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On the classification of warped product

Einstein metrics

Chenxu He, Peter Petersen and William Wylie

In this paper we take the perspective introduced by Case–Shu–Wei
of studying warped product Einstein metrics through the equation
for the Ricci curvature of the base space. They call this equation
on the base the m-quasi Einstein equation, but we will also call it
the (λ, n+m)-Einstein equation. In this paper we extend the work
of Case–Shu–Wei and some earlier work of Kim–Kim to allow the
base to have non-empty boundary. This is a natural case to con-
sider since a manifold without boundary often occurs as a warped
product over a manifold with boundary, and in this case we get
some interesting new canonical examples. We also derive some new
formulas involving curvatures that are analogous to those for the
gradient Ricci solitons. As an application, we characterize warped
product Einstein metrics when the base is locally conformally flat.

1. Introduction

In this paper a (λ, n+m)-Einstein manifold (Mn, g, w) is a complete
Riemannian manifold, possibly with boundary, and a smooth function w
on M which satisfies

Hess w =
w

m
(Ric − λg),

w > 0 on int(M),(1.1)
w = 0 on ∂M.

When m = 1 we make the additional assumption that Δw = −λw.
These metrics are also called m-quasi Einstein metrics in [17]. Our

motivation for studying this equation is that, when m is an integer, (λ, n+
m)-Einstein metrics are exactly those n-dimensional manifolds which are
the base of an (n+m)-dimensional Einstein warped product.
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Proposition 1.1. Let m > 1 be an integer. Then there is a smooth (n+
m)-dimensional warped product Einstein metric gE of the form

gE = g + w2gFm

if and only if (M, g,w) is a (λ, n+m)-Einstein manifold.

Remark 1.1. The m = 1 case is discussed in [23] and the case where M
has no boundary was proved in [30].

A simple example of a (λ, n+m)-Einstein metric is when w is constant.
Then Ric = λg and ∂M = ∅, and we call the space a λ-Einstein manifold.
Note that a λ-Einstein manifold is (λ, n+m)-Einstein for all m ≥ 1 and the
warped product is a Riemannian product. In this case we say the space is a
trivial (λ, n+m)-Einstein manifold.

By varying the parameter m, the (λ, n+m)-Einstein equation formally
interpolates between two well-known equations. (λ, n+ 1)-Einstein metrics
are more commonly called static metrics. Static metrics have been studied
extensively for their connections to scalar curvature, the positive mass the-
orem and general relativity. See for example [2–4, 23]. Note that, from the
relativity perspective, it is natural to assume in addition that the metric is
asymptotically flat see, e.g., [12, 29, 37], however, we will not consider that
assumption in this paper. The more general question of Einstein metrics that
are submersion metrics on a fixed bundle over a fixed Riemannian manifold
has also been studied extensively in the physics literature where they are
called Kaluza–Klein metrics. The equations can be found in Chapter 9 of [7],
also see [8, 22, 34]. For many other related results about warped product
metrics also see [24] and the references therein.

On the other hand, if we define f in the interior of M by e−f/m = w,
then the (λ, n+m)-Einstein equation becomes

Ricmf = Ric + Hessf − df ⊗ df

m
= λg,

Ricmf is sometimes called the m-Bakry–Emery tensor. Lower bounds on this
tensor are related to various comparison theorems for the measure e−fdvolg,
see for example Part II of [5, 33, 39, 40]. From these comparison theorems,
the (λ, n+m)-Einstein equation is the natural Einstein condition of having
constant m-Bakry–Emery Ricci tensor. Taking m −→ ∞, one also obtains
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the gradient Ricci soliton equation

Ric + Hessf = λg.

We could then also call a gradient Ricci soliton a (λ,∞)-Einstein manifold.
Ricci solitons have also been studied because of their connection to Ricci
flow (see for example [21, Chapter 1]).

In this paper we develop some new equations for (λ, n+m)-Einstein
metrics which are analogous to formulas for gradient Ricci solitons. Interest-
ingly, this analogy with gradient Ricci solitons works very well when m > 1,
but seems to break down when m = 1. For a different connection between
Ricci solitons and static metrics see [1].

As mentioned above, when ∂M = ∅, (λ, n+m)-Einstein metrics have
been studied in [17, 30]. In this paper these results will be extended to
the case where ∂M �= ∅. For example, we have the following extension of
Theorem 1 in [30].

Theorem 1.1. If (M, g,w) is a compact (λ, n+m)-Einstein manifold with
λ ≤ 0 then it is trivial.

Remark 1.2. Another interesting result from [17] is a classification of
Kähler (λ, n+m)-Einstein metrics for finite m. Their arguments also give
a classification when ∂M �= ∅, see Remark 3.7 below. Other extensions of
results from [17] are discussed in Section 5.

The main part of this paper is to introduce new formulas for (λ, n+m)-
Einstein metrics. As an application, we obtain a classification of complete
locally conformally flat (λ, n+m)-Einstein manifolds withm > 1. The proof
is motivated by the corresponding result for gradient Ricci solitons proven
independently in [13, 18].

Theorem 1.2. Let m > 1 and suppose that (M, g) is complete, simply
connected, and has harmonic Weyl tensor and W (∇w, ·, ·,∇w) = 0, then
(M, g,w) is a non-trivial (λ, n+m)-Einstein metric if and only if it is of
the form

g = dt2 + ψ2(t)gL,
w = w(t),

where gL is an Einstein metric. Moreover, if λ ≥ 0 then (L, gL) has
non-negative Ricci curvature, and if it is Ricci flat, then ψ is a constant,
i.e., (M, g) is a Riemannian product.
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Remark 1.3. This global result is obtained by applying a similar local
characterization. If one removes the complete and simply connected assump-
tion, we still get a characterization of (M, g,w) around certain points in M ,
see Theorem 7.1. If one only assumes completeness, then we can apply the
theorem to the universal cover. As quotients of the universal cover must pre-
serve w, the possible non-simply connected spaces are quite restricted. One
advantage of having the arguments be local is that it is then also possible
to obtain a classification in the more general case where M is a Riemannian
orbifold. In fact it follows that, unless ψ is positive everywhere, than the
orbifold is a finite quotient of a (λ, n+m)-Einstein metric on the sphere,
disc or Euclidean space.

Remark 1.4. Even when λ > 0 there are interesting examples of rotation-
ally symmetric (λ, n+m)-Einstein metrics, see [9]. This is in sharp contrast
to the gradient Ricci soliton case where there are no unexpected exam-
ples [31].

Remark 1.5. In dimension three harmonic Weyl tensor is equivalent to
local conformal flatness. This assumption cannot be weakened when n = 3
as there are local examples which are not warped products (see Example 3.5).
However, when n > 3, harmonic Weyl tensor is a weaker condition since it
is equivalent to divergence free Weyl tensor while local conformal flatness
is equivalent to vanishing Weyl tensor. For simple examples of (λ, n+m)-
Einstein metrics which have divergence free Weyl tensor and zero radial
Weyl tensor but are not locally conformally flat consider the examples listed
in table 2 where N and F are Einstein metrics which do not have constant
sectional curvature. Such examples exist for n ≥ 5.

Remark 1.6. When n = 1 and 2 a classification of (λ, n+m)-Einstein
manifolds can be found in [7], we will discuss these examples in Section 3
and Appendix A. See [38] for the case where n = 3, m = 1, and the metrics
have symmetry.

Remark 1.7. The local characterization of locally conformally flat (λ, n+
m) Einstein metrics has also been obtained independently by Catino, Man-
tegazza, Mazzieri and Rimoldi in a recent paper [19]. They posted their
preprint on the arxiv in October 2010, as we were finalizing this manuscript.
Both their work and ours has been motivated by the corresponding results
for gradient Ricci solitons. Whereas they give a different proof of the result
that also gives a new and interesting approach in the Ricci soliton case,
our approach was to set up a system of formulas on (λ, n+m)-Einstein
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metrics which are analogous to the formulas for gradient Ricci solitons. These
calculations use two tensors Q and P which we introduce in Section 6. We
will give other applications of these calculations in [27, 28].

In this paper we also modify Case–Shu–Wei’s classification of (λ, n+m)-
Einstein manifolds which are also κ-Einstein for κ �= λ, see Proposition 3.1.
In [28] we consider solutions to the (λ, n+m)-Einstein equation where w
can change sign. In [27] we consider (λ, n+m)-Einstein manifolds with con-
stant scalar curvature and classify such manifolds under certain additional
curvature conditions.

The paper is organized as follows. In Section 2, we study the properties of
the boundary and prove Proposition 1.1. In Section 3, we discuss some exam-
ples including the classification in lower dimensions. In Sections 4 and 5 we
discuss the modifications of the results in [30] and [17] to allow ∂M �= ∅. In
Section 6, we develop some new formulas for (λ, n+m)-Einstein manifolds.
In Section 7, we apply these formulas to prove Theorem 1.2. Finally, in the
appendix we have also included a sketch of the classification on (λ,m+ 2)-
Einstein manifolds which is also outlined in [7].

2. Properties of the boundary and the warping construction

In this section we collect some simple facts about the behavior of w near
the boundary of a (λ,m+ n)-Einstein manifold. When m = 1 all of these
results can be found in Section 2 in [23]. The proofs when m > 1 are similar
but we include them for completeness. We then apply these facts about ∂M
to prove Proposition 1.1. Throughout this section we will let (M, g,w) be a
non-trivial (λ, n+m)-Einstein manifold, i.e., w is not a constant function.

The following formula is proven by Kim–Kim using a local calculation
involving the Bianchi identities.

Proposition 2.1 [30, Proposition 5]. There is a constant μ such that

μ = wΔw + (m− 1)|∇w|2 + λw2.

Remark 2.1. The constant μ is the Ricci curvature of the fiber F of the
warped product Einstein metric over M . When m = 1, the extra condition
Δw = −λw is equivalent to μ = 0, which is necessary for the existence of a
one-dimensional F .
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Remark 2.2. By tracing the (λ, n+m)-Einstein equation, we have

Δw =
w

m
(scal − nλ),

and then we can re-write the equation for μ as

μ = kw2 + (m− 1)|∇w|2,
k =

scal + (m− n)λ
m

.
(2.1)

Remark 2.3. There is a similar identity on gradient Ricci soltions,

scal + |∇f |2 − 2λf = const.

The first fact about ∂M we are after is the following proposition.

Proposition 2.2. |∇w| �= 0 on ∂M .

Proof. Let x0 ∈ ∂M and let γ(t) be a unit speed geodesic emanating from x0

such that γ′(0) ⊥ ∂M . Let h(t) = w(γ(t)) and Θ(t) = Ric(γ′(t), γ′(t)) − λ.
Then the equation for w becomes a linear second-order ordinary differential
equation (ODE) along γ for h:

h′′(t) = Hess w(γ′(t), γ′(t))

=
1
m

Θ(t)h(t),

h(0) = 0,
h′(0) = g(∇w, γ′)x0 .

Therefore, If ∇w(x0) = 0, then h′(0) = 0 and so h = 0 along all of γ. Since
γ(t) ∈ int(M) for 0 < t < ε, this is a contradiction. �

This also gives us the following.

Proposition 2.3. The boundary ∂M is totally geodesic and |∇w| is con-
stant on the connected components of ∂M .

Proof. The equation

Hess w =
w

m
(Ric − λg)

shows that Hess w = 0 on ∂M. This shows that ∂M is totally geodesic as
the second fundamental form is proportional to (Hess w) |∂M . It also shows
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that |∇w|2 is locally constant along ∂M since

DX |∇w|2 = Hess w(X,∇w).

�

When m > 1 we now get something slightly different than in the
m = 1 case.

Corollary 2.1. If m > 1 then |∇w|2 is globally constant on ∂M and, more-
over, if ∂M �= ∅ then μ > 0.

Proof. On ∂M , (2.1) becomes

(2.2) μ = (m− 1)|∇w|2

so μ > 0 and |∇w|2 is determined by m and μ. �

Now we prove Proposition 1.1.

Proof of Proposition 1.1. Let gE be the warped product Riemannian metric

gE = g + w2gF ,

RicgF
= μgF ,

where F is an m-dimensional Einstein metric. The calculations in either [7]
or [30] show that RicgE = λgE. If ∂M = ∅ we then have that gE is smooth
Einstein metric on the topological product M × F . If ∂M �= ∅, then gE is a
metric on

E = (M × F )/ ∼,

where (x, p) ∼ (x, p′) if x ∈ ∂M . Note that near ∂M, the topology of the
space is ∂M × Fm. Note that Corollary 2.1 implies that μ > 0 when m > 1
so we can take F = S

m, which is necessary for E to be a smooth manifold.
We only have to show that gE is a smooth metric on E, normalize so that
μ = m− 1, then we have

kw2 + (m− 1)|∇w|2 = m− 1.
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The above equation shows that |∇w| = 1 on ∂M and this guarantees that we
obtain a smooth metric. To see this write g = 1

|∇w|2dw
2 + gw near ∂M so that

gE =
dw2

|∇w|2 + gw + w2gF

= dw2 + gw + w2gF +O(1 − |∇w|2)dw2.

Here dw2 + gw + w2gF defines a smooth metric and the last term O(1 −
|∇w|2)dw2 vanishes at ∂M showing gE defines a smooth metric. �

Finally, we show that the metric as well as w have to be real analytic.

Proposition 2.4. Let (M, g,w) be (λ,m+ n)-Einstein. Then g and w are
real analytic in harmonic coordinates on intM.

Proof. We proceed as in [7, Theorem 5.26] using the two equations

w

m
Ric − Hess w − w

m
λg = 0,

wΔw + (m− 1) |∇w|2 + λw2 − μ = 0.

In harmonic coordinates this looks like the quasi-linear system:

− w

2m

∑
grs

∂2gij
∂xr∂xs

− ∂2w

∂xi∂xj
+ lower order terms = 0,

−w
∑

grs
∂2w

∂xr∂xs
+ lower order terms = 0.

We note this is elliptic as long as w > 0. In addition, the whole system is of
the form F (g, w, ∂g, ∂w, ∂2g, ∂2w) = 0 where F is real analytic. The claim
then follows. �

3. Examples

In this section we review the classification of one- and two-dimensional
(λ, n+m)-Einstein metrics which are stated in [7]. We also give the char-
acterization of non-trivial (λ, n+m)-Einstein manifolds which are also Ein-
stein. We will often reduce to this characterization when proving the later
results. Finally, we reference some interesting examples in higher dimensions
that can be found in the literature.
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We begin with the simplest case, the one-dimensional examples.

Example 3.1 [7, One-dimensional examples — see 9.109]. Suppose
M is one-dimensional, then the (λ, 1 +m)-Einstein equation is

w′′ = −kw, where k =
λ

m
.

Then, up to re-parametrization of t, w must be one of the following examples,
here the metric is g = dt2 and C is an arbitrary positive constant.

Remark 3.1. When we construct the warped product metrics gE over
the one-dimensional examples we obtain various ways to write the constant
curvature spaces as warped products over one-dimensional bases. The entry
in the middle of table 1 is the trivial solution and the other five are non-
trivial.

More simple examples arise from classifying (λ, n+m)-Einstein mani-
folds which are also ρ-Einstein for some constant ρ �= λ. This is an extension
of Proposition 4.2 in [17] to manifolds with boundary.

Proposition 3.1. Suppose that (Mn, g, w) with n ≥ 2 is a non-trivial
(λ,m+ n)-Einstein manifold which is also ρ-Einstein, then it is isometric
to one of the examples in table 2, where κ̄ = λ−ρ

m .

Proof. Suppose that Ric = ρg and let k̄ = λ−ρ
m . Then we have

Hess w = −k̄wg.

Table 1: One-dimensional (λ,m+ n)-Einstein manifolds

λ > 0 λ = 0 λ < 0

μ > 0 M =
[
− π

2
√
k
,
π

2
√
k

]
M = [0,∞) M = [0,∞)

w(t) = Ccos(
√
kt) w(t) = Ct w(t) = C sinh(

√−kt)
μ = 0 None M = R M = R

w(t) = C w(t) = Ce
√−kt

μ < 0 None None M = R

w(t) = C cosh(
√−kt)
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Table 2: Non-trivial (λ,m+ n)-Einstein manifolds that are also Einstein. If
m = 1, then μ = 0. When m > 1, the sign of μ is given in the table. Here
S
n−1 is a round sphere, F is Ricci flat, N is an Einstein metric with negative

Ricci curvature, and C is an arbitrary positive constant

λ > 0 λ = 0 λ < 0

D
n [0,∞) × F [0,∞) ×N

dt2 +
√
k̄ sin2(

√
−k̄t)gN dt2 + gF dt2 +

√
−k̄ cosh2(

√
k̄t)gSn−1

w(t) = C cos(
√
k̄t) w(t) = Ct w(t) = C sinh(

√
−k̄t)

μ > 0 μ > 0 μ > 0

None None (−∞,∞) × F

with μ = 0 with μ = 0 dt2 + e2
√

−k̄tgF
w(t) = Ce

√
−k̄t

μ = 0

None None H
n

with μ < 0 with μ < 0 dt2 +
√
−k̄ sinh2(

√
−k̄t)gSn−1

w(t) = C cosh(
√

−k̄t)
μ < 0

If k̄ = 0 then we have Hess w = 0, so if w is non-constant then it must
be a multiple of a distance function and the metric must split along w, so
we obtain the product metric in the λ = 0, μ > 0 entry in the table.

On the other hand, if k̄ �= 0, then w is a strictly convex or concave
function on the interior of M and therefore it can have at most one isolated
critical point. Now the fact that L∇wg = 2Hess w = −2k̄wg, tells us that
w = w(t) and we have

g = dt2 + (w′(t))2gS ,
w′′(t) = −k̄w.

where t is the distance to the critical point (if it exists), or is the distance to
a level set if ∇w never vanishes. When there is a critical point at t = 0, gS
must be the round sphere to obtain a smooth metric, if there is no critical
point, then gS is the metric of a level set of w. The result follows easily from
these equations. For more details see, [7, 11, 20, 35]. �

Remark 3.2. Note that when λ and μ have the same sign, then the space
is either trivial or is the simply connected space of constant curvature. In the
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other examples, if we let N or F have constant curvature, then one also gets
constant curvature spaces, but if N or F do not have constant curvature we
get examples that are Einstein but do not have constant curvature.

Remark 3.3. In both the tables above there are empty spaces when λ ≥ 0
and μ ≤ 0. It turns out that there are no non-trivial examples in these cases
in general. See Corollary 4.2 in the next section.

Remark 3.4. It is also important to notice here that the Einstein constant,
ρ of the metrics in table 2 is ρ = (n− 1)k̄. Since k̄ = λ−ρ

m , this shows that ρ
is determined by λ, n, and m via the formula

(3.1) (m+ n− 1)ρ = (n− 1)λ.

Remark 3.5. It is also interesting to consider the behavior of the examples
in table 2 as m→ ∞. That is, fix λ and n and let m→ ∞. From (3.1), we
see that ρ→ 0 and so k̄ → 0 as well. We first consider the λ > 0, μ > 0 case.
In this case we can see that the diameter of the hemispheres are expanding
and the metric is becoming flat. The Riemannian measure on gE is

dvolE = wmdvolM ⊗ dvolF .

So we have the natural measure on M , wmdvolg associated to the (λ, n+
m)-Einstein metric. In our case this becomes,

lim
m→∞wm(t) = lim

m→∞ cosm(
√
k̄t)

= lim
m→∞

(
1 − λ− ρ

m

t2

2
+ · · ·

)m

= lim
m→∞

(
1 − λt2

2m

)m

= e−
λ

2
t2 .

Therefore, we can see that this family of examples converge to the shrinking
Gaussian on R

n. For this reason one could call the (λ, n+m)-metric on
the hemisphere the elliptic Gaussian. By the same argument we can also
see that the constant curvature (λ, n+m)-Einstein metrics with λ < 0 and
μ < 0 will converge to the expanding Gaussian e−

λ

2
t2 with λ < 0.
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On the other hand, in the cases where λ and μ do not have the same
sign, there is no convergence. For example, if w = e

√
−k̄t, then

wm = e
√
m(ρ−λ)t

so the function wm degenerates as m→ ∞, going to zero if t < 0, stay-
ing constant at t = 0, and blowing up if t > 0. The other examples behave
similarly.

We now turn our attention to the classification of surface (λ, 2 +m)-
Einstein metrics, which is stated in [7]. First we have the various examples
with constant curvature from table 2. It is straight forward to see from the
analysis in [7] (also see Appendix A) that these are the only examples with
m = 1 or ∂M �= ∅. Theorem 1.2 in [17] also shows that there are no non-
trivial compact examples with ∂M �= ∅. When M is non-compact, there are
a few examples with non-constant curvature and we discuss some interest-
ing ones.

Example 3.2 (Generalized Schwarzschild metric). Let w be the unique
positive solution on [0,∞) to

(w′)2 = 1 − w1−m with w(0) = 1, w′ ≥ 0.

Then

g = dt2 + (w′(t))2dθ2,

w = w(t)

is the unique (0, 2 +m)-Einstein metric with non-constant curvature (see [7,
Example 9.118(a)]. This is a rotationally symmetric metric on R

2 with μ > 0.
If we set w = r we can write the metric gE as

gE =
1

1 − r1−m
dr2 +

(
1 − r1−m

)
du2 + r2gSm

which, when m = 2, is the usual way to write the Schwarzschild metric on
E = R

2 × S
2.

In [16] it is shown that as m→ ∞ these metrics converge to Hamilton’s
cigar, which is the unique rotationally symmetric steady gradient Ricci soli-
ton, so one could also call these metrics m-cigars.
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Remark 3.6. From the viewpoint of general relativity it is more natural to
view the Schwarzschild as a static metric. To see this just reverse the roles
of w and w′, then

M = [0,∞) × S
n−1,

ḡ = dt2 + w2(t)gSn−1 ,

w̄ = w′

is a static metric which also has the generalized Schwarchild metric as its
total space gE.

Example 3.3. When λ < 0 and m > 1 there are also two additional fam-
ilies of examples of (λ, 2 +m)-Einstein metrics which do not have constant
curvature. The first are translation invariant metrics in an axis (see [7, 9.118
(c)]. These examples all must have μ < 0. If we quotient these examples in
the axis of symmetry we also obtain examples on the cylinder R × S

1. On the
other hand, Example 9.118 (d) in [7] gives rotationally symmetric examples
with λ < 0. These examples can have μ positive, zero, or negative.

Remark 3.7. As we mention in the introduction, the classification of
Kähler (λ, n+m)-Einstein metrics in [17] goes through to the case where we
allow boundary. In particular, the arguments in Theorem 1.3 in [17] show
that the universal cover must split as the product of a λ-Einstein metric
and a two-dimensional solution. In particular, this implies that a compact
Kähler (λ, n+m)-Einstein metric must either be trivial or the product of a
λ-Einstein metric with the elliptic Gaussian.

In higher dimensions there are other interesting constructions of (λ, n+
m)-Einstein metrics.

Example 3.4. Böhm [9] has constructed non-trivial rotationally symmetric
(λ, n+m)-Einstein metrics on S

n and D
n for n = 3, 4, 5, 6, 7.

Examples with λ ≤ 0 are also constructed in [10]. It is also proven that
for each m, there is a unique rotationally symmetric (0, n+m)-Einstein
metric on R

n. The other examples are not locally conformally flat.
Other examples are constructed by Lü et al. [32]. For m ≥ 2 they

construct non-trivial cohomogeneity one (λ, n+m)-Einstein metrics on some
S

2 and R
2-bundles over Kähler Einstein metrics. These examples have μ > 0

and the S
2-bundles have λ > 0 while the R

2 bundles have λ = 0. The lowest
dimension for this construction is four and it is the one on the non-trivial
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S
2-bundle over CP

1, i.e., CP
2�CP

2 where CP
2 has the opposite orientation.

These examples are also not locally conformally flat.

Finally, we show that in dimension 3 there are local solutions to the
(λ,m+ n)-Einstein equations which are not locally conformally flat.

Example 3.5. Consider a doubly warped product metric

g = dr2 + φ2 dθ2
1 + ψ2 dθ2

2,

then the equations
m

w
Hess w = Ric − λI

become

m
w′′

w
= −φ

′′

φ
− ψ′′

ψ
− λ,

m
w′φ′

wφ
= −φ

′′

φ
− φ′ψ′

φψ
− λ,

m
w′ψ′

wψ
= −ψ

′′

ψ
− φ′ψ′

φψ
− λ.

These can be solved near r = 0 using suitable initial conditions. For example
when φ(0) = ψ(0) > 0, φ′(0) �= ψ′(0), w(0) > 0, and w′(0) = 0 we obtain a
local solution to the (λ, 3 +m)-equations that is not locally conformally flat.

4. Compact (λ, m + n) Einstein spaces

In this section we discuss the proof Theorem 1.1 and some other general
facts about compact (λ,m+ n) Einstein manifolds.

We begin with some notation. For a ∈ R we consider the measure dμa =
wa dvolg on M. There is a naturally defined Laplacian associated to the
measure

La(u) = w−adiv (wa∇u)
= Δu+ w−ag (∇u,∇wa)
= Δu+ aw−1g (∇u,∇w) ,

which is self-adjoint when M is closed. When M has boundary we also have
that w = 0 on ∂M. This means that dμa is finite as long as a > −1. Note
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that La(u) is only defined on int(M) and can blow up at the boundary unless
u satisfies the weighted condition:

|∇u| ≤ Cw.

In any case, the divergence theorem gives us the following lemma.

Lemma 4.1. On a compact (λ,m+ n)-Einstein manifold, if u, v are func-
tions such that

(4.1) lim
x→∂M

vwag(∇u,∇w) = 0,

then
∫

M
vLa(u) dμa = −

∫

M
g (∇v,∇u) dμa.

Proof. Let Uε = {x ∈M : w(x) ≥ ε}. By the divergence theorem,

∫

Uε

vLa(u) dμa = −
∫

Uε

g (∇v,∇u) dμa −
∫

∂Uε

g

( ∇w
|∇w| , v∇u

)
dμa|∂Uε

.

The result follows since ∇w �= 0 on ∂M . �

Remark 4.1. If a > 0 and |∇u| and v do not blow up at ∂M then the
condition (4.1) is always satisfied, but we will also apply this lemma when
a < 0.

We encounter two sets of formulas involving La. The first such example
is the following re-interpretation of Kim–Kim’s identity as the formula for
Lm−2(w2), in the next section we see that a = m+ 1 arises when considering
the scalar curvature.

Proposition 4.1. On a (λ, n+m)-Einstein manifold,

Lm−2(w2) = −2λw2 + 2μ
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Proof. We have

∇(w2) = 2w∇w,
Hess(w2) = 2dw ⊗ dw + 2wHess w,

Δ(w2) = 2|∇w|2 + 2wΔw.

So the equation

μ = wΔw + (m− 1)|∇w|2 + λw2

can be re-written as

−2λw2 + 2μ = 2wΔw + 2(m− 1)|∇w|2
= Δ(w2) + 2(m− 2)|∇w|2
= Lm−2(w2).

�

Corollary 4.1. Define the function

(4.2) φ :=

{
w2 − μ

λ
if λ �= 0,

w2 if λ = 0.

Then, if M is compact,

Lm−2(φ) = −2λφ

on the interior of M .

Proof. In the λ �= 0 case this is just a way of re-writing the previous propo-
sition. When λ = 0, the previous proposition tells us that

Lm−2(φ) = 2μ.

We want to show μ = 0. In the case where the boundary is empty, w must
have an interior maximum and minimum, which implies μ = 0. On the other
hand, if ∂M �= ∅ by Corollary 2.1 we know that μ ≥ 0. Moreover w is a non-
negative function which is zero on the boundary and so must have in interior
maximum, which implies μ ≤ 0. �
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Remark 4.2. We have only used compactness in the λ = 0 case, so the
formula is true in general for λ �= 0. If λ = 0 we only have Lm−2(w) = 2μ
in general. There are examples with λ = 0 and μ > 0, so compactness is
necessary in this case.

We can now apply Lemma 4.1 to prove the extension of Kim–Kim’s
theorem to manifolds with boundary.

Proof of Theorem 1.1. We wish to apply Lemma 4.1 to u = v = φ and a =
m− 2. In order to do so we must check that wm−2φ∇φ goes to zero at the
boundary. From the definition of φ, (4.2), we have

wm−2φ∇φ = 2wm−1φ∇w.

The right-hand side goes to zero if m > 1. On the other hand, if m = 1, then
μ = 0 so φ = 0 on ∂M , and so the quantity also goes to zero in this case.
Then by Lemma 4.1

∫

M
|∇φ|2 dμm−2 = −

∫

M
Lm−2(φ)φdμm−2

= 2λ
∫

M
φ2 dμm−2,

so λ > 0. �
In fact, we point out that the converse of Kim–Kim’s theorem is also true.

Theorem 4.1. A non-trivial (λ,m+ n)-Einstein manifold is compact if
and only if λ > 0.

Proof. When m is an integer this is a consequence of Myers’ theorem applied
to the warped product metric on E. When m is not an integer, we can prove
this by applying an extension of Myers’ theorem due to Qian [36]. Since the
boundary is totally geodesic, we see that the minimal geodesic between two
interior points of M is completely contained in the interior of M . In the
interior we also have

Ricmf = λg > 0.

The arguments in [36] then show that the length of the geodesic is uniformly
bounded above, and so the manifold is compact. �

Using these formulas we can also prove that μ > 0 when λ > 0 andm> 1.
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Proposition 4.2. Suppose that m > 1 and λ > 0, then

μ = λ

∫
M dμm∫
M dμm−2

.

In particular μ > 0.

Proof. We have

wm−2∇φ = 2wm−1∇w

which goes to zero at ∂M when m > 1, so Lemma 4.1 implies

−2λ
∫

M
φdμm−2 =

∫

M
Lm−2(φ) dμm−2 = 0.

From the definition of φ (4.2), we have the formula for μ. �

This is also the final step in obtaining the following fact which was
referred to in the previous section. The proof appeals to the result in the
∂M = ∅ case in [15].

Corollary 4.2. The only (λ, n+m)-Einstein metrics with m > 1, λ ≥ 0,
and μ ≤ 0, are the trivial ones with λ = μ = 0.

Proof. We have just seen that if λ > 0 then μ > 0, so we only need to con-
sider the λ = 0 case. Corollary 2.1 tells us that since μ ≤ 0, ∂M = ∅. There-
fore, we are in position to apply the main theorem in [15] which says exactly
that if λ = 0, ∂M �= ∅ and μ ≤ 0, then the space is trivial. �

Returning to the compact case, the formula in Proposition 4.2 also gives
us the following.

Corollary 4.3. If M is compact and m > 1, then

∫

M
(scal − nλ) dμm = −m(m− 1)

∫

M
|∇w|2dμm−2.
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In particular, ∫

M
(scal − nλ) dμm ≤ 0

and is zero if and only if w is constant.

Proof. From Proposition 2.1, we have

μ = wΔw + (m− 1)|∇w|2 + λw2.

Then Proposition 4.2 implies that
∫

M
(wΔw + (m− 1)|∇w|2) dμm−2 = 0.

We also have
Δw =

w

m
(scal − nλ),

so

−m(m− 1)
∫

M
|∇w|2dμm−2 =

∫

M
(scal − nλ) dμm

which shows the desired identity. �

5. The Laplacian of the scalar curvature and applications

In this section we review the formula from [17] for the Laplacian of the
scalar curvature. This formula is similar to the formula for gradient Ricci
solitons and we fix notation which emphasizes this similarity and will lead
us to the formulas in the next section. In this section we also verify that the
applications of the formula from [17] extend to the boundary case.

First, we recall the formulas for the scalar curvature of a gradient Ricci
soliton.

Proposition 5.1. Let (M, g, f) be a gradient Ricci soliton

Ric + Hessf = λg,

then

1
2
∇scal = Ric(∇f),

1
2

(Δ −D∇f ) (scal) = λscal − |Ric|2.
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For a (λ,m+ n)-Einstein manifold, the scalar curvature is constant when
m = 1. When m > 1 we define

ρ(x) =
1

m− 1
((n− 1)λ− scal),

P = Ric − ρg.

The next proposition lists formulas (3.12) and (3.13) of [17] in terms of
ρ and P .

Proposition 5.2 [17]. Let (M, g,w) be a (λ, n+m)-Einstein manifold,
then

w

2
∇ρ = P (∇w),

1
2
Lm+1(scal) = (λ− ρ)tr(P ) − |P |2.

Applying Lemma 4.1 this immediately gives us

Corollary 5.1. On a compact (λ, n+m)-Einstein manifold with m > 1,

∫

M

(
(λ− ρ)tr (P ) − |P |2) dμm+1 = 0.

It is also useful to re-write the formula for the Laplacian of the scalar
curvature as

1
2
Lm+1(scal) = (λ− ρ)tr(P ) − |P |2

= tr(P )
(

(λ− ρ) − tr(P )
n

)
−

∣∣∣∣P − tr(P )
n

g

∣∣∣∣
2

= tr(P )
(
λ− scal

n

)
−

∣∣∣∣P − tr(P )
n

g

∣∣∣∣
2

.

Proposition 5.3. On a non-trivial compact (λ, n+m)-Einstein manifold
with m > 1,

tr(P ) ≥ 0.

Moreover, if tr(P ) = 0 at an interior point of M then the metric is
ρ-Einstein.
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Proof. For ε > 0, set

Uε = {x ∈M : tr(P ) ≤ −ε}
=

{
x ∈M : scal ≤ n(n− 1)

n+m− 1
λ− ε

}
.

Assume for contradiction that Uε has non-empty interior and that n(n−1)
n+m−1λ−

ε is a regular value for scal. We have
∫

Uε

Lm+1 (scal) dμm+1 = −
∫

∂Uε

g(∇scal, η)wm+1dvolg,

where η is the unit outward-pointing normal vector field of ∂Uε. For the
right-hand side there are two cases. On one hand, at a point where x ∈ ∂M ,
wm+1 = 0, so the integrand on the right-hand side vanishes. On the other
hand, when x ∈ int(M), we know that η = − ∇scal

|∇scal| . In either case, we see
that the right-hand side is non-negative, so

∫

Uε

Lm+1 (scal) dμm+1 ≥ 0.

However, we also have

1
2
Lm+1(scal) = tr(P )

(
λ− scal

n

)
−

∣∣∣∣P − tr(P )
n

g

∣∣∣∣
2

.

The right-hand side is non-positive on Uε and negative in the interior of Uε.
Therefore, this gives us a contradiction. As the set of regular values for scal
are dense we see that tr (P ) ≥ 0 on M.

For the last statement, we can apply the strong minimum principle to
the interior minimum to get tr(P ) = 0 everywhere in M . Then the formula
for the Laplacian of scalar curvature gives us

|P |2 = 0

everywhere, and so the metric is ρ-Einstein. �

Remark 5.1. The inequality tr(P ) ≥ 0 is equivalent to scal ≥ n(n−1)
n+m−1λ.

This is always true when m = 1, since scal = (n− 1)λ in this case.

In view of the equations we are after in the next section, we also note
another formula involving P .
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Proposition 5.4. On a (λ, n+m)-Einstein manifold (M, g,w),

div(wm+1P ) = 0.

Proof. This is a consequence of the formula for the gradient of the scalar
curvature and the Bianchi identity.

div(wm+1P ) = wm+1divP + P
(∇wm+1

)

= wm+1div(Ric) − wm+1∇ρ+ (m+ 1)wmP (∇w)

=
1
2
wm+1∇scal − wm+1∇ρ+

(m+ 1)
2

wm+1∇ρ

= −m− 1
2

wm+1∇ρ− wm+1∇ρ+
(m+ 1)

2
wm+1∇ρ

= 0.

�

Remark 5.2. On a gradient Ricci soliton the corresponding formula is
div(e−fRic) = 0.

6. New formulas for (λ, n + m)-Einstein manifolds with
m > 1

Let 1 < m <∞ and let (M, g,w) be a (λ, n+m)-Einstein metric. In the
previous section, motivated by similar formulas for gradient Ricci solitons,
we defined a (0, 2)-tensor P which satisfies the equations

w

2
∇ρ = P (∇w),

1
2
Lm+1(scal) = (λ− ρ)tr(P ) − |P |2,

div(wm+1P ) = 0.

There is another useful equation on Ricci solitons involving the full cur-
vature tensor(see [14]),

div(e−fR) = 0.

In this section we prove a similar formula for m <∞. That is, we define a
new algebraic curvature tensor, Q, which satisfies

(6.1) div(wm+1Q) = 0
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and also traces to a multiple of P . To this end let

Q = R+
2
m

Ric � g − (λ+ ρ)
m

g � g

= R+
2
m
P � g +

(ρ− λ)
m

g � g,

where, for two symmetric (0, 2)-tensors s and r, we define the Kulkarni-
Nomizu product s� r to be the (0, 4)-tensor

(s� r)(X,Y, Z,W ) =
1
2

(r(X,W )s(Y, Z) + r(Y, Z)s(X,W )

− r(X,Z)s(Y,W ) − r(Y,W )s(X,Z)) .

The formula for Q arises naturally if we consider conformal changes of
the metric. Namely if we re-write the warped metric gE as

gE = gM + w2gF

= w2
(
w−2gM + gF

)
,

we see that the metric w−2gM + gF is conformally Einstein. Consider the
metric on the base,

g̃ = w−2g.

Which is now a metric that blows up at ∂M . For this metric, Q is the
leading order term in the formula for the curvature tensor of g̃ in terms of
the curvature of g. Namely, by applying the formulas in 1.159 in [7] along
with the equation for μ one can show that

Rg̃ = w−2Q+
μ

m− 1
g � g.

Now we turn our attention to the calculations showing that Q possesses
the properties we are after. First we verify that if we trace Q over M we
obtain a multiple of P .

Proposition 6.1. Let Ei be an orthonormal basis, then

n∑

i=1

Q(X,Ei, Ei, Y ) =
m+ n− 2

m
P (X,Y ),

n∑

i,j=1

Q(Ej , Ei, Ei, Ej) =
m+ n− 2
m(m− 1)

((m+ n− 1)scal − (n(n− 1))λ) .
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Proof. From the definition of Q, we have

n∑

i=1

Q(X,Ei, Ei, Y ) = Ric +
1
m

n∑

i=1

(Ric(X,Y )g(Ei, Ei) + Ric(Ei, Ei)g(X,Y )

− Ric(X,Ei)g(Y,Ei) − Ric(Y,Ei)g(X,Ei))

− λ+ ρ

m

n∑

i=1

(g(X,Y )g(Ei, Ei) − g(X,Ei)g(Y,Ei))

= Ric(X,Y ) +
1
m

((n− 2)Ric(X,Y ) + scalg(X,Y ))

− λ+ ρ

m
(n− 1)g(X,Y )

=
m+ n− 2

m
Ric(X,Y )

+
1
m

(scal − (n− 1)λ− (n− 1)ρ) g(X,Y )

=
m+ n− 2

m
(Ric(X,Y ) − ρg(X,Y )) .

Note that

tr(P ) = (n− 1)λ− (m+ n− 1)ρ,

which gives the second identity. �

The gradient Ricci soliton equation immediately implies

(∇XRic) (Y, Z) − (∇Y Ric) (X,Z) = R (X,Y, Z,∇f) .

There is a similar but slightly more complicated formula for (λ,m+ n)-
Einstein manifolds involving Q.

Proposition 6.2. Let (M, g,w) be a (λ, n+m)-Einstein manifold, then

w

m
((∇XP )(Y, Z) − (∇Y P )(X,Z))

= −Q(X,Y, Z,∇w) − 1
m

(g � g) (X,Y, Z, P (∇w)) .
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Proof. From the (λ,m+ n)-Einstein equation, it follows that

R (X,Y,∇w,Z)

=
(
∇X

(w
m

(Ric − λg)
))

(Y, Z) −
(
∇Y

(w
m

(Ric − λg)
))

(X,Z)

=
w

m
((∇XP )(Y, Z) − (∇Y P )(X,Z))

+
1
m
g (X,∇w)P (Y, Z) − 1

m
g (Y,∇w)P (X,Z)

− 1
m
g (X,∇ (w (λ− ρ))) g (Y, Z) +

1
m
g (Y,∇ (w (λ− ρ))) g (X,Z)

=
w

m
((∇XP )(Y, Z) − (∇Y P )(X,Z)) − λ− ρ

m
(g � g)(X,Y, Z,∇w)

+
1
m
g (X,∇w)P (Y, Z) − 1

m
g (Y,∇w)P (X,Z)

+
1
m
g (X,w∇ρ) g (Y, Z) − 1

m
g (Y,w∇ρ) g (X,Z)

=
w

m
((∇XP )(Y, Z) − (∇Y P )(X,Z)) − λ− ρ

m
(g � g)(X,Y, Z,∇w)

+
2
m

(P � g) (X,Y, Z,∇w) +
1
m

(g � g)(X,Y, Z, P (∇w)).

Rearranging the terms then proves the identity. �

Finally, we prove the identity involving the divergence of Q.

Proposition 6.3. Let (M, g,w) be a (λ, n+m)-Einstein manifold, then
we have

div(wm+1Q) = 0.

Proof. It is convenient for the proof to contract against the fourth vari-
able in Q keeping X,Y, Z in their natural places for the curvature tensor.
The statement then is equivalent to

w divQ (X,Y, Z) = − (m+ 1)Q (X,Y, Z,∇w).
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We start with

w
2
m

(div(P � g))(X,Y, Z)

=
w

m
(divP )(X))g(Y, Z) − w

m
(divP )(Y )g(X,Z)

+
w

m
(∇XP )(Y, Z) − w

m
(∇Y P )(X,Z)

= −m+ 1
m

P (X,∇w) g (Y, Z) +
m+ 1
m

P (Y,∇w) g (X,Z)

−
(
Q(X,Y, Z,∇w) +

1
m

(g � g) (X,Y, Z, P (∇w))
)

= −Q(X,Y, Z,∇w) − m+ 2
m

(g � g) (X,Y, Z, P (∇w))

and
w

m
(div((ρ− λ) g � g))(X,Y, Z) =

w

m
(g � g)(X,Y, Z,∇ρ)

=
2
m

(g � g)(X,Y, Z, P (∇w)),

which gives us

w(divQ)(X,Y, Z) = w(divR)(X,Y, Z) −Q(X,Y, Z,∇w)
− (g � g) (X,Y, Z, P (∇w)) .

From Proposition 6.2 we have

w(divR)(X,Y, Z)

= w(∇XRic)(Y, Z) − w(∇Y Ric)(X,Z)

= w(∇XP )(Y, Z) − w(∇Y P )(X,Z)

+ wg (X,∇ρ) g (Y, Z) − wg (Y,∇ρ) g (X,Z)

= w(∇XP )(Y, Z) − w(∇Y P )(X,Z) + w(g � g) (X,Y, Z,∇ρ)
= w(∇XP )(Y, Z) − w(∇Y P )(X,Z) + 2(g � g) (X,Y, Z, P (∇w))

= −mQ(X,Y, Z,∇w) − (g � g) (X,Y, Z, P (∇w))

+ 2(g � g) (X,Y, Z, P (∇w))

= −mQ(X,Y, Z,∇w) + (g � g) (X,Y, Z, P (∇w))

and hence the result follows. �



Warped product Einstein metrics 297

7. Proof of Theorem 1.2

In this section we apply the calculations in the previous section to prove
Theorem 1.2. First we recall some definitions.

Definition 7.1. Let n ≥ 3 and let (Mn, g) be a Riemannian manifold. The
Schouten tensor is the (0, 2)-tensor

S = Ric − scal
2(n− 1)

g.

We say (Mn, g) has harmonic Weyl tensor if S is a Codazzi tensor, i.e.,

(∇XS)(Y, Z) = (∇Y S)(X,Z) for any X,Y, Z.

Remark 7.1. In dimension three, harmonic Weyl tensor is equivalent to
(M3, g) being locally conformally flat. If n > 3, the Weyl tensor is defined
via the formula

R = W +
2

n− 2
Ric � g − scal

(n− 1)(n− 2)
g � g,

and, as the language suggests, div(W ) = 0 if and only if M has harmonic
Weyl tensor. Recall that when n = 3, W = 0.

Remark 7.2. Another equivalent formulation is M has harmonic Weyl
tensor if and only if

divR(X,Y, Z) =
1

2(n− 1)
(g � g)(X,Y, Z,∇scal).

Now we see how harmonic Weyl tensor affects the formulas between P
and Q.

Proposition 7.1. If (M, g,w) is a (λ, n+m)-Einstein manifold and has
harmonic Weyl tensor, then

Q(X,Y, Z,∇w) =
m+ n− 2
m(n− 1)

(P (∇w,X)g(Y, Z) − P (∇w, Y )g(X,Z))

(7.1)

=
m+ n− 2
m(n− 1)

(g � g) (X,Y, Z, P (∇w)).
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Proof. From Proposition 6.2, we have

w(divR)(X,Y, Z) = −mQ(X,Y, Z,∇w) + (g � g) (X,Y, Z, P (∇w)) .

On the other hand, we have

w(divR)(X,Y, Z) = w
1

2(n− 1)
(g � g)(X,Y, Z,∇scal)

= −w m− 1
2 (n− 1)

(g � g)(X,Y, Z,∇ρ)

= −m− 1
n− 1

(g � g)(X,Y, Z, P (∇w)).

These two equations combine to give the desired identity. �

This gives us the following corollary, a similar lemma for Ricci solitons
is proven in [26].

Corollary 7.1. If (M, g,w) is a (λ, n+m)-Einstein manifold and has har-
monic Weyl tensor then, at a point where ∇w �= 0, ∇w is an eigenvector for
P . Moreover, if X,Y, Z ⊥ ∇w then

Q(X,Y, Z,∇w) = 0,(7.2)

Q(∇w, Y, Z,∇w) =
m+ n− 2
m(n− 1)

P (∇w,∇w)g(Y, Z).(7.3)

Proof. To see that ∇w is an eigenvector for P set Z = ∇w in (7.1) to obtain

P (∇w,X)g(∇w, Y ) − P (∇w, Y )g(X,∇w) = 0 for any X,Y.

Now we know that ∇w is an eigenvector and P (X,∇w) = 0 when X ⊥ ∇w.
Combining this again with (7.1) gives the other two formulas. �

Remark 7.3. ∇w is an eigenfield for P if and only if ∇w is an eigenfield
for Hess w. This implies that w is rectifiable, i.e., |∇w|2 is constant on the
connected components of the level sets of w, since, if X ⊥ ∇w, then

DX |∇w|2 = 2Hess w(∇w,X) = 0.

In particular, the connected components of the regular levels sets for w form
a Riemannian foliation of an open subset of M.



Warped product Einstein metrics 299

Following the soliton proof in [13], we consider the Weyl tensor in order
to get control on the other eigenvalues of P . In the next proposition we
record the decomposition of Q in terms of the Weyl tensor.

Proposition 7.2. If (M, g,w) is a (λ, n+m)-Einstein manifold and has
harmonic Weyl tensor with m > 1, then

(7.4) Q = W +
2(n+m− 2)
m(n− 2)

(P � g) − n+m− 2
m(n− 1)(n− 2)

tr (P ) (g � g).

Proof. We have

Q = R+
2
m
P � g +

ρ− λ

m
g � g,

R = W +
2

n− 2
P � g +

(
2ρ

n− 2
− scal

(n− 1)(n− 2)

)
g � g.

Putting these together and using that

scal = (n− 1)λ− (m− 1)ρ,
tr(P ) = −(m+ n− 1)ρ+ (n− 1)λ

gives us

Q = W +
2(m+ n− 2)
m(n− 2)

(P � g)

+
(

((n+ 2m− 2)(n− 1) +m(m− 1))ρ
m(n− 1)(n− 2)

− (n+m− 2)λ
m(n− 2)

)
g � g

= W +
2(m+ n− 2)
m(n− 2)

(P � g)

+
m+ n− 2

m(n− 1)(n− 2)
((m+ n− 1)ρ− (n− 1)λ) g � g

= W +
2(m+ n− 2)
m(n− 2)

(P � g) − m+ n− 2
m(n− 1)(n− 2)

tr(P )g � g.

�

Lemma 7.1. If M is a (λ, n+m)-Einstein manifold with harmonic Weyl
tensor and W (∇w, Y, Z,∇w) = 0, then at a point p where ∇w �= 0, P (or
Ricci) has at most two eigenvalues, and if it has two eigenvalues then one
has multiplicity 1 with eigenvector ∇w, and the other with multiplicity n− 1.
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Proof. We already know that ∇w is an eigenvector for P . Let Y, Z ⊥ ∇w.
Since W (∇w, Y, Z,∇w) = 0 by (7.4) we have

Q(∇w, Y, Z,∇w) =
2(n+m− 2)
m(n− 2)

(P � g)(∇w, Y, Z,∇w)

− n+m− 2
m(n− 1)(n− 2)

tr(P )(g � g)(∇w, Y, Z,∇w)

=
(n+m− 2)
m(n− 2)

(
P (∇w,∇w)g(Y, Z) + P (Y, Z)|∇w|2)

− n+m− 2
m(n− 1)(n− 2)

tr(P )|∇w|2g(Y, Z).

On the other hand by the identity (7.2) we also have

Q(∇w, Y, Z,∇w) =
m+ n− 2
m(n− 1)

P (∇w,∇w)g(Y, Z).

Equating these equations gives us

(n− 1)P (Y, Z)|∇w|2 =
(
tr(P )|∇w|2 − P (∇w,∇w)

)
g(Y, Z)

which implies that Y and Z are eigenvectors for P with the same eigenvalue.
�

Now we turn our attention to finishing the proof of the theorem. We
have shown that the Schouten tensor, S, has at most two eigenvalues when
dw �= 0. Let σ1 and σ2 be the eigenvalue functions of S and define

O = {x ∈M : dw �= 0, σ1(x) �= σ2(x)}.

First we prove a local result about the metric around points in O.

Theorem 7.1. Let m > 1 and let (M, g,w) be a (λ, n+m)-Einstein metric
such that (M, g) has harmonic Weyl tensor and W (∇w, ·, ·,∇w) = 0 in an
open set containing p ∈ O. Then

g = dt2 + ψ2(t)gN ,
w = w(t)

around p, where gN is an Einstein metric. If the metric is locally conformally
flat in a neighborhood of p, then N must be a space of constant curvature.
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Proof. To fix notation let σ1 be the eigenvalue of S with eigenvector ∇w
and let σ2 be the eigenvalue with eigenspace the orthogonal complement of
∇w. Since the dimension of eigenspace of σ2 is bigger than one, 16.11(iii)
in [7] shows that σ2 is locally constant on the level sets of w in O.

Using the (λ, n+m)-Einstein equation we see that Hess w also has at
most two eigenvalues, call them μ1 and μ2 where the eigenspaces for μi
correspond to those for σi and μi and σi are related by the formula

μi =
w

m

(
σi +

scal
2(n− 1)

− λ

)
, i = 1, 2.

Now Remark 7.3 shows that μ1 is locally constant on the level sets of w
since

1
2
D∇w|∇w|2 = Hess w(∇w,∇w).

Moreover if X ⊥ ∇w then

DXρ =
2
w
P (∇w,X) = 0.

So scal is also locally constant on the level sets of w. This implies that σ1

is locally constant on the level sets of w. Again using Remark 7.3 we now
have that |∇w|2, μ1 and μ2 are all locally constant on the level sets of w.

Now we can write the metric in a neighborhood of p as

g =
1

|∇w|2dw ⊗ dw + gw,

where gw is the metric on the level set. And we can write Hess w as

Hess w =
μ1

|∇w|2dw ⊗ dw + μ2gw,

where μ1 and μ2 are locally functions of w. In particular, L∇wgw = μ2gw
and we see that the metric can be written as

g =
1

|∇w|2dw ⊗ dw + ψ2gw0 ,

where

ψ (w) = exp
(∫ w

w0

μ2 (s) ds
)
.
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Now any metric of this form whose Ricci tensor has at most two eigenval-
ues must have gw0 Einstein. Moreover, a metric in this form is conformally
flat if and only if gw0 has constant curvature. �

We can now obtain the global result by patching warped product pieces
together along geodesics.

Theorem 7.2. Let m > 1 and suppose that (M, g) is complete, simply
connected and has harmonic Weyl tensor and W (∇w, ·, ·,∇w) = 0, then
(M, g,w) is a non-trivial (λ, n+m)-Einstein metric if and only if it is of
the form

g = dt2 + ψ2(t)gL,
w = w(t),

where gL is an Einstein metric. Moreover, if λ ≥ 0 then (L, gL) has non-
negative Ricci curvature, and if it is Ricci flat, then ψ is a constant, i.e.,
(M, g) is a Riemannian product.

Proof. It is a direct calculation to see that any metric of the form g =
dt2 + ψ2(t)gL where gL is Einstein has harmonic Weyl tensor and satisfies
W (∇w, ·, ·,∇w) = 0 (see 16.26(i) in [7]).

If dw = 0 in an open set of M , then g is λ-Einstein in an open set and
then trivial everywhere by analyticity. Similarly, if σ1 = σ2 in an open set,
then by Schur’s lemma g would be ρ-Einstein. In this case, we already know
by Proposition 3.1 that any metric which is both ρ-Einstein and non-trivially
(λ, n+m)-Einstein satisfies the conclusion of the theorem. Therefore we can
assume that the set O is dense in M .

Choose an arbitrary point p ∈ O and let L be the connected component
of the level set of w that contains p. By Remark 7.3 we know that |∇w|2 �= 0
is constant on L and therefore L is a smooth hypersurface. Moreover, note
that as |∇w|2, σ1, and σ2 are constant on L, it follows that all accumulations
points for L lie in O and hence also in L. Thus L is a closed subset of M
and in particular properly embedded.

As M is simply connected, L is two-sided. Let t be the signed distance
to L. We will work on the positive side of L, the other side will work in
exactly the same way. Set

A+ = {a ∈ R
+ : g = dt2 + ψ2(t)gL and w = w(t) on t−1([0, a])}.

First we would like to show that A+ �= ∅. To this end let q be a point
in the connected component of O that contains L with d (L, q) = ε. Let Lε
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be the connected component of a level set of w that contains q. We know
that Lε is a properly embedded hypersurface and a connected component
of t−1 (ε) . Similarly it follows that L is a connected component of the set
of points that have distance ε to Lε. Now suppose that x ∈ t−1 (ε) . Then
there is a minimal geodesic γ1 : [0, ε] →M with γ1 (0) ∈ L and γ1 (ε) = x.
However we also know that d (γ1 (0) , Lε) = ε so there must also be a minimal
geodesic γ2 : [0, ε] →M with γ2 (0) = γ1 (0) and γ2 (ε) ∈ Lε. Note that Lε
and t−1 (ε) are both on the same side of L so it must follow that γ̇1 (0) =
γ̇2 (0) . Consequently x ∈ Lε. This shows that t is smooth on t−1 (0, ε) .

If we define gt = g|Lt
, then it follows as in Theorem 7.1 that L∇tgt = μ2gt

and g = dt2 + ψ2 (t) gt for t ∈ (0, ε) . This shows that A+ �= ∅.
We now need to show that A+ = R

+. First note that if a ∈ A+ and
ψ(a) = 0 then every normal geodesic on the positive side of L must intersect
when t = a and therefore none of the geodesics can continue minimizing
the distance to L past a. By completeness, this implies that t−1 ([0, a]) =
t−1 ([0,∞)) and so we are done. Similarly if a ∈ A+ and a point (a, l) ∈ ∂M ,
then since the set {a} × L is a level set for w, {a} × L must be a component
of ∂M . Again we have t−1 ([0, a]) = t−1 ([0,∞)), so this case is finished.

Therefore, we can assume that ψ(a) �= 0 and ({a} × L) ∩ ∂M = ∅ for all
a ∈ A+. A+ is non-empty and is clearly closed. To finish we will show that
A+ is also open, and therefore must be all of R

+. To see this let a ∈ A+ with

g = dt2 + ψ2(t)gL, t ∈ [0, a],
ψ(a) �= 0,
w = w(t).

Let Σ = t−1(a) ⊂M and then Σ is a smooth connected hypersurface
which is equidistant to L. Therefore, if t̄ is the signed distance to Σ, then
t = a+ t̄. We can see by continuity that the second fundamental form and
normal curvature to Σ is constant, so t̄ is smooth in a uniform tubular neigh-
borhood of Σ and so we have that t is smooth on t−1([0, a+ ε]). Applying
Remark 7.3 also shows that w = w(t) for t ∈ [0, a+ ε].

Now we can choose x ∈ O ∩ t−1 ([a, a+ ε]) and use the same argument as
above to show that g can be written as a warped product along t for an open
dense subset of [a, a+ ε]. By smoothness of the metric and t this implies
that we have a warped product along all of t−1([0, a+ ε]) and therefore
a+ ε ∈ A+.

To see that gL has positive Ricci curvature when λ ≥ 0, we use that
we know gL is Einstein. Let us assume the Einstein constant is κ. In case
ψ vanishes somewhere L has to be a round sphere in order for M to be a
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manifold, thus κ > 0 in this case. Next we consider the situation where ψ
never vanishes. In this case we can switch the manifold L without changing
any of the equations as long as the new manifold has the same Einstein
constant.

Suppose κ < 0 and switch L to be a hyperbolic space of Einstein constant
κ. Thus we obtain a (0, n+m)-Einstein metric of the form

dt2 + ψ2gH

with w as the same warping function. On this metric we consider the weighted
volume form wmψn−1dt ∧ dvolH where dvolH is the hyperbolic volume form
on H. On one hand, we know from [6] that volume growth with respect to
this volume form is a power function of degree ≤ n+m. On the other hand,
this is clearly not possible since the volume growth on H is exponential.
Specifically, if consider the weighted volume of the set B(p,R) ∩ ([a, b] ×H)
for a fixed interval [a, b], then it is approximately the same as a fixed small
constant times the volume of a ball in H.

Next assume κ = 0. We can then replace L with R
n−1. This means that

λ = 0 asM is compact when λ > 0. If the manifoldM has no boundary, then
the splitting theorems of m-Bakry–Emery tensor [25] tell us that the metric
splits, i.e., ψ is a constant function. In the following we assume that t = 0 is
the boundary. So we have w(0) = 0 and w′(0) �= 0. Since g = dt2 + ψ2gL, the
second fundamental form of the t-level hypersurface is given by ψ′

ψ gL, and
ψ′(0) = 0. The (0, n+m)-Einstein equation is equivalent to the following:

m
w′′

w
= −(n− 1)

ψ′′

ψ
,

m
w′

w

ψ′

ψ
= −ψ

′′

ψ
− (n− 2)

(
ψ′

ψ

)2

.

If we define x = ψ′/ψ and y = w′/w then we obtain a system

x′ = −(n− 1)x2 −mxy,

y′ = −y2 +
n− 1
m

(mxy + (n− 2)x2).

Note that x = 0 and y = a/t is a solution for all a. Thus no solution can cross
the y-axis. Also note that the set y > 0 is invariant as y′ > 0 when y = 0.
This means that both the first and second quadrants are also invariant.
The goal is to show that the positive y-axis is the only solution such that
x(t) → 0 and y(t) → ∞ as t↘ 0. Note that x′ has the opposite sign of x as
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long as (n− 1)x+my > 0. Thus any solution with x(t0) ≈ 0 and y(t0) > 0
will move away from the y-axis as t↘ 0, i.e., flowing backwards in time.
This means that it cannot approach the y-axis as t↘ 0.

When m is an integer we can prove this in a more uniform fashion. We
obtain a λ-Einstein metric

gE = dt2 + ψ2(t)gL + w2(t)gF .

Thus the metric

ḡ = dt2 + w2(t)gF

is (λ, (m+ 1) + (n− 1))-Einstein, where κ is the Einstein constant of gL.
Then applying Corollary 4.2 to ḡ, gL must have positive Ricci curvature if
ψ is not a constant. �

Remark 7.4. It is also easy to see that there are some further restrictions
on which warped products are possible. When λ > 0, the manifold must
be compact and when λ ≤ 0 the metric cannot have compact quotients,
this implies that there is no example which is a warped product over a
circle. Moreover, if one has a warped product on (−∞,∞) × L then the
metric clearly contains a line. The splitting theorem for the m-Bakry–Emery
tensor [25] then implies that any space of this form must be a trivial product
when λ = 0.
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A. Warped Product Einstein spaces over surfaces

The classification of (λ, 2 +m)-Einstein spaces is discussed in [7]. In this
appendix, we add some of the details to the analysis of the equations that
can be found there.
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In dimension two it is shown in [7] that Equation is equivalent to

2ww′′ + (m− 1)(w′)2 + λw2 = μ.(A.1)

If m = 1, then we have μ = 0 and Equation (A.1) is integrated to

(w′)2 +
λ

2
w2 = C,

where C is a constant. It is easy to see that (M2, g) has constant curvature.
If m > 1, then we multiply Equation (A.1) by the integrating factor

w′wm−2 and we obtain

(w′)2 =
μ

m− 1
− λ

m+ 1
w2 + Cw1−m,(A.2)

where C is a constant.
When C = 0, we obtain the various constant curvature spaces. If ∂M �= ∅

then C = 0, because otherwise the right-hand side of (A.2) blows up as
w → 0. Therefore, we only get the constant curvature spaces when ∂M �= ∅.
If ∂M = ∅ and M is compact then Theorem 1.2 in [17] shows that (M2, g)
is a trivial (λ,m+ 2)-Einstein manifold.

Next, we assume that C �= 0 and the manifoldM is non-compact without
boundary, i.e., M = R

2.
From Equation (A.2), we may assume that w′ is non-negative and, if

it vanishes at some point, say t = 0, then (t, u) is polar coordinates and
w′′(0) = 1. In this case, solving Equation (A.1) at t = 0 we have

(A.3) λ (w(0))2 + 2w(0) = μ.

If λ = 0, then we have μ > 0 and w(0) = 1
2μ. By considering a multiple of

w if necessary, we may assume that μ = m− 1. Equation (A.2) tells us that
C = − (

m−1
2

)m−1 and furthermore it is equivalent to the following system:

{
v = w′,
v2 = 1 + Cw1−m.

The constant solution w(t) = 1
2(m− 1) is a stationary point on the vw-

phase plane. There is a unique trajectory with v ≥ 0 and w > 0 that gives
a non-trivial solution, see Example 9.118(a) in [7].
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Next we assume that λ < 0. For a number a > 0 we consider w̃(s) = lw(t)
where s = kt, k2 = − λ

m+1 and l = a
w(0) . Then Equation (A.1) becomes

2k2l2w̃w̃′′ + k2l2(m− 1)
(
w̃′)2 + l2λw̃2 = μ,

i.e.,

(A.4) 2w̃w̃′′ + (m− 1)
(
w̃′)2 − (m+ 1)w̃2 = μ̃,

where μ̃ = μ
k2l2 .

Let w̃′′(0) = 1
b and, then the above equation at s = 0 shows that

1
b

=
m+ 1

2
a+

μ̃

2a
.

If μ̃ ≥ 0, then any positive a gives a positive b. If μ̃ < 0, then the positivity
of b implies that

m+ 1
2

a+
μ̃

2a
> 0,

i.e.,

a >

√ −μ̃
m+ 1

.

We integrate Equation (A.4) once and it gives

(A.5)
(
w̃′)2 =

μ̃

m− 1
+ w̃2 + Cw̃1−m,

where the constant C is determined by w̃′(0) = 0 and w̃(0) = a, and we have

C = −
(
am+1 +

μ̃

m− 1
am−1

)
.

For fixed values of a and μ̃ there is a unique trajectory on the w̃′w̃-plane
with w̃′ ≥ 0, w̃ > 0 and w̃(0) = a that gives us a unique (−(m+ 1), 2 +m)-
Einstein metric on R

2, see Example 9.118(d) in [7].
Now we assume that w′ is positive everywhere and then (t, u) is Cartesian

coordinates. By scaling t and w we may assume that μ = −(m− 1), 0, or
m− 1 and λ = −(m+ 1) or 0 in Equation (A.2). Let (a, b) be the range
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of w with w′ > 0 where b > a > 0 and b may equal to ∞. The metric g is
complete if and only if the following two integrals diverge for a w0 ∈ (a, b)

∫ w0

a

dw√
μ

m−1 − λ
m+1w

2 + Cw1−m
= ∞,

∫ b

w0

dw√
μ

m−1 − λ
m+1w

2 + Cw1−m
= ∞.

We consider the case when μ = 0 and λ = −(m+ 1). Then we have
(w′)2 = w2 + Cw1−m. If C > 0, then the range of w is (0,∞) and the integral
from 0 to any w0 > 0 converges. If C < 0, then the range of w is (a,∞) with
a = (−C)

1
m+1 . However the integral from a to w0 for any w0 > a converges.

So the completeness of the metric implies that C = 0 and then w = et, see
Example 9.118(b) in [7]. Note that the warped product metric on R

2 × F
has Ricci curvature −(m+ 1). The other cases follow similarly and they give
the Example 9.118(c) in [7].
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[24] F. Dobarro and B. Ünal, Curvature in special base conformal warped
products, Acta Appl. Math. 104(1) (2008), 1–46.

[25] F. Fang, X. Li and Z. Zhang, Two generalizations of Cheeger-Gromoll
splitting theorem via Bakry–Emery Ricci curvature, Ann. Inst. Fourier
(Grenoble) 59(2) (2009), 563–573.

[26] M. Fernandez-Lopez and E. Garcia-Rio, Rigidity of shrinking Ricci soli-
tons, Math. Z. 269(1–2) (2011), 461–466.

[27] C. He, P. Petersen and W. Wylie, Warped product Einstein metrics over
spaces with constant scalar curvature, arXiv:1012.3446.

[28] C. He, P. Petersen and W. Wylie, Uniqueness of warped product Ein-
stein metrics and applications, arXiv:1110.2456.

[29] W. Israel, Event horizons in static vacuum space-times. Phys. Rev.
164(5) (1967), 1776–1779.

[30] D.-S. Kim and Y.H. Kim, Compact Einstein warped product spaces with
nonpositive scalar curvature, Proc. Amer. Math. Soc. 131(8) (2003),
2573–2576.

[31] B. Kotschwar, On rotationally invariant shrinking Ricci solitons, Pacific
J. Math. 236(1) (2008), 73–88.
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