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Derived deformations of schemes

Jonathan Paul Pridham

We introduce a new approach to constructing derived deforma-
tion groupoids, by considering them as parameter spaces for strong
homotopy bialgebras. This allows them to be constructed for all
classical deformation problems, such as deformations of an arbi-
trary scheme, in any characteristic. We also give a general approach
for studying deformations of diagrams.
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Introduction

In [11], the theory of simplicial deformation complexes (SDCs) was
expounded as a means of governing deformation problems, giving an alter-
native to the theory of differential graded Lie algebras (DGLAs). The main
advantages of SDCs over DGLAs are that they can be constructed canoni-
cally (and thus for a wider range of problems), and are valid in all charac-
teristics.

In [9], Manetti showed that given a DGLA, or even an SHLA, govern-
ing a deformation problem, it is possible to define an extended deformation
functor. The approach in this paper can almost be regarded as opposite to
this — we try, for any deformation problem, to define an extended defor-
mation functor with a geometric interpretation, meaning that the functor
still parametrizes geometric objects. We then see how this functor can be
recovered from the SDC governing the problem.

Since almost all examples of SDCs come from monadic and comonadic
adjunctions, in Section 4 we look at how to extend deformation groupoids
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in these scenarios. For a monad �, the solution is to look at the strong
homotopy �-algebras, as defined by Lada in [1]. The idea is that the monadic
axioms are only satisfied up to homotopy, with the homotopies satisfying
further conditions up to homotopy, and so on. This approach allows us to
define a quasi-smooth extended deformation functor associated to any SDC,
with the same cohomology.

Using the constructions of Sections 3.2 and 3.3, we describe extended
deformations of morphisms and diagrams (giving new results even for the
problems in [11]). This defines cohomology of a morphism in any such cate-
gory, giving a variant of Van Osdol’s bicohomology [17]. One consequence is
that the space describing extended deformations of the identity morphism on
an objectD is just the loop space of the space of extended deformations ofD.

The structure of the paper is as follows. Sections 1 and 2 are introduc-
tory, summarizing results from [14] and properties of monads and comonads,
respectively. Section 3 reprises material from [11] on SDCs, and includes new
results constructing SDCs associated to diagrams in Sections 3.2 and 3.3.
The key motivating examples of deformations of a scheme are described in
Examples 3.1 and 3.4.

Section 4 then gives the construction of the derived deformation functor
(Definition 4.2), together with a simplified description of derived deforma-
tions of a morphism (Proposition 4.6), and the characterization of derived
deformations of an identity morphism as a loop space (Proposition 4.7).

In [11], it was shown that SDCs are equivalent to N0-graded DGLAs in
characteristic 0, in such a way that the associated deformation groupoids
are equivalent. In Section 5, we show that the associated extended deforma-
tion functors are also equivalent. Corollary 5.4 then shows how our func-
tor of derived deformations of a smooth scheme coincides with existing
constructions.

1. Derived deformation functors

With the exception of Section 1.4, the definitions and results in this sec-
tion can all be found in [14]. Fix a complete local Noetherian ring Λ, with
maximal ideal μ and residue field k.

1.1. Simplicial Artinian rings

Definition 1.1. Let CΛ denote the category of local Artinian Λ-algebras
with residue field k. We define sCΛ to be the category of Artinian simplicial
local Λ-algebras, with residue field k.
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Definition 1.2. Given a simplicial complex V•, recall that the
normalized chain complex N s(V )• is given by N s(V )n :=

⋂
i>0 ker(∂i : Vn →

Vn−1), with differential ∂0. The simplicial Dold–Kan correspondence says
that N s gives an equivalence of categories between simplicial complexes and
non-negatively graded chain complexes in any abelian category. Where no
ambiguity results, we will denote N s by N .

Lemma 1.1. A simplicial complex A• of local Λ-algebras with residue field
k and maximal ideal m(A)• is Artinian if and only if:

(1) the normalization N(cotA) of the cotangent space cotA := m(A)/
(m(A)2 + μm(A)) is finite dimensional (i.e., concentrated in finitely
many degrees, and finite dimensional in each degree).

(2) For some n > 0, m(A)n = 0.

Proof. See [14, Lemma 1.16] �

As in [4], we say that a functor is left exact if it preserves all finite limits.
This is equivalent to saying that it preserves final objects and fibre products.

Definition 1.3. Define Sp to be the category of left-exact functors from
CΛ to Set. Define cSp to be the category of left-exact functors from sCΛ
to Set.

Definition 1.4. Given a functor F : CΛ → Set, we write F : sCΛ → Set to
mean A �→ F (A0) (corresponding to the inclusion Sp ↪→ cSp).

1.2. Properties of morphisms

Definition 1.5. As in [8], we say that a functor F : CΛ → Set is smooth if
for all surjections A→ B in CΛ, the map F (A)→ F (B) is surjective.

Definition 1.6. We say that a map f : A→ B in sCΛ is acyclic if πi(f) :
πi(A)→ πi(B) is an isomorphism of Artinian Λ-modules for all i. f is said
to be surjective if each fn : An → Bn is surjective.

Note that for any simplicial abelian group A, the homotopy groups can
be calculated by πiA ∼= H i(NA), the homology groups of the normalized
chain complex. These in turn are isomorphic to the homology groups of the
unnormalized chain complex associated to A.
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Definition 1.7. We define a small extension e : I → A→ B in sCΛ to con-
sist of a surjection A→ B in sCΛ with kernel I, such that m(A) · I = 0. Note
that this implies that I is a simplicial complex of k-vector spaces.

Lemma 1.2. Every surjection in sCΛ can be factorized as a composition
of small extensions. Every acyclic surjection in sCΛ can be factorized as a
composition of acyclic small extensions.

Proof. See [14, Lemma 1.23]. �

Definition 1.8. We say that a morphism α : F → G in cSp is smooth if
for all small extensions A � B in sCΛ, the map F (A)→ F (B)×G(B) G(A)
is surjective.

Similarly, we call α quasi-smooth if for all acyclic small extensions A→
B in sCΛ, the map F (A)→ F (B)×G(B) G(A) is surjective.

Lemma 1.3. A morphism α : F → G in Sp is smooth if and only if the
induced morphism between the objects F,G ∈ cSp is quasi-smooth, if and
only if it is smooth.

Proof. See [14, Lemma 1.31]. �

1.3. Derived deformation functors

Definition 1.9. Define the scSp to be the category of left-exact functors
from sCΛ to the category S of simplicial sets.

Definition 1.10. A morphism α : F → G in scSp is said to be smooth if

(S1) for every acyclic surjectionA→ B in sCΛ, the map F (A)→ F (B)×G(B)

G(A) is a trivial fibration in S;

(S2) for every surjection A→ B in sCΛ, the map F (A)→ F (B)×G(B) G(A)
is a surjective fibration in S.

A morphism α : F → G in scSp is said to be quasi-smooth if it satisfies
(S1) and

(Q2) for every surjection A→ B in sCΛ, the map F (A)→ F (B)×G(B) G(A)
is a fibration in S.
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Definition 1.11. Given A ∈ sCΛ and a finite simplicial set K, define AK ∈
CΛ by

(AK)i := HomS(K ×Δi, A)×HomSet(π0K,k) k.

Definition 1.12. Given F ∈ scSp, define F : sCΛ → S by

F (A)n := Fn(AΔn

).

For F ∈ cSp, we may regard F as an object of scSp (with the constant
simplicial structure), and then define F as above.

Lemma 1.4. A map α : F → G in cSp is smooth (resp. quasi-smooth) if
and only if the induced map of functors α : F → G is smooth (resp. quasi-
smooth) in scSp.

Proof. See [14, Lemma 1.36]. �
The following lemma will provide many examples of functors which are

quasi-smooth but not smooth.

Lemma 1.5. If F → G is a quasi-smooth map of functors F,G : sCΛ → S,
and K → L is a cofibration in S, then

FL → FK ×GK GL

is quasi-smooth.

Proof. This is an immediate consequence of the fact that S is a simplicial
model category, following from axiom SM7, as given in [3, Section II.3]. �

The following lemma is a consequence of standard properties of fibrations
and trivial fibrations in S.

Lemma 1.6. If F → G is a quasi-smooth map of functors F,G : sCΛ → S,
and H → G is any map of functors, then F ×G H → H is quasi-smooth.

Definition 1.13. A map α : F → G of functors F,G : CΛ → S is said to
be smooth (resp. quasi-smooth, resp. trivially smooth) if for all surjections
A � B in CΛ, the maps

F (A)→ F (B)×G(B) G(A)

are surjective fibrations (resp. fibrations, resp. trivial fibrations).
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Proposition 1.1. A map α : F → G of left-exact functors F,G : CΛ → S

is smooth if and only if the maps Fn
αn−→ Gn of functors Fn, Gn : CΛ → Set

are all smooth.

Proof. See [14, Proposition 1.39]. �

Proposition 1.2. If a morphism F
α−→ G of left-exact functors F,G : sCΛ →

S is such that the maps

θ : F (A)→ F (B)×G(B) G(A)

are surjective fibrations for all acyclic small extensions A→ B, then α :
F → G is quasi-smooth (resp. smooth) if and only if θ is a fibration (resp.
surjective fibration) for all small extensions A→ B.

Proof. See [14, Proposition 1.63]. �

Definition 1.14. We will say that a morphism α : F → G of quasi-smooth
objects of scSp is a weak equivalence if, for all A ∈ sCΛ, the maps πiF (A)→
πiG(A) are isomorphisms for all i.

1.4. Quotient spaces

Definition 1.15. Given functorsX : sCΛ → S andG : sCΛ → sGp, together
with a right action of G on X, define the quotient space by

[X/G]n = (X ×G WG)n = Xn ×Gn−1 ×Gn−2 × · · · ×G0,

with operations as standard for universal bundles (see [3, Chapter V]).
Explicitly

∂i(x, gn−1, gn−2, . . . , g0)

=

⎧
⎪⎨

⎪⎩

(∂0x ∗ gn−1, gn−2, . . . , g0), i = 0,
(∂ix, ∂i−1gn−1, . . . , (∂0gn−i)gn−i−1, gn−i−2, . . . , g0), 0 < i < n,

(∂nx, ∂n−1gn−1, . . . , ∂1g1), i = n,

σi(x, gn−1, gn−2, . . . , g0)
= (σix, σi−1gn−1, . . . , σ0gn−i, e, gn−i−1, gn−i−2, . . . , g0).

The space [•/G] is also denoted W̄G, and is a model for the classifying space
BG of G. Note replacing WG with any other fibrant cofibrant contractible
G-space EG will give the same properties.
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Lemma 1.7. If G : sCΛ → sGp is smooth, then W̄G is smooth.

Proof. For any surjection A→ B, we have G(A)→ G(B) fibrant and
surjective on π0, which by Goerss and Jardine [3, Corollary V.6.9] implies
that W̄G(A)→ W̄G(B) is a fibration. If A→ B is also acyclic, then every-
thing is trivial by properties of W̄ and G. �

Remark 1.1. Observe that this is our first example of a quasi-smooth
functor which is not a right Quillen functor for the simplicial model struc-
ture. The definitions of smoothness and quasi-smoothness were designed
with W̄G in mind.

Lemma 1.8. If X is quasi-smooth, then so is [X/G]→ W̄G.

Proof. This follows from the observation that for any fibration (resp. trivial
fibration) Z → Y of G-spaces, [Z/G]→ [Y/G] is a fibration (resp. trivial
fibration). �

Corollary 1.1. If X is quasi-smooth and G smooth, then [X/G] is quasi-
smooth.

Proof. Consider the fibration X → [X/G]→ W̄G. �

1.5. Cohomology and obstructions

Given a quasi-smooth morphism α : F → G in scSp, there exist k-vector
spaces H i(F/G) for all i ∈ Z.

By Pridham [14, Corollary 1.46], these have the property that for any
simplicial k-vector space V with finite-dimensional normalization,

πm(F (k ⊕ V )×G(k⊕V ) {0}) ∼= H−m(F/G⊗ V ),

where V 2 = 0 and

H i(F/G⊗ V ) :=
⊕

n≥0

H i+n(F/G)⊗ πn(V ).

If G = • (the one-point set), we write Hj(F ) := Hj(F/•).
We now have the following characterization of obstruction theory:
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Theorem 1.2. If α : F → G in scSp is quasi-smooth, then for any small
extension e : I → A

f−→ B in sCΛ, there is a sequence of sets

π0(FA)
f∗−→ π0(FB ×GB GA) oe−→ H1(F/G⊗ I)

exact in the sense that the fibre of oe over 0 is the image of f∗. Moreover,
there is a group action of H0(F/G⊗ I) on π0(FA) whose orbits are precisely
the fibres of f∗.

For any y ∈ F0A, with x = f∗y, the fibre of FA→ FB ×GB GA over x
is isomorphic to ker(α : FI → GI), and the sequence above extends to a long
exact sequence

· · · f∗ �� πn(FB ×GB GA, x)
oe �� H1−n(F/G⊗ I) ∂e �� πn−1(FA, y)

f∗ �� · · ·
· · · f∗ �� π1(FB ×GB GA, x)

oe �� H0(F/G⊗ I) −∗y �� π0(FA).

Proof. See [14, Theorem 1.45]. �

Corollary 1.2. A map α : F → G of quasi-smooth F,G ∈ scSp is a weak
equivalence if and only if the maps Hj(α) : Hj(F )→ Hj(G) are all isomor-
phisms.

Corollary 1.3. If α : F → G is quasi-smooth in scSp, then α is smooth if
and only if H i(F/G) = 0 for all i > 0.

Proposition 1.3. Let X,Y, Z : sCΛ → S be left-exact functors, with X α−→
Y and Y

β−→ Z quasi-smooth. There is then a long exact sequence

. . .
∂−→ Hj(X/Y )→ Hj(X/Z)→ Hj(Y/Z)

∂−→ Hj+1(X/Y )→ Hj+1(X/Z)→ . . . .

Proof. See [14, Proposition 1.61]. �

1.6. Model structures

Theorem 1.3. There is a simplicial model structure (called the geometric
model structure) on scSp, for which the fibrations are quasi-smooth mor-
phisms, and weak equivalences between quasi-smooth objects are those given
in Definition 1.14.

Proof. This is [14, Theorem 2.14]. �
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Thus the homotopy category Ho(scSp) is equivalent to the category of
quasi-smooth objects in scSp, localized at the weak equivalences of Defini-
tion 1.14.

Definition 1.16. Given any morphism f : X → Z, we define H n(X/Z) :=
H n(X̂/Z), for X i−→ X̂

p−→ Z a factorization of f with i a geometric trivial
cofibration, and p a geometric fibration.

1.6.1. Homotopy representability

Definition 1.17. Define the category S to consist of functors F : sCΛ → S

satisfying the following conditions:

(A0) F (k) is contractible.

(A1) For all small extensions A � B in sCΛ, and maps C → B in sCΛ, the
map F (A×B C)→ F (A)×h

F (B) F (C) is a weak equivalence, where ×h

denotes homotopy fibre product.

(A2) For all acyclic small extensions A � B in sCΛ, the map F (A)→ F (B)
is a weak equivalence.

Say that a natural transformation η : F → G between such functors is
a weak equivalence if the maps F (A)→ G(A) are weak equivalences for all
A ∈ sCΛ, and let Ho(S) be the category obtained by formally inverting all
weak equivalences in S.

Remark 1.4. We may apply the long exact sequence of homotopy to
describe the homotopy groups of homotopy fibre products. If f : X → Z,
g : Y → Z in S and P = X ×h

Z Y , the map θ : π0(P )→ π0(X)×π0(Z) π0(Y )
is surjective. Moreover, π1(Z, ∗) acts transitively on the fibres of θ over
∗ ∈ π0Z.

Take v ∈ π0(P ) over ∗. Then there is a connecting homomorphism ∂ :
πn(Z, ∗)→ πn−1(P, v) for all n ≥ 1, giving a long exact sequence

. . .
∂−→ πn(P, v)→ πn(X, v)× πn(Y, v)

f ·g−1

−−−→ πn(Z, ∗) ∂−→ πn−1(P, v) . . . .

Theorem 1.5. There is a canonical equivalence between the geometric
homotopy category Ho(scSp) and the category Ho(S).

Proof. This is [14, Theorem 2.30]. �
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1.6.2. Equivalent formulations If k is a field of characteristic 0, then
we may work with dg algebras rather than simplicial algebras.

Definition 1.18. Define dgCΛ to be the category of Artinian local differ-
ential N0-graded graded-commutative Λ-algebras with residue field k.

Definition 1.19. Define a map A→ B in dgCΛ to be a small extension if
it is surjective and the kernel I satisfies I ·m(A) = 0.

Definition 1.20. Define sDGSp to be the category of left exact functors
from dgCΛ to S.

Definition 1.21. Say a map X → Y in sDGSp is quasi-smooth if for all
small extensions f : A→ B in dgCΛ, the morphism

X(A)→ Y (A)×Y (B) X(B)

is a fibration in S, which is moreover a trivial fibration if f is acyclic.

Definition 1.22. We will say that a morphism α : F → G of quasi-smooth
objects of sDGSp is a weak equivalence if, for all A ∈ sCΛ, the maps πiF
(A)→ πiG(A) are isomorphisms for all i.

Proposition 1.4. There is a model structure on sDGSp, for which the
fibrations are quasi-smooth morphisms, and weak equivalences between quasi-
smooth objects are those given in Definition 1.22.

Proof. This is [14, Proposition 4.12]. �

Most of the constructions from sCΛ carry over to dgCΛ. However, there
is no straightforward analogue of Definition 1.12.

Definition 1.23. Define the normalization functor N : sCΛ → dgCΛ by
mapping A to its associated normalized complex NA, equipped with the
Eilenberg–Zilber shuffle product (as in [15]).

Definition 1.24. Define Spf N∗ : sDGSp→ scSp by mapping X : dgCΛ →
S to the composition X ◦N : sCΛ → S. Note that this is well defined, since
N is left exact.

Theorem 1.6. Spf N∗ : sDGSp→ scSp is a right Quillen equivalence.
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Proof. This is [14, Theorem 4.18]. �

In particular, this means that Spf N∗ maps quasi-smooth morphisms to
quasi-smooth morphisms, and induces an equivalence RSpf N∗ : Ho
(sDGSp)→ Ho(scSp).

Now assume that Λ = k.

Theorem 1.7. Ho(sDGSp) is equivalent to the category of L∞-algebras
localized at tangent quasi-isomorphisms (as considered in [7]). This is also
equivalent to the category of DGLAs (see Section 5.1) localized at quasi-
isomorphisms.

Proof. Combine Proposition 4.42 and Corollary 4.57 of [14]. �

2. Monads and comonads

2.1. Algebras and coalgebras

Definition 2.1. A monad (or triple) on a category B is a monoid in the
category of endofunctors of B (with the monoidal structure given by compo-
sition of functors). A comonoid (or cotriple) is a comonoid in the category
of endofunctors of B.

The following is standard:

Lemma 2.1. Take an adjunction

A
G

�
��E

F
��

with unit η : id→ GF and co-unit ε : FG→ id. Then � := GF is a monad
with unit η and multiplication μ := GεF , while ⊥ := FG is a comonad, with
co-unit ε and comultiplication Δ := FηG.

Definition 2.2. Given a monad (�, μ, η) on a category E , define the cate-
gory E� of �-algebras to have objects

�E θ−→ E,

such that θ ◦ ηE = id and θ ◦ �θ = θ ◦ μE .
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A morphism

g : (�E1
θ−→ E1)→ (�E2

φ−→ E2)

of �-algebras is a morphism g : E1 → E2 in E such that φ ◦ �g = g ◦ θ.
We define the comparison functor K : A → E� by

B �→ (UFUB UεB−−→ UB)

on objects, and K(g) = U(g) on morphisms.

Definition 2.3. The adjunction

A
U

�
��E

F
��

is said to be monadic (or tripleable) if K : A → E� is an equivalence.

Examples 2.1. Intuitively, monadic adjunctions correspond to algebraic
theories, such as the adjunction

Ring
U

�
��
Set

Z[−]
��

between rings and sets, U being the forgetful functor. Other examples are
k-algebras over k-vector spaces, or groups over sets.

Definition 2.4. Dually, given a comonad (⊥,Δ, ε) on a category A, we
define the category A⊥ of ⊥-coalgebras by

(A⊥)opp := (Aopp)⊥
opp
,

noting that ⊥opp is a monad on the opposite category Aopp. The adjunction
of Lemma 2.1 is said to be comonadic (or cotripleable) if the adjunction on
opposite categories is monadic.

Example 2.2. If X is a topological space (or any site with enough points)
and X ′ is the set of points of X, let u : X ′ → X be the associated morphism.
Then the adjunction u−1 
 u∗ on sheaves is comonadic, so the category of
sheaves on X is equivalent to u−1u∗-coalgebras in the category of sheaves
(or equivalently presheaves) on X ′.

A more prosaic example is that for any ringA, the category ofA-coalgebras
is comonadic over the category of A-modules.
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2.2. Bialgebras

As in [17, Section IV], take a category B equipped with both a monad
(�, μ, η) and a comonad (⊥,Δ, γ), together with a distributivity transfor-
mation λ : �⊥ =⇒ ⊥� for which the following diagrams commute:

�⊥ λ ��

�Δ
��

⊥�
Δ�

��
�⊥2 λ⊥ �� ⊥�⊥ ⊥λ �� ⊥2�

�⊥ λ �� ⊥�

�2⊥
μ⊥

��

�λ �� �⊥� λ� �� ⊥�2

⊥μ

��

�⊥ λ ��

�γ ��
��

��
��

�

��
��

��
� ⊥�

γ��� ��
��

��
�

��
��

��
�

�

�⊥ λ �� ⊥�

⊥.
η⊥

		 �������

������� ⊥η



�������

�������

Definition 2.5. Given a distributive monad–comonad pair (�,⊥) on a
category B, define the category B�⊥ of bialgebras as follows. The objects of

B�⊥ are triples (α,B, β) with (�B α−→ B) an object of B� and B
β−→ ⊥B an

object of B⊥, such that the composition (β ◦ α) : �B → ⊥B agrees with the
composition

�B �β−−→ �⊥B λ−→ ⊥�B ⊥α−−→ ⊥B.
A morphism f : (α,B, β)→ (α′, B′, β′) is a morphism f : B → B′ in B

such that α′ ◦ �f = f ◦ α and β′ ◦ f = ⊥f ◦ β.

To understand how the data (�,⊥, η, μ, γ,Δ, λ) above occur naturally,
note that by Van Osdol [17, Section IV] or [11, Section 2], these data are
equivalent to a diagram

D
U

�
��

V

��

E
F

��

V

��
A

G	

��

U

�
�� B,

F
��

G	

��

with F 
 U monadic, G � V comonadic and U, V commuting with every-
thing (although G and F need not commute). The associated monad is
� = UF , and the comonad ⊥ = V G. Distributivity ensures that D � E� �
(B⊥)� and D � A⊥ � (B�)⊥. In other words, D � B�⊥.
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Example 2.3. If X is a topological space (or any site with enough points)
and X ′ is the set of points of X, let D be the category of sheaves of rings on
X. If B is the category of sheaves (or equivalently presheaves) of sets on X ′,
then the description above characterizes D as a category of bialgebras over
B, with the comonad being u−1u∗ for u : X ′ → X, and the monad being the
free polynomial functor.

3. Constructing SDCs

Recall the definition of an SDC:

Definition 3.1. A simplicial deformation complex E• consists of smooth
left-exact functors En : CΛ → Set for each n ≥ 0, together with maps

∂i : En → En+1, 1 ≤ i ≤ n,
σi : En → En−1, 0 ≤ i < n,

an associative product ∗ : Em × En → Em+n, with identity 1 : • → E0,
where • is the constant functor •(A) = • (the one-point set) on CΛ, such
that:

(1) ∂j∂i = ∂i∂j−1, i < j.

(2) σjσi = σiσj+1, i ≤ j.

(3) σj∂i =

⎧
⎪⎨

⎪⎩

∂iσj−1, i < j,

id, i = j, i = j + 1,
∂i−1σj , i > j + 1.

(4) ∂i(e) ∗ f = ∂i(e ∗ f).

(5) e ∗ ∂i(f) = ∂i+m(e ∗ f), for e ∈ Em.

(6) σi(e) ∗ f = σi(e ∗ f).

(7) e ∗ σi(f) = σi+m(e ∗ f), for e ∈ Em.

From the viewpoint of homotopical algebra, there is a more natural way
of characterizing the smoothness criterion for E•. Analogously to [3, Lemma
VII.4.9], we define matching objects by M−1E := •, M0E := E0 and for
n > 0

MnE = {(e0, e1, . . . , en) ∈ (En)n+1 |σiej = σj−1ei ∀i < j}.
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Proposition 3.1. The canonical maps σ : En+1 →MnE, given by e �→
(σ0e, σ1e, . . . , σne), are all smooth, for n ≥ 0.

Proof. Since En is smooth, by the Standard Smoothness Criterion (e.g.,
[8, Proposition 2.17]) it suffices to show that this is surjective on tangent
spaces. The tangent space of MnE consists of (n+ 1)-tuples γi ∈ Cn(E)
satisfying σiγj = σj−1γi, for i < j. For any cosimplicial complex C•, there
is a decomposition of the associated cochain complex as Cn = Nn

c (C)⊕
Dn(C), where Nn

c (C) = ∩n−1
i=0 kerσi, and Dn(C) =

∑n
i=1 ∂

iCn−1. Moreover
σ : Dn →Mn−1C is an isomorphism, giving the required surjectivity. �

Definition 3.2. Given an SDC E, recall from [11] that the Maurer–Cartan
functor MCE : CΛ → Set is defined by

MCE(A) = {ω ∈ E1(A) : ω ∗ ω = ∂1(ω)}.

The group E0(A) acts on this by conjugation, and we define DefE(A) to
be the groupoid with objects MCE(A) and morphisms given by E0(A) via
this action. We say that an SDC governs a deformation problem if DefE is
equivalent to the associated deformation functor.

Definition 3.3. Recall that C•(E) denotes the tangent space of E•, i.e.,
Cn(E) = En(k[ε]) for ε2 = 0. This has the natural structure of a cosimplicial
complex, by Pridham [11], and we set H i(E) := H i(C•(E)).

3.1. SDCs from bialgebraic structures

Definition 3.4. Recall from [13] that Δ∗∗ is defined to be the subcategory
of the ordinal number category Δ containing only those non-decreasing mor-
phisms f : m→ n with f(0) = 0, f(m) = n. We define a monoidal structure
on this category by setting m⊗ n = m + n, with

(f ⊗ g)(i) =

{
f(i), i ≤ m,
g(i−m) + n, i ≥ m,

for f : m→ n.

Definition 3.5. As in [13], define monoidal structures on SetΔ∗∗ and S
Δ∗∗

by setting
(X ⊗ Y )n :=

∐

a+b=n

Xa ⊗ Y b,
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with operations given by

∂i(x⊗ y) =

{
(∂ix)⊗ y, i ≤ a,
x⊗ (∂i−ay), i > a,

σi(x⊗ y) =

{
(σix)⊗ y, i < a,

x⊗ (σi−ay), i ≥ a.

The identity I is given by I0 = • and In = ∅ for n > 0.

Note that an SDC over Λ is a smooth left-exact functor from CΛ to the
category of monoids in SetΔ∗∗ .

Assume that we have a diagram

D
U

�
��

V

��

E
F

��

V

��
A

G	

��

U

�
�� B,

F
��

G	

��

of homogeneous (i.e., preserving fibre products, but not the final object)
functors from CΛ to Cat as in [11, Section 2] (i.e., B has uniformly trivial
deformation theory, with the diagram satisfying the conditions of Section
2.2). Recall that we write �h = UF , ⊥h = FU , ⊥v = V G and �v = GV .

Proposition 3.2. For the diagram above and A ∈ CΛ, B(A) has the struc-
ture of category enriched in SetΔ∗∗ , with

HomB(B,B′)n = HomB(�n
hB,⊥n

vB
′).

Proof. See [13, Proposition 2.12]. �

Examples 3.1. (1) If X is a topological space (or any site with enough
points) and X ′ is the set of points of X, let D(A) be the category of sheaves
of flat A-algebras on X ′. If B is the category of sheaves (or equivalently
presheaves) of flat A-modules onX ′, then the description above characterizes
D as B�h

⊥v
, with ⊥v = u−1u∗ for u : X ′ → X, and �h being the free A-algebra

functor for module. This example arises when considering deformations of
a scheme X in [11, Section 3.2], since deformations of X are equivalent to
deformations of the sheaf OX of algebras.
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(2) Another important example (considered in [11, Section 3.1]) is when
D(A) is the category of flat Hopf algebras over A, with A(A), E(A)
and B(A) the categories of flat algebras, coalgebras and modules,
respectively.

(3) In order to make the first example functorial, we could let B be the
category of pairs ({Mx}x∈X , X), for X a topological space and
{Mx}x∈X a presheaf of flat A-modules on X ′, with a morphism f � :
({Ny}y∈Y , Y )→ ({Mx}x∈X , X) given by a map f : X → Y of topolog-
ical spaces, together with maps f �

x : Nf(x) →Mx for all x ∈ X.
We may define ⊥v and �h as before, and then B�h

⊥v
will be the

category of pairs (OX , X), where X is a topological space and OX a
sheaf of flat A-algebras on X.

3.2. SDCs from diagrams

Definition 3.6. Given a morphism f : D → D′ inD(k), choose liftsB,B′ ∈
B(Λ) of UV D,UV D′ ∈ B(k) (which exist since the deformation theory of B
is uniformly trivial). Then define

En
D/B(f) := Homn(B,B′)UV (αn

D′◦f◦εn
D) : CΛ → Set,

where α : 1→ �v and ε : ⊥h → 1 are the unit and counit of the respective
adjunctions.

Write E∗
D/B(D) := E∗

D/B(idD). Note that uniform triviality of B ensures
that these constructions are independent of the choices of lift, since any
other choice is isomorphic.

Lemma 3.1. ED/B(f)(A) has the natural structure of a cosimplicial com-
plex.

For every pair of composable morphisms f, g in D(k) between such objects,
there is a product

ED/B(f)(A)⊗ ED/B(g)(A)→ ED/B(f ◦ g)(A)

in SetΔ∗∗ , functorial in A.
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Proof. It follows from Proposition 3.2 that ED/B(f)(A) ∈ SetΔ∗∗ , with oper-
ations

∂i(x) = ⊥i−1
v V αG⊥n−i

v B ◦ x ◦ �i−1
h UεF�n−i

h B, 0 < i ≤ n,
σi(x) = ⊥i

vγ⊥n−i−1
v B ◦ x ◦ �i

hη�n−i−1
h B, 0 ≤ i < n,

for η : 1→ �h and γ : ⊥v → 1 the respective unit and co-unit. The multi-
plication also follows from Proposition 3.2.

The canonical object of MC(ED/B(idD)(Λ)) corresponding to D gives an
element ωD ∈ ED/B(idD)(Λ)1 and we then enhance the structure above to
give a cosimplicial structure by setting

∂0x := ωD′ ∗ x, ∂n+1x = x ∗ ωD,

for x ∈ ED/B(f)(A)n. �

Definition 3.7. Given an SDC E, and a simplicial set X, define an SDC
EX by

(EX)n = (En)Xn .

For x ∈ Xn+1, y ∈ Yn+1, z ∈ Xm+n, 1 ≤ i ≤ n, 0 ≤ j < n, e ∈ (EX)n and
f ∈ (EX)m, we define the operations by

∂i(e)(x) := ∂i(e(∂ix)),

σj(e)(y) := σj(e(σiy)),
(f ∗ e)(z) := f((∂m+1)nz) ∗ e((∂0)mz).

Definition 3.8. Let C•
D/B(f) be the the tangent space of ED/B(f). This is

a vector space over k, and we define

Ext∗D/B(f) := H∗(C•
D/B(f));

this construction is closely related to Van Osdol’s bicohomology [17].

Lemma 3.2. If X is a finite simplicial set, then

Hn(EX) ∼=
⊕

i+j=n

H i(E)⊗Hj(X, k).

Proof. Since X is finite, C•(EX) ∼= C•(E)⊗ kX , and the result now follows
from the Künneth formula. �
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Definition 3.9. Given a small category I and an I-diagram D : I→ D(k),
define the SDC E•

D/B(D) by

En
D/B(D) =

∏

i0
f1−→i1

f2−→...
fn−→in

in I

En(D(fn ◦ fn−1 ◦ · · · ◦ f0))

=
∏

x∈BIn

En(D(∂ n−1
1 x)),

where BI is the nerve of I (so BI0 = Ob (I), BI1 = Mor (I)), and ∂ −1
1 := σ0.

We define the operations by the formulae of Definition 3.7.

Theorem 3.2. The SDC E•
D/B(D) governs deformations of the diagram

D : I→ D(k).

Proof. This follows immediately from [13, Lemma 1.36], which characterizes
objects of DefE as diagrams from I to a category equivalent to D(A). �

Lemma 3.3. Given a diagram D : I→ D(k), the cohomology groups H∗

(E•
D/B(D)) are given by hypercohomology of the bicomplex

∏

i∈Ob I

C•
D/B(D(i))

f∗−f∗
−−−−→ . . .→

∏

i0
f1−→i1

f2−→...
fn−→in

in NnI

C•
D/B(D(fn ◦ fn−1 ◦ . . . f0)))→ . . . ,

where NnI ⊂ BnI consists of non-degenerate simplices, or equivalently strings
of non-identity morphisms.

Proof. Since C•(E•
D/B(D)) is the diagonal of the bicosimplicial complex

[m,n] �→
∏

i0
f1−→i1

f2−→...
fn−→in

in I

Cm
D/B(D(fn ◦ fn−1 ◦ . . . f0)),

the Eilenberg–Zilber theorem implies that it is homotopy equivalent to the
total complex of the associated binormalized complex. The vertical normal-
isation is just given by replacing BnI with NnI. �
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Example 3.3. If we define D and B as in Example 3.1.3, then the category
of flat schemes over A is a full subcategory of D(A), closed under deforma-
tions. Therefore, Theorem 3.2 constructs an SDC governing deformations of
a diagram of schemes.

For a morphism f : (X,OX)→ (Y,OY ) in D(k)opp, the reasoning of [11,
Section 3.2 adapts to show that

Ext∗D/B(f) = Ext∗OY
(LY/k

• ,Rf∗OX) = Ext∗OX
(f∗LY/k

• ,OX),

where LY/k
• is the cotangent complex of [6].

3.3. Constrained deformations

We now consider a generalization of Section 3.2, by taking a small diagram

D : I→ D(k),

a subcategory J ⊂ I, and D̃|J : J→ D(Λ) lifting D|J. We wish to describe
deformations of D which agree with D̃|J on J. Note that when I = (0→ 1)
and J = {1}, this is the type of problem considered in [2, 16].

Proposition 3.3. Given a I-diagram D : I→ D(k), with D̃|J as above, the
groupoid of deformations of D fixing D̃|J is governed by the SDC:

E•
D/B(D)×E•

D/B(D|J) •,

where • → E•
D/B(D|J) is defined by the object of MC(E•

D/B(D|J)) correspond-

ing to D̃|J.
Proof. By Theorem 3.2, it suffices to show that Def(E•

D/B(D)×E•
D/B(D|J) •)

is equivalent to the 2-fibre product

Def(E•
D/B(D))×h

Def(E•(D|J)) ({D̃|J}, id).

We know that the functor MC preserves inverse limits, so

MC(E•(D)×E•(D|J) {D̃|J}) = MC(E•
D/B(D))×MC(E•(D|J)) {D̃|J}.

Since E0(D)(A)→ E0(D|J)(A) is also surjective (by smoothness), we see
that

Def(E•(D)×E•(D|J) {D̃|J}) � Def(E•
D/B(D))×h

Def(E•(D|J)) ({D̃|J}, id). �
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Example 3.4. Given a morphism f : X → Y of schemes over k, and a flat
formal deformation Y of Y over Λ, we may consider deformations of X over
Y, or equivalently deformations of this diagram fixing Y. Define the diagram
D to be f � : (OY , Y )→ (OX , X) in the category D(k) of Example 3.1.3, and
let D̃|J be the object (OY,Y) of D(Λ). Proposition 3.3 then gives an SDC

E := E•
D/B(D)×E•

D/B(D|J) •

governing this problem.
Lemma 3.3 implies that the tangent complex C•(E) is the mapping

cone of C•
D/B(OX , X)→ C•

D/B(f �), so by Example 3.3, the cohomology of
this SDC is given by

H∗(E) ∼= Ext∗OX
(cone(f∗LY/k

• → LX/k
• ),OX) ∼= Ext∗OX

(LX/Y
• ,OX).

Example 3.5. We could go further, and let E be a diagram Z
g−→ X

f−→ Y
over k, with a fixed formal deformation g̃f : Z→ Y of fg over Λ. Governing
this deformation problem, we get another SDC:

F := E•
D/B(Z

g−→ X
f−→ Y )×

E•
D/B(Z

gf−→Y )
{Z g̃f−→ Y}.

Now, C •(F ) = ker(C •(ED/B(E))→ C •(ED/B(E|J))), and Lemma 3.3
implies that C •(ED/B(E)) is homotopy equivalent to the total complex of

C •
D/B(Z)× C •

D/B(X)× C •
D/B(Y )→ C •

D/B(g)× C •
D/B(fg)

× C •
D/B(f)→ C •

D/B(fg),

while C •(ED/B(E|J)) is homotopy equivalent to the total complex of

C •
D/B(Z)× C •

D/B(Y )→ C •
D/B(fg),

so C •(F ) is homotopy equivalent to the total complex of

C •
D/B(X)→ C •

D/B(g)× C •
D/B(f)→ C •

D/B(fg).

By Example 3.3,

H∗ ker(C •
D/B(X)→ C •

D/B(f)) ∼= Ext∗OX
(LX/Y

• ,OX),

H∗ ker(C •
D/B(g)→ C •

D/B(fg)) ∼= Ext∗OX
(LX/Y

• ,Rg∗OZ),
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and these isomorphisms combine to give

H∗(F ) ∼= Ext∗OX
(LX/Y

• , cone(OX → Rg∗OZ)[−1]).

Note that this more accurately captures the higher structure than the SDC
of [11, Section 3.3], whose cohomology had g∗OZ in place of Rg∗OZ above.

4. Extended deformation functors from SDCs

Given an SDC E, the aim of this section is to extend the classical defor-
mation groupoid DefE : CΛ → Grpd of [11] from CΛ to the whole of sCΛ.
Groupoids turn out to be too restrictive for our purposes, so we will define a
simplicial set-valued functor DefE : sCΛ → S extending the classifying space
BDefE of the deformation groupoid.

For a monad �, the obvious extension of the functor describing defor-
mations of a �-algebra is the functor of deformations of a strong homo-
topy �-algebra. Strong homotopy algebras were defined by Lada in [1] to
characterize the structures arising on deformation retracts of �-algebras in
topological spaces, but the description works over any simplicial category.
This motivates the following definition:

Definition 4.1. Given an SDCE, define the Maurer–Cartan functor MCE :
sCΛ → Set by

MCE(A) ⊂
∏

n≥0

En+1(AIn

),

consisting of those ω satisfying:

ωm(s1, . . . , sm) ∗ ωn(t1, . . . , tn) = ωm+n+1(s1, . . . , sm, 0, t1, . . . , tn),

∂iωn(t1, . . . , tn) = ωn+1(t1, . . . , ti−1, 1, ti, . . . , tn),

σiωn(t1, . . . , tn) = ωn−1(t1, . . . , ti−1,min{ti, ti+1},
ti+2, . . . , tn),

σ0ωn(t1, . . . , tn) = ωn−1(t2, . . . , tn),
σnωn(t1, . . . , tn) = ωn−1(t1, . . . , tn−1),

σ0ω0 = 1,

where I := Δ1.

Remarks 4.1. (1) One way to think of this construction is that, if we
start with an element ω ∈ E1 such that σ0ω = 1, then there are 2n
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elements generated by ω in each En+1. To see this correspondence,
take a vector in {0, 1}n, then substitute “ω∗” for each 0, and “∂1” for
each 1, adding a final ω. These elements will be at the vertices of an
n-cube, and ωn is then a homotopy between them.

(2) Lada’s definition of a strong homotopy algebra differs slightly in that
it omits all of the degeneracy conditions except σ0ω0 = 1. Our choices
are made so that we work with normalized, rather than unnormalized,
cochain complexes associated to a cosimplicial complex. Since these are
homotopy equivalent, both constructions will yield weakly equivalent
deformation functors, even if we remove all degeneracy conditions.

(3) In [13, Proposition 3.11] it is shown that MC has a precise homotopy-
theoretical interpretation as the derived functor associated to the func-
tor sending an SDC E and A ∈ CΛ to the set MCE(A) from Definition
3.2. In the scenario of Section 3, it follows from the results of [13] that
for A ∈ sCΛ, MCE(A) is the set of objects of the Segal space of strong
homotopy bialgebras over the object being deformed.

Proposition 4.1. MCE : sCΛ → Set is quasi-smooth. Moreover, if f : E →
F is a morphism of SDCs such that the maps fn : En → Fn are smooth for
all n, then MCE → MCF is quasi-smooth.

Proof. This follows immediately from [13, Lemma 3.9]. �

Definition 4.2. By Pridham [10, Lemma 1.5], E0 is a group, which we
denote by GE . Observe that GE acts on MCE by (g, ω) �→ g ∗ ω ∗ g−1. We
now define the deformation functor DefE : sCΛ → S by DefE := [MCE/GE ],
for X as in Definition 1.12, and [−,−] the homotopy quotient of Section 1.4.

Proposition 4.2. If A ∈ CΛ, then DefE(A) is just the classifying space
BDefE(A) ∈ S of the deformation groupoid DefE(A) from Definition 3.2.

Proof. Take ω ∈ MCE(A). Since A ∈ CΛ, AK = A for all connected simpli-
cial sets K, so En+1(AIn

) = En+1(A), and ωn = ω
∗(n+1)
0 , with the Maurer–

Cartan relations reducing to

∂1ω0 = ω0 ∗ ω0, σ0ω0 = 1.

These are precisely the conditions defining the Maurer–Cartan space MCE

(A) of Definition 3.2 , and DefE(A) is the groupoid given by the action of
E0(A) on MCE(A), as required. �
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Proposition 4.3. The functor DefE is quasi-smooth. More generally, if
f : E → F is a morphism of SDCs, such that fn : En → Fn is smooth for
all n, then DefE → DefF is quasi-smooth.

Proof. This follows immediately from Corollary 0.1. �

Proposition 4.4. The cohomology groups H j(DefE) are isomorphic to the
groups H j+1(E) from Definition 3.3.

Proof. This follows immediately from [13, Corollary 4.13]. �

4.1. Deformations of morphisms

The problem that we now wish to consider is that of deforming a morphism
with fixed endpoints. Assume that we have a category-valued functor D :
CΛ → Cat. Fix objects D,D′ in D(Λ), and a morphism f in D(k) from D to
D′. The deformation problem which we wish to consider is to describe, for
each A ∈ CΛ, the set of morphisms fA : D → D′ in D(A) deforming f . This
amounts to taking the special case I = (0→ 1) and J = {0, 1} in Section 3.3.

Now assume that we have a diagram of functors from CΛ to Cat as in
Section 3, and consider the cosimplicial complex F • in Sp given by F • :=
E•

D/B(f) from Lemma 3.1.
On sCΛ, we now define a deformation functor

DefF (A) ⊂
∏

n≥0

Fn(A)Δ
n

,

associated to F , to consist of those θ satisfying:

∂iθn = ε∗n+1−iθn+1,

σiθn = η∗n−1−iθn−1,

for face maps εi : Δn → Δn+1 and degeneracy maps ηi : Δn → Δn−1 defined
as in [18, Chapter 8.]

Proposition 4.5. DefF is quasi-smooth, and H i(DefF ) ∼= H i(F ).

Proof. The first statement follows from [3, Section VII.5], which shows that
the total space functor Tot from cosimplicial simplicial sets to simplicial
sets is right Quillen. The description of cohomology is straightforward. �
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Proposition 4.6. If I is the category (0 m−→ 1), let D : I→ D(k) be the func-
tor given by D(0) = D,D(1) = D′ and D(m) = f , then there is a canonical
weak equivalence

DefF � Def(ED/B(D)×ED/B(D)×ED/B(D′) •),

where • → ED/B(D)× ED/B(D′) is defined by the object (D,D′) ∈ MC(E•

(D)× E•(D′))(Λ).
Thus DefF governs deformations of f which fix D,D′.

Proof. Let C :=ED/B(D)×ED/B(D)×ED/B(D′) •. By Pridham [13, Lemma 5.10],
there are canonical equivalences MC(C)(A) � Def(F )(A), so we need only
observe that C0 = 1, so Def(C) = MC(C). The final statement then follows
from Proposition 3.3. �

4.1.1. Deforming identity morphisms If we now consider deforma-
tions of the morphism idD : D → D, write F for the cosimplicial complex
E•

D/B(idD) governing deformations of idD, and E for the SDC describing
deformations of D, as defined in [11, Section 2] (or just by taking the spe-
cial case I = • of Definition 3.9). Note that En = Fn, with the operations
agreeing whenever they are defined on both. If we write e := ∂01 ∈ F 1, note
that we also have ∂0f = e ∗ f and ∂n+1f = f ∗ e for f ∈ Fn.

This gives us an isomorphism C •(E) ∼= C •(F ), and hence Hn(DefE) =
Hn+1(E) ∼= Hn+1(DefF ).

Proposition 4.7. Under the scenario above, the simplicial set DefF (A)
is weakly equivalent to the loop space ΩDefE(A) of DefE(A) over the point
ωD ∈ DefD(Λ). This equivalence is functorial in A ∈ sCΛ.

Proof. Define the SDC PE to be the fibre of ev0 : EI → E over the constants
{en}. It follows from Lemma 3.2 that the cohomology groups of PE are all
0. Now define the SDC ΩE to be the fibre of ev1 : PE → E over {en}.

By Proposition 4.6, DefF is weakly equivalent to Def(ΩE). By Propo-
sition 4.3, DefPE → DefE is quasi-smooth, and the fibre is DefΩE . Since
DefPE is contractible, this means that DefΩE is homotopic to the loop space
of DefE . �

Remark 4.2. Note that we can describe ΩE entirely in terms of the struc-
ture on F , since

(ΩE)n = (Fn)n,
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with

∂i(f1, . . . , fn) = (∂if1, ∂
if2, . . . , ∂

ifi, ∂
ifi, . . . , ∂

ifn),

σi(f1, . . . , fn) = (σif1, σ
if2, . . . , σ

ifi, σ
ifi+2, . . . , σ

ifn),
(g1, . . . , gm) ∗ (f1, . . . fn) = (g1 ∗ en, . . . , gm ∗ en, em ∗ f1, . . . e

m ∗ fn).

Now, given any smooth object F ∈ cSp, we may regard F as a cosim-
plicial complex of smooth objects in Sp (as in [14, Definition 1.2.]), and
then

F = Def(F ) � Def(ΩE).

This means that we cannot expect derived deformation functors coming
from SDCs to have any more structure than arbitrary deformation functors.

Remark 4.3. In the case of Hochschild cohomology, the deformation func-
tor of a morphism R

f−→ S of associative algebras can be defined over the
category of Artinian associative algebras, rather than just CΛ. This means
that the Lie bracket H i(f)×Hj(f)→ H i+j+1(f) defined in [14, Section
5.2] extends to an associative cup product. If f = idR is an identity, then we
know that the Lie bracket vanishes (since Deff is a loop space, by Propo-
sition 4.6), which is why the cup product becomes commutative. Of course,
we also have the bracket H i(idR)×Hj(idR)→ H i+j(idR) associated to the
deformation functor of the object R.

5. Comparison with [11]

Now assume that Λ = k, a field of characteristic 0. In [14], an equivalence was
given between the homotopy category of Z-graded DGLAs and Ho(scSp).
Under the equivalences of Theorems 1.7 and 1.5, this equivalence sends a
DGLA to its associated deformation functor in the sense of [9] (by Pridham
[14, Remark 4.46]). By Pridham [14, Proposition 3.27], the corresponding
functor from dgCk to S is equivalent to Hinich’s simplicial nerve:

Definition 5.1. Given a DGLA L, recall from [5, Definition 8.1.1] that the
simplicial nerve Σ(L) : dgCk → S is defined by

Σ(L)(A)n := MC(L⊗An)(A),

where An is is the algebra of polynomial differential forms on the standard
n-simplex Δn (denoted Ωn in [5]).
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However, in [11], a functor E was constructed from N0-graded DGLAs
to SDCs, and Definition 4.2 then gives us an associated object of scSp. The
purpose of this section is to show that the two constructions are consistent
with each other.

5.1. DGLAs

Definition 5.2. A DGLA is a graded vector space L = ⊕iL
i over k, equipped

with operators [, ] : L× L→ L bilinear and d : L→ L linear, satisfying:

(1) [Li, Lj ] ⊂ Li+j .

(2) [a, b] + (−1)āb̄[b, a] = 0.

(3) (−1)c̄ā[a, [b, c]] + (−1)āb̄[b, [c, a]] + (−1)b̄c̄[c, [a, b]] = 0.

(4) d(Li) ⊂ Li+1.

(5) d ◦ d = 0.

(6) d[a, b] = [da, b] + (−1)ā[a, db].

Here ā denotes the degree of a, mod 2, for a homogeneous.
A DGLA is said to be nilpotent if the lower central series ΓnL (given by

Γ1L = L, Γn+1L = [L,ΓnL]) vanishes for n� 0.

Definition 5.3. Given a nilpotent Lie algebra g, define Û(g) to be the pro-
unipotent completion of the universal enveloping algebra of g, regarded as
a pro-object in the category of algebras. As in [15, Appendix A], this is a
pro-Hopf algebra, and we define exp(g) ⊂ Û(g) to consist of elements g with
ε(g) = 1 and Δ(g) = g ⊗ g, for ε : Û(g)→ k the augmentation (sending g to
0), and Δ : Û(g)→ Û(g)⊗ Û(g) the comultiplication.

Since k is assumed to have characteristic 0, exponentiation gives an iso-
morphism from g to exp(g), so we may regard exp(g) as having the same ele-
ments as g, but with multiplication given by the Campbell–Baker–Hausdorff
formula.

Definition 5.4. Given a nilpotent DGLA L•, define the Maurer–Cartan
set by

MC(L) :=
{

ω ∈ L1 | dω +
1
2
[ω, ω] = 0 ∈ L2

}

.
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Define the gauge group Gg(L) by Gg(L) := exp(L0), which acts on MC(L)
by the gauge action

g(ω) = g · ω · g−1 − dg · g−1,

where · denotes multiplication in the universal enveloping algebra of L. That
g(ω) ∈ MC(L) is a standard calculation (see [7] or [8]).

Definition 5.5. A morphism f : L→M of DGLAs is said to be a quasi-
isomorphism if H∗(f) : H∗(L)→ H∗(M) is an isomorphism.

Proposition 5.1. There is a model structure on the category of Z-graded
DGLAs, in which weak equivalences are quasi-isomorphisms, and fibrations
are surjections. This category is Quillen-equivalent to the model category
sDGSp of Definition 1.20.

Proof. See [14, Lemma 3.24 and Corollary 4.57]. �

5.2. Cosimplicial groups

Definition 5.6. Given an N0-graded DGLA L, let DL be its denormaliza-
tion. This becomes a cosimplicial Lie algebra via the Eilenberg–Zilber shuffle
product. Explicitly

DnL :=
⊕

m+s=n
1≤j1<···<js≤n

∂js . . . ∂j1Lm,

where we define the ∂j and σi using the simplicial identities, subject to the
conditions that σiL = 0 and ∂0v = dv −∑n+1

i=1 (−1)i∂iv for all v ∈ Ln.
We now have to define the Lie bracket �−,−� from DnL⊗DnL to DnL.

Given a finite set I of strictly positive integers, write ∂I = ∂is . . . ∂i1 , for
I = {i1, . . . is}, with 1 ≤ i1 < · · · < is. The Lie bracket is then defined on
the basis by

�∂Iv, ∂Jw� :=

{
∂I∩J(−1)(J\I,I\J)[v, w], |v| = |J\I|, |v| = |I\J |,
0 otherwise,

where for disjoint sets S, T of integers, (−1)(S,T ) is the sign of the shuffle
permutation of S � T which sends the first |S| elements to S (in order), and
the remaining |T | elements to T (in order). Note that this description only
works for 0 /∈ I ∪ J .
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Definition 5.7. Now recall from [11, Section 4.2], that the functor E :
DGLA→ SDC from N0-graded DGLAs to SDCs is defined by

E(L)n(A) = exp(Dn(L)⊗mA),

making E(L) into a cosimplicial complex of group-valued functors. To make
it an SDC, we must define a ∗ product. We do this as the Alexander–Whitney
cup product

g ∗ h = (∂m+n . . . ∂m+2∂m+1g) · (∂0)mh,

for g ∈ E(L)m, h ∈ E(L)n.

Definition 5.8. Given a cosimplicial simplicial group G, define MC(G) ∈ S

by MC(G) ⊂∏
n≥0(G

n+1)Δ
n

, satisfying the conditions of [12, Lemma 3.3],
i.e., the elements ωn ∈ (Gn+1)Δ

n

satisfy

∂iωn =

{
∂i+1ωn−1, i > 0,
(∂1ωn−1) · (∂0ωn−1)−1, i = 0,

σiωn = σi+1ωn+1,

σ0ωn = 1.

Define MC : scGp→ Set by MC(G) = MC(G)0.
There is an adjoint action of G0 on MC(G), given by

(g ∗ ω)n = (∂0(∂1)n+1(σ0)n+1g) · ωn · (∂0(∂1)n(σ0)ng−1),

as in [12, Definition 3.8].
We then define Del(G) to be the homotopy quotient Del(G) = [MC(G)/

G0] ∈ S.

Let exp denote exponentiation of a nilpotent Lie algebra (giving a unipo-
tent group).

Corollary 5.1. Given an N0-graded DGLA L, the deformation functor
Def(E(L)) ∈ scSp is weakly equivalent to the functor

A �→ Del(exp(DL⊗m(A))).

Proof. The SDC E(L) corresponds to A �→ E(exp(DL⊗m(A)) in the
notation of [13, Section 3.1], so the result is an immediate consequence of
[13, Proposition 6.11]. �
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Corollary 5.2. For L as above, Def(E(L)) is weakly equivalent in the
model category scSp to the functor A �→ [MC(exp(DL⊗m(A)))/ exp(L0 ⊗
m(A0))].

Proof. From [14, Lemma 2.26] MC(exp(DL⊗m(A)))→ MC(exp(DL⊗
m(A))) defines a weak equivalence in scSp (although the former is not
fibrant), and similarly for L0 ⊗m(A0)→ L0 ⊗m(A), so we get a weak equiv-
alence on passing to the homotopy quotient. �

5.3. The final comparison

Definition 5.9. Given an N0-graded DGLA L, define Del(L) ∈ sDGSp to
be the functor Del(L) : dgCk → S given by the homotopy quotient

A �→ [MC(Tot Π(L⊗Nm(A)))/ exp(L0 ⊗m(A0)]

with respect to the gauge action of Definition 5.4.

Corollary 5.3. Given an N0-graded DGLA L, the deformation functor
Def(E(L)) ∈ scSp is weakly equivalent to RSpf N∗Del(L), for RSpf N∗ as
in Theorem 1.6.

Proof. By Corollary 5.1, it suffices to show that the functors Del(L) and
A �→ Del(exp(DL⊗m(A))) are weakly equivalent in scSp. It follows from
[14, Lemma 2.26] that the latter is weakly equivalent to

A �→ [MC(exp(DL⊗m(A)))/ exp(L0 ⊗m(A0))],

which is not fibrant in general. Now, by [13, Theorem 6.23] this is isomorphic
to

A �→ [MC(Tot Π(L⊗Nm(A)))/ exp(L0 ⊗m(A0)],

which is just Spf N∗Del(L). It follows from [14, Lemma 1.62] that RSpf N∗

F ∼= Spf N∗F for all levelwise quasi-smooth functors F . �

Definition 5.10. Define DGdgCk to be the category of Artinian local
N0 × N0-graded graded-commutative Λ-algebras A•• with differential of bide-
gree (1,−1) and residue field k. Let dgDGSp be the category of left-exact
Set-valued functors on DGdgCk.
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Proposition 5.2. Under the equivalence of Proposition 5.1, an N0-graded
DGLA L corresponds to the deformation functor Def(E(L)) ∈ scSp of Defi-
nition 4.2.

Proof. The equivalence of [14, Corollary 4.57] is given by a functor RSpfD∗ :
Ho(sDGSp)→ Ho(dgDGSp), together with a functor

Spf Tot ∗MC : DGZLA→ dgDGSp,

on Z-graded DGLAs, given by

Spf Tot ∗MC(L)(A) = MC(TotL⊗m(A)).

By Corollary 5.3, it suffices to show that the objects RSpfD∗Del(L) and
Spf Tot ∗MC(L) are weakly equivalent in dgDGSp.

Taking A ∈ DGdgCk, it follows from the definitions that SpfD∗Del(L)
(A) consists of maps Spf (DA)→ MC(L)×exp(L0) W (exp(L0)) in sDGSp,
where DA ∈ (dgCk)Δ is defined by cosimplicial denormalization, and Spf
(DA) ∈ sDGSp is the functor dgCk → S given in level n by HomdgCk

(DnA,−).
Thus

SpfD∗Del(L)(A) ⊂ MC(TotL⊗A0)×MC(D(exp(L0 ⊗A•
0))

consists of pairs (ω, g) with g ∗ ∂0
DAω = ∂1

DAω, corresponding in level n to
the map

(SpfDnA)→ MC(L)× exp(L0)n,

(ω, g) �→ (ω, (∂2)n−1g, ∂0(∂2)n−2g, . . . , (∂0)n−1g).

By Pridham [13, Theorem 6.23], we know that MC(D(exp(L0 ⊗A•
0)) ∼=

MC(L0 ⊗A•
0)), giving us γ ∈ MC(L0 ⊗A•

0)). Note that g = exp(γ), so

g ∗ ∂0
DAω = ∂0

DAω + [γ, ω],

with all higher terms vanishing, since σ0γ = 0, so �γ, �γ, v�� = 0 for all v
(and in particular when v = ∂0

DAω).
Thus we have

SpfD∗Del(L)(A) = {(ω, γ) : ω ∈ MC(TotL⊗A0), γ ∈ MC(L0 ⊗A•
0),

[γ, ω] + dc,Aω = 0},

where dc,A is the cochain differential on A.
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Now look at γ + ω ∈ (Tot (L⊗A))1. The equations combine to show
that α := γ + ω lies in MC(Tot (L⊗A)), since

dα+ [α, α] = (dLω + ds
Aω + [ω, ω]) + (dAγ + [γ, γ]) + ([γ, ω] + dA,cω) = 0,

where ds
A is the chain differential on A.

Thus we have defined a map

ψ : SpfD∗Del(L)→ Spf (Tot Π)∗MC(L).

In fact, we have shown that

SpfD∗Del(L)(A) ∼= MCTot ((L⊗A0)×(L0⊗A0) (L0 ⊗A0)),

and [14, Lemma 4.13] then implies that ψ is a weak equivalence (with similar
reasoning to [14, Lemma 2.26]).

Finally, note that this gives cohomology groups (as defined in Definition
1.16) H n(SpfD∗Del(L)(A)) ∼= H n+1(L), and that

H n(RSpfD∗Del(L)) ∼= H n(Del(L)) ∼= H n+1(L),

since the equivalence of [14, Proposition 4.57] preserves cohomology groups.
Therefore, the morphism SpfD∗Del(L)→ RSpfD∗Del(L) is also a weak
equivalence by Corollary 1.2, and this completes the proof. �

5.4. An application

Corollary 5.4. Let X be a smooth scheme, for which there exists a flabby
DGLA resolution L • of the tangent sheaf TX . Then for A ∈ sCk, the sim-
plicial nerve Σ(L)(NA) of the DGLA L• = Γ(X,L •) is weakly equivalent
to DefE(A), where E is the SDC constructed in Example 3.1.1 (or Example
3.4 with Y = ∅).

Proof. E(L •) is a sheaf of SDCs on X, with Γ(X, E(L •)) = E(L). We may
then form the Godement sheaf resolution C (E(L )) of E(L), giving another
sheaf of SDCs on X (as in [11, Section 3.2]) and quasi-isomorphisms

E(L •)→ C (E(L •))← C (E(TX))
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of flabby sheaves of SDCs on X, and hence quasi-isomorphisms

E(L)→ C (X, E(L))← C (X, E(TX))

of SDCs, where C (X,F ) = Γ(X,C (F )) is the Godement resolution.
Finally, note that E(TX)(A) = exp(TX ⊗m(A)) is the sheaf of infinites-

imal algebra automorphisms of OX , so the methods of [11, Section 3.2.2]
provide a quasi-isomorphism C (X, E(TX))→ E of SDCs. Thus Def(E) �
Def(E(L)), and Proposition 5.2 shows that this is equivalent to L under the
equivalences of Proposition 5.1. �
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géométrie algébrique. II Le théorème d’existence en théorie formelle
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