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The maximal graph Dirichlet problem in

semi-Euclidean spaces

Benjamin Stuart Thorpe

The maximal graph Dirichlet problem asks whether there exists a
spacelike graph, in a semi-Euclidean space, with a given boundary
and with mean curvature everywhere zero. We prove the existence
of solutions to this problem under certain assumptions on the given
boundary. Most importantly, the results proved here will hold for
graphs of codimension greater than 1.

1. Introduction

Given a system of partial differential equations, a domain and a function
defined on its boundary, a Dirichlet problem is the question of whether there
exists a solution to the system, on this domain, with the given boundary
values. It is well known that a submanifold of a Euclidean space with mean
curvature zero everywhere is called minimal. For a submanifold that can be
written as a graph over some domain, the mean curvature zero condition is
equivalent to a second-order, elliptic, quasilinear system of partial differential
equations. We can therefore consider the Dirichlet problem for the minimal
graph system, which is related to the variational problem of minimizing the
volume functional for graphs with a given boundary.

For semi-Euclidean spaces (e.g. Minkowski space, which is well known
from Relativity), we are again interested in submanifolds with mean cur-
vature zero, but now we also assume that these submanifolds are spacelike
(have positive-definite induced metric). We call such submanifolds maximal.
For graphs, the spacelike condition is equivalent to a bound on the gradi-
ent, and the mean-curvature zero condition is again an elliptic, quasilinear
system of equations (ellipticity comes from the spacelike condition). In this
case, we can consider a maximal graph Dirichlet problem, which is related
to the problem of maximizing the volume functional for spacelike graphs
with a given boundary.

In Minkowski space, the codimension 1 maximal graph Dirichlet problem
was first dealt with in [2], by using boundary conditions similar to those used
in the minimal graph case (see [4]). A more general existence theorem was
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then proved in [1]. Both of these results are for codimension 1 graphs, where
the mean-curvature zero condition is a single equation. The proofs involve
using the assumptions on the boundary to obtain gradient estimates, which
then give existence of solutions by the usual methods for elliptic problems
(using Schauder fixed point theorem, as in chapter 11 of [3]).

For graphs of higher codimension, these problems are more difficult since
we have to consider systems of equations. In [5], Lawson and Osserman give
an example which shows that the minimal graph problem is sometimes not
solvable for codimension greater than 1, even for very ‘nice’ domains and
boundary data. But there are still some examples of existence theorems for
the higher codimension minimal graph Dirichlet problem. For example, we
can use the inverse function theorem to prove the existence of solutions
whenever the C2,α norm of the boundary data is less than some (unknown)
constant.1

The main result claimed in [10] is more interesting, and roughly says that
a solution exists if the domain is convex and the C2 norm of the boundary
data is less than some known constant (which depends only on the diameter
and dimension of the domain). The proof involves mean-curvature flow, but
the boundary C1,α estimate was overlooked there, as we will explain later
(Section 6).

For the maximal graph problem with codimension n ≥ 2 in R
m+n
n , very

little is known. This is the case that we will consider. Unlike the higher
codimension existence theorems mentioned above (in the Euclidean case),
we will use standard elliptic methods by proving a suitable gradient estimate.
However, we will have to deal with the fact that the higher-order estimates
that hold for single equations do not necessarily hold for systems. For this
reason, we will only prove existence theorems either in the case of graphs
with dimension m = 2, or for m ≥ 2 when the gradient estimate is sufficiently
strong. We will prove that solutions to the maximal graph Dirichlet problem
exist whenever the domain is convex and the C2 norm of the boundary
data is small enough (see Theorem 4.1 when m = 2 and Theorem 5.1 when
m ≥ 2).

2. Preliminaries

For integers m ≥ 2 and n ≥ 1, we will denote by R
m+n
n = (Rm+n, 〈·, ·〉) the

semi-Euclidean space with metric tensor 〈v, w〉=∑m
i=1 viwi−∑m+n

γ=m+1 vγwγ .

1See Theorem 4.2 of L Martinazzi, The Non-Parametric Problem of Plateau in
Arbitrary Codimension, arXiv:math/0411589v1[math.AP] (November 2004).
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Given a submanifold, we can take the induced metric from R
m+n
n in the usual

way, and we say that the submanifold is spacelike if the induced metric
is positive definite. As always, we define the second fundamental form by
B(v, w) = ∇̄vw −∇vw for tangent vector fields v and w, where ∇̄ and ∇
are the Levi–Civita connections on R

m+n
n and the submanifold, respectively.

Taking the trace of B with respect to the induced metric g gives the mean-
curvature H on the submanifold (which will be a normal vector field). We
can even define the gradient, divergence and induced Laplace operator on
such submanifolds in the usual way (see [9] for details).

We will consider submanifolds that can be written as graphs over a
domain Ω in R

m, M = {(x, u(x)) ∈ R
m+n
n |x ∈ Ω} for some smooth u : Ω →

R
n. The induced metric on the graph will be given by the matrix g = I −

DuTDu. It will be convenient for us to use the following norms for the maps
Du(x) : R

m → R
n and D2u(x) : R

m × R
m → R

n,

|||Du|||(x) = sup
|v|=1

|Du(x)(v)| and |||D2u|||(x) = sup
|v|=1

|D2u(x)(v, v)|,

where | · | denotes the usual Euclidean norm. It is possible to show that
|||Du|||2 will be equal to the largest eigenvalue of DuTDu at each point, and
that |||Du||| ≤ |Du| ≤ √

m|||Du|||. Using the obvious relationship between
|||Du||| and the eigenvalues of g, we see that the graph will be spacelike
if and only if |||Du||| < 1. Also, for any 0 < C < 1, we have

√
det g ≥ C ⇒

|||Du|||2 ≤ 1 − C2 and |||Du|||2 ≤ C ⇒ √
det g ≥ (1 − C)m/2.

As in the well-known Euclidean case, it is easy to check that the mean-
curvature vector of a graph is given by applying the induced Laplace operator
on the graph (which we denote by ΔM ) to the vector (x, u(x)). This tells us
that the mean-curvature vector is zero if and only if gij(Du)∂2u/∂xi∂xj =
0.2 This is a quasi-linear elliptic system of n equations for u. Given a bounded
domain Ω in R

m and boundary data φ : ∂Ω → R
n, we would therefore like to

prove the existence of a smooth solution to the following Dirichlet problem:

gij(Du)
∂2u

∂xi∂xj
= 0 and |||Du||| < 1 in Ω, u = φ on ∂Ω,

where u is at least C2 in Ω and C0 on Ω̄. In particular, we will look for
solutions in Hölder spaces. For α ∈ (0, 1) we say that a function u : Ω → R

n

lies in the Hölder space Ck,α(Ω̄; Rn) if and only if it is in Ck(Ω̄; Rn) and

2We denote by gij = δij − (∂uγ/∂xi)(∂uγ/∂xj) the components of g, and by
gij the components of its inverse. We always use the summation convention over
repeated indices i, j, . . . ∈ {1, . . . , m} and γ, ν, . . . ∈ {m + 1, . . . ,m + n}.
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||u||k,α = ||u||k + supx �=y |Dku(x) − Dku(y)|/|x − y|α = ||u||k + [Dku]α is
finite, where ||u||k is the usual Ck norm. Note that, with the norm || · ||k,α,
the space Ck,α(Ω̄; Rn) will be a Banach space. We will sometimes just call
functions in these spaces Ck,α functions. Functions that are Ck,α on compact
subsets of a domain will be called locally Ck,α on the domain.

We will need the following fact, which uses Leray–Schauder fixed point
theorem to get existence of solutions to our problem under the assumption
of some a priori estimates. The proof is similar to Theorem 11.4 of [3], but
slightly more difficult here since gij(Dw) is only positive definite when the
graph of w is spacelike. That is why we make a more complicated assumption
on the gradient and why we use the set R, to avoid non-spacelike graphs.

Lemma 2.1. For some α ∈ (0, 1), let Ω be a bounded C2,α domain in R
m

and let φ ∈ C2,α(Ω̄; Rn). Suppose that there exist constants κ ∈ (0, 1) and
C > 0 such that supΩ |||Dφ|||2 ≤ 1 − κ, and such that

sup
Ω

|||Du|||2 < 1 − κ and ||u||1,α ≤ C,

whenever u ∈ C2,α(Ω̄; Rn) gives a maximal graph in R
m+n
n with supΩ

|||Du|||2 ≤ 1 − κ and u|∂Ω = σφ|∂Ω for some σ ∈ [0, 1]. Then there exists
a solution u ∈ C2,α(Ω̄; Rn) to the maximal graph Dirichlet problem in R

m+n
n

with u|∂Ω = φ|∂Ω.

Proof. We let R = {u ∈ C1,α(Ω̄; Rn) | |||Du|||2 ≤ 1 − κ} and we define maps
f : C1,α(Ω̄; Rn) → R and T : R → C1,α(Ω̄; Rn). For any v ∈ C1,α(Ω̄; Rn), we
take f(v) to be equal to v when supΩ |||Dv|||2 ≤ 1 − κ and equal to (1 −
κ)1/2v/ supΩ |||Dv||| otherwise. For any w ∈ R, we define T (w) to be the
unique solution u to the system of n linear Dirichlet problems given by
gij(Dw)∂2u/∂xi∂xj = 0 in Ω with u = φ on ∂Ω. Since w ∈ R implies that
the system is elliptic and that the coefficients gij(Du) are C0,α functions, we
know that such a solution must exist in C2,α(Ω̄; Rn) by the usual existence
theorem for linear equations (see Theorem 6.14 of [3]).

We claim that T̃ = T ◦ f : C1,α(Ω̄; Rn) → C1,α(Ω̄; Rn) will be continuous
and compact (i.e., the images of bounded sets are precompact). The map f
is continuous and clearly maps bounded sets to bounded sets (with respect
to the C1,α norm). By the Schauder estimates (see Theorem 6.6 of [3]), sets
in R with bounded C1,α norm are mapped by T to sets with bounded C2,α

norm. But, by the Arzela–Ascoli theorem, bounded sets in C2,α(Ω̄; Rn) are
precompact in C2(Ω̄; Rn) and C1,α(Ω̄; Rn). Continuity of T can be proved
exactly as in the proof of Theorem 11.4 of [3].
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Now we need to make use of the estimates that we have assumed to
exist. Suppose that, for σ ∈ [0, 1], we have v ∈ C1,α(Ω̄; Rn) with σT̃ (v) = v.
We have two possible cases. First, if supΩ |||Dv|||2 > 1 − κ then we have
σT (v

√
1 − κ/ supΩ |||Dv|||) = v, so w = v

√
1 − κ/ supΩ |||Dv||| solves the

maximal graph Dirichlet problem with w = (σ
√

1 − κ/ supΩ |||Dv|||)φ on
the boundary. But (σ

√
1 − κ/ supΩ |||Dv|||) ∈ [0, 1], so the assumptions that

we make here imply that supΩ |||Dw|||2 < 1 − κ, which contradicts the fact
that supΩ |||Dw|||2 = 1 − κ. Therefore we only need to consider the case
supΩ |||Dv|||2 ≤ 1 − κ, where v will be a fixed point of σT and will be a
solution of the maximal graph Dirichlet problem with boundary values σφ.
Our assumptions now imply that ||v||1,α ≤ C.

We conclude that T̃ is a compact map from the Banach space C1,α(Ω̄; Rn)
into itself and, for any σ ∈ [0, 1], any fixed point v of σT̃ satisfies ||v||1,α ≤ C.
A version of the Schauder fixed point theorem (see Theorem 11.3 of [3])
tells us that T̃ has a fixed point. As explained above, but now just taking
σ = 1, this fixed point must have |||Du|||2 < 1 − κ. This will be a spacelike
solution of the maximal graph Dirichlet problem with boundary values given
by φ. �

It is important to note that any C2,α solution to a maximal graph Dirich-
let problem (as given by the lemma) will be smooth on Ω̄ if the domain and
boundary data are both smooth. This is proved by induction using Theo-
rem 6.19 of [3], which says that if u is a Ck,α solution then the coefficients
gij(Du) are Ck−1,α and therefore u must be Ck+1,α.3 We also note that any
solution with boundary data φ will have |u| uniformly bounded in terms of
supΩ |φ|. This follows directly from the elliptic maximum principle.

3. Gradient estimate

Given some κ ∈ (0, 1), we will find conditions on Ω ⊂ R
m and φ : Ω̄ → R

n

such that any smooth solution to the corresponding maximal graph Dirich-
let problem with supΩ |||Du|||2 ≤ 1 − κ must satisfy supΩ |||Du|||2 < 1 − κ.
We will assume that Ω and φ are both C2, and that Ω is bounded and
convex. We follow the method from [10], but note that we have an ellip-
tic (rather than parabolic) system here. It is also important to note that
the inequalities that hold for maximal graphs are slightly different to the

3Instead of 6.19, we could have used Theorem 6.17 of [3], which says that a locally
Ck,α solution will be locally Ck+1,α. This can be used even when the domain and
data are not smooth, but only gives smoothness of solutions on the interior.
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corresponding inequalities for minimal graphs, so κ will appear in our esti-
mates in a different way, affecting the assumptions that we need to make.

Given such a solution u, the first step is to define the linear elliptic
operator L = gij(Du)∂2/∂xi∂xj . Then, fixing any γ ∈ {m + 1, . . . , m + n}
and any p ∈ ∂Ω, we define functions S± : Ω̄ → R by S = ν log(1 + ζd) ∓
(uγ − φγ). Here d(x) is the distance from any point x ∈ Ω̄ to the (m − 1)-
dimensional hyperplane tangent to ∂Ω in R

m at p. The positive constants ν
and ζ will be chosen later. Using the obvious facts that Lu = 0 = Ld, d(x) ≤
|x − p| ≤ diam Ω, |Dd| = 1 and that the eigenvalues of g−1 are between 1 and
1/κ (by the assumed gradient bound), we have

(3.1) LS± =
−νζ2

(1 + ζd)2
gij ∂d

∂xi

∂d

∂xj
± Lφγ ≤ −νζ2

(1 + ζdiam Ω)2
+

m

κ
|||D2φ|||.

If we assume that the right-hand side is non-positive, then LS± ≤ 0 and
we can apply the elliptic maximum principle to see that the infimum of
S± occurs on the boundary. But it is clear that S± ≥ 0 on the boundary
(by the Dirichlet condition), so we have S± ≥ 0 on all of Ω and therefore
ν log(1 + ζd) ≥ |uγ − φγ |. From here, we can directly follow the steps in
[10] to get a gradient estimate of the form |||Du||| ≤ νζ + 2|||Dφ||| at the
point p, and hence at any boundary point. To minimize νζ in such a way
that the right-hand side of (3.1) is non-positive, we take ζ = 1/diamΩ and
νζ = 4mdiam Ω supΩ |||D2φ|||/κ. With this choice of constants, we have the
boundary estimate

sup
∂Ω

|||Du||| ≤ 4m diam Ω
κ

sup
Ω

|||D2φ||| + 2 sup
∂Ω

|||Dφ|||.

If the right-hand side is small enough, then this will give a gradient estimate
on the full domain. We see this by using inequality 4.6 of [6], which implies
that ΔM log

√
det g ≤ 0. Applying the maximum principle to this tells us

that
√

det g ≥ inf∂Ω

√
det g on Ω. Therefore, if |||Du|||2 < 1 − κ1/m on ∂Ω

then
√

κ < inf∂Ω

√
det g ≤ √

det g, which implies that |||Du|||2 < 1 − κ on Ω.

Proposition 3.1. Let Ω be a bounded, convex, C2 domain in R
m and let

φ : Ω̄ → R
n be a C2 function. Assume, for some κ ∈ (0, 1), that φ satisfies

(3.2)
4m diamΩ

κ
sup
Ω

|||D2φ||| + 2 sup
∂Ω

|||Dφ||| <
√

1 − κ1/m.
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If u is a smooth solution of the corresponding maximal graph Dirichlet prob-
lem in R

m+n
n , and if supΩ |||Du|||2 ≤ 1 − κ, then supΩ |||Du|||2 < 1 − κ.

4. An existence theorem in R
2+n
n

The previous section gives us a gradient estimate as required in Lemma 2.1.
Since we are only interested in codimension n ≥ 2, we have a system of
equations, and therefore the C1,α estimates used for single equations are
not available. But, for two-dimensional graphs in R

2+n
n , we can use strong

a priori estimates that hold for linear elliptic equations in two variables. In
particular, we use the next lemma, which follows directly from a comment
on page 304 of [3].

Lemma 4.1. Let Ω be a smooth, bounded domain in R
2 and let φ ∈ C∞(Ω̄).

Let L = aij(x)∂2/∂xi∂xj, where the matrix given by aij(x) ∈
C∞(Ω) has positive eigenvalues λ(x) ≤ Λ(x) such that Λ/λ ≤ η for some
constant η. Suppose that u ∈ C2(Ω̄) is a solution of Lu = 0 with u = φ on
∂Ω. Then there exist constants α(η,Ω) ∈ (0, 1) and C(η,Ω, ||φ||2) > 0 such
that ||u||1,α ≤ C.

Theorem 4.1. Let Ω be a smooth, convex and bounded domain in R
2. Let

φ : Ω̄ → R
n be a smooth function satisfying, for some κ ∈ (0, 1), inequality

(3.2) with m = 2 and supΩ |||Dφ|||2 ≤ 1 − κ. Then there exists a smooth
solution u to the maximal graph Dirichlet problem in R

2+n
n with |||Du|||2 <

1 − κ on Ω̄ and u = φ on ∂Ω.

The result claimed in the introduction, when m = 2, clearly follows from
this since the assumptions on φ are satisfied whenever its C2 norm is small
enough.

Proof. If u is a maximal graph with boundary values σφ (for some σ ∈ [0, 1])
and supΩ |||Du|||2 ≤ 1 − κ, then the gradient estimate from the previous
section gives supΩ |||Du|||2 < 1 − κ. The eigenvalues of gij are between 1
and 1/κ, so we can take η = 1/κ in Lemma 4.1 to get a C1,α estimate,
allowing us to apply Lemma 2.1 to prove the theorem. �

5. An existence theorem in R
m+n
n

Now we prove C1,α estimates, for m ≥ 2 and n ≥ 1, which will be used
to prove an existence theorem for our problem in R

m+n
n . We hope to use
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methods from chapter 13 of [3]. The C1,α estimates there do not apply
directly to systems, so we will need to assume that our gradient estimate is
even stronger than before (we will explain why later). We do not expect to
get the most general results possible, so we will prove the C1,α estimates as
quickly as possible, without wasting time trying to get the best estimates at
each step. In this section, Ω will be a smooth, bounded domain in R

m, and φ :
Ω̄ → R

n will be smooth with ||φ||2 ≤ Φ2 and ||φ||3 ≤ Φ3 for some constants
Φ2, Φ3 > 0. We assume that a smooth function u : Ω̄ → R

n is a solution to
the corresponding maximal graph Dirichlet problem, with |||Du|||2 ≤ 1 − κ
on Ω̄ for some constant κ ∈ (0, 1).

For any γ ∈ {m + 1, . . . , m + n} and r ∈ {1, . . . , m}, we define w = ζ(1 −
κ)1/2∂uγ/∂xr + v, where ζ is some constant (depending on m and n) to be
chosen later, and v =

∑
j,ν(∂uν/∂xj)2. Writing g(p) = I − pTp for p = (pν

k),

∂

∂xi

(

gij(Du)
∂w

∂xj

)

=
∂gij

∂pν
k

(Du)
∂2uν

∂xi∂xk

∂w

∂xj

+ gij(Du)
(

ζ
√

1 − κ
∂3uγ

∂xr∂xi∂xj

)

+ gij(Du)
(

2
∂2uν

∂xi∂xk

∂2uν

∂xj∂xk
+ 2

∂3uν

∂xk∂xi∂xj

∂uν

∂xk

)

.

But, since gij(Du)∂2u/∂xi∂xj = 0,

gij ∂3uν

∂xh∂xi∂xj
=

∂

∂xh

(

gij ∂2uν

∂xi∂xj

)

− ∂

∂xh
(gij)

∂2uν

∂xi∂xj

= −∂gij

∂pδ
k

∂2uδ

∂xk∂xh

∂2uν

∂xi∂xj
,

and therefore

∂

∂xi

(

gij ∂w

∂xj

)

=
∂gij

∂pν
k

∂2uν

∂xi∂xk

∂w

∂xj
− ζ

√
1 − κ

∂gij

∂pδ
k

∂2uδ

∂xk∂xr

∂2uγ

∂xi∂xj
(5.1)

+ 2gij ∂2uν

∂xi∂xh

∂2uν

∂xj∂xh
− 2

∂uν

∂xh

∂gij

∂pδ
k

∂2uδ

∂xk∂xh

∂2uν

∂xi∂xj
.

This is where we need to use the gradient estimate. We want to show that
the right-hand side is dominated by the third term whenever 1 − κ is small
enough. First, we need to remember that the eigenvalues of gij are between
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1 and 1/κ, so we have

2gij(Du)
∂2uν

∂xi∂xk

∂2uν

∂xj∂xk
≥ 2|D2u|2.

Using g(p) = I − pTp and differentiating g−1g = I gives ∂gfh/∂pν
k = gkfgjh

pν
j + gkhgfjpν

j , which implies that |(∂gfh/∂pν
k)|(p) ≤ 2|g−1|2|p| ≤ 2m2|p|/κ2.

It is also easy to see that |∂w/∂xi| ≤ (|ζ| + 2
√

m)(1 − κ)1/2|D2u|, where we
have used |Du|2 ≤ m|||Du|||2 ≤ m(1 − κ). We can combine all of the inequal-
ities above and, using the Schwarz inequality, apply them to equation (5.1)
to get

∂

∂xi

(

gij(Du)
∂w

∂xj

)

≥ 2|D2u|2 − 1 − κ

κ2
C|D2u|2,

where the constant C > 0 depends only on m and n (since ζ does). So, for
1 − κ small enough (how small depending on m and n), we will have

(5.2)
∂

∂xi

(

gij(Du)
∂w

∂xj

)

≥ 0.

Lemma 5.1. Let Ω be a domain in R
m. There exist constants κ, α ∈ (0, 1)

and K > 0 such that if a maximal graph in R
m+n
n is given by a smooth func-

tion u : Ω → R
n with |||Du|||2 ≤ 1 − κ, then [Du|Ω′ ]α ≤ Kdist(Ω′, ∂Ω)−α on

any subdomain Ω′ with closure contained in Ω. Here κ, α and K depend on
m and n.

Proof. We are in a position now where we can directly follow the proof of
Theorem 13.6 of [3], choosing ν and r as in the proof of this theorem, but
taking ζ = ±10mn. The idea is to use the fact that w is a subsolution to
a linear equation in divergence form, by (5.2), to apply the weak Harnack
inequality (Theorem 8.18 of [3]). This gives estimates on w which imply the
required C0,α estimate on Du. �

This lemma gives interior estimates, but we need a uniform estimate.
Therefore we need a C1,α estimate at the boundary of Ω. To get this, we
will need to adjust our problem in such a way that we have a solution (to
some elliptic system) which is zero on a flat boundary portion. We will need
to be very careful about where κ appears in our inequalities. Again, we have
to make sure that a strong enough gradient estimate (i.e., κ being close to
1) implies that certain terms dominate. Unfortunately, the fact that we have
to transform our domain and boundary data means that the gradient bound
needed will depend on Ω and φ.
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Let B be some ball in R
m with centre on ∂Ω. Taking B to be smaller if

necessary, we can assume that there is a coordinate change F : B → F (B) ⊂
R

m such that F and F−1 are smooth, with F (B ∩ ∂Ω) ⊂ {y | ym = 0} and
F (B ∩ Ω) ⊂ {y | ym > 0}, and such that the matrix DFDFT has eigen-
values between two constants ΛF ≥ λF > 0. We define a function ũ by
ũ(F (x)) = u(x). Then Du = DũDF and, if we define

Aij(y, Dũ(y)) = δij −
(

∂ũν

∂yk
(y)

∂F k

∂xi
(F−1(y))

)(
∂ũν

∂yh
(y)

∂F h

∂xj
(F−1(y))

)

,

then

0 = gij ∂2u

∂xi∂xj
=
(

∂F k

∂xi
Aij ∂F h

∂xj

)
∂2ũ

∂yk∂yh
+ Aij ∂2F k

∂xi∂xj

∂ũ

∂yk
.

We define φ̃ by φ = φ̃(F ), and take û = ũ − φ̃ so that û = 0 on F (∂Ω ∩ B).
Taking

Gkh(y, Dû) = Aij(y, Dû + Dφ̃)
∂F k

∂xi

∂F h

∂xj
,

B(y, Dû) = Aij(y, Dû + Dφ̃)
∂2F k

∂xi∂xj

(
∂û

∂yk
+

∂φ̃

∂yk

)

+ Gkh(y, Dû)
∂2φ̃

∂yh∂yk
,

where the matrix G−1 = (Gkh) has eigenvalues between λF and ΛF /κ, then
û satisfies the elliptic system

(5.3) 0 = Gkh(y, Dû(y))
∂2û

∂yk∂yh
+ B(y, Dû(y)).

Now we define a function w = ζ(1 − κ)1/2∂ûγ/∂yr +
∑

ν

∑m−1
�=1 (∂ûν/∂y�)2

for some γ ∈ {m + 1, . . . , m + n} and r ∈ {1, . . . , m − 1}. It is important
to remember that we will apply the summation convention over the usual
ranges for all indices, except for  = 1, . . . , m − 1. This means that w only
involves the tangential derivatives at the flat boundary portion. We get, by
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using (5.3) and the same reasoning used to get (5.1),

∂

∂yi

(

Gij ∂w

∂yj

)

=
∂

∂yi
(Gij)

∂w

∂yj
− ζ

√
1 − κ

∂

∂yr
(Bγ)(5.4)

− ζ
√

1 − κ
∂

∂yr
(Gij)

∂2ûγ

∂yi∂yj
+ 2Gij ∂2ûν

∂yi∂y�

∂2ûν

∂yj∂y�

− 2
∂ûν

∂y�

∂

∂y�
(Bν) − 2

∂ûν

∂y�

∂

∂y�
(Gij)

∂2ûν

∂yi∂yj
.

Note that we will also stop labelling constants here and will, for now, just
denote by C any positive constant depending only on m, n, F and Φ2 (but
not κ). By the same reasoning as before, we easily see that

∣
∣
∣
∣

(
∂Aij

∂yk

)∣
∣
∣
∣ ≤ |A−1|2

∣
∣
∣
∣

(
∂Aij

∂yk

)∣
∣
∣
∣ ≤

C

κ2

∣
∣
∣
∣

(
∂F h

∂xi
pν

hpν
f

∂

∂yk

∂F f

∂xj

)∣
∣
∣
∣ ≤

C

κ2
|p|2,

∣
∣
∣
∣

(
∂Aij

∂pν
k

)∣
∣
∣
∣ ≤ |A−1|2

∣
∣
∣
∣

(
∂Aij

∂pν
k

)∣
∣
∣
∣ ≤

C

κ2

∣
∣
∣
∣

(
∂F h

∂xi
δνηδhkp

ν
f

∂F f

∂xj

)∣
∣
∣
∣ ≤

C

κ2
|p|.

We can use these inequalities and |Dũ| ≤ |Du| · |DF | ≤ C
√

1 − κ ≤ C (along
with the Schwarz, Young and triangle inequalities, and 0 < κ < 1) to obtain

∣
∣
∣
∣

∂

∂yk
(Gij(y, Dû(y)))

∣
∣
∣
∣+
∣
∣
∣
∣

∂

∂yk
(Bν(y, Dû(y)))

∣
∣
∣
∣ ≤

C

κ2
(|D2û| + 1) +

C

κ2
|D3φ̃|.

We also have |Dw| ≤ C|D2û|√1 − κ. We apply all of these inequalities to
equation (5.4) to get

∂

∂yi

(

Gij ∂w

∂yj

)

≥ 2Gij ∂2ûν

∂yi∂y�

∂2ûν

∂yj∂y�
− C

√
1 − κ

κ2

(
|D2û|2 + 1 + |D3φ̃|

)
(5.5)

≥ 2λF

∑

ν,i,�

(
∂2ûν

∂yi∂y�

)2

− C
√

1 − κ

κ2

(|D2û|2 + 1 + Φ3

)
,

and we hope that the first term will dominate when κ is close enough to 1.
Obviously this term contains all second-order derivatives of û except ∂2û/
∂xm∂xm. By using system (5.3), and the obvious bounds on |B| and |G−1|,
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we can estimate this remaining second-order derivative,

∣
∣
∣
∣

∂2ûν

∂ym∂ym

∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣
∣

∑

(i,j) �=(m,m)

Gij

Gmm

∂2ûν

∂yi∂yj
− Bν

Gmm

∣
∣
∣
∣
∣
∣

2

≤ C

κ2

⎛

⎝
∑

i,�

(
∂2ûν

∂yi∂y�

)2

+ 1

⎞

⎠ ,

where we have used Young’s inequality and κ < 1. This implies that

(5.6) |D2û|2 ≤ C

κ2

⎛

⎝
∑

ν,i,�

(
∂2ûν

∂yi∂y�

)2

+ 1

⎞

⎠ .

The right-hand side again contains all derivatives except for ∂2û/∂xm∂xm.
Combining this with inequality (5.5) gives

∂

∂yi

(

Gij ∂w

∂yj

)

≥ C(κ2|D2û|2 − 1) − C
√

1 − κ

κ2
(|D2û|2 + 1 + Φ3),

which implies that if we choose κ close enough to 1 then the terms involving
|D2û|2 will cancel, and then w will be a subsolution to some linear elliptic
equation in divergence form. It is important to note that our choice of κ is
determined only by m, n, Ω (through dependence on F ) and Φ2.

Lemma 5.2. Let Ω be a smooth, bounded domain in R
m, and let φ : Ω̄ →

R
n be a smooth function with ||φ||2 ≤ Φ2 and ||φ||3 ≤ Φ3 for some constants

Φ2, Φ3 > 0. There exist constants κ, α ∈ (0, 1) and K > 0 such that if a
maximal graph in R

m+n
n is given by a smooth function u : Ω̄ → R

n, with
u|∂Ω = φ|∂Ω and |||Du|||2 ≤ 1 − κ, then [Du]α ≤ K. Here κ depends on m,
n, Φ2 and Ω, while α and K depend on m, n, Ω and Φ3.

Proof. Since w is a subsolution, we have enough to directly follow the proof
of Theorem 13.7 in [3]. Since F (B ∩ ∂Ω) is flat, and since û is zero on this
boundary portion, we know that the tangential derivatives ∂û/∂y� will be
zero there, and therefore so will w. Using this fact, we apply the boundary
weak Harnack inequality (Theorem 8.26 of [3]) exactly as in section 13.4
of [3], getting Hölder estimates on each ∂û/∂y�. The estimate on ∂û/∂ym

comes from the estimates on ∂û/∂y� by using inequality (5.6). This gives
us Hölder estimates on u near the boundary of Ω, which combine with the
interior estimates from Lemma 5.1 to complete the proof. �
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Theorem 5.1. Given a convex, smooth, bounded domain Ω in R
m, there

will exist a constant C (depending on Ω, m, n) such that the maximal graph
Dirichlet problem in R

m+n
n will have a smooth solution, with u|∂Ω = φ|∂Ω,

for any smooth φ : Ω̄ → R
n with C2 norm less than C.4

Proof. Let ||φ||2 ≤ Φ2 and ||φ||3 ≤ Φ3. Let κ = κ(m, n, Ω, Φ2) be as in
Lemma 5.2. Assume further that ||φ||2 is small enough that |||Dφ||2 ≤ 1 − κ
and that inequality (3.2) holds for this κ. This gives the gradient estimate
needed to apply Lemma 5.2, giving a C1,α estimate. These clearly hold for
solutions with boundary values σφ, for any σ ∈ [0, 1], allowing us to apply
Lemma 2.1. �

6. The minimal graph Dirichlet problem

Our main theorems say that a solution to the maximal graph Dirichlet prob-
lem will exist for boundary data with C2 norm less than some constants.
It seems obvious to attempt to improve these results in such a way that
the constant will depend on the domain in a simpler way. Such a result
(but for minimal graphs) is the goal of [10], where the proof uses a gradi-
ent estimate and White’s regularity theorem (see [11]) for mean-curvature
flows. For spacelike mean-curvature flows in semi-Euclidean spaces, we have
a similar gradient estimate (see Proposition A.1) and a version of White’s
theorem [8], so it makes sense to attempt a similar proof. In [10], White’s
theorem is used to get C2,α estimates to prove long-time existence. However,
White’s theorem only gives local estimates, which are not enough to prove
long-time existence in this problem. Professor Wang agrees that this gap
in the proof exists, but has suggested a method to get a similar (weaker)
existence theorem. Our proofs of the C1,α estimates used in Theorem 5.1 are
based on this method. These proofs could easily be repeated for the mini-
mal graph Dirichlet problem and, along with the gradient estimate from [10],
used to prove the following theorem.

Theorem 6.1. Let Ω be a bounded, smooth and convex domain in R
m.

There is a positive constant C (depending on Ω, m, n) such that there exists
a smooth solution to the minimal graph Dirichlet problem in R

m+n, with

4Also, if we know various properties of the domain (curvature of ∂Ω etc.) then it
would be possible (but difficult and tedious) find a lower bound on the required C,
by following the proofs of the C1,α estimates more carefully to check the constants
involved at each step.
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boundary values φ|∂Ω, whenever φ : Ω̄ → R
n is smooth with C2 norm less

than C.
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A. Gradient estimate for mean-curvature flow

Our goal in this section will be to prove a gradient estimate for spacelike
mean-curvature flows satisfying certain boundary/initial conditions. Sup-
pose that we have a graphic mean-curvature flow in R

m+n
n , given by some

function u : Ω × (0, T ) → R
n for a bounded, convex, C2 domain Ω ⊂ R

m.
We assume u is smooth on the interior of its domain and C1 on the clo-
sure. We take the induced metric (gij) from R

m+n
n on spatial slices Mt =

{(x, u(x, t)) ∈ R
m+n
n | x ∈ Ω} for each t ∈ [0, T ], and we assume that these

are spacelike (i.e., that |||Du||| < 1, where D taken with respect to the space
variables in R

m only). By the mean-curvature flow condition, u satisfies the
parabolic system ∂u/∂t = gij(Du)∂2u/∂xi∂xj .

Proposition A.1. Let φ : Ω̄ × [0, T ] → R
n be a C2 function and let κ ∈

(0, 1). If the function u above satisfies the boundary/initial condition that
u(x, t) = φ(x, t) whenever x ∈ ∂Ω or t = 0, then the inequality supΩ

|||Du|||2 < 1 − κ will hold for all times in [0, T ] if the (parabolic) C2 norm
of φ is small enough.

Proof. For φ small enough in C2, we can assume that supΩ |||Du(·, 0)|||2 =
supΩ |||Dφ(·, 0)|||2 < 1 − κ1/m < 1 − κ. Suppose that there exists some first
time ε ∈ (0, T ] such that |||Du(·, ε)|||2 = 1 − κ for some point in Ω̄. Then
we have |||Du|||2 ≤ 1 − κ on Ω̄ × [0, ε]. Now we take the linear parabolic
operator L = ∂/∂t − gij(Du)∂2/∂xi∂xj , and we define S± exactly as we
did earlier (where d is still a function of the space variables on Ω̄ only,
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independent of the time variable). We easily see that

LS± =
νζ2

(1 + ζd)2
gij ∂d

∂xi

∂d

∂xj
± Lφγ

≥ νζ2

(1 + ζ diam Ω)2
−
∣
∣
∣
∣
∂φ

∂t

∣
∣
∣
∣−

m

κ
|||D2φ||| ≥ 0

if we choose ζ = 1/diam Ω and νζ = 4 diam Ω supΩ×(0,T )(|∂φ/∂t| +
m|||D2φ|||/κ). Then we can apply the parabolic maximum principle to the
inequalities to again (exactly as in the maximal graph case) get |||Du||| ≤
νζ + 2|||Dφ||| on ∂Ω. Then, for φ with small enough parabolic C2 norm, we
will have sup |||Du|||2 < 1 − κ1/m on the parabolic boundary ∂Ω × [0, ε] ∪
Ω × {0}. Since we already know (by the definition of ε) that |||Du|||2 ≤ 1 − κ
on Ω̄ × [0, ε], we can use (d/dt − ΔMt

) log
√

det g ≥ 0, which follows from the
proof of Proposition 5.2 in [7]. By applying the parabolic maximum principle
to this inequality, we see that |||Du|||2 < 1 − κ on Ω̄ × [0, ε]. This contradicts
the definition of ε. Therefore, if the C2 norm of φ is as small as described,
the gradient estimate |||Du|||2 < 1 − κ will hold for all times for which the
flow exists. �

Paying closer attention to this proof, we see that supΩ |||Dφ(·, 0)||| <√
1 − κ1/m and 4 diam Ω supΩ×(0,T )(|∂φ/∂t| + m|||D2φ|||/κ) + 2 sup∂Ω

|||Dφ||| <
√

1 − κ1/m will be enough for the gradient estimate to hold.
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