = 0 since H1(Y,Σ) = 0. So in
this case, B1 and B2 are in fact equal. In the second case, neither configu-
ration is reducible. In this case, consider the 4-manifold S1 × Y and regard
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(B1,Ψ1) and (B2,Ψ2) as time-independent solutions to the Seiberg–Witten
equations on S1 × Y . We now apply Theorem E.3. �

Piecing the previous lemmas together, we can now prove the rest of our
main theorem concerning the monopole spaces:

Theorem 3.3. Let s > max(3/p, 1/2 + 1/p). Then Ls−1/p,p is a closed
Lagrangian submanifold of Cs−1/p,p(Σ). Furthermore, the maps

rΣ : Ms,p → Ls−1/p,p,(3.44)

rΣ : Ms,p → Ls−1/p,p(3.45)

are a submersion and a covering map, respectively, where the fiber of the
latter is the lattice Gh,∂(Y ) ∼= H1(Y,Σ).

Proof. By (3.10), it suffices to consider the map (3.45). By Lemma 3.6,
the map rΣ : Ms,p → Cs−1/p,p(Σ) is an immersion, hence a local embedding.
The previous lemma implies that (3.45) is injective modulo G := Gh,∂(Y ),
since the gauge transformations that restrict to the identity and preserve
Coulomb gauge are precisely those gauge transformations in G. Moreover,
G acts freely on Ms,p(Y ) by assumption (3.1), since when there are reducible
solutions, we have G = 1.

It remains to show that rΣ : Ms,p/G→ Cs−1/p,p(Σ) is an embedding onto
its image. Let (Bi,Ψi) ∈ Ms,p, i ≥ 1, be such that rΣ(Bi,Ψi) → r(B0,Ψ0)
in Cs−1/p,p(Σ) as i→ ∞. We want to show that given any subsequence of
the (Bi,Ψi), there exists a further subsequence convergent to an element
of the G orbit of (B0,Ψ0). This, combined with the fact that (3.45) is a
local embedding will imply that (3.45) is a global embedding, modulo the
covering transformations G. Indeed, the local embedding property tells us
that there exists a open neighborhood V(B0,Ψ0) � (B0,Ψ0) of Ms,p such that
rΣ : V(B0,Ψ0) → Cs−1/p,p(Σ) is an embedding onto its image, and moreover,
rΣ(g∗V(B0,Ψ0)) = rΣ(V(B0,Ψ0)) for all g ∈ G. Proving the above convergence
result shows that given a sufficiently small neighborhood U of rΣ(B0,Ψ0) in
Cs−1/p,p(Σ), then U ∩ Ls−1/p,p is contained in the image of any one of the
embeddings rΣ : g∗V(B0,Ψ0) → Cs−1/p,p(Σ), g ∈ G. Otherwise, we could find
a subsequence (Bi′ ,Φi′) of the (Bi,Ψi) such that rΣ(Bi′ ,Φi′) → rΣ(B0,Ψ0)
but the (Bi′ ,Φi′) lie outside all the g∗V(B0,Ψ0), a contradiction.

Without further ado then, by Lemma 3.7, we know we can find gauge
transformations gi ∈ G such that g∗i (Bi,Ψi) is uniformly bounded inBs,p(Y ),
since rΣ(Bi,Ψi) → rΣ(B0,Ψ0) is uniformly bounded. For notational simplic-
ity, redefine the (Bi,Ψi) by these gauge transformations. Thus, since the
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(Bi,Ψi) are bounded in Bs,p(Y ), any subsequence contains a weakly conver-
gent subsequence. Let (B∞,Ψ∞) ∈ Ms,p(Y ) be a weak limit of some subse-
quence (Bi′ ,Ψi′). We have rΣ(B∞,Ψ∞) = rΣ(B0,Ψ0), and so (B∞,Ψ∞) and
(B0,Ψ0) are gauge equivalent by an element of G. If we can show that that
(Bi′ ,Ψi′) → (B∞,Ψ∞) strongly in Bs,p(Y ), then we will be done. Due to
the compact embedding Bs,p(Y ) ↪→ Bt,p(Y ), for t < s, we have (Bi,Ψi) →
(B∞,Ψ∞) strongly in the topology Bs−ε,p(Y ), ε > 0. If we can boostrap this
to strong convergence in Bs,p(Y ), we will be done. To show this, we use
the ellipticity of ˜H(B∞,Ψ∞). Let (bi, ψi) = (Bi −B∞,Ψi − Ψ∞). We have the
elliptic estimate

(3.46)
‖(bi, ψi)‖Bs,p(Y ) � ‖ ˜H(B∞,Ψ∞)(bi, ψi)‖Bs−1,p(Y ) + ‖rΣ(bi, ψi)‖Bs−1/p,p(Σ).

This follows because ˜H(B∞,Ψ∞) is elliptic and the boundary term controls
the kernel of ˜H(B∞,Ψ∞)|Cs,p by Corollary 2.1(ii). The last term of (3.46) tends
to zero and for the first term, we have

(3.47) ˜H(B0,Ψ0)(bi, ψi) = (bi, ψi)#(bi, ψi)

from (3.15), since (Bi,Ψi), (B∞,Ψ∞) ∈ Ms,p. We have a continuous multi-
plication map Bs−ε,p(Y ) ×Bs−ε,p(Y ) → Bs−ε,p(Y ) ⊂ Bs−1,p(Y ) for s− ε >
3/p. Since (Bi,Ψi) → (B0,Ψ0) strongly in Bs−ε,p(Y ), we have that (3.47)
goes to zero in Bs−1,p(Y ), which means (bi′ , ψi′) goes to zero in Bs,p(Y ) by
(3.46). Thus, (Bi,Ψi) → (B∞,Ψ∞) strongly in Bs,p(Y ).

It now follows that rΣ : Ms,p(Y ) → Cs−1/p,p(Σ) is a covering map onto
a embedded submanifold, where the fiber of the cover is G. Moreover, the
proof we just gave also shows that Ls−1/p,p is a closed submanifold, since
if rΣ(Bi,Ψi) is a convergent sequence, it is convergent to rΣ(B∞,Ψ∞) for
some (B∞,Ψ∞) ∈ Ms−1/p,p. Finally, Theorem 2.1(i) shows that Ls−1/p,p is
Lagrangian submanifold of Cs−1/p,p(Σ), since its tangent space at any point
is a Lagrangian subspace of T s−1/p,p

Σ . �

Since rΣ : Ms,p → Ls−1/p,p is a covering, the chart maps on Ms,p push
forward and induce chart maps on Ls−1/p,p. Indeed, at the tangent space
level, we already know we have isomorphisms rΣ : T(B0,Ψ0)Ms,p → TrΣ(B0,Ψ0)

Ls−1/p,p and P(B0,Ψ0) : TrΣ(B0,Ψ0)Ls−1/p,p → T(B0,Ψ0)Ms,p inverse to one
another, where recall P(B0,Ψ0) is the Poisson operator given by Theorem
2.1. Because Ms,p is locally a graph over T(B0,Ψ0)Ms,p, then Ls−1/p,p is
locally a graph over TrΣ(B0,Ψ0)Ls−1/p,p. To analyze this properly, we also
want to “push foward” the local straightening map F(B0,Ψ0) for Ms,p at a
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configuration (B0,Ψ0), defined in Lemma 3.4, to obtain a local straightening
map FΣ,(B0,Ψ0) for Ls−1/p,p at rΣ(B0,Ψ0).

Lemma 3.9. Let s > max(3/p, 1/2 + 1/p) and let (B0,Ψ0) ∈ Ms,p. Define
the spaces

XΣ = T s−1/p,p
Σ , XΣ,0 = TrΣ(B0,Ψ0)Ls−1/p,p, XΣ,1 = JΣXΣ,0.

We have XΣ = XΣ,0 ⊕XΣ,1 and we can define the smooth map

FΣ,(B0,Ψ0) : VΣ → XΣ,0 ⊕XΣ,1

x = (x0, x1) 	→ (x0, x1 − rΣE
1
(B0,Ψ0)

(P(B0,Ψ0)x0)),
(3.48)

where VΣ ⊂ XΣ is an open subset containing 0 and E1
(B0,Ψ0)

is defined as
in Theorem 3.2. For any max(1/2, 2/p) < s′ ≤ s− 1/p, we can take VΣ to
contain a Bs′,p(Σ) ball, i.e., there exists a δ > 0, depending on rΣ(B0,Ψ0),
s′, and p, such that

VΣ ⊇ {x ∈ XΣ : ‖x‖Bs′,p(Σ) < δ}.

Moreover, we have the following:

(i) We have FΣ,(B0,Ψ0)(0) = 0 and D0FΣ,(B0,Ψ0) = id. For VΣ sufficiently
small, FΣ,(B0,Ψ0) is a local straightening map for Ls−1/p,p at rΣ(B0,Ψ0)
within the neighborhood VΣ.

(ii) We can choose δ uniformly for rΣ(B0,Ψ0) in a sufficiently small Bs′,p

(Σ) neighborhood of any configuration in Ls−1/p,p.

Proof. We have FΣ,(B0,Ψ0)(0) = 0 since E1
(B0,Ψ0)

(P(B0,Ψ0)(0)) = E1
(B0,Ψ0)

(0) =
0, and D0FΣ,(B0,Ψ0) = id since D0E

1
(B0,Ψ0)

= 0 by Theorem 3.2. Moreover,
we see that FΣ,(B0,Ψ0) can be defined on a Bs′,p(Σ) ball containing 0 ∈ XΣ.
Indeed, P(B0,Ψ0) maps such a ball into aBs′+1/p,p(Y ) ball inside T(B0,Ψ0)Ms,p,
we have the embedding Bs′+1/p,p(Y ) ↪→ L∞(Y ) by our choice of s′, and the
domain of E1

(B0,Ψ0)
contains an L∞(Y ) ball by Theorem 3.2. Take VΣ to be

such a Bs′,p(Σ) ball.
It now follows from Ls−1/p,p ⊂ Ls′,p and the fact that rΣ : Ms′+1/p,p →

Ls′,p is a covering map onto a globally embedded submanifold (by The-
orem 3.3) that FΣ,(B0,Ψ0) is a local straightening map for Ls−1/p,p within
a Bs′,p(Σ) neighborhood of 0 ∈ XΣ. (Shrinking VΣ if necessary, let this
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neighborhood be VΣ.) In more detail, if x ∈ VΣ and FΣ,(B0,Ψ0)(x) ∈ XΣ,0,
then

(3.49) rΣ(B0,Ψ0) + x = rΣ(B0,Ψ0) + (x0, rΣE
1
(B0,Ψ0)

(P(B0,Ψ0)x0)),

which means that

rΣ(B0,Ψ0) + x = rΣ

(

(B0,Ψ0) + P(B0,Ψ0)x0 + E1
(B0,Ψ0)

(P(B0,Ψ0)x0)
)

,

(3.50)

where (B0,Ψ0) + P(B0,Ψ0)x0 + E1
(B0,Ψ0)

(P(B0,Ψ0)x0) ∈ Ms,p by Theorem 3.2.
Thus, rΣ(B0,Ψ0) + x ∈ rΣ(Ms,p) = Ls−1/p,p. Conversely, if x ∈ VΣ is such
that rΣ(B0,Ψ0) + x ∈ Ls−1/p,p, then (having chosen VΣ small enough) we must
have

(3.51) rΣ(B0,Ψ0) + x = rΣ

(

(B0,Ψ0) + x′0 + E1
(B0,Ψ0)

(x′0)
)

.

for some x′0 ∈ T(B0,Ψ0)Ms′+1/p,p since Ls−1/p,p ⊂ Ls′,p and rΣ : Ms′+1/p,p →
Ls′,p is a local diffeomorphism from a neighborhood of (B0,Ψ0) ∈ Ms′+1/p,p

onto a neighborhood of rΣ(B0,Ψ0) ∈ Ls′,p. Since P(B0,Ψ0) : TrΣ(B0,Ψ0)Ls′,p →
T(B0,Ψ0)Ms′+1/p,p is an isomorphism, then x′0 = P(B0,Ψ0)x0 for some x0 ∈
TrΣ(B0,Ψ0)Ls′,p and so (3.50), hence (3.49) must hold. By definition of
FΣ,(B0,Ψ0), which extends to a well-defined map on the Bs′+1/p,p(Σ) topology,
(3.49) implies x0 = FΣ,(B0,Ψ0)(x). But FΣ,(B0,Ψ0) acting on a neighborhood
of 0 in T s′,p

Σ preserves the Bs−1/p,p(Σ) topology, so x0 ∈ TrΣ(B0,Ψ0)Ls−1/p,p

since x ∈ T s−1/p,p
Σ . Thus, FΣ,(B0,Ψ0)(x) ∈ XΣ,0. Moreover, both FΣ,(B0,Ψ0)

and F−1
Σ,(B0,Ψ0)

are invertible when restricted to VΣ, since the inverse
F−1

Σ,(B0,Ψ0)
is simply given by

(3.52) F−1
Σ,(B0,Ψ0)

(x) = (x0, x1 + rΣE
1
(B0,Ψ0)

(P(B0,Ψ0)x0)).

Altogether, this shows that FΣ,(B0,Ψ0) is a local straightening map for
Ls−1/p,p within VΣ.

(ii) This follows from the uniformity statement of Theorem 3.2(ii) and
the continuous dependence of P(B0,Ψ0) : T s′,p

Σ → T s′+1/p,p ↪→ L∞T with
respect to (B0,Ψ0) (see Theorem 2.1(iv)). Here, we use the fact that if
rΣ(B0,Ψ0) ∈ Ls−1/p,p varies continuously in a small Bs′,p(Σ) neighborhood,
then one can choose (B0,Ψ0) ∈ Ms,p continuously in a small Bs′+1/p,p(Y )
neighborhood, since rΣ : Ms′+1/p,p → Ls′,p and rΣ : Ms,p → Ls−1/p,p are
covers. �
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With the above lemma, we have local straightening maps for our Banach
manifold Ls−1/p,p. Then from Theorem 3.2 and the general framework of
Appendix Appendix B, we have the following theorem for the local chart
maps for Ls−1/p,p (see Figure 2).

Theorem 3.4. Let s > max(3/p, 1/2 + 1/p).

(i) Let (B0,Ψ0) ∈ Ms,p. Then there exists a neighborhood U ⊂ TrΣ(B0,Ψ0)

Ls−1/p,p of 0 and a map E1
rΣ(B0,Ψ0)

: U → XΣ,1, where XΣ,1 is as in
Lemma 3.9, such that the map

ErΣ(B0,Ψ0) : U → Ls−1/p,p,(3.53)

x 	→ rΣ(B0,Ψ0) + x+ E1
rΣ(B0,Ψ0)

(x)

is a diffeomorphism of U onto a neighborhood of rΣ(B0,Ψ0) in Ls−1/p,p.
Furthermore, the map E1

rΣ(B0,Ψ0)
smooths by one derivative, i.e.,

E1
rΣ(B0,Ψ0)

(x) ∈ T s+1−1/p,p
Σ for all x ∈ U .

(ii) For any max(1/2, 2/p) < s′ ≤ s− 1/p, we can choose U such that both
U and ErΣ(B0,Ψ0)(U) contain Bs′,p(U) neighborhoods, i.e., there exists
a δ > 0, depending on rΣ(B0,Ψ0), s′, and p, such that

U ⊇ {x ∈ TrΣ(B0,Ψ0)Ls−1/p,p : ‖x‖Bs′,p(Σ) < δ},
ErΣ(B0,Ψ0)(U) ⊇ {(B,Ψ) ∈ Ls−1/p,p : ‖(B,Ψ) − rΣ(B0,Ψ0)‖Bs′,p(Σ) < δ}.

The constant δ can be chosen uniformly in rΣ(B0,Ψ0), for all rΣ(B0,Ψ0)
in a sufficiently small Bs−1/p,p(Y ) neighborhood of any configuration
in Ls−1/p,p.

(iii) Smooth configurations are dense in Ls−1/p,p.

Proof. (i) As in (3.27), the chart map ErΣ(B0,Ψ0) is determined by restrict-
ing F−1

Σ,(B0,Ψ0)
, the inverse of the local straightening map FΣ,(B0,Ψ0), to a

neighborhood of 0 in the tangent space TrΣ(B0,Ψ0)Ls−1/p,p. Thus, we have

ErΣ(B0,Ψ0)(x) = rΣ(B0,Ψ0) + F−1
Σ,(B0,Ψ0)

(x),(3.54)

x ∈ U := FΣ,(B0,Ψ0)(VΣ) ∩ TrΣ(B0,Ψ0)Ls−1/p,p,

where VΣ is defined as in Lemma 3.9. The expression for F−1
Σ,(B0,Ψ0)

is given
by (3.52). Thus, (3.54) and the definition of E1

(B0,Ψ0)
in (3.53) yields

(3.55) E1
rΣ(B0,Ψ0)

(x) = rΣE
1
(B0,Ψ0)

(P(B0,Ψ0)x).
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Figure 2: A chart map for Ms,p at (B0,Φ0) induces a chart map for Ls−1/p,p

at rΣ(B0,Φ0).

The mapping properties of E1
rΣ(B0,Ψ0)

now follow from Theorem 3.2.
(ii) This is a direct consequence of Lemma 3.9(ii).
(iii) This just follows from rΣ : Ms,p → Ls−1/p,p being a cover and the

density of smooth configurations in Ms,p by Theorem 3.2. �

Corollary 3.2. Suppose (B0,Ψ0) ∈ Ms,p.

(i) If U is a sufficiently small Lp(Σ) neighborhood of 0 in LpTrΣ(B0,Ψ0)

Ls−1/p,p, then ErΣ(B0,Ψ0) extends to a bounded map

ErΣ(B0,Ψ0) : U → LpC(Σ).(3.56)

The map (3.56) is a diffeomorphism onto its image and hence
ErΣ(B0,Ψ0)(U) is an Lp submanifold of LpC(Σ) contained in LpL.

(ii) The Lp(Σ) topology above can be replaced with Bt,p(Σ) for any 0 ≤ t ≤
s− 1/p and Ht,p(Σ) for any 0 ≤ t ≤ s− 1/p.

Proof. We use Corollary 3.1 to show that E1
rΣ(B0,Ψ0)

is bounded on the Lp(Σ)
topology. We only prove the lowest regularity case s = 0, since the other
cases are similar (and more easily handled). We have the inclusion Lp ⊂ B0,p

since p ≥ 2. By Theorem 2.1, the Poisson operator P(B0,Ψ0) maps B0,p(Σ)
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to B1/p,p(Y ) for s ≥ 0 since (B0,Ψ0) is sufficiently regular. In the proof
of Corollary 3.1, we showed that E1

(B0,Ψ0)
maps B1/p,p(Y ) to H1,3p/4(Y ).

Hence when we apply rΣ, we find altogether from (3.55) that E1
rΣ(B0,Ψ0)

(x)
belongs to B1−4/3p,3p/4(Σ) ↪→ Lp(Σ). Thus, E1

(B0,Ψ0)
is bounded on Lp(Σ)

and B0,p(Σ). In the above calculation, we implicitly used the fact that
H1/p,p(Y ) ↪→ L3(Y ), so that P(B0,Ψ0) maps a small Lp(Σ) ball into the
domain of E1

(B0,Ψ0)
, which contains an L3(Y ) ball by Corollary 3.1. �

Remark 3.2. We have mentioned before that since our analysis works
on a variety of function spaces, it is merely a matter of convenience that
we worked primarily with Besov spaces on Y . In the above corollary and
elsewhere, we see how the usual Lp spaces can be employed as well. Corol-
lary 3.2 will be significant in [10], since we will need to consider, locally,
Lp closures of L. We conclude by noting that every instance in which the
Bs,p(Y ) topology is used in this paper, the topology Hs,p(Y ) may be used
instead. These spaces, known as the Bessel potential spaces, are defined
in Appendix Appendix C. For s a nonnegative integer and 1 < p <∞, we
have Hs,p(Y ) = W s,p(Y ), the Sobolev space of functions having s deriva-
tives belonging to Lp(Y ). When p = 2, Hs,2(Y ) = Bs,2(Y ) for all s. Fur-
thermore, the spaces Hs,p and Bs,p are “close” to each other in the sense
that Hs1,p(Y ) ⊆ Bs2,p(Y ) ⊆ Hs3,p(Y ) for all s1 > s2 > s3. Moreover, one
sees that all the foundational analysis in Appendix D applies equally to
Bessel potential and Besov spaces.

We should note that two particular places where it is important that
Sobolev spaces may be used in addition to Besov spaces are Lemma 2.3 and
Proposition 2.2. Indeed, their proofs rely only on function space arithmetic
and elliptic estimates arising from elliptic boundary value problems. For
both of these, Sobolev spaces can be used all the same, and so we can
replace every occurrence of the B•,•(Y ) topology with the H•,•(Y ) topology
in Lemma 2.3 and Proposition 2.2. One can now check that the statements
of all our lemmas and theorems concerning Besov spaces on Y also hold for
their Sobolev counterparts.

For the purposes of [10], it is also important that we can replace Besov
spaces on Σ with Sobolev spaces on Σ as well, but with some care, since
the space of boundary values of a Sobolev space is still a Besov space. We
already saw how to do this in Corollary 3.2. We should note that for the
Calderon projection P+

(B0,Ψ0)
in Theorem 2.1, where (B0,Ψ0) ∈ Bs,p(Y ), one

also has that

(3.57) P+
(B0,Ψ0)

: Ht−1/p,pTΣ → Ht−1/p,pTΣ, t < s+ 1
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is bounded. This follows from the fact that π+ is bounded on Ht−1/p,pTΣ,
as it is a pseudodifferential operator, and

(P+
(B,Ψ) − π+) : Ht−1/p,pTΣ ⊆ T t−1/p,p

Σ

→ T min(s−1/p+1, t−1/p+1),p
Σ ⊂ Ht−1/p,pTΣ

by Theorems 2.1(iv) and C.6.

From the above remark, the Sobolev version of our main theorem, with
the Hs,p(Y ) topology replaced with the Bs,p(Y ) topology, holds. In fact, one
can see from this that the Besov monopole space Ms,p is actually equal to
the Sobolev monopole space Hs,pM.22 Finally, let us remark that the proof
of our main corollary easily follows from the work we have done.

Proof of Main Corollary. For every coclosed 1-form η, the zero set of
SW3(B,Φ) = (η, 0) is gauge invariant. Thus, all the methods of Section 2.3
apply to the linearization of the monopole spaces associated to the per-
turbed equations. Next, we still have the transversality result Lemma 3.1
so long as we modify the assumption (3.1) to c1(s) �= 2[∗η] or H1(Y,Σ) = 0.
The energy estimates in Lemma 3.7 still hold in the perturbed case since
we still have (3.35) and the uniform bound ‖SW3(B,Ψ)‖L2(Y ) = ‖η‖L2(Y ).
Finally, the unique continuation results from Appendix E still apply, since
we always apply these results to the difference of solutions to the perturbed
Seiberg–Witten equations, and the equation satisfied by the difference is
independent of η. Thus, all our methods and hence results carry through in
the perturbed case.

Appendix A. Some functional analysis

A.1. Subspaces and projections

Here, we collect some properties about projections and subspaces of Banach
spaces. Given a Banach space X, a projection π : X → X is a bounded oper-
ator such that π2 = id. A closed subspace U ⊂ X is complemented if there

22From the density of smooth configurations, it suffices to show that the tangent
space to Hs,pM and Ms,p at a smooth monopole (B,Ψ) are both equal. However,
this follows from the fact that the kernel of an elliptic operator (in our case, the
operator ˜H(B,Ψ)) in the Hs,p and Bs,p topologies are equivalent. This follows from
the results of Appendix D.1, which shows that these spaces are isomorphic (modulo
a finite dimensional subspace) to their space of boundary values, which is a fixed
subspace of Bs−1/p,p on the boundary.
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exists another closed subspace V ⊂ X such that X = U ⊕ V as topologi-
cal vector spaces. We call X = U ⊕ V a topological decomposition of X. A
closed subspace U is complemented if and only if there exists a projection
π whose range is U . In this case, we have the decomposition

X = imπ ⊕ kerπ.

Recall that any finite-dimensional subspace of a Banach space is comple-
mented. Likewise, any subspace of finite codimension is also complemented.
Thus, if Y ⊂ X has finite (co)dimension, we may always regard X/Y as a
subspace of X (though unless X is a Hilbert space, there is in general no
canonical embedding X/Y ↪→ X).

The following simple lemma tells us that if a projection π restricted to a
subspace U ′ ⊂ X yields a Fredholm map π : U ′ → imπ, then U ′ is essentially
a graph over imπ. More precisely, we have the following:

Lemma A.1. Let X = U ⊕ V and let π be the projection onto the first
factor. Let U ′ be a subspace of X and suppose π : U ′ → U is Fredholm. Then

(A.1) U ′ = {x+ Tx : x ∈ π(U ′)} ⊕ F,

where F = ker(π|U ′) is finite dimensional and T : π(U ′) → V is a bounded
operator. Consequently, U ′ is also a complemented subspace of X, in partic-
ular, it is the range of a projection.

Proof. Since F is finite dimensional, it is the range of a bounded projection
πF : X → F . Since F ⊂ U ′, then (1 − πF ) : U ′ → U ′ maps U ′ into itself and
its range is a complement of F in U ′. It follows that π : (1 − πF )(U ′) → π(U ′)
is an isomorphism. Let π̄ denote this isomorphism. Thus,

U ′ = {(π̄)−1x : x ∈ π(U ′)} ⊕ F

= {x+ (−1 + (π̄)−1)x : x ∈ π(U ′)} ⊕ F.

Let T = (−1 + (π̄)−1) : π(U ′) → X. Since imT ⊂ kerπ, we see that imT ⊂
V . This gives us the desired decomposition of U ′. One can now explicitly
write a projection onto U ′. Since π(U ′) ⊂ U has finite codimension, it has
a complement C ⊂ U along with a projection πC : U → C such that the
complementary projection (1 − πC) has range equal to im π̄. A projection
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from X onto U ′ is now easily seen to be given by the map

(A.2) (1 + T )(1 − πC)π(1 − πF ) ⊕ πF .

This proves the lemma. �

Given a complemented subspace U ⊂ X, to compare other subspaces
U ′ ⊂ X with U , then we should not only study the projection of U ′ onto U
but also onto a complement of U .

Definition A.1. Let X be a Banach space. Two projections π and π′ on
X are commensurate if π − π′ is compact. Given a complemented subspace
U ⊂ X, then a subspace U ′ is commensurate with U if its projection onto
U is Fredholm and its projection onto some complement of U is compact. It
follows from Lemma A.1 that this definition is independent of the choice of
complement of U . We will also say that U ′ is a compact perturbation of U .

Corollary A.1. Let U and U ′ be as in Lemma A.1. Then the subspace U ′

is commensurate with U if and only if the map T in (A.1) is compact. In
this case, the space U is also commensurate with U ′.

Hence, being commensurate is a symmetric relation, and we may simply
speak of two subspaces U and U ′ as being commensurate. The notion of com-
mensurability obviously captures the notion of two subspaces being “close”
to one another in a functional analytic sense. On the opposite spectrum,
one may consider pairs of subspaces that form a direct sum decomposition
modulo finite-dimensional subspaces. More precisely, we have the following
definition:

Definition A.2. A pair of complemented subspaces (U, V ) of a Banach
space X is Fredholm if U ∩ V is finite dimensional and the algebraic sum
U + V is closed and has finite codimension. In this case, we say that (U, V )
form a Fredholm pair, or more simply, that U and V are Fredholm (in X).

Together, the notion of a pair of subspaces being either commensurate
or Fredholm will be very important in what we do. Next, we record the
following technical lemmas concerning topological decompositions:

Lemma A.2. Let X and Y be Banach spaces, with Y ⊂ X dense. Suppose
X = X1 ⊕X0 and Y ∩Xi ⊆ Xi is dense for i = 0, 1. Then if Y ∩X1 and
Y ∩X0 are Fredholm in Y , then in fact Y = (Y ∩X1) ⊕ (Y ∩X0).
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Proof. The hypotheses imply Y = (Y ∩X1) ⊕ (Y ∩X0) ⊕ F where F is some
finite-dimensional subspace of Y . If we take the closure of this decomposition
in X, we have X ⊇ X1 ⊕X0 ⊕ F , which means F = 0. �

Lemma A.3. Let X = X1 ⊕X0 be a topological decomposition of X and
let πi : X → Xi be the coordinate projections. Let U, V ⊂ X be subspaces and
let V = V1 ⊕ V0, where V1 = V ∩X1 and π0 : V0 → X0 is Fredholm. If U is
commensurate with V , then we can write U = U1 ⊕ U0, where U1 = U ∩X1,
π0 : U0 → X0 is Fredholm and Ui is commensurate with Vi, i = 0, 1.

Proof. By the preceding analysis, since U is commensurate with V , there
exist finite-dimensional subspaces F1 ⊂ X and F2 ⊂ V and a compact opera-
tor T : V/F2 → X such that U = {x+ Tx : x ∈ V/F2} ⊕ F1. For notational
simplicity, let us suppose F1 = F2 = 0, since the conclusion is unaffected by
finite-dimensional errors. So then

U = {x+ Tx : x ∈ V }
= {x+ Tx : x ∈ V1} + {x+ Tx : x ∈ V0}
=: U ′

1 + U ′
0.

Since T is compact, then U ′
0 is commensurate with V0 and since π0 : V0 → X0

is Fredholm, so is π0 : U ′
0 → X0. Thus the map

π′0 = π0 : U ′
0/ kerπ0 → π0(U ′

0)

is an isomorphism. Let V ′
1 ⊂ V1 be the subspace of finite codimension

defined by
V ′

1 := {x ∈ V1 : π0(Tx) ∈ π0(U ′
0)}.

In other words, V ′
1 is the subspace of V1 such that the space {x+ Tx : x ∈

V ′
1} ⊆ U ′

1 differs from an element of X1 by an element of U ′
0. Indeed, we have

{x+ Tx− π′0
−1
π0T (x) : x ∈ V ′

1} ⊆ X1

since it is annihilated by π0. We thus have

U1 = U ∩X1 = {x+ Tx− π′0
−1
π0T (x) : x ∈ V ′

1} + ker(π0|U ′
0
).

From this expression for U1, it follows that U1 is commensurate with V1. Let-
ting U0 = U ′

0 + {x+ Tx : x ∈ V1/V
′
1}, then U = U1 ⊕ U0 and all the proper-

ties are satisfied. �
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Lemma A.4. Let U0, U1, V0, and V1 be subspaces of a Banach space X
such that we have the topological decompositions

X = U0 ⊕ U1 = V0 ⊕ V1(A.3)
= V0 ⊕ U1 = U0 ⊕ V1.(A.4)

Let πU0,U1 denote the projection onto U0 through U1 and similarly for other
pairs of complementary spaces in the above. Since πU0,U1 : V0 → U0 and
πU1,U0 : V1 → U1 are isomorphisms, then Vi is the graph of a map TVi

: Ui →
Ui+1, i = 0, 1 mod 2.

(i) We have the following formulas:

πV0,U1 = (1 + TV0)πU0,U1 ,(A.5)
πU1,V0 = 1 − πV0,U1 ,(A.6)

πV0,V1 = (1 + TV0)πU0,U1(1 + TV1πU1,V0)
−1(A.7)

and likewise with the 0 and 1 indices switched.

(ii) If Vi is commensurate with Ui, for i = 0, 1, then πV0,V1 is commensurate
with πU1,U0. This remains true even if we drop the assumption (A.4).

Proof. (i) Formula (A.5) is just the definition of TV0 ; indeed, this is the spe-
cial case of the formula (A.1) when the map π : U ′ → U is an isomorphism.
Formula (A.6) is tautological since U1 and V0 are complementary. It remains
to establish (A.7). Let Λ : X → X be the isomorphism of X which maps V0

identically to V0 and U1 to V1 using the graph map TV1 . In other words, Λ
is given by

Λ = πV0,U1 + (1 + TV1)πU1,V0

= 1 + TV1πU1,V0 .

The map πV0,V1 is now easily seen to be given by πV0,U1Λ
−1, which yields

(A.7). By symmetry, these formulas hold with 0 and 1 indices reversed.
(ii) In this case, the maps TVi

are compact, i = 0, 1. It follows from (A.7)
that πV0,V1 − πU0,U1 is compact. If (A.4) does not hold, we proceed as follows.
Let F denote the finite-dimensional space spanned by the kernel and cokernel
of the Fredholm maps πU0,U1 : V0 → U0 and πU1,U0 : V1 → U1. Let X̄ = X/F
be regarded as a subspace of X and let π̄ : X → X̄ be the projection through
F . It follows that we can choose finite-codimensional subspaces U ′

i ⊆ Ui and
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V ′
i ⊆ Vi such that letting Ūi = πi(U ′

i) and V̄i = πi(V ′
i ), we have

X̄ = Ū0 ⊕ Ū1 = V̄0 ⊕ V̄1.

By construction of X̄, we also have

X̄ = V̄0 ⊕ Ū1 = Ū0 ⊕ V̄1,

since now V̄i is a graph over Ūi. On X̄, we can therefore conclude that the
projections πV̄1,V̄0

and πŪ1,Ū0
are commensurate. These operators also act

on X since we can define them to be zero on F , in which case, πV0,V1 and
πU0,U1 are finite rank perturbations of πV̄0,V̄1

and πŪ0,Ū1
, respectively. It now

follows that πV1,V0 and πU1,U0 are also commensurate. �

Remark A.1. In all applications, our Banach space X under consideration
will be a function space of configurations on a manifold, and the compact
operators that arise will be maps that smooth by a certain number of deriva-
tives σ ≥ 0 (e.g., the operator maps a Besov space Bs,p to a more regular
Besov space Bs+σ,p). In this way, if additionally we have that all finite-
dimensional subspaces which arise in the above analysis are spanned by ele-
ments that are smoother than those of X by σ derivatives, one can ensure
that all compact perturbations occurring in the projections constructed in
the above lemmas continue to be operators that are smoothing of order σ. In
other words, the amount of smoothing is preserved in all our constructions.

The notion of commensurability of two spaces is one qualitative way
of measuring two spaces as being close. Alternatively, we may regard two
subspaces V1 and V2 of X as being close if V2 is the graph over V1 of a
map with small norm, i.e., V2 = {x+ Tx : x ∈ V1} where V ⊥

1 is any fixed
complement of V1 and T : V1 → V ⊥

1 is an operator with small norm. If the
norm of T is small enough, we can replace V ⊥

1 with X. This motivates the
following definition:

Definition A.3. (i) A continuous family of subspaces {V (σ)}σ∈X of X,
where X is a topological space, is a collection of complemented subspaces
V (σ) of X such that the following local triviality condition holds: for any
σ0 ∈ X, there exists an open neighborhood U � σ0 in X such that for all
σ ∈ U , there exists a map Tσ0(σ) : V → X such that the induced map

V (σ0) → V (σ),(A.8)
x 	→ x+ T (σ)x
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is an isomorphism. The map Tσ0(σ) varies continuously in the operator norm
topology with respect to σ ∈ U .

(ii) A smooth family of subspaces V (t) ofX, t ∈ R, is a continuous family of
subspaces for which X = R and the maps T (t) in (A.8) vary smoothly
in operator norm topology.

This definition is such that one can construct operators associated to a
continuously varying family subspaces in a continuous way, e.g., projections
onto such subspaces. Likewise for the smooth situation. To illustrate this,
we state the following trivial lemma for small time intervals:

Lemma A.5. Let V (t) be a continuous (smooth) family of subspaces of X,
for t ∈ R. Then for any t0 ∈ R, we can find an open interval I containing
t0, and a continuous (smooth) family of isomorphisms Φ(t) : X → X, t ∈ I,
such that Φ(t)(V (t0)) = V (t) for all t ∈ R, with Φ(0) = id.

Proof. Without loss of generality, let t0 = 0 and suppose we are in the
smooth case, with the continuous case being the same. Let V (0)⊥ be any
complement of V (0) in X. Then for small enough t, V (t) is also a comple-
ment of V (0)⊥, and we can define

Φ(t) : V (0) ⊕ V (0)⊥ → V (t) ⊕ V (0)⊥,
(x, y) 	→ (x+ T (t)x, y),

where x 	→ x+ T (t)x is the isomorphism from V (0) to V (t) given by the
definition of V being a smooth family of subspaces of X. The maps Φ(t) are
smooth since the V (t) are. �

In other words, the family of spaces V (t) has local trivializations given
by the Φ(t) which identify the V (t) with V (t0), for t ∈ I. Given a family
of spaces complementary to the V (t) and which vary smoothly, one can
construct the Φ(t) for all t, but the above local result will suffice for our
purposes.

A.2. Symplectic Banach spaces

Let X be a real Banach space endowed with a skew-symmetric bilinear form
ω. Then X is a (weakly) symplectic Banach space if ω is nondegenerate, i.e.,
the map ω : X → X∗ which assigns to x ∈ X the linear functional ω(x, ·) is
injective. If X is a Hilbert space and there exists an automorphism J : X →
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X such that J2 = −id and ω(·, J ·) is the inner product on X, we say that X
is a strongly symplectic Hilbert space and that J is the compatible complex
structure. (As a word of caution, many other authors define a symplectic
Banach space to be one for which ω : X → X∗ is an isomorphism, but that
will never be the case for us unless X is a strongly symplectic Hilbert space.)

Given any subspace V of a symplectic Banach space X, let Ann(V ) ⊂ X
denote its annihilator with respect to the symplectic form. A (co)isotropic
subspace V is one for which V ⊆ (⊇) Ann(V ). A Lagrangian subspace L is an
isotropic subspace which has an isotropic complement. This implies L is also
coisotropic by the nondegeneracy of ω. In case X is a strongly symplectic
Hilbert space, then in fact, an isotropic subspace is Lagrangian if and only
if it is coisotropic, see [20]. In this latter case, any Lagrangian subspace L
has an orthogonal Lagrangian complement JL.

The following procedure, known as symplectic reduction, is well known
in the context of Hilbert spaces (see, e.g.,[5, Proposition 6.12]):

Theorem A.1 (Symplectic reduction). Let (X,ω) be a strongly symplectic
Hilbert space with compatible complex structure J . Let U ⊆ X be a closed
coisotropic subspace. Let L ⊂ X be a Lagrangian subspace such that L+
Ann(U) is closed. Then U ∩ JU is a strongly symplectic Hilbert space and
the orthogonal projection πU∩JU onto U ∩ JU , yields a map

(A.9) πU∩JU : L ∩ U → U ∩ JU

whose image πU∩JU (L ∩ U) is a Lagrangian subspace of U ∩ JU .

We call the map (A.9) the symplectic reduction of L with respect to
U . For symplectic reduction on Banach spaces, we can generalize the above
result as follows:

Corollary A.2. Given the notation from the previous theorem, let Y be a
Banach space with Y ⊆ X dense. Given any subspace V ⊂ X, define VY :=
Y ∩ V . Suppose πU∩JU and J map Y into itself and that LY and UY are
dense in L and U , respectively. Suppose πU∩JU (LY ) and JπU∩JU (LY ) are
Fredholm in UY ∩ JUY . Then πU∩JU (LY ) and JπU∩JU (LY ) are complemen-
tary Lagrangian subspaces of the symplectic Banach space UY ∩ JUY .

Proof. This follows from the previous theorem and Lemma A.2. �
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Appendix B. Banach manifolds and the inverse function
theorem

Taking the usual definition of a finite-dimensional manifold, one may replace
all occurrences of Euclidean space with some other fixed Banach space,
thereby obtaining the notion of a (smooth) Banach manifold. In other words,
a Banach manifold, modeled on a Banach space X, is a Hausdorff topologi-
cal space that is locally homeomorphic to X and whose transition maps are
all diffeomorphisms.23

In a similar way, one also obtains the notion of a (smooth) Banach sub-
manifold of a Banach space. More precisely, we have the following definition:

Definition B.1. Let X be a Banach space. A Banach submanifold M of X
is a subspace of X (as a topological space) that satisfies the following. There
exists a closed Banach subspace Z ⊂ X such that at every point u ∈M ,
there exists an open set V in X containing u and a diffeomorphism Φ from
V onto an open neighborhood of 0 in X such that Φ(V ∩M) = Φ(V ) ∩ Z.
We say that M is modeled on the Banach space Z.

We almost always drop explicit reference to the model Banach space Z,
since it will be clear what this space is in practice. Of course, one can consider
abstract Banach manifolds that do not come with a global embedding into a
Banach space, but such a situation will not occur for us. The above definition
coincides with the usual definition of a submanifold when X is a Euclidean
space.

In the general situation above, we have no information about the local
chart maps Φ. However, if M is defined in some natural way, say as the
zero set of some function, one can construct a more concrete local model for
M . The tools we use for this are the inverse and implicit function theorems
in the general setting of Banach spaces. Below, we record these theorems,
mostly to fix notation in applications (proofs can be found in e.g.,[7]). Let
X = X0 ⊕X1 be a direct sum of Banach spaces and f : X → Y a smooth
map of Banach spaces. For any x ∈ X, let Dxf : X → Y denote the Fréchet
derivative of f at x.

Theorem B.1. Suppose D0f : X → Y is surjective, with D0f : X1 → Y
an isomorphism and X0 = kerD0f .

23A map of Banach spaces is smooth if it is infinitely Fréchet differentiable. A
diffeomorphism is a smooth map that has a smooth inverse.
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(i) Implicit Function Theorem: Choose V to be an open neighborhood of 0
in X such that Dxf : X1 → Y remains an isomorphism for all x ∈ V .
Then M := f−1(0) ∩ V is a Banach submanifold of X modeled on X0.

(ii) Inverse Function Theorem: Define the smooth map F : X0 ⊕X1 → X
by

F (x0, x1) = (x0, (D0f |X1)
−1f(x0, x1)).

Then F (0) = 0, D0F = id and shrinking V if necessary, we can arrange
that both F and F−1 are diffeomorphisms onto their images when
restricted to V . In this case, we have M ⊆ F−1(F (V ) ∩X0).

Definition B.2. Let M ⊂ X be a Banach submanifold and let u ∈M be
any element, which without loss of generality, we let be 0. Given a function
f : X → Y as in (i) above, we say that f is a local defining function for M
near u if there exists a neighborhood V of u ∈ X such that Mu := M ∩ V
is a Banach submanifold of X and satisfies Mu = f−1(0) ∩ V . In this case,
the function F associated to f in Theorem B.1(ii) is said to be a local
straightening map for M at u. If we wish to emphasize our choice of V , we
will say that F is a local straightening map within the neighborhood V .

The names we give for f and F are natural given their role in describing
M . Namely, the manifold Mu, which is an open neighborhood of u in M ,
is the subset of V that lies in the preimage under f of the regular value
0 ∈ Y . On the other hand, the map F is a local diffeomorphism of X which
straightens out Mu to an open neighborhood U := F (Mu) inside the tangent
space X0 = TuM . Consequently, F−1 : U →M is a diffeomorphism of U
onto its image Mu, an open neighborhood of 0 ∈M .

Definition B.3. With the above notation, we call F−1 : U →M the induced
chart map of the local straightening map F .

Thus, while a Banach submanifold has no distinguished choice of local
charts near any given point, a local straightening map gives us a canonical
choice for one. We will be consistently using this choice when constructing
local chart maps for the Banach submanifolds we study.

Appendix C. Function spaces

In this section, we define the various function spaces needed for our anal-
ysis. We establish enough of their properties so that we may apply them
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in the context of elliptic boundary value problems and nonlinear partial
differential equations. In some sense, for the purposes of this paper, the pre-
cise definitions of the function spaces below are not as important as their
formal properties under such operations as restricting to a hyperplane and
multiplication (see Theorems C.2 and C.7).

C.1. The classical function spaces

We define the classical Sobolev, Bessel potential and Besov spaces. These
spaces along with their basic properties are well documented, e.g., see [3, 17,
18]. The proofs of all the statements here can be found in those references.

C.1.1. Function spaces on R
n. We begin by defining our spaces on R

n

with coordinates xj , 1 ≤ j ≤ n. Let S(Rn) be the space of rapidly decaying
Schwartz functions and let S ′(Rn) be its dual space, the space of tempered
distributions. Given f ∈ S(Rn), we have the Fourier transform

Ff(ξ) =
∫

eiξ·xf(x) dx.

The Fourier transform extends to S ′(Rn) by duality. Given a multi-index
α = (α1, . . . , αn) ∈ Z

n
+ of nonnegative integers, we let Dαf = ∂α1

x1
· · · ∂αn

xn
f

be the corresponding partial derivatives of f in the sense of distributions.
Next, we consider a dyadic partition of unity as follows. Let ψ(ξ) be a

smooth bump function, 0 ≤ ψ(ξ) ≤ 1, with ψ(ξ) equal to 1 on |ξ| ≤ 1 and ψ
identically zero on |ξ| ≥ 2. Let

ϕ0(ξ) = ψ(ξ),

ϕj(ξ) = ψ(2−jξ) − ψ(2−j+1ξ), j ≥ 1.

Then we have suppϕj ⊆ [2j−1, 2j+1] for j ≥ 1 and
∑∞

j=0 ϕj(ξ) ≡ 1.
Given a tempered distribution f , we let

fj = F−1ϕjFf

be its jth dyadic component. The decomposition of f into its dyadic com-
ponents {fj}∞j=0 is known as the Littlewood–Paley decomposition.

On R
n, let Lp(Rn) and Cα(Rn) denote the usual Lebesgue and Holder

spaces of order p and α, respectively, where 1 ≤ p ≤ ∞ and α ≥ 0. In addi-
tion to these, we have the following classical function spaces:
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Definition C.1. (i) For s ∈ Z+ a nonnegative integer and 1 ≤ p ≤ ∞,
define the Sobolev spaces

W s,p(Rn) =

⎧

⎪

⎨

⎪

⎩

f ∈ S ′(Rn) : ‖f‖W s,p =

⎛

⎝

∑

|α|≤s

‖Dαf‖p
Lp

⎞

⎠

1/p

<∞

⎫

⎪

⎬

⎪

⎭

,

(C.1)

p <∞,

W s,∞(Rn) =

{

f ∈ S ′(Rn) : ‖f‖W s,∞ = sup
|α|≤s

‖Dαf‖L∞ <∞
}

.

(C.2)

(ii) For s ∈ R and 1 < p <∞, define the Bessel potential spaces

Hs,p(Rn) :=

⎧

⎪

⎨

⎪

⎩

f ∈ S ′(Rn) : ‖f‖Hs,p =

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∞
∑

j=0

|2sjfj |2
⎞

⎠

1/2
∥

∥

∥

∥

∥

∥

∥

Lp

<∞

⎫

⎪

⎬

⎪

⎭

.

(C.3)

(iii) For s ∈ R, 1 < p <∞, define the Besov spaces24

Bs,p(Rn) =

⎧

⎪

⎨

⎪

⎩

f ∈ S ′(Rn) : ‖f‖Bs,p =

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∞
∑

j=0

|2sjfj |p
⎞

⎠

1/p
∥

∥

∥

∥

∥

∥

∥

Lp

<∞

⎫

⎪

⎬

⎪

⎭

.

(C.4)

(iv) Define As,p to be shorthand for either Hs,p or Bs,p. The spaces As,p are
also a special case of what are known as Triebel–Lizorkin spaces.

Of the above Banach spaces, the Sobolev spaces W s,p are the ones most
naturally occurring for many of the basic problems in analysis. The Bessel
potential spacesHs,p arise from (complex) interpolation between the Sobolev
spaces, where we may think of f ∈ Hs,p as having s derivatives in Lp. This
is most clearly illustrated when p = 2, where Hs,p is usually just denoted as
Hs. For general p, we have the following result:

24The classical Besov spaces are usually denoted with two parameters Bs
p,q. We

take p = q. There are also many other equivalent norms that can be used to define
the Besov spaces. Our choice of norm reflects their similarity with Hs,p.
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Theorem C.1 [17, Theorem 2.3.3]. For 1 < p <∞, Hs,p(Rn) = W s,p(Rn)
for s a nonnegative integer.

Indeed, when s = 0, then Theorem C.1 tells us that

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∞
∑

j=0

|fj |2
⎞

⎠

1/2
∥

∥

∥

∥

∥

∥

∥

Lp

∼ ‖f‖Lp .

This is the classical Littlewood–Paley Theorem.
The Besov spaces naturally arise because they are the boundary values

of Sobolev spaces. More precisely, let R
n−1 ⊂ R

n be the hyperplane xn = 0.
Given a fixed m ∈ Z+ and f a function on R

n, let

(C.5) rmf =
(

f |Rn−1 , ∂xn
f |Rn−1 , . . . , ∂m

xn
f |Rn−1

)

be the trace of f of order m along the hyperplane R
n−1. We have the fol-

lowing theorem:

Theorem C.2. (i) For s > m+ 1/p and m ∈ Z+, the trace map rm
extends to a bounded operator

(C.6) rm : Hs,p(Rn) →
m−1
⊕

j=0

Bs−1/p−j(Rn−1).

(ii) For any s ∈ R and m ∈ Z+, there exists an extension map em : ⊕m−1
j=0

Bs−1/p−j,p(Rn−1) → Hs,p(Rn) such that for s > m+ 1/p, we have
rmem = id.

(iii) Hs,p(Rn) may be replaced with Bs,p(Rn) in the above.

When p = 2, we have

(C.7) Bs,2(Rn) = Hs(Rn)

for all s, and so the above theorem is a generalization of the fact that the
trace of an element of Hs(Rn) lies in Hs−1/2(Rn) for s > 1/2. Furthermore,
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because �p ⊆ �q whenever p ≥ q, we have the trivial inclusions

Bs,p(Rn) ⊆ Hs,p(Rn) p ≤ 2,
Hs,p(Rn) ⊆ Bs,p(Rn) p ≥ 2.

For s > 0, we can also write the Besov space norm in terms of finite
differences in space rather than in terms of the Littlewood–Paley decompo-
sition in frequency space. For any h ∈ R

n, define the operator

δhf = f(x+ h) − f(x).

Using this operator, we have the following proposition:

Proposition C.1. For s > 0 and 1 < p <∞, let m be any integer such
that m > s. Then an equivalent norm for Bs,p(Rn) is given by

(C.8) ‖f‖Bs,p(Rn) = ‖f‖Lp(Rn) +
(∫

Rn

∥

∥

∥|h|−sδm
h f

∥

∥

∥

p

Lp(Rn)

1
|h|ndh

)1/p

.

Remark C.1. The spaces Hs,p(Rn) and Bs,p(Rn) satisfy

Hs1,p(Rn) ⊆ Bs2,p(Rn) ⊆ Hs3,p(Rn)

for all s1 > s2 > s3, for 1 < p <∞. This is a simple consequence of the
definitions (C.3) and (C.4). Thus, we see that the most important features
of the Bs,p and Hs,p spaces are determined by the exponents s, p, with the
distinction between the Besov and Bessel potential topologies for fixed s
and p being a more refined property. In this sense, for most purposes, the
spaces Bs,p and Hs,p are “nearly identical”, and many results concerning
one of these spaces implies the same result for the other. This is why we
adopt the common notation of using As,p to denote either Hs,p or Bs,p.
Whenever, As,p appears in multiple instances in a statement or formula, we
always mean that all instances of As,p are either Hs,p or Bs,p.

We have the following fundamental properties:

Proposition C.2. Let s ∈ R and 1 < p <∞. Then the space of compactly
supported functions C∞

0 (Rn) is dense in As,p(Rn). Moreover, A−s,p′
(Rn) is

the dual space of As,p(Rn), where 1/p+ 1/p′ = 1.
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Proposition C.3 (Lift property). Let s ∈ R and 1 < p <∞. Then

As,p(Rn) =
{

f ∈ As−1,p(Rn) :
∂f

∂xi
∈ As−1,p(Rn), 1 ≤ i ≤ n

}

.

C.1.2. Function spaces on an open subset of R
n. Let Ω be an open

subset of R
n. Unless otherwise stated, we assume for simplicity that Ω is

bounded and has smooth boundary, although many of the results that follow
carry over for more general open sets. Given any tempered distribution f ∈
S ′(Rn), we can consider its restriction rΩ(f) to (C∞

0 (Ω))′. Then we have the
corresponding function spaces on Ω:

Definition C.2. For s ∈ Z+ and 1 ≤ p ≤ ∞, the spaceW s,p(Ω) is the space
of restrictions to Ω of elements of W s,p(Rn), where the norm on W s,p(Ω) is
given by

‖f‖W s,p(Ω) = inf
g:rΩ(g)=f

‖g‖W s,p(Rn).

For s ∈ R and 1 < p <∞, the spaces Hs,p(Ω) and Bs,p(Ω) are defined sim-
ilarly.

If we consider the function space

Ãs,p(Ω) := {f ∈ As,p(Rn) : supp f ⊂ Ω},

then an equivalent definition of As,p(Ω) is

(C.9) As,p(Ω) = As,p(Rn)/Ãs,p(Rn\Ω̄).

Furthermore, we have the following:

Proposition C.4. Let −∞ < s <∞ and 1 < p <∞. Then C∞
0 (Ω) is dense

in Ãs,p(Ω). Moreover, A−s,p′
(Ω) is the dual space of Ãs,p(Ω), where 1/p+

1/p′ = 1.

Define the upper half-space

R
n
+ = {(x1, . . . , xn) ∈ R

n : xn > 0}.

We have the following extension property:
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Theorem C.3. Let 1 < p <∞. For any k ∈ N, there exists an extension
operator

Ek : As,p(Rn
+) → As,p(Rn)

for |s| < k.

C.1.3. Function spaces on manifolds. Ultimately, the function spaces
which are important for us are those which are defined on manifolds (with
and without boundary). Let X be a compact n-manifold or an open subset
of it. We can assign to X the data of an atlas {(Ui, ϕi,Φi)}, where: (1)
the Ui are a finite open cover of X; (2) the ϕi are a partition of unity
with suppϕi ⊂ Ui; and (3) each Φi is a map from Ui to R

n, where Φi is

a diffeomorphism onto an open subset of R
n if Ūi ⊂

◦
X or otherwise, Φi

is a diffeomorphism onto an open subset of R
n
+ with Φi(Ui ∩ ∂X) ⊂ ∂R

n
+.

With these data, we can define the function spaces As,p(X) in terms of the
function spaces on R

n and R
n
+.

Definition C.3. Let X be a compact manifold or an open subset of it. Let
{(Ui, ϕi,Φi)} be an atlas as above. Then for −∞ < s <∞ and 1 < p <∞,
we define As,p(X) to be those distributions f on X such that

‖f‖As,p(X) =

⎛

⎜

⎝

∑

Ui⊂
◦
X

‖Φ∗
i (ϕif)‖p

As,p(Rn) +
∑

Ui∩∂X �=∅
‖Φ∗

i (ϕif)‖p
As,p(Rn

+)

⎞

⎟

⎠

1/p

<∞.

We define W s,p(X) for s ∈ Z+ and 1 ≤ p ≤ ∞ similarly.

If we have two different atlases, the following proposition implies that
we obtain equivalent norms:

Proposition C.5. Let f ∈ As,p(Rn), s ∈ R and 1 < p <∞. (i) If ϕ ∈ C∞
0

(Rn) then ϕf ∈ As,p(Rn). (ii) If Φ is a diffeomorphism of R
n which is equal

to the identity outside a compact set, then Φ∗(f) ∈ As,p(Rn).

In particular, if X is a bounded open subset of R
n with smooth bound-

ary, the above furnishes a definition of As,p(X). On the other hand, we also
define As,p(X) to be the restrictions to X of As,p(Rn). These two definitions
of As,p(X) yield equivalent norms by the extension theorem, Theorem C.3.
Consequently, if X is a compact manifold and X̃ is a closed manifold con-
taining X, we have the following:
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Proposition C.6. For −∞ < s <∞ and 1 < p <∞, As,p(X) is the space
of restrictions to X of As,p(X̃).

Corollary C.1. Let X be a compact manifold (with or without boundary)
or Euclidean space. If D is a differential operator of order m, then D :
As,p(X) → As−m,p(X) for all s ∈ R and 1 < p <∞.

Because function spaces defined on manifolds are locally the function
spaces defined on Euclidean space, many of the properties of the latter carry
over to the manifold case. For instance, if X̃ is any closed manifold containing
the manifold X, we can define

(C.10) Ãs,p(X) = {f ∈ As,p(X̃) : supp f ⊆ X}.

We have the following theorem:

Theorem C.4. Let X be a compact manifold. We have that C∞(X) is
dense in As,p(X) and multiplication by a smooth function defines a bounded
operator. Moreover, for any s ∈ R, A−s,p′

(X) is the dual space of Ãs,p(X),
where p′ = p/(p− 1). If X is closed or s < 1/p, then Ãs,p(X) = As,p(X).

The trace theorem, Theorem C.2, readily generalizes to manifolds with
boundary:

Theorem C.5. Let X be a compact manifold with boundary ∂X.

(i) For s > m+ 1/p and m ∈ Z+, the trace map (C.5) extends to a bounded
operator

rm : Hs,p(X) →
m−1
⊕

j=0

Bs−1/p−j(∂X).(C.11)

(ii) For any s ∈ R and m ∈ Z+, there exists an extension map em : ⊕m−1
j=0

Bs−1/p−j,p(∂X) → Hs,p(X) such that for s > m+ 1/p, we have
rmem = id.

(iii) Hs,p(X) may be replaced with Bs,p(X) in the above.

C.2. Further properties

In the following, X is a compact manifold (with or without boundary).
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Theorem C.6 (Embedding theorem). Let −∞ < t < s <∞ and 1 < p,
q <∞ with

(C.12) s− n/p ≥ t− n/q.

(i) We have embeddings

Bs,p(X) ↪→ Bt,q(X) ∩Ht,q(X),(C.13)
Hs,p(X) ↪→ Ht,q(X) ∩Bt,q(X).(C.14)

If the inequality (C.12) is strict, these embeddings are compact.

(ii) We have the monotonicity property

(C.15) Hs,p(X) ⊆ Hs,q(X), p > q.

(iii) If t > 0 is not an integer, then

Hn/p+t,p(X) ↪→ Ct(X),

Bn/p+t,p(X) ↪→ Ct(X).

Next, we have a multiplication theorem. Namely, given two functions f
and g, we wish to know in which space their product fg lies (where it is
assumed that f and g are sufficiently regular so that their product makes
sense as a distribution).

Theorem C.7 (Multiplication theorem). (i) For all s > 0, we have As,p

(X) ∩ L∞(X) is an algebra. Moreover, we have the estimate

‖fg‖As,p ≤ C(‖f‖As,p‖g‖L∞ + ‖f‖L∞‖g‖As,p).

In particular, if s > n/p, then As,p(X) is an algebra.

(ii) Let s1 ≤ s2 and suppose s1 + s2 > nmax(0, 2
p − 1). Then we have a

continuous multiplication map

As1,p(X) ×As2,p(X) → As3,p(X),

where

s3 =

{

s1 if s2 > n/p,

s1 + s2 − n/p if s2 < n/p.

Both statements are standard facts, whose proofs involve the paraprod-
uct calculus. For (i), see, e.g.,[16]. For (ii), see [12].
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Appendix D. Elliptic boundary value problems

Let X be a compact n-manifold with boundary ∂X and E and F two vector
bundles over X. Let A : Γ(E) → Γ(F ) be an mth-order elliptic differential
operator mapping smooth sections of E to smooth sections of F . For all
s ∈ R and 1 < p <∞, the operator A extends to a map on the Triebel–
Lizorkin spaces As,p(E) → As−m,p(E) by Corollary C.1, where for s < m, A
acts in the sense of distributions. To keep notation concrete, on X we work
with the Bessel potential spaces Hs,p(E) for the moment,25 although most
of what we do applies to Bs,p(E) as well (subsequent theorems will be stated
for both the Hs,p and Bs,p spaces).26

Fix a collar neighborhood [0, ε) × ∂X of X, where t ∈ [0, ε) is the inward
normal coordinate and x denotes the coordinates on ∂X. In this neighbor-
hood, write the principal part of A as

∑m
j=0Aj∂

m−j
t where Aj = Aj(x, t)

are differential operators of degree j in the tangential variables. Let (x, ξ) ∈
T ∗∂X\{0}. Consider the vector space of solutions f : R

+ → C to the ordi-
nary differential equation

(D.1)

⎛

⎝

m
∑

j=0

Aj(x, 0, ξ)∂
m−j
t

⎞

⎠ f(t) = 0, t ∈ R,

obtained by “freezing” A at (x, 0, ξ). Here, Aj(x, 0, ξ) is the symbol of Aj

at t = 0. Let M±
x (ξ) denote the vector space of solutions to (D.1) which

decay exponentially as t→ ±∞. The assumption that A is elliptic implies
that the solution space of (D.1) decomposes as a direct sum M+

x (ξ) ⊕
M−

x (ξ), for all (x, ξ′) ∈ T ∗∂X\0. Thus, we have an isomorphism M+
x (ξ) ⊕

M−
x (ξ) ∼= Em

x given by taking the full Cauchy data of a solution, f(t) 	→
(f(0), . . . , ∂m−1

t f(0)). Via this isomorphism, we can identify M±
x (ξ) ⊂ Em

x .

Definition D.1. For (x, ξ) ∈ T ∗∂X\0, define π+
A(x, ξ) : Em

x → Em
x to be

the projection onto M+
x (ξ) through M−

x (ξ).

25In addition, we want to avoid overusing the letter A in our notation.
26In most applications, one wants elliptic estimates on Sobolev spaces on the

interior of the manifold, and hence one works with the Hs,p spaces on X (one
still must work with Besov spaces on the boundary, since these are the space of
boundary values of the Hs,p spaces). In this paper, however, we will also work with
Besov spaces on X since we will need such Besov space estimates in [10]. Since the
space of boundary values of a Besov space is still a Besov space, working with Besov
spaces on X is permissible.
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From this projection, we can define what it means for a boundary con-
dition B to be elliptic. Such a notion is very classical; for further reading,
see [4, 22].

Suppose the operator B is given by a tuple B = (B1, . . . , B�) of operators
on the boundary, where

Bk : Γ(E∂X)m → Γ(Vk),(D.2)

BkU :=
m−1
∑

j=0

BkjUj ,

U = (Uj)m−1
j=0 ∈ Γ(E∂X)m, 1 ≤ k ≤ �,

and where theBkj are (classic) pseudodifferential operators mapping Γ(E∂X)
to Γ(Vk) for some vector bundle Vk over ∂X. The total boundary operator
gives us a map

(D.3) B : Γ(E∂X)m →
�

⊕

k=1

Γ(Vk).

Given a pseudodifferential operator T , let σp(T ) denote the principal
symbol of T . If T is a matrix of pseudodifferential operators (where different
entries of the matrix correspond to different vector bundles), then the order
of T and hence its principal symbol need to be carefully defined. In the case
of B above, since each Bk represents a boundary condition of order βk, we
define the principal symbol of B to be the following symbol-valued matrix:

σp(B) = (σβk−jBkj) 1≤k≤�,

0≤j≤m−1
,

where σi(Bkj) is the usual principal symbol of Bkj if Bkj ∈ Opi(∂X) and
zero if Bkj ∈ Opi′(∂X), i′ < i.

Definition D.2. Suppose the boundary operator B in (D.3) is such that
σp(B)(x, ξ) : (Ex)m → ⊕�

k=1Vk restricted to imπ+
A(x, ξ) is an isomorphism

onto imσp(B)(x, ξ) for all (x, ξ) ∈ T ∗∂X\0. Then B is an elliptic boundary
condition for the operator A. In this case, we say that the pair (A,B) is
elliptic.

Examples. Standard examples of elliptic boundary conditions include the
Dirichlet and Neumann boundary conditions for the Laplacian. Likewise, for
Dirac operators, the APS boundary condition (which is the positive spec-
tral projection for the tangential boundary operator, see Definition 2.1) and
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other similar pseudodifferential boundary conditions are elliptic. A natural
example of a boundary condition of mixed order is the following situation,
which occurs, e.g., in [13]. Let X = Y be a 3-manifold and let E = T ∗Y ⊕
R. Let A = Ddgc be the div-grad-curl operator (2.61) acting on Γ(E) =
Ω1(Y ) ⊕ Ω0(Y ). Adopting the notation and identifications made in Lemma
2.5, we have Γ(EΣ) = Ω1(Σ) ⊕ Ω0(Σ) ⊕ Ω0(Σ), and we can define the bound-
ary operator

(D.4) B = dΣ ⊕ id ⊕ 0 : Γ(EΣ) → Ω2(Σ) ⊕ Ω0(Σ),

One can check that B is a elliptic boundary condition for Ddgc. It is in fact
a local boundary condition, i.e., B is a differential operator. One can replace
the operator dΣ : Ω1(Σ) → Ω2(Σ) with a projection πL : Ω1(Σ) → Ω1(Σ)
whose kernel is a Lagrangian subspace L of Ω1(Σ), where the symplectic
form on Ω1(Σ) is the form ω(a, b) =

∫

Σ a ∧ b. Since kerπL and ker d differ by
a finite-dimensional subspace, the operator BL = πL ⊕ id ⊕ 0 also induces an
elliptic boundary condition for Ddgc. The linear operators considered in [13]
are based on this example, where various Lagrangians L are considered.

On a manifold with boundary, the map A : Hs+m,p(E) → Hs,p(F ) has
infinite-dimensional kernel. An elliptic boundary condition B allows us to
control the kernel, which means we can obtain an elliptic estimate for the
full mapping pair (A,B). Moreover, if we consider the restricted operator
AB, whose domain consists of those elements annihilated by the boundary
condition, the elliptic estimate for the full mapping pair (A,B) then gives
us one for AB.

More precisely, given 0 ≤ κ ≤ m− 1, let s+m > κ+ 1/p and 1 < p <
∞, and consider the map

(D.5) rκ : Hs+m,p(E) →
κ

⊕

j=0

Bs+m−1/p−j,p(E∂X),

the trace map onto the Cauchy data up to order κ. If B is an elliptic bound-
ary condition that depends only on the Cauchy data up to order κ, i.e., we
have Bkj = 0 in (D.2) for j > κ, then

(D.6) B :
κ

⊕

j=0

Bs+m−1/p−j,p(E∂X) 	→
�

⊕

k=1

Bs+m−1/p−βk,p(Vk)
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is bounded. For brevity, for any s ∈ R, let

Vs−1/p,p

β̄
= ⊕�

k=1B
s−1/p−βk,p(Vk), β̄ = (β1, . . . , βk).(D.7)

We have the following fundamental theorem for elliptic boundary value
problems. In our applications, we will only consider m = 1, 2 and κ = 0, 1,
see Corollary D.1.

Theorem D.1 [15, Theorem 4]. Let X be a compact manifold with bound-
ary ∂X and let A : Γ(E) → Γ(F ) be an mth-order elliptic differential oper-
ator. Suppose B is an elliptic boundary condition satisfying (D.6) which
depends only on the Cauchy data up to order κ. Let 1 < p <∞ and s+m >
κ+ 1/p.

(i) Let u ∈ Ht,p(E), t ∈ R, and suppose Au ∈ Hs,p(F ). Then rκu ∈ ⊕κ
j=0

Bt−1/p−j,p(E) is a well-defined element. Suppose we have the additional
estimate Brκu ∈ Vs+m−1/p,p

β̄
on the boundary. Then u ∈ Hs+m,p(E)

and

(D.8) ‖u‖Hs+m,p(E) ≤ C(‖Av‖Hs,p(F ) + ‖Brκu‖Vs+m−1/p,p

β̄

+ ‖u‖Ht,p(E)).

(ii) The map AB : {u ∈ Hs+m,p(E) : Brκu = 0} → Hs,p(E) is Fredholm.
Its kernel and cokernel are spanned by finitely many smooth sections.

(iii) If σp(B) : Em → ⊕�
k=1Vk is surjective, then the full mapping pair

(A,B) : Hs+m,p(E) → Hs,p(F ) ⊕ Vs+m−1/p,p

β̄
,

u 	→ (Au,Brκu)

is a Fredholm operator.

(iv) The above statements remain true if H•,p(E) is replaced with B•,p(E).

Remark D.1. By a standard argument, the lower order term ‖u‖Ht,p(E) in
(D.8) can be replaced with ‖πu‖, where π is any projection onto the finite-
dimensional space of solutions to Au = Brκu = 0, and ‖ · ‖ is any norm on
that space. In other words, we need only to control the kernel of the operator
(A,B) to get the estimate (D.8). In particular, if (A,B) has no kernel, the
term ‖u‖Ht,p(E) can be omitted.
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Remark D.2. Seeley only proves Theorem D.1 for p = 2, but because all
the maps involved are pseudodifferential or involve taking traces or exten-
sions, the generalization to 1 < p <∞ is automatic. Furthermore, the gen-
eralization to Besov spaces in (iv) follows from the general results in the
previous section on function spaces, since the trace of a Besov space is still a
Besov space, and the boundary extension map of a Besov space lies not only
in a Bessel potential space but also in a Besov space (see Theorem C.2). This
is another instance of the principle that Bs,p and Hs,p are “nearly identical.”

We will not need Theorem D.1 in its full generality. For convenience, we
summarize the particular applications we have in mind below:

Corollary D.1. We have the following elliptic boundary value problems:

(i) Let A = Δ be the Laplacian acting on scalar functions. Then the
Dirichlet and Neumann boundary conditions are elliptic boundary con-
ditions. For the Dirichlet problem, we have the elliptic estimate

‖u‖Bs+2,p(X) ≤ C(‖Δu‖Bs,p(X) + ‖r0u‖Bs+2−1/p,p(∂X))(D.9)

for s+ 2 > 1/p. For the Neumann problem, we have the elliptic esti-
mate

‖u‖Bs+2,p(X) ≤ C

(

‖Δu‖Bs,p(X) + ‖r0(∂νu)‖Bs+1−1/p,p(X) +
∣

∣

∣

∣

∫

X
u

∣

∣

∣

∣

)

(D.10)

for s+ 2 > 1 + 1/p, where ∂νu denotes the derivative of u with respect
to the outward unit normal to ∂X.

(ii) Let A = d+ d∗ be the Hodge operator acting on ⊕n
i=0Ω

i(X), the exterior
algebra of differential forms on X. Then the tangential component27

a|∂X and normal component ∗a|∂X are elliptic boundary conditions. In
particular, if a ∈ Ω1(X), then we have the elliptic estimate

‖a‖Bs+1,pΩ1(X) ≤ C(‖da‖Bs,pΩ2(X) + ‖d∗a‖Bs,pΩ0(X) + ‖ah‖Bs,pΩ1(X))
(D.11)

for s+ 1 > 1/p, where ah denotes the orthogonal projection of a onto
the space

(D.12) H1(X, ∂X; R) ∼= {a ∈ Ω1(X) : da = d∗a = 0, a|∂X = 0}.

27See footnote 5.
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(iii) Let A : Γ(E) → Γ(F ) be a Dirac operator. If B is any pseudodifferen-
tial projection onto r(kerA), then B is an elliptic boundary condition
for A. We have the elliptic estimate

(D.13) ‖u‖Bs+1,p(E) ≤ C(‖Au‖Bs,p(F ) + ‖Bru‖Bs+1−/1p,p(E∂X))

for s+ 1 > 1/p.

Proof. For (i), a standard computation shows that the kernel of the Dirichlet
Laplacian is zero and the kernel of the Neumann Laplacian is spanned by
constant functions. We now apply Remark D.1. For (ii), the kernel of d+
d∗ on Ω1(Y ) with vanishing tangential component is the space (D.12). We
now apply the previous theorem and Remark D.1. Observe that for the
Dirichlet Laplacian we took κ = 0 in Theorem D.1. For (iii), there is no
term to account for the kernel due to unique continuation, Theorem E.1,
which implies that r maps kerA isomorphically onto its image (hence Br
maps kerA isomorphically onto its image). �

D.1. The Calderon projection

Our main theorem for elliptic boundary value problems, Theorem D.1, is
quite strong (in fact stronger than most variants of the theorem in the liter-
ature) due to its very large range of admissible parameters.28 This theorem,
due to Seeley, uses the construction of special pseudodifferential operators
associated to elliptic boundary value problems which we now describe. As
with Remark D.2, all statements in this section remain true if we replace
H•,p(E) with B•,p(E).

Let A : Γ(E) → Γ(F ) be an mth-order elliptic operator, which for sim-
plicity, we take to be first order, though everything we discuss here gen-
eralizes straightforwardly for m > 1. Informally, the general picture is the
following. We have two subspaces of interest, kerA and its restriction to the
boundary r(kerA), where r : Γ(E) → Γ(EΣ) is the restriction map. What we
have is that there exist a pseudodifferential operator P+ : Γ(EΣ) → Γ(EΣ)
acting on boundary sections and a map P : Γ(EΣ) → Γ(E) mapping bound-
ary sections into the interior such that P+ is a projection onto r(kerA) and
the range of P is contained in kerA. Furthermore, we have rP = P+.

28Namely, in Theorem D.1, one can work with very low, even negative regularity
(i.e., s < 0), and furthermore, one can work with just a subset of the full Cauchy
data (i.e., κ < m− 1) in specifying boundary conditions.
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More precisely, and assigning the appropriate topologies to the spaces
involved, let s ∈ R and 1 < p <∞, and let

(D.14) Zs,p(A) ⊂ Hs,p(E)

be the kernel of the operator A : Hs,p(E) → Hs−1,p(E). Let Z0(A) be the
subset of Zs,p(A) consisting of those elements z with vanishing boundary
values, i.e., r(z) = 0. Theorem D.1 implies Z0(A) ⊂ C∞(E) and is finite
dimensional. The map r extends to a bounded map Hs,p(E) → Bs−1/p,p(EΣ)
only when s > 1/p. However, if we restrict r to the kernel of A, it turns out
that no such restriction on s is necessary. This is the content of the following
very important theorem:

Theorem D.2 [14, 15]. Let s ∈ R and 1 < p <∞.

(i) We have a bounded map r : Zs,p(A) → Bs−1/p,p(E∂X), and further-
more, its range is closed. In particular, if Z0(A) = 0, then r is an
isomorphism onto its image.

(ii) There is a pseudodifferential projection P+ which projects Bs−1/p,p

(E∂X) onto r(Zs,p(A)). Furthermore, the principal symbol σ0(P+) of
P+ is equal to the symbol π+

A (see Definition D.1).

(iii) There is a map P : Bs−1/p,p(E∂X) → Zs,p(A) whose range has Z0(A)
as a complement. Furthermore, PP+ = P and rP = P+.

Thus, in particular, the above theorem tells us that elements in the
kernel of A of any regularity have well-defined restrictions to the boundary.
In fact, the first part of Theorem D.1(i) relies crucially on this fact.

Definition D.3. The operators P+ and P in Theorem D.2 are called a
Calderon projection and Poisson operator of A, respectively.

Remark D.3. (i) From the definitions, it follows that P+ is an elliptic
boundary condition for A. (ii) A projection is defined not only by its range
but also by its kernel. Thus, we have a Calderon projection and Poisson
operator for A, since their kernels are not uniquely defined. When we speak
of these operators then we usually have a particular choice of these operators
in mind. Seeley, for instance, has a particular construction of P+ and P .
However, it is usually only the range of P and P+ that are of main interest
to us, and these are uniquely specified by the above definitions. Hence, a
Calderon projection is often times referred to as the Calderon projection in
the literature.
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Altogether, P+ is a projection onto the Cauchy data of the kernel of A,
and P is a map from the Cauchy data of the kernel into the kernel. The
latter map is an isomorphism when Z0(A) = 0. Furthermore, we have

Corollary D.2. For all s ∈ R, smooth configurations are dense in Zs,p(E).
Furthermore, suppose s > 1/p. Then Zs,p(E) ⊂ Hs,p(E) is complemented.
Moreover, if Z0(A) = 0, then Pr : Hs,p(E) → Zs,p(A) is a bounded projection
onto Zs,p(A).

Proof. We have that Zs,p(A) is the direct sum of Z0(A) and the image
of P : Bs−1/p,p(E∂X) → Hs,p(E). The first statement now follows since the
space Z0(A) is spanned by smooth sections and smooth sections are dense
in Bs−1/p,p(E∂X). Now consider s > 1/p. Then the map Pr : Hs,p(E) →
Zs,p(A) is a projection onto the image of P (since PrP = P by Theo-
rem D.2), which is of finite codimension in Zs,p(A). From this, one can
construct a projection of Hs,p(E) onto Zs,p(A), which means Zs,p(A) is a
complemented subspace. If Z0(A) = 0, then the range of P is all of Zs,p(A),
whence Pr is a projection onto Zs,p(A). �

We present an important application of these operators. Let A be a
first-order formally self-adjoint elliptic operator. Then the operator J := A0

in (D.1) is a skew-symmetric automorphism on the boundary, and Green’s
formula (2.66) for A defines for us a symplectic form

ω(u, v) =
∫

Σ
(u,−Jv)

on boundary sections u, v ∈ Γ(E∂X). This symplectic form extends to a well-
defined symplectic form on Bs,p(E∂X) for (s, p) = (0, 2) and for s > 0, p ≥ 2
and the map −J is a compatible complex structure with respect to this
symplectic form. Indeed, for this range of s and p, we have Bs,p(E∂X) ↪→
L2(E∂X), with the latter a strongly symplectic Hilbert space.

We say that a closed subspace of Bs,p(E∂X) is Lagrangian if it is isotropic
with respect to ω and it has an isotropic complement. Observe that if L ⊂
L2(E∂X) is Lagrangian, then JL is a Lagrangian complement of L.

Proposition D.1. [1] Let A be a Dirac operator. Then imP+ and J imP+

are complementary Lagrangian subspaces of Bs,p(E∂X), where (s, p) = (0, 2)
or s > 0, p ≥ 2.

Proof. In [1], it is shown that imP+ and J imP+ define complementary
Lagrangian subspaces of L2(E∂X). Here, it is essential that one uses the
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trick of constructing an “invertible double” for the operator A. Since P+ is
a pseudodifferential projection, it is bounded on Bs,p(E∂X). Without loss
of generality, we can suppose P+ is an orthogonal projection (making a
projection into an orthogonal projection preserves the property of being
pseudodifferential). Define P− = JP+J−1. Then imP− = J imP+ and its
principal symbol agrees with the principal symbol of 1 − P+. It follows that
imP+ ⊕ J imP+ is a closed subspace of Bs,p(E∂X) of finite codimension.
We now apply Lemma A.2, which tells us that imP+ ⊕ J imP+ is in fact
all of Bs,p(E∂X). �

Appendix E. Unique continuation

Let A : Γ(E) → Γ(F ) be a smooth Dirac operator acting between sections of
the Hermitian vector bundles E and F over a compact manifold X (with or
without boundary). The operator A is said to obey the unique continuation
property if every u that solves Au = 0 and which vanishes on an open subset
of X vanishes identically. It is well known that Dirac operators obey the
unique continuation property. If X is a manifold with boundary, we can
replace the condition that u vanish on an open set with the condition ru = 0,
where r = r0 is the restriction map to the boundary. This is because one can
extend the operator A to a Dirac operator Ã on an open manifold X̃ that
contains X in its interior, and one can extend u to X̃ by zero outside of X.
Since Ã is a first-order operator, then Ãũ = 0 on X̃. Since ũ vanishes on an
open set, then ũ ≡ 0 on X̃ and so u ≡ 0 on X.

The following is a well-known general result (see [2, Chapter 8]):

Theorem E.1. Let X be a compact manifold with boundary, let D be a
smooth Dirac operator on Γ(E), and let V be an L∞ multiplication operator.
Then D + V has the unique continuation property. More precisely, if u ∈
B1,2(E) satisfies (D + V )u = 0 and ru = 0, then u ≡ 0.29

One application of this theorem is to show that such an operator D + V ,
acting between suitable function spaces, is surjective on a manifold with
boundary. This is in contrast to when X is closed, in which case D + V is
only Fredholm, in which case it may have a finite-dimensional cokernel. We
have the following theorem:

29One can start with u of lower regularity than B1,2(E), say L2(E), since by
elliptic bootstrapping, such a u will necessarily be of regularity B1,2(E), see the
proof of Theorem E.2.
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Theorem E.2. Let X be a compact manifold with boundary. Let 2 ≤ p <
∞, s > 1/p and let D + V : Bs,p(E) → Bs−1,p(F ) where V is a sufficiently
smooth30 multiplication operator. Then D + V is surjective.

Proof. Since D + V is a smooth elliptic operator, it has a right (pseudod-
ifferential) parametrix. This shows that D + V has closed range and finite-
dimensional cokernel. It remains to show that the cokernel is zero. There
are two cases to distinguish, the cases s > 1 and s ≤ 1. Let us deal with
the latter case, with the case s > 1 similar. Suppose u ∈ (Bs−1,p(F ))∗ =
B1−s,p′

(F ), p′ = p/(p− 1), belongs to the dual space of Bs−1,p(F ) and anni-
hilates im (D + V ) ⊆ Bs−1,p(F ). We want to show that u = 0, which com-
bined with the fact that im (D + V ) is closed means that im (D + V ) is all of
Bs−1,p(F ). The condition that u annihilates im (D + V ) means that we have
the (weak) equation (D + V )∗u = 0, and thus Du = −V ∗u (here we think
of dual operator D∗ acting on the linear functional u as being the same as
D, since a Dirac operator is formally self-adjoint). We have V ∗u ∈ B1−s,p′

,
since multiplication by a smooth function is bounded on all Besov spaces.
By Theorem D.1(i), we have a well-defined trace r(u) ∈ B1−s−1/p′,p′

(F∂X).
Thus, for all v ∈ Bs,p(E), we have Green’s formula (2.65), which tells us
that

0 = (v, (D + V )u) − ((D + V ∗)v, u)(E.1)

=
∫

∂X
(r(v),−Jr(u)).

The first line follows since u annihilates im (D + V ) and (D + V ∗)u = 0.
The second line is well defined since Jr(v) ∈ Bs−1/p,p(F ) and Bs−1/p,p(F )
is the dual space of B−s+1/p,p′

(F ) = B1−s−1/p′,p′
(F ). Since (E.1) holds for

all v ∈ Bs,p(E), it follows that r(u) = 0. The system (D + V ∗)u = 0 and
r(u) = 0 is overdetermined which means that we have an elliptic estimate
for u via Theorem D.1. That is, since Du = −V ∗u, we have an estimate of

30To keep the function space arithmetic simple, we suppose V is smooth in the
proof in the theorem, although the necessary modifications can be made for V
nonsmooth but bounded as a map between suitable function spaces, depending on
s,p. What mainly needs to carry through is the bootstrapping argument in (E.2).
In all applications, we will always have V ∈ Bt,p(Y ) where t is sufficiently large so
that the statement remains true with V of this regularity class. If s ≥ 1, one can
check that V ∈ L∞(E) suffices. If s < 1, one wants V to have some regularity so
that it can act via multiplication on functions of low regularity.
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the form

(E.2) ‖u‖Bt+1,q ≤ C(‖V ∗u‖Bt,q + ‖u‖Bt,q)

for all t, q such that the right-hand side is finite, t+ 1 > 1/q. Since u, V ∗u ∈
B1−s,p′

(E) we have u ∈ B2−s,p′
(E), where 2 − s > 1/p′ since s ≤ 1. Feeding

this back into (E.2) and using that V is smooth, we see that we can boostrap
u to any desired regularity. Thus u is smooth. (In general, for V not smooth,
we want V sufficiently regular so that the above steps allow us to bootstrap
to u ∈ B1,2(E).) Furthermore, r(u) = 0. We now apply Theorem E.1 to con-
clude u = 0. Thus, D + V is surjective. �

The next two unique continuation theorems are ones that are specific
to the Seiberg–Witten equations. In [6], unique continuation theorems are
proved for the (linearized and nonlinear) four-dimensional Seiberg–Witten
equations. Because solutions to the three-dimensional Seiberg–Witten equa-
tions on Y can be regarded as time-independent solutions to the four-
dimensional Seiberg–Witten equations on S1 × Y (see [6]), these methods
carry over to yield unique continuation for the three-dimensional equations.
More precisely, if (B(t),Ψ(t)) is a path of configurations in C(Y ), then
(B(t),Ψ(t)) solve the Seiberg–Witten equations on S1 × Y if and only if

d

dt
(B(t),Ψ(t)) = −SW3(B(t),Ψ(t)).

Thus, if (B(t),Ψ(t)) ≡ (B,Ψ) is independent of time and satisfies SW3

(B,Ψ) = 0, then (B(t),Ψ(t)) satisfies the Seiberg–Witten equations on S1 ×
Y and we may apply the methods of [6]. We sketch proofs for the below
results; a more detailed proof will be left to [9].

Theorem E.3. Assume (3.1) and s > max(3/p, 1/2). If (B1,Ψ1),
(B2,Ψ2) ∈ Ms,p are irreducible and satisfy rΣ(B1,Ψ1) = rΣ(B2,Ψ2), then
(B1,Ψ1) and (B2,Ψ2) are gauge equivalent on Y .

Proof (Sketch). Regard (B1,Ψ1) and (B2,Ψ2) as solutions to the four-
dimensional Seiberg–Witten equations on S1 × Y as above. If we can apply
[6, Proposition 7.2.1–2], then we will be done, since [6, Proposition 7.2.1]
implies (B1,Ψ1) and (B2,Ψ2) are gauge equivalent on a tubular neigh-
borhood [0, 1] × (S1 × Σ) of the boundary of S1 × Y , and then [6, Propo-
sition 7.2.2] tells us that once the irreducible (B1,Ψ1) and (B2,Ψ2) are
gauge equivalent on an open set, then they are gauge equivalent on all
of S1 × Y . Restricting back to Y yields the desired result. In both these
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propositions, the unique continuation method of [6, Lemma 7.1.3] is used
to show that (b(t), ψ(t)) := (B1,Ψ1) − (B2,Ψ2) is zero on S1 × Y , where
in our case, (b(t), ψ(t)) is independent of t ∈ S1. One can check that the
analysis used in [6, Lemma 7.1.3] works for configurations that belong to
L∞(S1 × Y ) ∩B1,2(S1 × Y ) (i.e., we do not need C2(S1 × Y ) smoothness).
Thus, if we can show that (b, ψ) ∈ B1,2(S1 × Y ), we will be done. Since (b, ψ)
is independent of time, it suffices to show that (b, ψ) ∈ B1,2(Y ). For this, we
use that (b, ψ) satisfies an equation of the form ˜H(B,Ψ)(b, ψ) = (b, ψ)#(b, ψ),
since (B1,Ψ1) and (B2,Ψ2) are monopoles in Coulomb gauge. Moreover,
rΣ(b, ψ) = 0. Thus, as in the proof of Theorem E.2, we can bootstrap the
regularity of (b, ψ) ∈ T s,p to (b, ψ) ∈ T 1,2 since we have an overdetermined
elliptic boundary value problem for (b, ψ). This proves the result. �

The next result is essentially a linear version of the previous theorem.
Observe that if (B,Ψ) ∈ Ms,p(Y ) with s > 3/p then (B,Ψ) ∈ L∞C(Y ) and
furthermore, (B,Ψ) ∈ C∞

locC(Y ), where C∞
loc = C∞

loc(Y ) is the space of func-
tions which belong to C∞(K) for every compact subset K contained in the
interior of Y . Indeed, the Seiberg–Witten equations in Coulomb-gauge are
elliptic in the interior of Y and so we can bootstrap the regularity of (B,Ψ)
to any desired regularity in the interior. However, since we do not have
stronger control of (B,Ψ) at the boundary, this regularity cannot in general
be boostrapped to all of Y .

Thus, for (B,Ψ) ∈ Ms,p(Y ), we have the map

d(B,Ψ),t : {ξ ∈ B2,2Ω0(Y ; iR) : ξ|Σ = 0} → T 1,2
loc ,(E.3)

ξ 	→ (−dξ, ξΨ),

whose image is the formal tangent space to the gauge orbit of (B,Ψ) deter-
mined by the gauge group G2,2

∂ . Here, T 1,2
loc is the closure of the space T in

the B1,2
loc (Y ) topology, where the subscript “loc” has the same meaning as

above. Denote the image of (E.3) by J 1,2,loc
(B,Ψ),t.

Theorem E.4. Let (B,Ψ) ∈ Ms,p(Y ), s > 3/p. Suppose (b, ψ) ∈ T 1,2 sat-
isfies H(B,Ψ)(b, ψ) = 0 and rΣ(b, ψ) = 0. Then either (i) (b, ψ) ∈ J 1,2,loc

(B,Ψ),t or
else (ii) Ψ ≡ 0, and then ψ ≡ 0 and b ∈ ker d.

Corollary E.1. Let (B,Ψ) ∈ Ms,p(Y ), s > 3/p. Suppose (b, ψ) ∈ K1,2
(B,Ψ)

satisfies H(B,Ψ)(b, ψ) = 0 and rΣ(b, ψ) = 0. Then either (i) (b, ψ) = 0 or else
(ii) Ψ ≡ 0 and b ∈ H1(Y,Σ; iR) ∼= {a ∈ Ω1(Y ; iR) : da = d∗a = 0, a|Σ = 0}.
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Proof. This immediately follows from the previous theorem and J 1,2,loc
(B,Ψ),t ∩

K1,2
(B,Ψ) = 0. �
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