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Persistently laminar branched surfaces

Ying-Qing Wu

We define sink marks for branched complexes and find conditions
for them to determine a branched surface structure. These will be
used to construct branched surfaces in knot and tangle comple-
ments. We will extend Delman’s theorem and prove that a non-
2-bridge Montesinos knot K has a persistently laminar branched
surface unless it is equivalent to K(1/2q1, 1/q2, 1/q3, −1) for some
positive integers qi. In most cases these branched surfaces are gen-
uine, in which case K admits no atoroidal Seifert fibered surgery.
It will also be shown that there are many persistently laminar
tangles.

1. Introduction

Essential lamination plays an important role in the study of topology of
3-manifolds and exceptional Dehn surgery. Denote by K(r) the manifold
obtained by r surgery on a hyperbolic knot K in a closed 3-manifold. A non-
trivial surgery is exceptional if K(r) is non-hyperbolic, i.e., it is reducible,
toroidal or Seifert fibered. A 3-manifold is laminar if it contains an essen-
tial lamination. If M is laminar then it is irreducible, and if the lamina-
tion is genuine in the sense that some complementary region is not an
I-bundle then M is not a small Seifert fibered manifold. In certain cases
essential laminations can also be used to detect toroidal manifolds, see for
example [11].

A lamination is essential if and only if it is carried by an essential
branched surface [6]. In [8] Li defined laminar branched surfaces. These are
essential branched surfaces that satisfy some mild extra conditions, which
implies that it carries a lamination, hence an essential lamination. Denote
by K(r) the manifold obtained by Dehn surgery on a knot K along slope r.
A laminar branched surface Σ in the exterior of K is persistently laminar if
it remains laminar in K(r) for all non-meridional slopes r.

Combinatorially a branched surface is a 2-complex Σ whose singular set
b(Σ) is a set of immersed curves on Σ, called the branch curves or branch
loci of Σ. A branched surface structure on Σ is a smooth structure in a
neighborhood of b(Σ) so that every point has a neighborhood modeled on
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Figure 1

that in figure 1(a). Li used sink directions on b(Σ) to indicate the smooth
structure near b(Σ). See Section 2. This is a very useful way to define a
branched surface structure on Σ; however, it is difficult to use when the
branched surface is complicated. Since there are only three ways to smooth
the complex near any branch curve, we can indicate the smooth structure on
a segment α of b(Σ) using a sink mark instead, which is either an orientation
or a diamond sign on α. See Section 3 for more details. This is particularly
useful for tangle complexes Σ = Q ∪ P ∪ D in the exterior of a tangle or knot
L, where Q is the tube on the boundary of a tubular neighborhood of L, P
is a set of punctured surfaces with ∂P a set of meridional curves on Q, and
D a set of surfaces with boundary on P ∪ Q intersecting each meridian of
Q − P exactly once. The Unique Extension Lemma (Lemma 3.7) shows that
the branched surface structure of such a complex is completely determined
by the sink marks on ∂D, and these sink marks define a branched surface
structure if and only if they satisfy some simple conditions.

We will use this result to reconstruct Delman’s channel surfaces [4]. By
Li’s result [8] and Lemma 3.7 it is now easy to show that these branched
surfaces are laminar, and most of them are genuine. See Theorem 5.3. In
Section 6 we will further explore and extend Delman’s half channel surfaces
construction using sink marks. The simple pictures of sink marks on these
branched surfaces allow us to find various semi-allowable paths with desir-
able properties in the Hatcher–Thurston diagram of a rational tangle. See
Proposition 6.5. We can then strengthen the main theorem of Delman in [4],
which says that a Montesinos knot has a persistent lamination unless it is
a pretzel knot K = K(p1/q1, p2/q2, p3/q3, n), where pi = 1 or qi − 1, q1 is
even, qi positive, and n = −1 or −2. The following theorem shows that up
to equivalence (i.e., up to taking mirror image) we must have pi = 1 and
n = −1.
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Theorem 6.6. Let K be a non 2-bridge Montesinos knot. Then K has a
persistently laminar branched surface in its complement unless it is equiv-
alent to K(1/q1, 1/q2, 1/q3, −1), where qi are positive integers, and q1 is
even.

As a consequence, we see that the knot 10142 is persistently laminar.
This is one of the 5 knots with crossing number at most 10 which were
not known whether surgery on them always produce laminar manifolds [5,
FQ 1.2]. The construction can also be applied to more general knots. For
example, if F is a minimal Seifert surface of a two-component link L, α is
an arc on F connecting the two components, and K is obtained by replacing
N(α) ∩ L with a 2n-twist tangle with |n| ≥ 2, then K is persistently laminar.
See Corollary 6.9.

We are particularly interested in determining which Montesinos knots
of length 3 have a persistently laminar branched surface which is genuine in
the sense that it has a complementary region which is not an I-fiber. The
following shows that most of them do have such a branched surface.

Theorem 6.7. Let K be a Montesinos knot of length 3. Then K has a
genuine persistently laminar branched surface in its complement unless K is
equivalent to K(1/q1, 1/q2, p3/q3, n), such that either

(1) n = 0, qi ≥ 2, and p3 = 1; or

(2) n = −1, qi ≥ 2, and p3 = 1, 2 or q3 − 1.

Exceptional surgeries on arborescent knots have all been classified except
atoroidal Seifert fibered surgeries on Montesinos knots of length 3. By a
theorem of Brittenham [1], if K has a genuine persistently laminar branched
surface then K(r) is not a small Seifert fibered manifold for any nontrivial
r. Using this and the results of [12] we have the following two theorems,
according to whether K is pretzel or not. Here a Montesinos knot is a pretzel
knot if it can be written as K(1/q1, 1/q2, . . . , 1/qk, n) for some integers qi

and n with |qi| ≥ 2, and it is a genuine pretzel knot if in addition n = 0. The
number k is called the length of K.

Theorem 7.2. Let K be a pretzel knot of length 3. If K admits an atoroidal
Seifert fibered surgery, then K is equivalent to K( 1

q1
, 1

q2
, 1

q3
, n) such that

either n = 0 and hence K is a genuine pretzel knot, or n = −1 and qi ≥ 3.
In either case the qi satisfy 1

|q1|−1 + 1
|q2|−1 + 1

|q3|−1 > 1.



400 Ying-Qing Wu

Note that qi satisfies the above inequality if and only if, up to relabeling,
(|q1|, |q2|, |q3|) = (2, |q2|, |q3|), (3, 3, |q3|) or (3, 4, 5).

Theorem 7.3. Let K be a Montesinos knot of length 3. If K is not a
pretzel knot and K admits an atoroidal Seifert fibered surgery K(r), then K
is equivalent to one of the following:

(a) K(−2/3, 1/3, 2/5);

(b) K(−1/2, 1/3, 2/(2a + 1) ) and a ∈ {3, 4, 5, 6};
(c) K(−1/2, 1/q, 2/5) for some q ≥ 3 odd.

The construction in Section 5 can also be modified to make persis-
tently laminar branched surfaces in tangle spaces. A 2-string tangle (B, T )
is persistently laminar if B − T contains a branched surface Σ, such that
if K is any knot that can be written as the union of (B, T ) with another
tangle (B′, T ′), which is non-trivial in the sense that a curve of slope 0
on ∂B does not bound a disk in B′ − T ′, then Σ is a persistently laminar
branched surface for K. Brittenham [1] showed that the tangle T (1/3,−1/3)
is persistently laminar. In [13] Youn proved that the tangle T (1/3,−1/5) is
also persistently laminar. A Montesinos tangle of length 2 is homeomorphic
to some T (r1,−r2) with 0 < ri < 1 and r1 + r2 ≤ 1. The following theorem
shows that many of these are persistently laminar tangles if both qi are odd.

Theorem 8.5. If 0 < ri = pi/qi < 2
3 and qi are odd then T = T (r1, −r2)

is persistently laminar.

Thus for example, assuming ri = pi/qi and qi ≥ 3 are odd then all tangles
of type T (1/q1 − 1/q2) or T (r1,−r1) are persistently laminar, and if r2 ∈
(1
3 , 2

3) then T (r1, −r2) is persistently laminar for all r1 ∈ (0, 1) satisfying the
above conditions. See Example 8.6 for more details.

The paper is organized as follows. Section 2 gives some basic definitions
and lemmas, including laminar, pre-laminar and combinatorial branched
surfaces, which is a branched 2-complex Σ with sink directions assigned,
satisfying certain combinatorial conditions. Proposition 2.4 shows that these
conditions determine a unique branched surface structure on Σ. Section 3
introduces sink marks and tangle complexes, and proves the Unique Exten-
sion Lemma 3.7, which gives an easy way to detect pre-laminar branched
surfaces among tangle complexes with sink marks. Section 4 constructs
Hatcher–Thurston branched surfaces corresponding to any edge path in the
Hatcher–Thurston diagram. It will be used later in the constructions of other



Persistently laminar branched surfaces 401

branched surfaces. Section 5 defines Delman channel and Delman channel
surfaces Σ corresponding to any allowable path γ, proves Delman’s theorem
that such a branched surface in a knot complement is persistently laminar
and shows that Σ is genuine if some vertex of γ has corner number at least
3. A familiarity with the earlier constructions of Hatcher–Thurston and of
Delman will be helpful in understanding Sections 4 and 5. In Section 6 we
extend Delman’s construction of half channel branched surfaces and prove
an existence result of semi-allowable paths with certain properties (Propo-
sition 6.5), which is then used to prove the existence theorems (Theorems
6.6 and 6.7) for persistently laminar branched surfaces. These are applied in
Section 7 to study atoroidal Seifert fibered Dehn surgery. Section 8
constructs persitently laminar branched surfaces in tangle spaces.

All manifolds are assumed compact, connected and orientable unless
otherwise stated. For any submanifold Y in X, denote by X|Y the manifold
obtained by cutting X along Y . When a rational number r is written as p/q
it is always assumed that p, q are coprime.

2. Combinatorial description of branched surfaces

We refer the readers to [6] for basic definitions such as essential lamination,
essential branched surface F , its regular neighborhood N(F ), its I-fibers, the
collapsing map π : N(F ) → F , the horizontal surface ∂hF and the vertical
surface ∂vF . The vertical surface ∂vF is also called the cusps of F . Recall
that the branch locus b(F ) of a branched surface F is the set of points
which does not have a disk neighborhood. It is a finite union of immersed
curves on F . The set of double points of b(F ) is denoted by s(F ), called the
singular points of F , which cuts b(F ) into arcs and circles, called the branch
curves. A point in b(F ) − s(F ) has a neighborhood which is the union of
three disks F1, F2, F3 joined at an arc in b(F ) − s(F ), and a point in s(F )
has a neighborhood modeled in figure 1(a). Li [8] uses an arrow to indicate
the sink direction of α. It is an arrow pointing from α into one of the surfaces
attached to it, so that if the vertical surface of a regular neighborhood of
F1 ∪ F2 ∪ F3 lies between F2 and F3 then the sink direction will point from
α into F1, as shown in figure 1(a). We say that α is a sink edge of F1 and
a source edge of F2 and F3. We will also consider α as a cusp on the side
of F2 ∪ F3 opposite to the surface F1 since it corresponds to a piece of the
cusps ∂vF on that side. The introduction of sink direction greatly simplifies
the way to draw branched surfaces since now we only need to draw the
topological 2-simplex and the sink directions and do not have to draw it
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with the actual tangency or smooth structure. For example, we can use the
2-complex in figure 1(b) to denote the branched surface in figure 1(a).

The branch locus b(F ) cuts F into several surfaces, called the branches
of F . We allow a branched surface F to have non-empty boundary ∂F , which
is a train track. Thus the boundary of a branch of F is a union of sink arcs,
source arcs, and possibly some arcs on ∂F . A disk branch D of F is called a
sink disk if ∂D contains some sink edges but no source edge. This matches
the definition in [8] when F has no boundary. Similarly, a disk is a source
disk if it has source edges but no sink edge, and a passing disk if it contains
both sink edges and source edges. F is sinkless if it contains no sink disk.

A cusped manifold is a pair (M, γ), where M is a compact orientable
3-manifold, and γ is a set of simple closed curves on ∂M . Denote by ∂v(M)
a regular neighborhood of γ on ∂M , called the vertical boundary, and by
∂h(M) the surface ∂M − Int∂v(M), called the horizontal surface. If Σ is a
branched surface in a 3-manifold Y , we use E(Σ) to denote Y − Int N(Σ),
called the exterior of Σ. It is a cusped manifold with γ the central curve of
∂v(Σ), so ∂h(M) = ∂h(Σ) and ∂v(M) = ∂v(Σ). A disk D in M is a monogon
if ∂D intersects γ transversely at a single point. A cusped manifold (M, γ)
is essential if M is irreducible, has no monogon, and ∂hM is incompressible
and has no sphere component. If M is a solid torus, the cusp winding number
of (M, γ) is the minimal intersection number between γ and a meridian of
M . It is easy to see that in the definition of essentiality of M , the condition
that M has no monogon can be replaced by the weaker condition that no
component of M is a solid torus with cusp winding number 1.

A surface carried by Σ is an embedded surface in N(Σ) transverse to the
I-fibers. Let π : N(Σ) → Σ be the collapsing map, which maps each I-fiber
to a single point of Σ.

Definition 2.1. (1) A branched surface Σ is atoroidal if any torus carried
by Σ is parallel to a component of ∂hΣ in N(Σ).

(2) An embedded sphere S in Σ is a trivial bubble if one side of S has
no branch attached. In this case S is parallel to a spherical component S′ of
∂N(F ) such that π : S′ → Σ is injective.

(3) A branched surface Σ is pre-laminar if it is sinkless, atoroidal and
has no trivial bubble.

(4) A closed branched surface Σ embedded in a closed 3-manifold M is
laminar if it is sinkless, it has no trivial bubble, it carries no Reeb torus (i.e.
a torus which bounds a solid torus in M), and E(Σ) is an essential cusped
manifold.
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(5) A branched surface Σ in a 3-manifold M with ∂Σ ⊂ ∂M is genuine
if at least one component Y of E(Σ) in the interior of M is not an I-bundle
with ∂hY the corresponding ∂I-bundle.

Li [8, Theorem 1] proved that a laminar branched surface in a closed
orientable 3-manifold carries an essential lamination and hence is an essential
branched surface. A laminar branched surface does not have to be pre-laminar
because it may be toroidal. Neither is a pre-laminar branched surface in a
closed 3-manifold M necessarily laminar. Being pre-laminar is an intrinsic
property and is independent of the embedding of Σ in a 3-manifold, hence
it can be determined before it is embedded in M . The following result fol-
lows from [8, Theorem 1] immediately since a pre-laminar branched surface
carries no torus and hence no Reeb torus.

Lemma 2.2. If Σ is a closed pre-laminar branched surface, then its embed-
ding in a compact orientable 3-manifold M is laminar (and hence essential)
if and only if E(Σ) is an essential cusped manifold.

We note that the above lemma works for closed branched surface only.
To extend it to branched surfaces with boundary we need to modify the def-
inition of pre-laminar branched surfaces and essential cusped manifold, for
example there should be no trivial half-bubble on Σ and the horizontal sur-
face of E(Σ) must be boundary incompressible. In the constructions below
we will need to construct pre-laminar branched surfaces with boundary, but
these will eventually be combined to make closed branched surfaces. There-
fore we only need the above lemma when Σ is a closed branched surface.

Using sink directions we can define a branched surface combinatorially.

Definition 2.3. (1) A compact 2-complex F is a branched complex if it
is locally modeled on the 2-complex in figure 1(b) up to homeomorphism
(without sink arrows specified). Denote by b(F ) the set of points which do
not have a surface neighborhood, and by s(F ) set of points in b(F ) which
does not have an arc neighborhood in b(F ), called the singular set of F .

(2) A sink direction on a component α of b(F ) − s(F ) is a vector pointing
from α into one of the three incidented surfaces.

(3) A combinatorial branched surface is a branched complex F with a
sink direction assigned for each component of b(F ) − s(F ), such that for each
point p ∈ s(F ), the 4 arcs e1, . . . , e4 in b(F ) and the 6 disks Aij (1 ≤ i < j ≤
4) in a neighborhood of p can be labeled so that Aij ∩ b(F ) = ei ∪ ej , A12 is
a sink disk, A2,3, A1,4 are passing disks, and the others are source disks.
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The following proposition shows that a combinatorial branched surface
is a branched surface after smoothing along the branch loci according to
the sink directions. We will therefore consider any combinatorial branched
surface as a branched surface, and vise versa.

Proposition 2.4. Any combinatorial branched surface F is homeomorphic
to a branched surface F ′ with sink directions preserved. If F is embedded in
a 3-manifold M then it is isotopic to a branched surface with sink directions
preserved.

Proof. We assume F ⊂ M . The other case is similar. There is no problem
smoothing F along b(F ) − s(F ) according to the sink direction, so we need
only verify that the neighborhood of a point p ∈ s(F ) can be deformed
to a branched surface according to the sink directions. Let D be the disk
A12 ∪ A23 ∪ A34 ∪ A14. By definition A12 is a sink disk, A34 is a source disk,
and the other two are passing disks; hence each ei is a sink edge of one disk
and a source edge of another in D, so up to isotopy we may assume D is a
smooth disk in M , and c′ = e1 ∪ e3 and c′′ = e2 ∪ e4 are smooth arcs on D.

Note that each branch curve is a sink edge of exactly one of the three
incidented disks. The disks A13 intersect D at c′ = e1 ∪ e3. Since the sink
directions of e1, e3 points into A12 and A23 respectively, which are on the
same side of c′, the tangency of A13 along e1, e3 matches at p, so D ∪ A13

is a branched surface. Since A24 and A13 has disjoint interior while their
boundaries intersect transversely at p, they must lie on different sides of
D. For the same reason, the sink directions on the two boundary edges
e2, e4 of c′′ points to the same side of c′′, so the smoothing along these
two edges matches at p, hence D ∪ A13 ∪ A24 is a branched surface after
smoothing. �

Remark 2.5. (1) The sink directions define a branched surface structure
in a neighborhood X of p ∈ s(F ) if and only if (i) there is exactly one sink
disk, two passing disks and three source disks, and (ii) the two passing disks
intersect only at p, and the sink directions of their source edges point into
the same disk. Thus among the 43 = 81 possible choices of sink directions,
only 12 of them make X a branched surface.

(2) The sink directions of a branched surface near a singular point p is
completely determined by those of the two passing disks in a neighborhood
of p.

Example 2.6. The 2-simplices in figures 2(a), (b) and (c) are not branched
surfaces. The surface in (a) has two sink disks, the one in (b) has no sink disk,
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Figure 2

and in (c) the two passing disks have one edge in common, which implies
that it is not a branched surface by Remark 2.5. One can check that the
2-complex in figure 2(d) satisfies Definition 2.3(3) and hence is a branched
surface. It is homeomorphic to that in figure 2(d), which is the same as the
branched surface in figure 1(b).

3. Sink marks for branched surfaces

While sink directions make it possible to define branched surfaces combina-
torially, practically it is still very difficult using it to define branched surface
structure on branched complex with more than just a very few branch curves.
We need to further simplify it in order to use it to illustrate the branched
surfaces to be constructed. Since each branch curve α has three possible sink
directions, we can use an orientation of α and a diamond sign to indicate
such a choice.

More explicitly, define a surface decomposition of a 2-complex Σ to be a
set of compact surfaces S1, . . . , Sn in Σ with mutually disjoint interiors, such
that ∪Si = Σ, and each component α of b(Σ) − s(Σ) is on the boundary of
one Si and the interior of another Sj . Thus in a neighborhood of α, Σ is
obtained by attaching Si to Sj along the branch curve α.

Definition 3.1. Suppose {Si} is a surface decomposition of Σ. Then a sink
mark on α ⊂ ∂Si ∩ Int Sj is a diamond sign or an orientation of α. The edge
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Figure 3

α is a called a diamond edge or an oriented edge accordingly. It determines
a sink direction on α as follows.

(1) The sink direction of a diamond edge on ∂Si points into Si.
(2) The orientation of an oriented edge α ⊂ ∂Si defines a local orien-

tation of Si and the sink direction points to the side of positive normal
direction of Si. When M = S3 we use the orientation convention that the
sink direction points to the right of α when standing on Sj on the side of Si

and facing to the direction of the orientation of α.
(3) A set of sink marks, one for each branch curve, defines a branched

surface structure on X if X, with sink directions determined by the sink
marks, is a branched surface.

For example, the 2-complexes in figures 2(a)–(c) have natural surface
decompositions (S1, S2, S3) with each Si a flat disk. The corresponding sink
marks are given in figures 3(a)–(c), respectively. Note that when a branched
surface Σ ⊂ S3 is mapped to Σ′ by an orientation reversing map of S3 then
all the orientation marks of the branch curves are reversed because the global
orientation has reversed.

A curve C with several segments marked by sink marks is consistently
oriented if it has an orientation which matches all sink marks on it. In partic-
ular, it has no diamond marks. For example, the central circle in figures 4(3)
is consistently oriented while those in figures 4(1)–(2) are not. Also, three
of the six rectangles in figures 4(1)–(3) are consistently oriented.

Now consider the branched complex X shown in figure 4(1). It has an
obvious surface decomposition (Q, P, D), where Q is the vertical annulus,
P the horizontal annulus with inner boundary attached to Q, and D =
D1 ∪ D2 is a pair of disks, such that each of αi = Di ∩ P and βi = Di ∩ Q
is a single arc.

Definition 3.2. When both segments of ∂P are diamond edges as shown
in figure 4(2), ∂P is called a meridional cusp of X. Note that in this case
the cusp corresponding to ∂P is on the inside side of Q.
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Figure 4

Definition 3.3. Let X be the underlying 2-complex in figures 4(1) with
surface decomposition (Q, P, D) as above. A set of sink marks assigned on
the four edges of ∂D (but not on ∂P ) is of type (I) if ∂D ∩ P are diamond
edges and the two edges of ∂D ∩ Q on Q point to the same direction, of type
(II) if ∂D has no diamond edge and each ∂Di is consistently oriented, and
of type (III) if ∂D has no diamond edge and exactly one ∂Di is consistently
oriented.

Thus up to homeomorphism of X, ∂D is as shown in figures 4(1)–(3)
respectively, with possibly the orientations of both segments of ∂Di reversed
for one or both Di if it is of type (II) or (III). Since there is no specification
for sink marks on ∂P , we can shrink Q and use a thick arc K to repre-
sent Q without loss of sink mark information, so the X with sink marks in
figures 4(1)–(3) can be represented by those in figures 4(I), (II) and (III),
respectively. The sink marks on ∂D induces a piecewise orientation on K,
called the induced orientation, or the orientation induced by the sink marks.
The following result shows that these sink mark systems can be uniquely
extended over ∂P to define a branched surface structure on X.

Lemma 3.4. Let X = Q ∪ P ∪ D be as above. Then a sink mark system
on ∂D with no diamond on ∂D ∩ Q can be extended to a branched surface
structure of X if and only if it is of type (I), (II) or (III), in which case the
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extension is unique. In particular, ∂P is a meridional cusp if and only if X
is of type (II).

Proof. Let D1 be the upper left disk and D2 the lower right disk of D in
figures 4(1)–(3). One can check that the sink directions corresponding to
the sink marks in figures 4(1)–(3) satisfy the conditions in Definition 2.3(3),
hence determine a branched surface structure in each case. Therefore the
extensions exist. To prove the uniqueness, assume X has been assigned a sink
mark system so that X is a branched surface. There are three possibilities
for the sink marks on ∂P . We want to show that each of them corresponds to
one of the types above, and the sink marks on ∂P are completely determined
by those on ∂D.

Case 1. One edge of ∂P has a diamond mark. In this case this edge has a
cusp on the inside of Q, which must extend to the other edge on ∂P because
by assumption ∂D ∩ Q are not diamond edges. Thus both edges of ∂P are
diamond edges. In this case ∂Di does not pass the cusp, hence must be
consistently oriented, as shown in figure 4(2), possibly with orientations of
both segments of ∂Di reversed for one or both i. Therefore X is of type (II).

Case 2. The two segments of ∂P are inconsistently oriented. In this case,
near each singular point of X the branch on Q with interior disjoint from
D is a passing disk, hence by Remark 2.5(2), if these sink marks defines a
branched surface structure then the sink marks on ∂D are completely deter-
mined by those on ∂P . Since the ones in figure 4(1) do define a branched
surface structure, it follows that the sink marks on ∂D must be as in
figure 4(1) if ∂P is oriented as in the figure. Similarly if the orientations of
both segments of ∂P are reversed then the sink marks on ∂D are obtained
by reversing the orientations of ∂D ∩ Q. In either case X is of type I.
Note that the orientations on ∂P are also determined by the sink marks
on ∂D as they have to point to the disk Di such that Di ∩ Q has a tail at
∂Di ∩ ∂P .

Case 3. ∂P is consistently oriented. Assume that the orientation of ∂P
is as shown in figure 4(3), then the cusp on ∂P is on the upper side of P .
There are two ways to attach each Di. ∂D1 passes through the cusp and
must have inconsistent orientations on the two segments, and the orienta-
tions on ∂D2 are consistent since it does not pass a cusp. Therefore X is of
type (III). Similarly if the orientation of ∂P is reversed then ∂D1 is consis-
tently oriented while ∂D2 is inconsistently oriented. Hence the orientation
of ∂P is determined by the sink marks on ∂D according to the fact that the
cusp at ∂P is on the side of the disk Di whose boundary is inconsistently
oriented.
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Figure 5

We have shown that the three possibilities above correspond to the three
types of X and in each case the sink marks on ∂P are also completely
determined by those on ∂D. This completes the proof of the lemma. �

Definition 3.5. A tangle complex is a branched complex X in S3 with
surface decomposition (Q, P, D) as follows. Suppose K ⊂ S3 is a compact
1-manifold and S is a set of spheres such that Si ∩ K 	= ∅ for any component
Si of S. Let N(K) = K × D2 be a tubular neighborhood of K, Q the tubes
K × ∂D2, P the punctured spheres S − Int N(K), and D a set of compact
surfaces attached to Q ∪ P along some boundary curves γ of D. They satisfy
(i) each component of ∂P is either a component of ∂Q, or it has a regular
neighborhood modeled on the underlying 2-complex in figure 4(1); (ii) each
meridian curve of Q − P intersects D at exactly one point, and (iii) each
component of D has some boundary arcs on P and some on Q.

Lemma 3.4 allows us to use a thick curve to represent a tube Q when
a tangle complex is a branched surface because there is no need to specify
the sink marks on ∂P , as long as each point of K ∩ S has a neighborhood
of type (I), (II) or (III) as shown in figure 4. Thus when drawing X, we will
simply draw (K, S, D), with the understanding that the thickened curve K
represents the tube Q around K, and a disk transverse to K in the figures
represents a punctured sphere P .

A point p in the singular set s(X) of a tangle complex X = Q ∪ P ∪ D
is either on ∂P or in the interior of P . In the latter case the neighborhood
of p consists of one subdisk P0 on P and two subdisks D1, D2 of D, one
attached on each side of P0. See figure 5.

Definition 3.6. Let Σ = Q ∪ P ∪ D be a tangle complex with sink marks
specified on ∂D. Then a singular point p ∈ s(Σ) is of type (I), (II) or (III) if
it lies on a component of ∂P which is of type (I), (II) or (III), respectively.
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It is of type (IV) or (V), if it lies in the interior of P and has a neighborhood
as shown in figures 5(a) and (b) respectively, possibly with orientations of
both segments of ∂Di ∩ P reversed for one or both i, where the horizontal
disk is a subdisk of P and the other two disks Di are in D.

Lemma 3.7. (The Unique Extension Lemma) Let Σ = Q ∪ P ∪ D be a
tangle complex with sink marks specified on ∂D, such that each p ∈ s(Σ) is
of one of the types (I)–(V). Then these sink marks can be uniquely extended
over ∂P to a branched surface structure on Σ. Moreover, if each branch on
P has a diamond edge on its boundary then Σ is pre-laminar.

Proof. Checking the sink marks in figure 5, one can see that Condition (1)
implies that the regular neighborhood of any singular point p ∈ s(Σ) in the
interior of P is a branched surface. All other points of s(X) are in ∂P ,
and condition (2) and Lemma 3.4 shows that there is a unique choice of
sink marks for the branch curves in ∂P to make a neighborhood of ∂P a
branched surface.

By assumption P contains no sink disk because each branch B has a
diamond edge, which is a source edge for B. Since each component of ∂P is
of type (I), (II) or (III), no component of D ∩ Q is a diamond edge. Since
each component Di of D has some boundary edge on Q, which is a source
edge for Di, it follows that there is no sink disk on D. By definition each
component Qi of Q|P intersects D at exactly one edge α, hence the branch
on Qi incidents α twice, so it has a source edge. It follows that Σ is sinkless.

A trivial bubble R is the union of some branches. Clearly P ∪ Q contains
no sphere, so R must contain a component Di of D. By definition Di has
a boundary arc α on some component Qj of Q cut along ∂P . Since Qj cut
along α is a branch, R contains Di ∪ Qj , contradicting the assumption that
R is a sphere. Hence Σ contains no trivial bubble.

Suppose S is a closed surface carried by Σ. If S intersects a fiber of a
branch on P then it must flow out of the diamond edge of this branch into
some branch Fi on D, and since Fi has a source edge on Q it must flow into
Q. Let m be a meridian loop of Q. Then its preimage under the collapsing
map ϕ : N(Σ) → Σ is an annulus A which is I-fibered, and ∂A = α ∪ β,
where α is an arc on a single I-fiber, and β is the union of a circle and
an arc transverse to the I-fibers. If S is not in N(Q) then by the above it
must flow into Q, so it intersects the I-fiber α for some meridian loop m.
Since S is transverse to the I-fibers, each component of S ∩ A is a curve in
A with a single boundary point on α, hence S ∩ A is not a compact curve,
contradicting the assumption that S is a compact surface. Therefore any
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connected closed surface S carried by Σ must be disjoint from fibers of P
and D, so it is carried by Q and hence is a torus carried by a component Q′

of Q. Note that no component of ∂P on Q′ can be marked by diamond as
otherwise it would be a source edge of a branch of Q′ and hence S would flow
out of Q′ into P , contradicting the fact that it is carried by Q′. Therefore
the inside side of ∂N(Q′) is a torus T on ∂N(Σ) with no cusp and hence is a
component of ∂h(Σ), and S is parallel to T . It follows that Σ is atoroidal. �

4. The Hatcher–Thurston branched surfaces

Consider S3 as S2 × [−∞,∞] with each S2 × {±∞} pinched to a point.
Denote by S[x] the image of S2 × {x} and by S[a, b] the image of S2 × [a, b].

Let X be the tangle complex in S[a, b] (a, b finite) with surface decompo-
sition (Q, P, D) shown in figure 6(a), where Q consists of four vertical tubes
represented in the figure by four vertical arcs K, P is a horizontal punctured
sphere, and D the union of four rectangles, each having two edges on Q, one
edge on P and one edge on ∂S[a, b]. The four edges of D ∩ P are diamond
edges. Fix an orientation of K (so the two segments of any component of
K are oriented consistently), which induces sink marks on ∂D ∩ Q. Then
we see that the neighborhood of any component of ∂P is a complex of type
(I) as in figure 4(I). Therefore by Lemma 3.7 these sink marks extend to a
unique branched surface structure on Σ = Q ∪ P ∪ D, which is pre-laminar.

Given two rational numbers ri = pi/qi, denote by Δ(p1/q1, p2/q2) =
|p1q2 − p2q1|. When Δ(r1, r2) = 1, we can deform the branched surface above
by twisting the four components of K around each other so that the two
top edges on S[0] have slope r1 and the bottom edges have slope r2. (See [7]
for definition of slopes of such curves.) We will call this branched surface
the Hatcher–Thurston branched surface associated to the edge e from r1 to
r2, denoted by Σ(e) or Σ(r1, r2). This branched surface has the following

Figure 6
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Figure 7

properties. (i) When viewed from above, we see a pair of top edges with
slope r1 on S[a], and a pair of cusps on P with slope r2; (ii) when viewed
from below, we see a pair of bottom edges with slope r2 and a pair of cusps
with slope r1.

If K is an oriented curve in a compact 3-manifold M , then a point of K
on ∂M is positive if the orientation of K points outward at that point, and
negative otherwise. The boundary train tracks of Σ(e) and the branched
surfaces to be constructed below depend on the local orientations of the
thick arcs K. These determine the sink directions and hence the way D
is attached to Q. See figures 7(a)–(c) for the three possible boundary train
tracks when viewed from outside of S[a, b], which will be said to be positively
oriented, negative oriented, and antiparallel, respectively.

We refer the readers to [7, figure 4] for the Hatcher–Thurston diagram
D, which is a graph on a disk D2 having Q ∪ {∞} ⊂ ∂D2 as vertices, with
an edge connecting r1 to r2 if Δ(r1, r2) = 1. A path on D is minimal if two
successive edges do not lie on a triangle of D. Let D(p/q) be the subdiagram
of D consisting of the edges of all minimal paths from 1/0 to p/q. See figure 8
for D(3/11). When q 	= 1 D(p/q) is a graph on a disk D containing ∂D, with
all vertices on ∂D and all faces triangles. The edges on ∂D form two paths
from 1/0 to p/q, called the upper boundary path and the lower boundary
path, with the upper one containing the vertices with label ri > p/q. Edges
on ∂D are boundary edges, the others are interior edges. A vertex of valance
at least 4 will be called a fork vertex.

If γ is a path on D(p/q), v an interior vertex of γ and t the num-
ber of triangles between the two edges of γ incident to v, then the cor-
ner number of v on γ is defined as c(γ, v) = t if the triangles are above
γ, and c(γ, v) = −t otherwise. Thus any minimal path γ from 1/0 to p/q
can be written as γ(c1, . . . , cn), where ci = c(γ, vi) and vi is the ith vertex
in the interior of γ. Denote by [c1, . . . , ck] the partial fraction decomposi-
tion 1/(c1 − 1/(c2 − . . . − 1/ck) . . .). Then the rational number at the ver-
tex vi above is pi/qi = v1 + [c1, . . . , ci]. In particular, p/q = v1 + [c1, . . . , cn].
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Figure 8

Note that v1 is determined by c1 and p/q: if m is the integer such that
m < p/q < m + 1 then v1 = m if c1 > 0, and v1 = m + 1 if c1 < 0.

Denote by T = Tp/q the p/q rational tangle in S[−∞, 0]. It is the union of
four vertical arcs in S[−n, 0] and two arcs of slope p/q on S[−n] connecting
the four endpoints of the vertical arcs on S[−n].

Fix an orientation of T . Let γ be a path in D from 1/0 to p/q with
edges e1, . . . , en. Let Σ(ei) be the branch complex associated to the edge ei

in S[−i,−i + 1], as defined above. Since the ending point of ei is the initial
point of ei+1 and the orientations of the thick arcs are induced by that of
T and hence match each other, the bottom train tracks of Σ(ei) on S[−i]
matches the top train tracks of Σ(ei+1), so Σ(γ) = Σ(e1) ∪ . . . ∪ Σ(en) is a
branched surface with α = Σ(γ) ∩ S[0] a pair of train tracks of slope 1/0
and β = Σ(γ) ∩ S[−n] of slope p/q. The bottom train tracks are antiparallel
as in figure 7(c), so it can be capped off by two copies of the trivial caps
in figure 6(b). We thus obtain a branched surface Σ(γ) in the complement
of Tp/q.

Let K = Kp/q be the p/q 2-bridge knot or link. It can be obtained from
T by adding two arcs of slope 1/0 on S[0] connecting the endpoints of T .
When the orientation of T is induced by that of K, the top train tracks are
antiparallel, hence they can also be capped off by trivial caps to obtain a
branched surface Σ̂(γ) in the exterior of Kp/q. Σ(γ) and Σ̂(γ) are very similar
to the branched surfaces constructed in [7] and will be called the Hatcher–
Thurston branched surfaces for Tp/q and Kp/q, respectively. By Lemma 3.7
these branched surfaces are pre-laminar. It can be shown that Σ̂(γ) is also
laminar if γ is minimal, see the proof of Theorem 5.3.

5. Delman channels and channel surfaces

A laminar branched surface Σ in the exterior of a knot K is persistently
laminar if it remains laminar in K(r) for all non-meridional slopes r. To
create a persistently laminar surface we need to modify the construction of
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Figure 9

Figure 10

the Hatcher–Thurston branched surface to create some meridional cusps.
The following is a construction of Delman’s channel branched surface [4].

Let Σ = Q ∪ P ∪ D be the 2-complex in S[a, b] shown in figure 9(a),
where Q consists of four vertical tubes represented by the four arcs K in
the figure, P is a horizontal sphere, and D is the union of four disks of type
α × I, where α is an arc of slope 1/0 for the two disks D1, D2 above P , and
of slope 1/2 for the two disks D3, D4 below P . The sink marks are shown
in figure 9(a). Let αi = Di ∩ P . Unlike the Hatcher–Thurston complex, only
two of these arcs α1, α3 are diamond edges, the other two are marked with
orientation arrows. Note that the orientation of α2, α4 changes when passing
across a diamond edge, hence the two singular points in the interior of P
are of type (IV) as in Definition 3.6. The two components of ∂P on the left
are of type (I) and the two on the right are of type (II), therefore by Lemma
3.7 these sink marks extend to a unique branched surface structure on Σ.
The two components of ∂P of type (II) produce two meridional cusps.

By definition the sink direction points to the right of an oriented arc
of ∂Di when standing on P on the side Di is attached and facing to the
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direction of the orientation mark. The cusp of that arc is then on the left.
When passing across a diamond edge the cusp continues onto the diamond
edge on the side of the cusp. Using this fact one can check that the cusps on
the top side of P in figure 9(a) are of slope 1/1, while those on the bottom
side of P are of slope 0/1.

On the Hatcher–Thurston diagram D, the branched surface in figure 9(a)
is represented by a Delman channel of type A shown in figure 10(a), which is
an arc starting from the vertex 1/0, going half way towards the vertex 1/1,
then jump to the middle of the edge from 0/1 to 1/2 and finish at the vertex
1/2. It reflects the properties of Σ that the top train tracks have slope 1/0,
the cusps on the top side of P are of slope 1/1, the cusps on the bottom
side of P are of slope 0/1 and the bottom train tracks have slope 1/2.

We may reverse the orientations of all the edges in figure 9(a) to obtain
the one in figure 9(b). As above, these sink marks determines a branched
surface structure on the 2-complex. By checking the cusps one can show
that the top cusps are of slope 0/1 while the bottom ones are of slopes 1/1.
Therefore it corresponds to the path in figure 10(b), called a Delman channel
of type B.

The branched surfaces in figure 9 are called the Delman channel surfaces,
denoted by Σ(e) if e is the corresponding Delman channel. It is of type A or
type B according to the type of e. Note that each boundary arc of Σ(e) must
connect a pair of parallel endpoints of the arcs K representing Q, so that
the corresponding boundary train tracks are one positive and one negative,
as in figures 7(a)–(b), respectively.

By twisting the four vertical arcs around, we can isotope this surface
Σ(e) in S[a, b] to change the top slope to r1 = p1/q1 and the bottom slope
to r2 = p2/q2 if Δ(r1, r2) = 2. Hence we can embed a Delman channel into
a pair of adjacent triangles in the Hatcher–Thurston diagram D. The only
requirement is that the curves K must be oriented in such a way that the two
train tracks of slope r1 on S[a] connecting the four points of K ∩ S[a] must
be one positive and one negative, as in figures 7(a) and (b), respectively.
One can see that the two train tracks of slope r2 on S[b] also have the same
property.

Now consider L = Tp/q or Kp/q. It intersects the level sphere S[0] in
four points. Recall that two points of L on a level sphere are parallel if the
orientations of L at these two points are both upward or both downward.
A rational number p/q is assigned a parity pair o/e, e/o or o/o if (p, q) is
(odd, even), (even, odd) or (odd, odd), respectively. Note that two arcs on
S[0] with the same parity pair connect the same pair of points of L ∩ S[0],
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so we can use the slope 1/0, 0/1 or 1/1 that has the same parity pair as p/q
to determine whether a curve of slope p/q connects a pair of parallel points.

Definition 5.1. Let L = Tp/q or Kp/q. A path γ in D(p/q) from 1/0 to p/q
is an allowable path if it satisfies the following conditions:

(1) it is the union of edges of D(p/q) and Delman channels;
(2) it is minimal in the sense that the corner number c(γ, vi) defined in

Section 4 satisfies |c(γ, vi)| ≥ 2 for any interior vertex vi of γ;
(3) the label of the ending points of the Delman channels in γ all have

the same parity pair, which is different from that of p/q, and is also different
from that of 1/0 if L = Kp/q.

Write γ = e1 ∪ . . . ∪ en, where each ei is either an edge or a Delman
channel. Note that the beginning and ending points of a Delman channel ei

have the same parity pair. Let r′i, r
′′
i be the slopes of the beginning and ending

points of the i-th Delman channel in γ. Then condition (3) above implies
that these all have the same parity pair, it is different from that of p/q, and if
L is a knot then it is also different from that of 1/0. This implies that we can
orient L so that an arc of slope r′i or r′′i connects a pair of parallel points of L,
so there is a Delman channel surface Σ(ei) whose sink marks on Q coincide
with this orientation of L. As in the construction of the Hatcher–Thurston
branched surfaces for minimal path, we can now construct branched surfaces
Σ(γ) and Σ̂(γ) for γ as the union of Σ(ei) ⊂ S[−i,−i + 1] and some copies of
the trivial caps in figure 6(b) at the top and bottom, except that when ei is
a Delman channel Σ(ei) is the corresponding Delman channel surface above
instead of the Hatcher–Thurston branched surface in figure 6. The branched
surfaces Σ(γ) in S[−∞, 0] and Σ̂(γ) in S3 are called the Delman branched
surfaces for the tangle Tp/q and the link Kp/q, respectively, corresponding
to the allowable path γ.

Lemma 5.2. Let Σ = Σ(γ) and Σ̂ = Σ̂(γ) be the Delman branched surfaces
corresponding to an allowable path γ = γ(c1, . . . , cn) in D(p/q), where ci =
c(γ, vi) is the corner number of γ at vi. Then each of E(Σ̂) and E(Σ) has
n + 1 components Y0, . . . , Yn, one for each vertex vi of γ, such that Yn for
both branched surfaces and Y0 for Σ̂ are 3-balls with a single cusp, and Yi is
a solid torus with cusp winding number |ci| for i 	= 0, n.

Proof. Topologically the exterior of Σ̂(γ) is obtained by cutting S3 along hor-
izontal spheres S[−i + 1/2] for i = 1, . . . , n, then removing a regular neigh-
borhood of the attaching disks D in each region. Hence it has n + 1 regions
Y0, . . . , Yn, one for each vertex vi. It is easy to see that Y0 and Yn are 3-balls
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with a single cusp. For i = 1, . . . , n − 1, D ∩ S[−i − 1/2, −i + 1/2] is a pair
of disks Di1 ∪ Di2, each Dij is a αj × I for a curve αj of slope pi/qi, hence
Yi is a solid torus. The exterior of Σ(γ) is the same, except that Y0 is now
a solid torus in S[−1/2, 0].

We need to determine the winding number of the cusps on ∂Yi. By
an isotopy we can deform Σ̂(γ) so that the curves αj above have slope
1/0, and the cusps on the bottom side of S[−i + 1/2] are of slope 0/1. The
deformation changes labels of all vertices of D but preserves Δ(r, s). Whether
ei is an edge or Delman channel, the ending segment of ei now lies on the
edge from 1/0 to 0/1, so the initial segment of ei+1 must be on the edge
from 0/1 to 1/m for some integer m because all vertices connected to 0/1
are of that form. Moreover, the corner number c(γ, vi) = m. It follows that
the cusps on the top of S[−i − 1/2] are of slope 1/m. It is now easy to see
that the minimal intersection number between a meridian disk of Yi and the
cusp on ∂Yi is |m| = |c(γ, vi)| = |ci|. �
The following theorem is an extension of a result of Delman [De] for these
branched surfaces, which has been used in [3] to determine small Seifert
fibered surgeries on 2-bridge knots.

Theorem 5.3. Given an allowable path γ from 1/0 to p/q, the correspond-
ing branched surfaces Σ = Σ(γ) and Σ̂ = Σ̂(γ) are pre-laminar. Σ̂ is laminar
in E(Kp/q), and is genuine if at least one vertex v on γ has |c(γ, v)| > 2. If
γ has k Delman channels then Σ and Σ̂ have 2k meridional cusps.

Proof. The first statement follows from Lemma 5.2. If γ = γ(c1, . . . , cn) is
an allowable path then |ci| ≥ 2 for all i, so by Lemmas 5.2 E(Σ̂(γ)) is an
essential cusped manifold, and by Lemma 2.2 Σ̂(γ) is a laminar branched
surface. If some |ci| ≥ 3 then the corresponding region Yi in Lemma 5.2 is
not an I-bundle, hence Σ̂(γ) is genuine. Since each Delman channel creates
two meridional cusps, Σ̂ and Σ have 2k meridional cusps if γ contains k
Delman channels. �

6. Half channel surfaces

We can reverse the orientations of some of the edges of the Delman channel
surface in figure 10 to obtain new branched surfaces. The ones in
figures 11(a1)–(b3) are called Delman half channel surfaces, and the cor-
responding paths shown in the figure are their Delman half channels. Some
of these are constructed in [4] in a more sophisticated way. As before,
denote by Q the four tubes represented by the four vertical arcs K, P the
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Figure 11

horizontal punctured sphere and D the four disks attached to Q ∪ P . We
use Σ(xi) = Q ∪ P ∪ D to denote the 2-complexes with sink marks in fig-
ure 11(xi), x = a, b and i = 1, 2, 3. For i = 2, 3 we allow the orientations of
both of the two left edges in Σ(xi) be changed simultaneously, so there are
two choices of Σ(xi) in this case.

Lemma 6.1. (1) Σ(xi) are branched surfaces.
(2) Each Σ(xi) has one meridional cusp.
(3) If the Delman half channel γ representing Σ(xi) has starting edge

from 1/0 to r1 and ending edge from r2 to 1/2 then the cusp above P has
slope r1 and the one below P has slope r2.
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Proof. As for the Delman channel surfaces, (1) and (2) can be verified using
Lemma 3.7. Note that in each case ∂P has two components of type I, one
component of type II and one component of type III. Therefore there is
exactly one meridional cusp in each case.

(3) The cusp slopes on the two sides of P are determined by the dia-
mond edges and the orientation sink marks on ∂D ∩ P . When i = 1, 2 the
sink marks on P are the same as those in figure 9, so the Delman half
channel looks the same as those for the Delman channels in figure 10. In
figures 11(a3)–(b3) the orientations of ∂D ∩ P have been reversed for one of
the disks below P . One can verify that it changes the cusp slope below P to
the one indicated by the Delman half channel shown in the figure. �

Let γ be a path in D(p/q) consisting of edges and a single half channel
τ of type xi. Denote Σ(xi) by Σ(τ). We can construct a 2-complex Σ(γ) in
the 3-ball S[−∞, 0] starting with the half channel surface Σ(τ), then adding
Hatcher–Thurston surfaces Σ(e) successively for the edges e before and after
τ . Recall that there are two possible choices of Σ(τ) if i > 1. We say that γ
satisfies the orientation requirement if one can choose Σ(τ) so that the two
bottom train tracks of Σ(τ) ∪ (∪eΣ(e)) can be capped off by trivial caps in
figure 6(b) to form a branched surface, which will be denoted by Σ(γ).

We say that γ has starting slope r if the initial segment of γ is on the
edge from 1/0 to r.

Lemma 6.2. Suppose γ is a path in D(p/q) from 1/0 to p/q, containing a
half channel τ of type xi. Then γ satisfies the orientation requirement unless
i = 1 and the initial point (and hence the ending point) of τ has the same
parity pair as that of p/q.

Proof. Let Σ(τ) be a branched surface in S[a, b] corresponding to the half
channel τ of type xi. When i > 1 we have two choices of Σ(τ) and the second
one is obtained from that in figure 11(xi) by reversing the orientations of
the two arcs on the left, hence one of them has the property that an arc
of slope p/q on the bottom level sphere S[a] connect a pair of antiparallel
endpoints of the four vertical arcs K in figure 11(xi). The bottom train track
of Σ(τ) ∪ (∪eΣ(e)) has slope p/q, therefore the above implies that these train
tracks are antiparallel as in figure 7(c); hence one can cap it off using the
trivial caps to obtain a branched surface Σ(γ).

Now assume i = 1. In this case the train tracks at the bottom of Σ(γ)
are one positive and one negative, as in figures 7(a)–(b). If the endpoint of τ
has different parity pair from that of p/q then an arc of slope p/q connects a
pair of antiparallel edge endpoints of K (with piecewise orientation induced
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by sink marks), hence Σ(τ) ∪ (∪eΣ(e)) can be capped off by trivial caps to
make a branched surface. �

Definition 6.3. A path γ in D(p/q) from 1/0 to p/q consisting of edges
and one half channel is a semi-allowable path if (1) it satisfies the orientation
requirement above, and (2) it is minimal in the sense that the corner number
c(vi, γ) defined in Section 4 satisfies |c(vi, γ)| ≥ 2 for any interior vertex vi

of γ. The path γ is genuine if |c(vi, γ)| ≥ 3 for some i.

Lemma 6.4. Let γ be a semi-allowable path in D(p/q) with starting slope r
and corner number ci at the ith vertex. Then the exterior of Σ(γ) has n + 1
components Y0, . . . , Yn, one for each vertex vi of γ, such that Yn is a 3-ball
with a single cusp, and Yi is a solid torus with cusp winding number |ci| for
i 	= 0, n. The cusps above the top level surface is of slope r.

Proof. This is similar to Lemma 5.2. We omit the details. �
Note that if γ contains a half channel and if Tp/q is endowed with the

induced piecewise orientation, then exactly three of the four endpoints of
Tp/q on the top level sphere S[0] have the same orientation. We say that γ is
upward if the orientations at those three points are upward, and downward
otherwise. From figure 11 we see that γ is upward if and only if the half
channel in it is of type b1, a2 or a3.

Proposition 6.5. Suppose 0 < p/q < 1. Let D = D(p/q).
(1) D always has an upward semi-allowable path γ with starting slope 1,

and there is a genuine such γ unless p = 1 or q − 1.
(2) D has a downward semi-allowable path γ with starting slope 1 unless

p = 1, or p = q − 1 and q is even. D has a genuine such γ unless p = 1, 2
or q − 1.

(3) D always has a downward semi-allowable path γ with starting slope
0, and there is a genuine such γ unless p = 1 or q − 1.

(4) D has an upward semi-allowable path γ with starting slope 0 unless
p = q − 1, or p = 1 and q is even. D has a genuine such γ unless p = 1, q − 2
or q − 1.

Proof. (1) If p/q ≥ 1/2, let γ be the half channel of type a2 in figure 11(a2)
followed by an edge path on the lower boundary of D; if p/q < 1/2, let γ
be the half channel of type a3 followed by a path on the upper boundary
of D. By Lemma 6.2 γ satisfies the orientation requirement and hence is
semi-allowable. If p 	= 1, q − 1 then there are fork vertices on both the upper
and lower boundary of D, so |c(v)| > 2 for some v ∈ γ, hence γ is genuine.
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Figure 12

(2) First assume p/q > 1/2. Then the vertex 1/2 is on the lower
boundary of D. If q is odd then we may choose γ to be the half
channel in figure 11(a1) followed by an edge path on the lower bound-
ary of D, as shown in figure 12(a). By Lemma 6.2 this is semi-allowable
since 1/2 has different parity pair from that of p/q, and it is genuine if
p 	= q − 1 because in this case there is at least one fork vertex at the lower
boundary.

If q is even, then p 	= q − 1 by assumption, so the last interior edge at
v′ = 1/1 connects it to a fork vertex v′′ on the lower boundary. Let γ be the
path in figures 12(b)–(c) according to whether v′′ has only two interior edges
or more, where the half channel is of type a1. Since 1/1 has parity pair differ-
ent from that of p/q, by Lemma 6.2 γ is semi-allowable. It is genuine unless
|c(v′, γ)| = 2 (so γ is as shown in figure 6.2(c)), and there is no fork ver-
tex on the upper boundary other than 1/1. However, in this case v′′ = 1/2,
and it has an edge connected to p/q, so q cannot be even, a contradiction.
Therefore γ is genuine.

Now assume p/q < 1/2, so the vertex 1/2 is on the upper boundary of
D. Let v′ be the first fork vertex on the upper boundary, which exists since
p 	= 1. Let γ1 and γ2 be the paths in figures 12(d)–(e), respectively. Each γi

is the union of a single half channel τ of type a1 and some boundary edges.
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It is semi-allowable unless the ending point of τi has the same parity pair as
that of p/q. Since the ending points of τ1 and τ2 are connected by an edge
of D, they have different parity pair. It follows that at least one of the γi

is semi-allowable. It remains to show that γi can be chosen to be genuine if
p 	= 1, 2, q − 1.

If γ1 is semi-allowable but not genuine, then v′ is the only fork vertex
on the upper boundary, and it has only two interior edges, so v′, p/q and
all the vertices between them on the upper boundary connect to the same
vertex on the lower boundary, which must be the vertex v′′ in figure 12(d)
because there is no edge connecting v′ to any vertex between v′′ and p/q
on the lower boundary. Therefore v′′ and p/q are connected, so they have
different parity pairs, which implies that γ2 is also semi-allowable. Hence
either |c(v′′, γ2)| ≥ 3 and we are done, or there are no vertices between v′

and p/q, in which case p/q = 1/(a + 1/2) = 2/(2a + 1), hence p = 2 and the
result follows.

If γ1 is not semi-allowable then γ2 is semi-allowable, so if γ2 is not gen-
uine then all vertices between v′′ and p/q (including the two endpoints)
would have edge connected to v′, which implies v′ is connected to p/q and
hence has different parity pair from that of p/q, so γ1 is also semi-allowable,
which is a contradiction.

The proofs of (3) and (4) are similar, using the half channels of types bi

instead. �

Theorem 6.6. Let K be a non-2-bridge Montesinos knot. Then K has a
persistently laminar branched surface in its complement unless it is equiv-
alent to K(1/q1, 1/q2, 1/q3, −1), where qi are positive integers, and q1 is
even.

Proof. If the length of K is at least 4 then by [10] the exterior of K contains
a closed essential surface which remains incompressible after all surgery on
K. Hence we may assume that K is of length 3. Write K = K(r1, r2, r3, n),
where 0 < ri = pi/qi < 1 and n is an integer. By taking the mirror image if
necessary we may assume that n ≥ −1. We may assume that q2, q3 are odd.

First assume n ≥ 0. By Proposition 6.5(1) there is an upward semi-
allowable path γ1 in D(r1) with starting slope 1, and there is a down-
ward semi-allowable path γ2 in D(r2) with starting slope 0. Let γ3 be the
upper boundary path in D(r3), which has starting slope 1. Let Σ(γi) be
the branched surface constructed above for i = 1, 2, and let Σ(γ3) be the
Hatcher–Thurston branched surface, with the arcs of T (r3) oriented so that
the two left edges points outward. (This is possible since q3 is odd.) Inserting
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Figure 13

these into a band with n half twist produces a branched surface Σ in the
knot exterior as shown in figure 13. By Lemma 3.7 Σ is pre-laminar. Since
γ1 and γ3 has starting slope 1 and γ2 has starting slope 0, the component
of E(Σ) outside of the tangles is the complement of a band with n + 2 half
twists, and it has the boundary of the band as its cusps, so it is an essential
cusped manifold. Any other component of E(Σ) is a component of the exte-
rior of some Σ(γi) in the corresponding tangle space, which by Lemma 6.4
is a solid torus with cusp winding number at least 2. Hence Σ is laminar by
Lemma 2.2. Since it has two meridional cusps, it remains laminar after all
Dehn surgery.

Now assume n = −1. If for some i, qi is odd and pi 	= 1, or qi is even and
pi 	= 1, qi − 1, then by Proposition 6.5(2) we have a downward semi-allowable
path γi with starting slope 1. We can then choose γj (j = 1 if i 	= 1) to be
an upward semi-allowable path with starting slope 1 and γk (k 	= i, j) the
upper boundary path, and construct Σ as above. Since each of these paths
has starting slope 1, the outside component of Σ has n + 3 = 2 half twists
and hence for the same reason as above, Σ is a persistently laminar branched
surface.

If q1 is also odd then the above shows that pi = 1 for all i, in which
case K(1/p1, 1/p2, 1/p3, −1) is a link of two components, contradicting the
assumption. Therefore we may assume q1 is even. By the above it remains
to consider the case that p1 = q1 − 1, and p2 = p3 = 1. If q1 = 2 then p1 = 1
and we are done, so we may assume q1 ≥ 4. Here the construction is different.
In this case γ1 is a path with two half channels, as shown in figure 14(a).
The half channel at the end is of type b2. The one at the beginning is a new
half channel with its corresponding branched surface shown in figure 14(b),
which is obtained from the one in figure 11(a2) by rotating upside down
along the horizontal axis from left to right, and then twisting the strings
so that the top train track has slope 1/0. One can also check directly from
figure 14(b) that it is a branched surface with a single meridional cusp, the
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Figure 14

cusp on the top side of P has slope 1 and the one on the bottom side of
P has slope 0. Now the orientations of the arcs at the bottom level of this
surface match the orientation of the top arcs of one of the surfaces of type b2

(the one with orientations of both left arcs of that in figure 11(b2) reversed).
We can then add some Hatcher–Thurston surfaces corresponding to the
edges between these two half channels if necessary to obtain a branched
surface Σ(γ1) corresponding to the path γ1 of D(r1) in figure 14(a). The
other two tangles are of type T1/qi

with qi odd, so we can orient them as
shown in figure 14(c). Let γi be the upper boundary path in D(1/qi), which
has starting slope 1, and let Σ(γi) be the corresponding Hatcher–Thurston
branched surface. Inserting these into the band with n = −1 half twist as
in figure 14(c), we obtain the branched surface Σ. For the same reason as
before, Σ is a persistently laminar branched surface.

We note that in the construction above we may reverse the orientations of
both left edges in the half channel surfaces in figure 14(b) and figure 11(b2),
so the outside orientations of Σ(γ1) is obtained from that in figure 14(c)
by reversing the orientations of the two arcs on the left of the tangle, as
shown in figure 14(d). The orientations would not match that of the right
endpoints of the third tangle, but they do when there is no half twist or
an even number of half twists at the bottom, as shown in the figure for
n = 0. Therefore this modification produces a persistently laminar branched
surface Σ when n ≥ 0 is even. This modification is needed in the proof of
Theorem 6.7. �

Theorem 6.7. Let K be a Montesinos knot of length 3. Then K has a
genuine persistently laminar branched surface in its complement unless K is
equivalent to K(1/q1, 1/q2, p3/q3, n), such that either
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(1) n = 0, qi ≥ 2, and p3 = 1; or

(2) n = −1, qi ≥ 2, and p3 = 1, 2 or q3 − 1.

Proof. As before, we may assume that K = K(r1, r2, r3, n), where 0 < ri =
pi/qi < 1 and n ≥ −1. If n > 0, or if n = 0 and some pi 	= 1 then we can
construct γi and Σ as in the proof of Theorem 6.6 for the case n = −1. Now
the outside component of the exterior of Σ is the exterior of a band with at
least three half twists, hence Σ is genuine. (Unlike Theorem 6.6, we cannot
claim that q1 is even in this case, because the proof of Theorem 6.6 used the
fact that K(1/q1, 1/q2, 1/q3, n) is a link of two components if all qi are odd
and n = −1, which is no longer true when n = 0.)

We may now assume that n = −1. The result is true if p1 = p2 = p3 = 1,
or if p1 = p2 = 1 and p3 = q3 − 1. Thus we may assume that p3 	= 1, and
either p1 	= 1 or p3 	= q3 − 1. Note that if p1 	= 1 then up to relabeling of the
tangles we may assume that q3 is odd. Hence either p3 	= q3 − 1 or q3 is odd.
We may now apply Proposition 6.5(2) to obtain a downward semi-allowable
path γ3 in D(p3/q3) with starting slope 1. If pj 	= 1 for some j = 1, 2, let γj

be the upper boundary path in D(pj/qj), which is genuine in this case, and
let the other γk be an upward semi-allowable path with starting slope 1, as in
Proposition 6.5(1). If p1 = p2 = 1 but p3 	= 1, 2, q3 − 1 then by Proposition
6.5(2) we may choose γ3 to be genuine. It follows that the branched surface
Σ corresponding to these paths is genuine unless p1 = p2 = 1 and p3 = 1, 2
or q3 − 1. �

Example 6.8. The knot 10142 on the knot table of [9] is the pretzel knot
K(1/3, 1/3, −1/4). It is one of the five knots in Gabai’s Frontier Question
FQ 1.2 [5] that were not known whether all surgeries are laminar. Theorem
6.6 shows that it is persistently laminar.

The construction of branched surfaces in rational tangle spaces can be
used to construct persistently laminar branched surfaces in the complement
of some non-Montesinos knots. Here is an example. Let L be a non-split
oriented link. A spanning surface F of L is π1-injective if it is π1-injective
in the complement of L, in which case the manifold M obtained by cutting
E(L) along F is an essential cusped manifold with ∂F as its cusp. Let α be
a proper arc in F . Embed a regular neighborhood D of α in R2 so that the
two arcs L ∩ ∂D = a1 ∪ a2 are horizontal. Then α is said to connect parallel
arcs if the orientations of a1, a2 points to the same direction; otherwise α
connects antiparallel arcs. For example, if F is a minimal Seifert surface
then it is always π1-injective, and α always connect antiparallel arcs. Set
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up a coordinate on the boundary of B = N(α) so that a1 ∪ a2 is a 0-tangle
and F ∩ ∂B is isotopic to a 1

0 -tangle. Denote by L(F, α, r) the knot or link
obtained from L by replacing a1 ∪ a2 with a rational tangle Tr.

Corollary 6.9. Suppose L is a non-split oriented link, F is a π1-injective
spanning surface of L, and α an arc on F . Let K = L(F, α, 1/n), where
|n| > 2 is odd if α connects parallel arcs, and even otherwise. If K is a knot
then it has a persistently laminar branched surface.

Proof. Let B = N(α) and T1/n = K ∩ B, as defined above. If n is odd, let
γ be an allowable path starting with the Delman channel in figure 10(b)
followed by the upper boundary path, and if n is even let γ be the path
in figure 14(a), except that the labels on the top vertex is 0/1 and the
labels at the bottom are 1/0, 1/1, . . . , 1/n (so the diagram is now D(1/n)
reflected along a horizontal line). In the first case let Σ(γ) be the branched
surface constructed in Theorem 5.3. In the second case let Σ(γ) be the one
constructed in the proof of Theorem 6.6 and, as in the proof of Theorem
6.7, we may reverse the orientation of the two left arcs of the tangle so that
the orientation looks like that of Tr1 in figure 14(d). The assumption that
n is odd if and only if α connects parallel arcs implies that the tangle can
be rotated if necessary so that the orientation of the arcs on the boundary
of the tangle defined by the Delman channel or half channel surface match
those of L − N(α), so we can extend Σ(γ) to a branched surface Σ in the
complement of K by adding the tubes Q around L − IntB and the surface
F − IntB, which is attached to Q using the orientation of L as its sink marks.
By Lemma 3.7 Σ is pre-laminar. As before, the components of E(Σ) inside of
the ball B = N(α) are essential cusped manifolds, and the assumption that
F is π1-injective implies that the outside component E(Σ), which is the
same as E(L) cut along F , is also an essential cusped manifold. Therefore
by Lemma 2.2 Σ is laminar. By construction Σ has two meridional cusps,
hence it remains laminar after all nontrivial Dehn surgery on K. �

7. Seifert fibered surgery on Montesinos knots

Exceptional Dehn surgeries on arborescent knots have been determined
except for atoroidal Seifert fibered surgeries on Montesinos knots of length
3. The following is a result in this direction.



Persistently laminar branched surfaces 427

Theorem 7.1. [12, Theorem 1.1.] Suppose K = K(p1

q1
, p2

q2
, p3

q3
) is a Mon-

tesinos knot of length 3 and qi ≥ 2. If 1
q1−1 + 1

q2−1 + 1
q3−1 ≤ 1 then K admits

no atoroidal Seifert fibered surgery.

Theorem 6.7 can be used to strengthen this result by adding restrictions
to pi. We separate two cases. Recall that a Montesinos knot K of length 3 is
a pretzel knot of length 3 if it can be written as K(1/q1, 1/q2, 1/q3, n) for
some integers n and |qi| ≥ 2, and it is a genuine pretzel knot if in addition
n = 0.

Theorem 7.2. Let K be a pretzel knot of length 3. If K admits an atoroidal
Seifert fibered surgery, then K is equivalent to K( 1

q1
, 1

q2
, 1

q3
, n) such that

either n = 0 and hence K is a genuine pretzel knot, or n = −1 and qi ≥ 3.
In either case qi satisfy 1

|q1|−1 + 1
|q2|−1 + 1

|q3|−1 > 1.

Proof. The second part follows from Theorem 7.1, so we only need to prove
the first part. By [1] K(r) is not an atoroidal Seifert fibered manifold
if it contains a genuine laminar branched surface, hence by Theorem 6.7
the result holds except that we may have K = K(1/q1, 1/q2, p3/q3, −1),
where qi ≥ 2 and p3 = 1, 2 or q3 − 1. We are done when p3 = 1. Since K
is assumed to be a pretzel knot, the case p3 = 2 does not occur unless
q3 = 3, in which case we also have p3 = q3 − 1. If p3 = q3 − 1 then K =
K(1/q1, 1/q2, (q3 − 1)/q3, −1) = K(1/q1, 1/q2, 1/(−q3)), which is a genuine
pretzel knot. If some qi = 2, say i = 1, then K(1

2 , 1
q2

, 1
q3

,−1) = K(−1
2 , 1

q2
, 1

q3
)

is a genuine pretzel knot; hence we may assume qi ≥ 3 when n = −1. �
We now consider the case that K = K(r1, r2, r3) is not a pretzel knot.

As in [12], we use p̄ = p̄(p, q) to denote the mod q inverse of −p with min-
imal absolute value, i.e., p̄ satisfies pp̄ ≡ −1 mod q, and 2|p̄| ≤ q. We can
combine [12, Theorem 8.2] with Theorem 6.7 to obtain the following result
for atoroidal Seifert fibered surgery on non-pretzel Montesinos knot.

Theorem 7.3. Let K be a Montesinos knot of length 3. If K is not a
pretzel knot and K admits an atoroidal Seifert fibered surgery K(r), then K
is equivalent to one of the following:

(a) K(−2/3, 1/3, 2/5);
(b) K(−1/2, 1/3, 2/(2a + 1) ) and a ∈ {3, 4, 5, 6};
(c) K(−1/2, 1/q, 2/5) for some q ≥ 3 odd.

Proof. By [12, Theorem 8.2], K is equivalent to one of the following.

(1) K(1/3, ±1/4, p3/5), p3 ≡ ±1 mod 5;
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(2) K(1/3, ±1/3, p3/q3), |p̄3| ≤ 2;

(3) K(1/2, 2/5, p3/q3), q3 = 5 or 7, |p3| > 1;

(4) K(1/2, 1/q2, p3/q3), q2 ≥ 5 and |p̄3| ≤ 2;

(5) K(1/2, 1/3, p3/q3), |p̄3| ≤ 6.

Since K is not a pretzel knot, by Theorem 6.7 and [1] we have K = K(1/q1,
1/q2, 2/q3,−1) with qi positive and q3 ≥ 5, so it cannot be of type (1) or
(3) above. We may write q3 = 2a + 1, so K = K(1/q1, 1/q2, 2/(2a + 1),−1).
Note that a > 1 as otherwise K would be a pretzel knot. Since 2a ≡ −1 mod
q3, we have p̄3 = a. Therefore if K is in (2) or (4) then we have |p̄3| = a = 2,
so q3 = 5 and K is in conclusion (a) or (c). Finally if K is of type (5) then
2 ≤ a ≤ 6. When a = 2 K is in conclusion (c), and when a = 3, 4, 5, 6 it is
in conclusion (b). �

8. Persistently laminar tangles

Given a 2-string tangle (B, T ), we can add another 2-string tangle (B1, T1) to
it to make it a knot or link K = T ∪ T1 in S3 = B ∪ B1, called an extension
of T . The gluing map ϕ : ∂B → ∂B1 is an orientation reversing map, sending
a curve of slope r on ∂B to a curve of slope −r on ∂B1. The extension is
s-non-trivial, or simply non-trivial when s = 0, if there is no disk D in B1

separating the two strings of T1, with ∂D a slope s curve on ∂B. It is a
pretzel extension if (B1, T1, s) can be isotoped so that s is a horizontal loop
on ∂B1 and T1 is a pair of vertical arcs.

Definition 8.1. A closed branched surface Σ in E(T ) = B − Int N(T ) is
persistently laminar with degeneracy slope s, if it is laminar in K(r) for all
s-non-trivial extensions K of T and all nontrivial slopes r of K. In this case
(B, T ) is called a persistently laminar tangle.

Brittenham [2] showed that the tangle T (1/3, −1/3) is persistently lam-
inar. It was proved by Youn [13] that the tangle T (1/3, −1/5) is also persis-
tently laminar. Using the techniques developed above, we can now construct
many more persistently laminar branched surfaces. See Theorem 8.5 below.

Suppose Σ is a branched surface in E(T ) for some tangle (B, T ). Denote
by ET (Σ) = E(T ) − Int N(Σ) and call it the exterior of Σ in the tangle
space. A component of ET (Σ) is an outside component if it intersects ∂E(T ),
otherwise it is an inside component. If the outside component Y is a collar
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∂E(T ) × I of ∂E(T ) then we say a curve on ∂Y − ∂E(T ) has slope r if it is
isotopic in ∂E(T ) × I to a curve of slope r on ∂B.

Lemma 8.2. Let (B, T ) be a tangle, and let Σ be a closed pre-laminar
branched surface in IntE(T ). If the inside components of ET (Σ) are essential
cusped manifolds, and the outside component Y of ET (Σ) is a collar of
∂E(T ) with a single cusp of slope s, then Σ is a persistently laminar branched
surface with degeneracy slope s.

Proof. Let (S3, K) = (B, T ) ∪ (B1, T1) be an s-non-trivial extension of
(B, T ) and consider Σ as a branched surface in S3. Then the exterior of
Σ is a union of a component X which contains the knot K, and the inside
components of Σ in B, which by assumption are essential cusped manifolds.
Since the outside component Y of ET (Σ) is a collar of ∂E(T ) with a single
cusp of slope s, we see that X is the union of B1 with two 1-handles V1, V2

(i.e., a regular neighborhood of T in B) attached, and K is the union of T1

with the cores of Vi. The cusp on ∂Y becomes a cusp γ on ∂X which is of
slope −s on ∂B1. By assumption γ does not bound a disk in B1 − T1, which
implies that it does not bound a disk in X − K.

By assumption Σ is pre-laminar and the inside components of Σ in B are
essential cusped manifold, therefore to prove that Σ is a laminar branched
surface in K(r), by Lemma 2.2 it suffices to show that X(r), the manifold
obtained from X by r surgery on K ⊂ X, is an essential cusped manifold.

The frontier of N(T1) is a pair of annuli A = A1 ∪ A2 which cut X
into E(T1) and a solid torus V with K as its core. Since K is a nontrivial
extension, the curve γ does not bound a disk in V − K, hence the surface
∂E(T1) − γ ∪ A, which is a union of two pairs of pants, is incompressible in
E(T1), so E(T1) is an essential cusped manifold when considering N(γ) ∪ A
as a vertical surface. After performing Dehn surgery on K the solid torus
V becomes another solid torus V (r) with A as a pair of non-meridional
annuli, hence it is also an essential cusped manifold when considering A
as vertical surface. It is easy to show that the union of essential cusped
manifolds along vertical annuli is still an essential cusped manifold. Hence
X(r) = E(T1) ∪ V (r) is an essential cusped manifold. �

Example 8.3. Consider the 2-complex Σ = Q ∪ P ∪ D in figure 15, where
Q is a pair of tubes represented by the thick arcs, P is a punctured sphere
with two boundary components a1, a2 glued to two boundary components of
Q and the other two boundary components b1, b2 attached to the interior of
Q, and D is a union of two disks, one on each side of P . The sink marks are
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Figure 15

shown in the figure. Note that there is only one double points of D, which is
of type IV, as shown in figure 5(a). The other singular points are on the two
boundary components b1, b2 of P , which are of type (I) as in Definition 3.6.
Therefore by Lemma 3.7 these sink marks can be extended to a branched
surface structure for Σ.

The train track of ∂Σ is positively oriented as shown in figure 7(a).
One can check that the inside component of E(Σ) is a solid torus with
cusp winding number 2. The union of Σ and its mirror image form a closed
branched surface Σ̂ in the exterior of T (1/3, −1/3). By Lemma 3.7 Σ̂ is
pre-laminar, and it is easy to see that it satisfies the conditions of Lemma
8.2. Therefore by that lemma Σ̂ is a persistently laminar branched surface
in T (1/3, −1/3). It is slightly different from the one in [1].

It is important to note that the orientations of the sink marks make
a big difference here. One can reverse the orientations of all oriented sink
marks to obtain another branched surface with positively oriented boundary
train track, but the inside component has cusp winding number 1 and hence
is not an essential cusped manifold because it has a monogon, which is
why T (1/3, 1/3) is not a persistently laminar tangle. Note that attaching
a T (−1/2) tangle to T (1/3, 1/3) makes a (3, 4) torus knot, which admits
many lens space surgeries.

The above construction can be easily generalized. One can add more
vertical crossings to obtain a branched surface Σ(1/q) for T (1/q) when q > 3
is odd (but not if q is even because the orientations will not match). One
can show that the inside component of the exterior of Σ(1/q) is an essential
cusped manifold, hence the union of Σ(1/q1) and the mirror image of Σ(1/q2)
is a persistently laminar branched surface for T (1/q1, −1/q2) if q1, q2 are odd
and qi ≥ 3. We can also replace the crossing in the middle by a horizontal
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Figure 16

band with several crossings or other surfaces to create persistently laminar
branched surfaces for more complicated tangles.

To get more general results, we need to modify Delman’s channel surfaces.
Let e be the Delman channel of type A. Let Σ′(e) be the the branched surface
obtained from the one in figure 9(a) by deleting the upper half of the two
tubes connected to the meridional cusps, as well as the disk attached to
it. See figure 16(a). For the same reason as before, this is a pre-laminar
branched surface, and the part below the horizontal sphere is the same as
that of Σ(e). Similarly, if e is a Delman channel of type B then denote by
Σ′(e) the branched surface shown in figure 16(b).

Given an allowable path γ in D(p/q) starting with a Delman channel e,
the branched surface Σ(γ) starts with Σ(e), which can be replaced by Σ′(e)
above to obtain a new branched surface Σ′(γ). All the inside components
of E(Σ′(γ)) are the same as those of E(Σ(γ)). The boundary train track of
Σ′(γ) has only one component, which is negatively oriented if e is of type
A, and positively oriented if e is of type B. The cusp on the outside of the
top horizontal surface has slope 1/2 in both cases.

Lemma 8.4. Suppose r = p/q, q ≥ 3 is odd and 0 < r < 1.

(1) If 1
3 < r < 1 then D(r) has an allowable path γ starting with a type A

Delman channel.

(2) If 0 < r < 2
3 then D(r) has an allowable path γ starting with a type B

Delman channel.

Proof. (1) If 1
2 < r < 1 then D(r) is as shown in figure 17(a), in which case

we can choose γ to start with the type A channel followed by the lower
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Figure 17

boundary path from 1
2 to p

q , as shown in the figure. Similarly if 1
3 < r < 1

2
then D(r) and γ are as shown in figure 8.3(b).

(2) This is similar. In this case the diagram D(r) is obtained from that
in figure 8.3 by reflecting along a horizontal line, then changing the label
pi/qi to (qi − pi)/qi. The image of the path in the corresponding figure gives
the γ required. �

Any Montesinos tangle of length 2 can be written as T (r1,−r2), where
ri = pi/qi. We can isotope it to one with 1 ≤ pi < qi. (This may change the
degeneracy slope s.) Since T (r1,−r2) is homeomorphic to T (r2, −(1 − r1)),
we may also assume that r1 + r2 ≤ 1. The following shows that many of
these are persistent tangles if both qi are odd.

Theorem 8.5. If 0 < ri = pi/qi < 2
3 and qi are odd then T = T (r1, −r2)

is persistently laminar.

Proof. Choose γi to start with a type B Delman channel. Then Σi = Σ′(σi)
is a branched surface with positively oriented boundary train track. The
mirror image −Σ2 of Σ2 is a branched surface for T (−r2) with negatively
oriented boundary train track. Let Σ be obtained by gluing Σ1 to −Σ2

along their boundary. The cusps on Σi are of slope 1/2, so Σ has a cusp of
slope 1/2 − 1/2 = 0 on the outside. By Lemma 8.2 Σ is a persistent laminar
branched surface with degeneracy slope 0. �

Example 8.6. Suppose ri = pi/qi, 1 ≤ pi ≤ qi and qi are odd. Then the fol-
lowing tangles are all persistently laminar. (i) T (1/q1,−1/q2); (ii) T (r1,−r1);
and (iii) T (r1,−r2)) with r2 ∈ (1

3 , 2
3). This follows from Theorem 8.5 for

those in (i), as well as those in (ii) and (iii) when r1 < 2
3 . If r1 ≥ 2

3 , we have
T (r1, −r1) = T (r1 − 1, 1 − r1) = T (1 − r1, −(1 − r1)), and 0 < 1 − r1 < 2

3 ,
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so (ii) also follows from Theorem 8.5. Similarly if r1 ≥ 2
3 in case (iii), we

have T (r1, −r2) = T (r1 − 1, 1 − r2) = T (1 − r2, −(1 − r1)) and 1 − ri ≤ 2
3 ,

hence the result follows.
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