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W22_conformal immersions of a closed
Riemann surface into R"

ERNST KUWERT AND YUXIANG L1

We study sequences fj, : X — R™ of conformally immersed, com-
pact Riemann surfaces with fixed genus and Willmore energy
W(f) < A. Assume that X converges to ¥ in moduli space, i.e.,
5 (3k) — ¥ as complex structures for diffeomorphisms ¢y. Then
we construct a branched conformal immersion f:3¥ — R™ and
Mobius transformations o, such that for a subsequence
0k © fr 0 o, — f weakly in Wlicz away from finitely many points.
For A < 8r the map f is unbranched. If the ¥ diverge in moduli
space, then we show liminfy o W(fx) > min(87,wy). Our work
generalizes results in [12] to arbitrary codimension.

1. Introduction

Let ¥ be a closed oriented surface of genus p € Ny. For an immersion
f X — R" the Willmore functional is defined by

1
W) =1 [ HE du,

where H is the mean curvature vector and ¢ is the induced metric on X.
The infimum among closed immersed surfaces of genus p is denoted by
B, . We have 3 = 4w, which is attained only by round spheres [21]. For
p > 1 we have the inequalities 47 < 3 < 8 [8, 18]. In this paper we study
compactness properties of sequences fi : X — R™ with W(f;) < A. By the
Gaufl equations and Gauf—Bonnet, the second fundamental form is then
equivalently bounded by

/ A |? dig, < 4+ 8m(p—1).
X

In [14] Langer proved a compactness theorem for surfaces with ||Al|z« < A
for ¢ > 2, using that the surfaces are represented as C'-bounded graphs
over discs of radius r(n,q, A) > 0. Clearly, the relevant Sobolev embedding
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314 E. Kuwert & Y. Li

fails for ¢ = 2. For surfaces with ||A||z2 small in a ball, L. Simon proved an
approximate graphical decomposition, see [18], and showed the existence of
Willmore minimizers for any p > 1, assuming for p > 2 that

R D 3 B S

2

This inequality was confirmed later in [2]. As lim;, . 8] = 87 by [10], we
have w); > 8 for large p. Recently, using the annulus version of the approx-
imate graphical decomposition lemma, a compactness theorem was proved
in [12] for surfaces in R? under the assumptions

8, ifp: 1,

min(87r,w§), itp>2.

liminf W(fi) < {
k—o0
Moreover, it was shown that these conditions are optimal. For n =4 the
result was proved under the additional assumption lim infy .o W(fx) < ﬂg +
%7‘. In [13] these compactness theorems were applied to prove the existence
of a Willmore minimizer with prescribed conformal type.

Here we develop a new approach to compactness, generalizing the results
of [12] to any codimension. As main tools we use a convergence theorem of
Hurwitz type for conformal immersions, which is due to Hélein [6], and the
estimates for the conformal factor by Miiller and Sverdk [15]. The paper is
organized as follows. In Section 2 we introduce the notion of W??2 conformal
immersions, and recall the main estimate from [15] as well as the monotoni-
city formula from [18]. In Section 3 we adapt the analysis of [15] to show
that isolated singularities of conformal immersions with square integrable
second fundamental form and finite area are branchpoints, in a suitable
weak sense. The compactness theorem for conformal immersions is presented
in Section 4. We first deal with the case of a fixed Riemann surface in
Proposition 4.1, and extend the result to sequences of Riemann surfaces
converging in moduli space in Theorem 4.1. Finally in Section 5, we study
surfaces whose conformal type degenerates and show that the lower bound
from [12] extends to higher codimension. Along the lines, we state a version
of Theorem 5.1.1 in [6] with optimal constants.

2. W22 conformal immersions

Definition 2.1. Let ¥ be a Riemann surface. A map f € W22(3,R") is

loc
called a conformal immersion, if in any local conformal coordinates
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¢ : U — ¥ with U C C the metric g;; = (0;f, 0, f) is given by
gij = €*“6;5,  where u € L2 (U).

The set of all conformal immersions f € VV@’?(E,R”) is denoted by
W22 ($,R"), and by W22 (3, R") if ¥ is compact.

conf,loc conf

It is easy to see that for f € VVC2 2

o ¢(X,R™) one has in local conformal
coordinates on U

1 1
u=5log <2]Df\2> € W2 (U).

The induced measure g4, the second fundamental form A and the mean
curvature vector H are given by the standard coordinate formulae. We define
K, by the Gauf} equation

1 —4u
Ky = S(H? = [Aff) = ™" ((A11, Az) — [A1a]?).

In a local parameter, we will now verify the weak Liouville equation

/ (Du, D) = / Kqe*p, for all ¢ € C5°(U).
U U
In particular, this shows that K, is intrinsic. We start by computing
(O3 f, O f) + (OR:f, 0; ) = 2e*Oiu by,
which implies after permutation of the indices that
(03 f, O f) = €*(O5u bk + Oju Sit, — O 0yj).
Expanding explicitly yields

O f = A + O1udf — Daudaf,
8222f = Ags — 01u 01 f + O2u0af,
O f = A1g + O0u 01 f + O1udof,

and we obtain

(A, Azz) — [Aval® = (0111, 0% f) — 0 fI? + 2| Dul.
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For any u € W2 N L>®(U), f € VVI?)CQ(U, R™) and ¢ € C§°(U), we have the
formula

| (t@h5.0510) - ohrP) 2
U
ZA;O&ﬂaﬁﬂ%Gf%@—%&ﬁaéﬁ&Gf%@)

This follows by approximation from the case when f is smooth. Now for f
conformal

(011,03, f) = e®dou  and (D1 f,05,f) = —e*Ou,

which yields

| (@1.08.0) - 1017) e = [ (Du.Dg) 2 [ Dufe,
U U U
and the Liouville equation follows.

Remark 2.1. More generally if g = " gy where g is any smooth conformal
metric, then

~Agu = Kge* — K,  weakly.

Testing with a constant function, we infer for closed ¥ the GauBB~Bonnet
formula

/EKg dpg = 2mx(2).

W22 conformal immersions f can be approximated by smooth immer-
sions in the W22 norm. In fact, a standard mollification f. will be immersed
for small € > 0, by an argument of [17].

2.1. Gaufl map and compensated compactness

By assumption the right-hand side K e?* of the Liouville equation belongs
to L'. In [15] Miiller and Sverdk discovered that the term can be written as
a sum of Jacobi determinants, and that improved estimates can be obtained
from the Wente lemma [20] or from [4]. The following result is Corollary 3.5.7
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of [15]. Recall that in their notation, w denotes twice the standard Kéhler
form and W&’Q(C) is the space of functions v € L2 (C) with Dv € L?(C).

loc

Theorem 2.1. Let ¢ € Wol’Q((C, CP") satisfy

/@*wzo and /Jg0§7<27r.
C C

Then there is a unique function v € Wol’2((C) solving the equation —Av =
xp*w in C with boundary condition lim,_,o, v(z) = 0. Moreover

lollz=c) + 1 Dvllzee) < C) [c Dyl?.

For f € W22(D,R") let G € WL2(D,CP" ') be the associated GauB

conf
map. Here we embed the Grassmannian G(2,n) of oriented 2-planes into

CP™ ! by sending an orthonormal basis e 5 to [(e1 + ie2)/v/2]. Then
1
Kge®" = xG*w and / |DG|* = / |A|? dpy.
D 2Jp

Corollary 2.1. For f € Wczo’flf(D,]R”) with induced metric g;; = e**5;;,
assume

8m, ifn=3
AP du, <~y < yp = ’ ’
/D| Py <7 <7 {47r, ifn > 4.

Then there exists a function v : C — R solving the equation
—Av = K, e in D,
and satisfying the estimates
lollz=() + 1Dvlz2c) < C2) [ AP dig

Proof. We follow [15]. Define the map ¢ : C — CP"~! by

_JG(»), ifzeD,
Pl2) = G(L), ifzeC\D.
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Then ¢ € WOLQ((C, CP" 1) and [ ¢*w = 0. For n > 4, we have

1
/an:2/ JG§/|A|2dug§7<27r.
C D 2Jp 2

Thus the result follows from Theorem 2.1. The same is true for n = 3, since

then
1 1
/ng):/ |Kg|dug</ |A\2d,ug§1<27r.
C 2Jp 4Jp 4

g

The function K e? belongs actually to the Hardy space H!; see [4].
This implies that v has second derivatives in L', and in particular that v
is continuous [15]. As u—wv is harmonic, it follows that u is also continuous,
but this will not be used here. The following is an immediate consequence
of Corollary 2.1.

Corollary 2.2. Let f € VVC2’2 (D, R™) with induced metric g;j = *“6;;. If

onf

[ 14y < <,
D
then we have the estimate

<o) ( /D AP dyig + Ilu\p(m) .

lullze(py) + [ Dull 2o

[N

2.2. Simon’s monotonicity formula
We briefly review the monotonicity identity from [18] for proper W2 con-
formal immersions f:3 — R™. For more details we refer to [11]. Since
f is locally Lipschitz, the measure p = f(pq) is an integral varifold with

multiplicity function 62(u,x) = #f~'{z} and approximate tangent space
Typ = Df(p) - T, a.e. when z = f(p). The immersion f satisfies

/ divy X dpy = — / (X,H)dug, forany X e Wol’l(Z,]R”).
b by
For the varifold p this implies the first variation formula

[dwiodi=- [(o.t)dn tor o el B,



W22_conformal immersions of a closed Riemann surface into R® 319

where the weak mean curvature is given by

1
—_— H if 62
e X e e o
ulz) = pef-Hz}
0, else.

From the definition we have trivially the inequality
1 2 1 2
Wi, V)= | |Huldp < [H|" dpg.
14 =)

Observing that H,(x) is p a.e. perpendicular to T u, the proof of the mono-
tonicity identity in [18] extends to show that for B,(zg) C B,(xo) one has

2
1 / (x — wo)*
920 (0) = gap(0) = — H, +4"—"2 | dy,
(o) (@) 167 Jp,(so\Bo (o) | | |z — 20]?
where
M(Br(x(])) 1 1 /
() = M) Dy B, — z0, Hy,) dp.
g 0(7”) 2 + 47TW(,U ($0)) + 2712 Br(a:o)<$ Lo ,u> dM

Applications include the existence and upper semicontinuity of #2(u, z) and,
for closed surfaces, the Li—Yau inequality; see [9],

0 () < W)

Another consequence is the diameter bound from [18]. If ¥ is compact and
connected, then for f € W22,(2,R") one obtains

conf

=

(2.1) (@i?i) < diam (%) < C(sy(%) W(F). .

3. Classification of isolated singularities

In [15] Miiller and Sverék studied the behavior at infinity of complete, con-
formally parameterized surfaces with square integrable second fundamental
form. Here we adapt their analysis to the case of finite isolated singularities.
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Theorem 3.1. Suppose that f € W>2,  (D\{0},R") satisfies

conf,loc
/ |A?dpuy < oo and g (D\{0}) < oo,
D\{0}

where g;j = e*“5;; is the induced metric. Then f € VVE)’?(D,R”) and we have

u(z) = mlog|z| +w(z), where m € Ng, w € C°NWH(D),
—Au = —2mndy + K e®  in D.

The multiplicity of the immersion at f(0) is given by
0%(f(11g. Dy (0)), f(0)) =m+1  for any small o > 0.
Moreover, if m = 0 then f is a conformal immersion on D.

Proof. We may assume [ |A|?du, < 4m; hence the GauBB map G : D —
G(n,2) has energy

1
/ |IDG|* = 2/ |A|2 duy < 2.
D D

Extending by G(z) := G(1/Z2) for |z| > 1yields G € W&’Q(R2, G(n,2)), where
G*w =0 and / JG < / |DG)? < 2r.
R? R2 D

Thus there is a function v € C° N WOI’2(R2) such that

~Av=Kze® and lim v(z) =0,

Z—00

lolleoges) + D0l sy < C /D AP dug.

Now consider the harmonic function h: D\{0} — R, h(z) = u(z) —v(z) —
alog|z|, where
1 O(u —v)

a=— ———=dseR, forre(0,1).
2 aD,.(0) or ( )
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We claim that h has a removable singularity at the origin. Let h = Re ¢
where ¢ : D\{0} — C is holomorphic, and compute for m = min{k € Z :
k> o}

|Zm e¢(z)| _ ‘Z|meh(z) < eu(z)—v(z) < Ceu(z) c L2(D).

Thus 2™ e?(?) = 2Fg(2) for k € Ny and g : D — C\{0} holomorphic, which
yields h(z) = (k — m)log|z| + log |g(z)|. But the choice of a in the defini-
tion of h implies kK = m, thereby proving our claim. Moreover from |z|* =
eul2)=v(2)=h(2) ¢ [2(D), we conclude that

u(z) = alog|z| +w(z), where a > —1,we CONW*(D).
Next we perform a blow-up to show that o = m. For any zy € C\{0} and

0 < X < 1/|20| we let

x

fr: D2 0) = B, 3(2) = 5o (FO2) = FA0).
The f) have induced metric (gy);; = €***6;;, where
ux(z) = u(Az) — alog A = alog |z| + w(Az).
Putting wp = w(0), we have
ur(z) — aloglz| +wy  in O NWL2(C\{0}).

Furthermore, the Gaul map of f) is given by Gx(z) = G(Az), in particular
DG, — 0 in L% _(C\{0}). Using the formula

|D?fx|* = 2e*(IDGA|* + 2| Duy[?),

we obtain by Vitali’s theorem

2 e
ID*f|(2) — H*“ in L2.(C\{0}).

As fa(z0) =0, we can find a sequence A\ N\, 0 such that the f), converge
in CP (C\{0}) and weakly in I/VIQ’Q((C\{O}) to a limit map fp : C\{0} — R"

ocC
satisfying fo(zp) = 0. After passing to a further subsequence, we can also

assume that G, — L in VVI})E(C\{O}), where L € G(n,2) is a constant. It
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is then easy to see that fy maps into the plane L. Further we have
(0ifo(2), 0 fo(2)) = €°[2|**6y5.

Using that fp is locally in W22 N W1 we verify the identity

(A for 03 o) = 001 fos O3 o) — 5030 fo, 0 o)

Since fy is conformal, maps into L and has rank two almost everywhere
we see that fp is harmonic on C\{0}. Identifying L = C by choosing an
orthonormal frame e; 2, the conformality relations are

(0D (310 _ |05 P 98\
0z \ 0z Ox ox’ Oy
Since the two factors on the left are holomorphic, the identity principle

implies that fy is holomorphic on C\{0}, after replacing e;, e3 by e1, —ey if
necessary. Now |f)(z)] = e**|z|* and thus for some § € [0, 27)

F ok
dy

fo(z) = e 822 on C\[0,00).
As f} is single-valued, we must have & = m € Ny and

ewg+iﬂ m+1 m+1
fo(Z):m(z — 2.

In particular, we have the desired expansion u(z) = mlog|z| + v(z) + h(z),
and u satisfies the stated differential equation. Furthermore,

|D*f|? = 2¢*(|DG|* + 2|Dul?) € L'(D),

thus f € W22(D,R"). Assuming without loss of generality f(0) =0, we
claim that
[f()] e

I = .
2202 T mr 1

Since |Df(2)| = |2|™e**) with w bounded, we have |f(z)| < C|z|™*!. Now

let 2z — 0 be a given sequence. We can assume that (i := I%I — ¢ with
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|C| = 1, and compute

|f(2x)] e ) 1
_ A ’
|zt m+1 T (G) + /\?“f( £20)
ewo—‘riﬁ m—+1 m+1 ewo—i_ﬂ m+1
_‘m—i—l(c _zO )+m+120 ‘
ewotif m+1 m+1 mt1
< (C) — s 1(C )| + Clzo|

Letting k — oo we obtain, for a constant C' < co depending only on m and w,

lim inf
imin P

k—o0

) | o,

This proves our claim since zp € C\{0} was arbitrary. Now

114(D(0)) e
——————— 1 h pr— .
91\1% (o) m+1, where r(p) — 1@

Choose o € (0,1) such that f(z) # 0 for z € D,(0)\{0}, and let g; 2 > 0 be
such that

1
—7r(01) =7 =1r(02), where v € (0,1).

Then for r > 0 sufficiently small we have the inclusions
Dy, (0) € (f7(Br(0)) N D (0)) C D, (0).

It follows that

249D, (0) _ flpgrDo(0))(Br(0)) _ 1 p1g(De,(0))
m(e1)? ~ mr? 72 wr(e2)?
Letting r \, 0, v /" 1 proves that 6?(f(uy.Dy(0)),0) = m + 1. O

A map f:X¥X — R"™ is called a branched conformal 1mmersion (with
locally square integrable second fundamental form), if f € VVCOnf loc(B\S, R™)
for some discrete set S C 3 and

/ |APPdpy < oo and  py(Q) < oo, for all Q cC X,
Q
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The number m(p) as in Theorem 3.1 is the branching order, and m(p) + 1
is the multiplicity at p € 3. The map f is unbranched at p if and only
if m(p) =0. For a closed Riemann surface ¥ and a branched conformal
immersion f : ¥ — R™, consider now

f=1I,o0f:2\f Hao} = R,  where I, (z) = o + i
|z — 202
Then § = e?"g where v = —log |f — x¢|?>. The weak Liouville equation says

that

/Engdug—/Engdug = —/E<Dlog!f—:vo!2,Dso>gdug,

for all p € CS°(Z\fHxzo}).

A simple computation shows |A°|2d,ug = |A°|? dug; hence by the Gauf
equation

1 . 1
/ @!HIQdug—/ solHIQdug——/<D10g!f—xo!2st0>gdug-
4 /s, 4 /s, >

At a point p € f~1{x} of order m € Ny, choose conformal coordinates on
the unit disc D and introduce the rescaled maps

fri D = R f(2) = 5 (FO2) = 20).

From the proof of Theorem 3.1, we have that f\, — fo weakly in W?? away
from the origin for a subsequence A \, 0, where fy is given by

ewo

iLzmH, for some L € O(2,n), wy € R.
m

fo(z) =
Fix a smooth function ¢ : R™ — [0, 1], such that |p(z)| =1 for |z] > 1 and
¢ =0 in a neighborhood of the origin. Using as cut-off function ¢y(z) =
©(%), we obtain

[ 2{f(z) — w0, 0if(2)) 1, =z
/D<D10g|f — 2ol Dpa)g ding = /D |f(2) — zol? 30i# (A) dz

[ 2N\ (),0ifA(Q))
o vk
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Now for Ag \, 0 the right-hand side converges to

2(fo,0ifo) o Orp
/D’fOP 814p—2(m+1)/D " =4r(m+1).

Adding the contribution of the finitely many preimages we conclude

(3.1) W) =W(f)—4r > (m(p)+1).
pEf~{zo}

4. Weak compactness of conformal immersions

Proposition 4.1. Let ¥ be a closed Riemann surface and fi € chflf
(X,R"™) be a sequence of conformal immersions satisfying

W(fr) < A < oo.

Then for a subsequence there exist Mdbius transformations o and a finite
set § C X, such that

opo fr — f, weakly in W2*(2\S,R"),

where f : 3 — R™ is a branched conformal immersion with square integrable
second fundamental form. Moreover, if A < 8m then f is unbranched and
topologically embedded.

We will use the following standard estimate.

Lemma 4.1. Let ¥ be a two-dimensional, closed manifold with smooth
Riemannian metric go, and suppose that u € WH2(X) is a weak solution of
the equation

~Agu=F, where FecL'(%).

Then for any Riemannian ball B,(p) and q € [1,2) we have

1Dl ooy < Cre | Fllpasy,  where C' = C(X, go, q) < oo.
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Proof. We may assume that [|[F|[1i(xy =1 and [g, udpg, = 0. The function
u is given by

/Gwy y) dpg, (y),

where G(z,y) is the Riemannian Green function; see Theorem 4.13 in [1].
In particular, G(z,y) = G(y,x), and we have the estimate

|D.G(z,y)| < where C' = C(%,g) < o0

d(z,y)’

By Jensen’s inequality we get

/BT(p) | Dul? dpig, < /Tp) /|D G(z,y)||F(y)| dpg, (y )) dpig, ()
< [IFGL [ 102G g o)

<c [ I r/ Ty @) ity )

Now if d(p,y) < 2r we can estimate

1 1
Ly Oxg/ L duy (x) < O,
/Br(p) d(x,y)q Ho ( ) B, (y) d(l’,y)q Ho ( )

In the other case d(p,y) > 2r, we have d(z,y) > r on B,(p), which implies

1 C
——dpg, () < — pg(Br(p < Cr*e,
L, g ) < 1 B )

The statement of the lemma follows. O

Proof of Proposition 4.1: We may assume ,ngl_|Ak|2 — « as Radon mea-
sures, and put

S={peX:a{p}) > m}

Choose a smooth, conformal background metric gg and write g = e
Then

Uy,

g0-

1
/ |ng eQUk‘dugo :/ ’ng|dﬂgk S 2/ ‘Ak‘Qd:ugk S C(A)
b)) b by
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From the equation —Agu, = K, e*** — K, , we thus obtain using
Lemma 4.1 for arbitrary ¢ € (1,2) the bound

/E |DUk|q dugo <C= C(A,Z,QO,Q)-

By dilating the f appropriately we can arrange that

/ ug dpg, = 0,
by

and then get by the Poincaré inequality; see Theorem 2.34 in [1],
lugllwracsy < C.

In particular, we can assume that u, — u weakly in W14(X). For any
p ¢ S, we choose conformal coordinates on a neighborhood Us(p) = Ds(0),
where Us(p) CC ©\S. Putting (gx)i; = €?"*d;; we have (go)ij = e 7u)§;;
and hence, for a constant depending on Us(p),

HkaWW(Us(P)) <C

Passing to a smaller § > 0 if necessary, we obtain from Corollary 2.2 the
estimate

10k || Loo (U (p)) + 1PV L2 (5 (p)) < C-

Hence we can assume that v; converges to v on Us(p) weakly in W2 and
pointwise almost everywhere. But now | D f| = e¥* and A fj, = e?%* Hy,, where
by assumption

/ |Hp |2 da dy < A.
Us(p)

Translating the fi such that fi(p) =0 for some fixed p € ¥\S, we finally
obtain

I fellwzz@) < C,  for any Q cC £\S.

In particular, the fi converge weakly in Wli’cz(E\S ) to some f € T/VIQOCQ (2\S),
where f has induced metric g = e*“gg and u € L2 (X\S). If lim sup,_, . Hg,
(X)) < 00, then py(X) < oo by Fatou’s lemma, and the main statement of

Proposition 4.1 follows from Theorem 3.1.
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To prove the statement also in the case pg, (¥) — oo, suppose that
there is a ball By (:co) with fr(X) N By (2330 = () for all k. Then fk =1, 0 fr
converges to f = o o f weakly in W (2\8) and f has induced metric
g =e?"gy where @ =u—log|f —xo|* € LS (X\S). Moreover, Lemma 1.1
in [18] yields that

115, (3) < A(diam f(2))* < 2A.

Thus p5(X) < oo and the result follows as above. To find the ball By (zg) we
employ an argument from [12]. For py, = fr(ug,) we have by equation (1.3)
n [18]

pr(Br(0)) < CR?,  for all R > 0.

Thus p, — p and fi(pg,L|Hg|?) — v as Radon measures after passing to a
subsequence. Equation 1.4 in [18] implies in the limit

B
,u(52(x)) +v(By(z)) >c>0, forall zesptu, o>0.
As shown in [18], p. 310, the set of accumulation points of the sets fi(X)
is just spt u. For R > 0 to be chosen, let Ba(z;), j =1,...,N, be a maxi-
mal collection of 2-balls with centers z; € Br(0), hence N > R"/4". Now if
spt 1o N Bi(z;) # 0 for all j, then summation of the inequality over the balls
yields

eN < Z( (Ba(x) +V(Bz(xj))) < O(A,n)(R?+1).

Therefore spt 4 N By (x;) = 0 for some j, if R = R(A, n) is sufficiently large.
The additional conclusions in the case A < 87 are clear from formula (3.1)
and Theorem 3.1. O

The following existence result is proved independently in a recent
preprint by Riviere [16]. It extends previous work of Kuwert and Schétzle
[13]. In their paper, it is shown that the minimizers are actually smooth.

Corollary 4.1. Let ¥ be a closed Riemann surface such that
By =inf{W(f): f € Wconf(Z,R”)} < 8.

Then the infimum B3 is attained.
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We now generalize Proposition 4.1 to the case of varying Riemann sur-
faces. The following standard lemma will be useful, see [5] for a proof.

Lemma 4.2. Let gi, g be smooth Riemannian metrics on a surface M, such
that g, — g in C5*(M), where s € N, a € (0,1). Then for each p € M there
exist neighborhoods Uy, U and smooth conformal diffeomorphisms ¢y : D —
(Uk,gx), ¢ : D — (U,g), such that @ — ¢ in C5T1(D, M).

Theorem 4.1. Let f, € W22(Z,, R™) be conformal immersions of compact
Riemann surfaces of genus p. Assume that the ¥ converge to X in moduli
space, i.e., ¢7(Xx) — X as complex structures for suitable diffeomorphisms
ok, and that

W(fr) < A < oo.

Then there exist a branched conformal immersion f : Y — R™ with square
integrable second fundamental form, a finite set S C M and Mdbius trans-
formations o, such that for a subsequence

opo froor — f, weakly in W2%(Z\S,R").

The convergence of the complex structures implies that ¢;goxr — go,
where gg 1, g are the suitably normalized, constant curvature metrics in ¥y,
Y; see chapter 2.4 in [19]. The proof is now along the lines of Proposition 4.1,
using the local conformal charts from Lemma 4.2.

5. The energy of surfaces diverging in moduli space
5.1. Hélein’s convergence theorem

The following result, with constant 87/3 instead of ~,, is due to Hélein;
see Theorem 5.1.1 in [6]. To obtain the constant -,, one combines with the
estimate of [15]. For convenience of the reader, we include the proof. At the
end of the subsection we will show that ~, is in fact optimal.

Theorem 5.1. Let fi, € W>* (D,R™) be a sequence of conformal immer-

conf
sions with induced metrics (gi)ij = €*“*8;;, and assume

&m, forn=3
A P dpg, <~ <yp = ’ '
/D| fk’ :ugk — 7 /Yn {47T, fOI‘ n Z 4.
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Assume also that pg, (D) < C and fp(0) =0. Then f; is bounded in
W22(D,,R"™) for any r € (0,1), and there is a subsequence such that one
of the following two alternatives holds:

(a) ug is bounded in L>°(D,) for any r € (0,1), and fi converges weakly
n W2’2(D,R”) to a conformal itmmersion f € WE’Z (D,R™).

loc onf,loc

(b) up — —o0 and fr — 0 locally uniformly on D.

Proof. By Corollary 2.1 there is a solution v, of the equation —Awv =
K, e satisfying

lokll =0y + [ Dvill 220y < C) /D Ap P dug,.

Clearly hj = up — vy is harmonic on D. Now

/ e = |{uy, < 0}] +/ e < O,
D

/u,‘fSC.
D

For dist (z,0D) > r where r € (0,1) we get

and hence

1 1
hi(2) = /D ( )(Uk — ) < Wg/Duﬁ + [kl (py < C(7,7).

w2

Thus up = v + hi is locally bounded from above, which implies that the
sequence [}, is bounded in I/Vlicoo (D,R"). As Af;, = e H f.» we further have
for Q = ler(O)

/Q A2 = /Q 2| H P dug, < Cly1) /Q (A, P dpg, < C(,7).

Thus fj is also bounded in Wif(D,R”) and converges, after passing to a

subsequence, W?22-weakly to some f € Wf)f N I/Vlifo(D,R”). Now if [ u, <
C, then for dist (z,0D) > r

1

1 B
hi(2) = —5 /D (2)(uk —u) 2 —— T [okll (D) = =C (7, 7).
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Thus ug, = vy, + hy, is bounded in L, N VVli)f (D), and uy, converges pointwise

to a function u € L (D). We conclude

loc
gi; = (0:f, 0, f) = e*"85,

which means that f is a conformal immersion as claimed in case (a). We will
now show that [, u, — oo implies alternative (b). Namely, we then have

T (0) = 1/D(uk — ) = —o0.

s

As C(v,7) — hx > 0 on £, we get by the Harnack inequality

sup hy, < i(rllf hi, + C(v,7) — —oo,  where Q' = Dj_5,.(0).
Q ’

1
C(r)
Thus up = vg + hy — —oo and f — 0 locally uniformly on D. O

Applying Lemma 4.2, we get a version of Hélein’s theorem for conformal
immersions with respect to a convergent sequence of metrics.

Corollary 5.1. The statement of Theorem 5.1 continues to hold for immer-
sions fir, € W22(D,R") with induced metric g, = e go. 1., if the (gok)ij con-
verge to 0;; smoothly on D.

Relating to Remark 5.1.3 in [6], we now show that the constant 47 in
Theorem 5.1 is optimal for n > 4. For € > 0, we consider the conformally
immersed minimal discs

fo:D—C% f(2) = (;zg,az') .

We compute (g:);; = e?“=8;; where u.(2) = £ log(|2|? + €2), and further

/ |Ay.
D

As fo(z) — (32%,0) for £\, 0, none of the two alternatives (a) or (b) is
satisfied. For the optimality of v3 = 87 we also follow [15] and consider

Oue 47

2
dpg. = —2 | K, dp, =2 ds = 4.
Hg. /D ge Qltg. op O §=7 e <4r




332 E. Kuwert & Y. Li

Enneper’s minimal surface

f:C =R f(z) = %Re (z— ;zg,i(z+;z3)7zz) )

We have fj(z) = 35 f(Az) — —é(z?’, 0) € CxR=R3as A\ / cc. Restricting
fx to D yields conformally immersed discs with [}, [Ay, |* dug, < 8.

5.2. The case of tori

The following was proved in [12] for n = 3, and for n = 4 with bound min (8,
B+ 5.

Theorem 5.2. Let ¥ be tori which diverge in moduli space. Then for any

sequence of conformal immersions fi, € W(i’if(Ek,R”) we have

1ign inf W(fi) > 8.

Proof. We may assume that 3 = C/T'y where I'y = Z @ Z(ay + iby) is nor-
malized by 0 < a < %, ai + bi > 1 and b > 0. We also assume that the
fr : X — R” satisfy

k—o0

1
limsup/ |Ag, |? dug, = limsup W(fi) < A < oo.
4 Yk k—oo

We lift the fi to I'y-periodic maps from C into R™. Theorem 3.1 shows that
fx is not constant on any circle C,, = [0, 1] x {v}, v € R. Hence by passing to
A—lk(fk(u, v+ vg) — fr(0,vg)) for suitable Ay > 0, vy € [0, by), we may assume
that

1 =diam fx(Cy) < diam f(C,) forallv e R, and fr(0,0) =0.

Arguing as in the proof of Proposition 4.1, we obtain Bj(z) C R™ such that
fk(Zk) N Bl(x0> = for all k. For fk =1 0 fr we have fk(Ek) C Bl(x()),
and Lemma 1.1 in [18] implies an area bound ug, (X;) < C. Up to a sub-
sequence, we have g, |A o | — a as Radon measures on the cylinder C =
[0,1] x R. The set S = {w € C: a({w}) > 7} is discrete, and

o(w) =inf{o > 0: a(Dy(w)) > v} >0, forweQ=C\S.

Now fk converges locally uniformly in €2 either to a conformal immersion, or
to a point ;1 € R™. This follows from Theorem 5.1 together with a continu-
ation argument, using that o(w) is lower semicontinuous and hence locally
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bounded from below. Note

fr(Co) C Iy (B1(0)) C R™\By(xo), where § = _ > 0.

ol +1
In the second alternative we thus get |z —xo| > 6 >0, and fi|c, con-
verges uniformly to the point I, (z1) for any C, C €, in contradiction to
diam fx(Cy) > 1. Therefore fi converges to a conformal immersion f : ) —
R"™. Now the assumption that > diverges in moduli space yields that by —
00, so that f:Q — R™ has second fundamental form in L*(C) and finite
area. Applying Theorem 3.1 to the points at v = +00 we see that f(CU) —
x4 € R™ for v — to0. Let us assume that x4 # xg. Then for any ¢ > 0 we
find a § > 0 with I(Bs(x4)) C B:(I(z4)). Choosing v < oo large such that
f(Cy) Bg(;ur), we get for sufficiently large k

fu(Cy) = I(fu(Cy)) € I(Bs(x4)) C Bo(I(x4)).

Taking € = % yields a contradiction to diam f(C,) > 1. This shows x4+ = x¢
and in particular 62(fi, o) > 2 where fi = f(ug). We conclude from the Li-
Yau inequality, see Section 2.2,

likm inf W(fx) = likm inf W(fx) > W(f) > 8r.

5.3. The case of genus p > 2

We first collect some facts about degenerating Riemann surfaces from [3,
7]. By definition, a compact Riemann surface with nodes is a compact,
connected Hausdorff space Y together with a finite subset IV, such that
Y\N is locally homeomorphic to D, while each a € N has a neighborhood
homeomorphic to {(z,w) € C? : zw = 0, |z|, |w| < 1}. Moreover, all transi-
tion functions are required to be holomorphic. The points in N are called
nodes. Each component »? of ¥\ N is contained in a compact Riemann sur-
face T', which is given by adding points to the punctured coordinate discs at
the nodes. We have ¢ < v 4 1, where ¢ and v are the number of the compo-
nents and the nodes, respectively. We denote by p; the genus of &' and v; the
number of punctures of X, If 2p; + v; > 3 or equivalently (%) < 0, then
¥’ carries a unique conformal, complete metric having constant curvature
—1. With respect to this metric, the surface has cusps at the punctures and
area 4m(p; — 1 + v;).
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Next let Xi be a sequence of compact Riemann surfaces of fixed genus
p > 2, with hyperbolic metrics hi. By Proposition 5.1 in [7], there exists a
compact Riemann surface ¥ with nodes N = {ay,...,a,}, and for each k
a maximal collection I'y = {7,1, ...} of pairwise disjoint, simply closed
geodesics in X, with # = L(vi) — 0, such that after passing to a subse-
quence the following holds:

W) p=Xi pi=v+1-g>0.
(2) There are maps ¢ € C°(Zk, X), such that ¢y : B\ — T\N is dif-
feomorphic and ¢i (i) = a; for j=1,...,7.

(3) For the inverse diffeomorphisms 1y, : X\N — X\I'y, we have ¢} hy, —
hin C£2(X\N).

loc

In the following, we consider a sequence of conformal immersions fj €
W?22(3k, R") with W(fx) < A, and we assume that the hyperbolic surfaces
(Xk, hi) converge to a surface with nodes (3, N) as described above.

Lemma 5.1. There exist branched conformal immersions f N R™,
finite sets S; C X' and Mébius transformations oy, such that

ot o fyo |y — f,  weakly in Wlif(Ei\Si,R”)for i=1,...,q.

Replacing fr, by ok o fr for suitable Mdébius transformations oy we can take
1 I
o, =id and

. _ i .
ot) = 1o (U52E) . where s € B, 3 = (o ) 0)
k

for b; € Xland \& > 0,

for i=2,...,q. Further the maps o,iofk are uniformly bounded, and
W(fi) = .

Proof. By the Gaufl-Bonnet formula, the second fundamental form is
bounded by

[ 1AnPauy, < cap) < .

The maps fi o ¢y : X\IN — R™ are conformal immersions with respect to the
metric 1} hy, which converges to h in C%.(3\N). Let & C X' be an embedded
arc, which is subdivided into §Z~1, ...,&". We can choose a subsequence and
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jo € {1,...,m} with
diam (fi o ) (€]") = min diam (f 0 v)(&]) = At

We have )\}; > 0 by Theorem 3.1. Select b; € §g°, and define the maps

Jr(p) =y

fi S B filp) = B where g = (fio ) (b0,
k

As in Proposition 4.1, we can choose By (z;) C R™ with f{ () N By (x;) = 0
for all k. Applying (2.1) to I, o f{ yields

1, o (Xg) < C < oc.
Now consider the maps

fi=1I,, 0 fi oty : ©F — R,

A;

We can assume that pz|A 5
fi=V2

2 converges to a as Radon measures, and put

Si={pe ¥ :a({p}) = m}.

Corollary 5.1 implies that, away from &;, the flﬁ subconverge locally uni-
formly either to a conformal immersion, or to a point x1 € R™. As in Theo-
rem 5.2

i) © 1(Bi0) € Bilw)\Bo,(ai),  where 6 = - >0,

Therefore in the second alternative we get |x1 — x;| > 6;, and f,i o 1 con-

Cp)

verges to I, (z1) locally uniformly on ¥\S;. But for m > o 2) there is a
je{l,...,m} with fj NS; =0, and we conclude 1 < diam (f} o z/;k)(gj)

0, a Contradlctlon Therefore fk converges locally uniformly and weakly
in W22(21\8;, R™) to fi e W22, ((£)\S;, R"). Furthermore, Theorem 3.1

loc conf,loc ;
shows that f? extends as a branched conformal immersion to %'. Applying
the argument for ¢ = 2,...,q with fi replaced by a,}: o fi yields the second
statement of the lemma. Finally, the inequality W(f*) > By, is clear when fi
is unbranched, otherwise we get W(f*) > 8w > 3 from the Li-—Yau inequal-
ity (3.1) in connection with [8]. O
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For our last result we need more details on degenerating hyperbolic sur-
faces. For £ > 0 we define a reference cylinder C(¢) = [0,1] x [-T'(¢),T(¢)]
with metric gy, where

2

ds® + dt?).
cos2€t( s° + dt?)

T) = %arccot(sinhg) and  go(s,t) =

The map (s,t) — i’ yields an isometry between (C(€), g¢) and the sec-
tor in the upper half-plane given by 1 <r <ef, |6 — 5 < arccot(sinh %)
The circles ¢; = {(s,t) : s € [0, 1]} have constant geodesic curvature s, (t) =
sin /t and length L, (t) = ¢/ cos £t. We note

. 1 1
Jom e, (F(T(0) — 1) =1 and i Ly, (£(T(0) 1)) = . 2

for any t > 0.

Now let v, C X be a sequence of geodesics with length ¢, — 0, correspond-
ing to the node a € ¥. By the collar lemma, see [7], there is an isometric
embedding

(Clk), g0.) C (Zg, hae),

with ¢y corresponding to . Clearly T = T'(¢;) — oo. We will need the
following property of the construction in [7]: for any t € [0,00) there is a
compact set K; C ¥\N such that

(5.1) o ([0,1] x [T} —t,T]) C K, for all k € N.
For this we refer to Section 4 in [22].

Theorem 5.3. Let ¥ be sequence of compact Riemann surfaces of genus
p > 2, which diverges in moduli space. Then for any sequence of conformal

. . 2,2
immersions f, € W (X, R™) we have

lim inf W(fi) > min(8m,w)).

k—o0 TP

Proof. We first consider the case ¢ =v + 1, hence p=p; +---+p,. By
Lemma 5.1 we have, away from a finite set of points, f; o1, — f! weakly
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on X! and

o — gt . .
W%Imoﬂ, weakly on X' for i =2,...,q.
Now if f? attains ; with multiplicity two or more, then the Li-Yau inequality
(3.1) yields

li’gnian(fk) > W(f") > 8.

Otherwise we obtain, again by (3.1),

q

q
lim W(fi) > W)+ Y W, o f1) > 80 + Y (8 —4m) > w).

k—oo - ,
1=2 =2

In the case ¢ < v+ 1 there must be a node which does not disconnect 3.
After renumbering we can chose components X', ..., %% and for each X
two punctures afc such that af, a;,, correspond to the same node a; for ¢ =
L,...,s; here a_, | = ay . We say that a puncture ajt is good, if either i =1
or fi(afc) # x;. If both a; and a; are not good, then the theorem follows
with lower bound 87 by the Li—Yau inequality (3.1). Therefore, omitting
subscripts we can assume that there is a node a at which both punctures
are good.

Using the collar embedding we now choose 7, € [T}, Tx| with

diam fi(cr,) = tE[I_nTiQT | diam fi(ct) =: 0.

The result follows as in Theorem 5.2, once we can show that for a subse-
quence

(5.2) klim Ty, £+ 7| = o0.

For fixed t € [0,00) the curves oy (cr,—t) are contained in the compact set
K; C ¥\N. Since ¢}hj converges to h smoothly on K;, we can assume
that the curves converge smoothly to a limiting curve §; in K; with length
Ly(B) = (t + %)*1. Now if i (cr, —¢) C X! we have

diam fy,(cr, _¢) = diam (fg o ¥ )(pr(cr.—¢)) — diam f1(3;).
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By Theorem 3.1, we see diam f!(3;) > 0 for any ¢ € [0,00). On the other
hand,
limsup 0y < limsup(diam fy(cr,—¢)) = diam f'(8).
k—oo k—oo
Letting t — oo we conclude limy,_,~ 65 = 0 by continuity of f!, which proves
claim (5.2). In the remaining case ¢y (cr, ;) C ! for some i > 2, we compute
similarly

W = diam (I, o fi © P1) (k(en—)) — diam(L: o f*)(5) > 0,
k

and further

lim sup 5—]; < lim sup % = diam (I o £*)(By).

Again letting t — oo we see that 5k/A;‘€ — 0, using the fact that the puncture
is good, i.e. fi(a) # ;. Thus (5.2) holds also for i > 2, and the theorem is
proved. O

The constants 3, and hence w), are not known explicitly. The Willmore
conjecture in R"™ would imply that wj = 4w(m — 1) > 8n. The inequality
wy > 8 holds at least for large p, since 3] — 87 as p — oo by [10], as noted
in the introduction.
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