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Cosmetic crossings and Seifert matrices

Cheryl Balm, Stefan Friedl, Efstratia Kalfagianni
and Mark Powell

We study cosmetic crossings in knots of genus one and obtain
obstructions to such crossings in terms of knot invariants deter-
mined by Seifert matrices. In particular, we prove that for genus
one knots the Alexander polynomial and the homology of the dou-
ble cover branching over the knot provide obstructions to cosmetic
crossings. As an application we prove the nugatory crossing con-
jecture for twisted Whitehead doubles of non-cable knots. We also
verify the conjecture for several families of pretzel knots and all
genus one knots with up to 12 crossings.

1. Introduction

A fundamental open question in knot theory is the question of when a cross-
ing change on an oriented knot changes the isotopy class of the knot. A
crossing disc for an oriented knot K ⊂ S3 is an embedded disc D ⊂ S3 such
that K intersects int(D) twice with zero algebraic intersection number. A
crossing change on K can be achieved by twisting D or equivalently by per-
forming appropriate Dehn surgery of S3 along the crossing circle ∂D. The
crossing is called nugatory if and only if ∂D bounds an embedded disc in the
complement of K. A non-nugatory crossing on a knot K is called cosmetic
if the oriented knot K ′ obtained from K by changing the crossing is isotopic
to K. Clearly, changing a nugatory crossing does not change the isotopy
class of a knot. The nugatory crossing conjecture (Problem 1.58 of Kirby’s
list [5]) asserts that the converse is true: if a crossing change on a knot K
yields a knot isotopic to K then the crossing is nugatory. In other words,
there are not any knots in S3 that admit cosmetic crossings.

In the case that K is the trivial knot an affirmative answer follows from
a result of Gabai [3] and work of Scharlemann and Thompson [11]. The
conjecture is also known to hold for two-bridge knots by work of Torisu [12],
and for fibered knots by work of Kalfagianni [4]. For knots of braid index
three a weaker form of the conjecture, requiring that the crossing change
happens on a closed three-braid diagram, is discussed by Wiley in [15].
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In this paper, we study cosmetic crossings on genus one knots and we
show that the Alexander polynomial and the homology of the double-cover
branching over the knot provide obstructions to cosmetic crossings.

Theorem 1.1. Given an oriented genus one knot K let ΔK(t) denote the
Alexander polynomial of K and let YK denote the double cover of S3 branch-
ing over K. Suppose that K admits a cosmetic crossing. Then

(1) K is algebraically slice. In particular, ΔK(t) .= f(t)f(t−1), where
f(t) ∈ Z[t] is a linear polynomial.

(2) The homology group H1(YK) := H1(YK , Z) is a finite cyclic group.

For knots that admit unique (up to isotopy) minimal genus Seifert sur-
faces we have the following stronger result.

Theorem 5.1. Let K be an oriented genus one knot with a unique minimal
genus Seifert surface, which admits a cosmetic crossing. Then ΔK(t) .= 1.

Given a knot K let D+(K, n) denote the n-twisted, positive-clasped
Whitehead double of K and let D−(K, n) denote the n-twisted, negative-
clasped Whitehead double of K. Theorems 1.1 and 5.1 can be used to prove
the nugatory crossing conjecture for several classes of Whitehead doubles.
For example, Theorem 5.1, combined with results of Lyon and Whitten [9,
14], gives the following. (See Section 7 for more results in this vein.)

Corollary 1.1. If K is a non-cable knot, then, for every n �= 0, D±(K, n)
admits no cosmetic crossings.

Combining Theorem 1.1 with a result of Trotter [13], we prove the nuga-
tory crossing conjecture for all the genus one knots with up to twelve cross-
ings (Theorem 6.2) and for several families of pretzel knots (Corollary 7.2).

The paper is organized as follows: in Section 2, we use a result of
Gabai [3] to prove that a cosmetic crossing change on a knot K can be real-
ized by twisting along an essential arc on a minimal genus Seifert surface of
K (Proposition 2.1). For genus one knots such an arc will be non-separating
on the surface. In subsequent sections this will be our starting point for
establishing connections between cosmetic crossings and knot invariants
determined by Seifert matrices.

Sections 3 and 4 are devoted to the proof of Theorem 1.1. The proof of
this theorem shows that the S-equivalence class of the Seifert matrix for a
genus one knot provides more refined obstructions to cosmetic crossings:
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Corollary 1.2. Let K be a genus one knot. If K admits a cosmetic cross-

ing, then K has a Seifert matrix V of the form
(

a b
b + 1 0

)
which is

S-equivalent to
(

a + ε b
b + 1 0

)
for some ε ∈ {−1, 1}.

In Section 5, we study the question of whether the S-equivalence class
of the Seifert matrix of a genus one knot contains enough information to
resolve the nugatory crossing conjecture (Question 5.1). Using Corollary
1.2 we prove Theorem 5.1 which implies the nugatory crossing conjecture
for genus one knots with non-trivial Alexander polynomial with a unique
minimal genus Seifert surface. We also construct examples showing that
Corollary 1.2 is not enough to prove the nugatory crossing conjecture for all
genus one knots with non-trivial Alexander polynomial (Proposition 5.2).

In Sections 6 and 7, we provide examples of knots for which Theorems
1.1 and 5.1 settle the nugatory crossing question. In Section 6, we combine
Theorem 1.1 and Corollary 1.2 with a result of Trotter to settle the conjec-
ture for all the 23 genus one knots with up to 12 crossings. The examples
we discuss in Section 7 are twisted Whitehead doubles and pretzel knots.

Throughout the paper we will discuss oriented knots in an oriented S3

and we work in the smooth category.

2. Crossing changes and arcs on surfaces

In this section, we use a result of Gabai [3] to prove that a cosmetic cross-
ing change on a knot K can be realized by twisting along an essential arc
on a minimal genus Seifert surface of K (Proposition 2.1). For genus one
knots such an arc will be non-separating on the surface. In the next sections
this will be our starting point for establishing connections between cosmetic
crossings and knot invariants determined by Seifert matrices.

Let K be an oriented knot in S3 and C be a crossing of sign ε, where
ε = 1 or −1 according to whether C is a positive or negative crossing (see
figure 1). A crossing disc of K corresponding to C is an embedded disc
D ⊂ S3 such that K intersects int(D) twice, once for each branch of C,
with zero algebraic intersection number. The boundary L = ∂D is called a
crossing circle. Performing (−ε)-surgery on L, changes K to another knot
K

′ ⊂ S3 that is obtained from K by changing the crossing C.

Definition 2.1. A crossing supported on a crossing circle L of an ori-
ented knot K is called nugatory if L = ∂D also bounds an embedded disc
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Figure 1: Left: a positive crossing. Right: a negative crossing.

in the complement of K. This disc and D form an embedded two-sphere
that decomposes K into a connected sum where some of the summands may
be trivial. A non-nugatory crossing on a knot K is called cosmetic if the
oriented knot K ′ obtained from K by changing C is isotopic to K; that
is, there exists an orientation-preserving diffeomorphism f : S3 −→ S3 with
f(K) = K ′. �

For a link J in S3 we will use η(J) to denote a regular neighborhood of
J in S3 and we will use MJ := S3�η(J) to denote the closure of the com-
plement of η(J) in S3.

Lemma 2.1. Let K be an oriented knot and L a crossing circle supporting
a crossing C of K. Suppose that MK∪L is reducible. Then C is nugatory.

Proof. An essential two-sphere in MK∪L must separate η(K) and η(L). Thus
in S3, L lies in a three-ball disjoint from K. Since L is unknotted, it bounds
a disc in the complement of K. �

Let K be an oriented knot and L = ∂D a crossing circle supporting a
crossing C. Let K ′ denote the knot obtained from K by changing C. Since
the linking number of L and K is zero, K bounds a Seifert surface in the
complement of L. Let S be a Seifert surface that is of minimal genus among
all such Seifert surfaces in the complement of L. Since S is incompressible,
after an isotopy we can arrange so that the closed components of S ∩ D are
homotopically essential in D�K. But then each such component is parallel
to ∂D on D and by further modification we can arrange so that S ∩ D is a
single arc α that is properly embedded on S as illustrated in figure 2. The
surface S gives rise to Seifert surfaces S and S′ of K and K ′, respectively.

Proposition 2.1. Suppose that K is isotopic to K ′. Then S and S′ are
Seifert surfaces of minimal genus for K and K ′, respectively.

Proof. If the crossing is nugatory then L bounds a disc in the complement
of S and the conclusion is clear. Suppose the crossing is cosmetic; by Lemma
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Figure 2: The crossing arc α = S ∩ D.

2.1, MK∪L is irreducible. We can consider the surface S properly embedded
in MK∪L so that it is disjoint from ∂η(L) ⊂ ∂M . The assumptions on irre-
ducibility of MK∪L and on the genus of S imply that the foliation machinery
of Gabai [3] applies. In particular, S is taut in the Thurston norm of MK∪L.
The manifolds MK and MK′ are obtained by Dehn filling of MK∪L along
∂η(L). By [3, Corollary 2.4], S can fail to remain taut in the Thurston norm
(i.e., genus minimizing) in at most one of MK and MK′ . Since we have
assumed that C is a cosmetic crossing, MK and MK′ are homeomorphic (by
an orientation-preserving homeomorphism). Thus S remains taut in both of
MK and MK′ . This implies that S and S′ are Seifert surfaces of minimal
genus for K and K ′, respectively. �

By Proposition 2.1, a crossing change of a knot K that produces an
isotopic knot corresponds to a properly embedded arc α on a minimal genus
Seifert surface S of K. We observe the following.

Lemma 2.2. If α is inessential on S, then the crossing is nugatory.

Proof. Recall that α is the intersection of a crossing disc D with S. Since
α is inessential, it separates S into two pieces, one of which is a disc E.
Consider D as properly embedded in a regular neighborhood η(S) of the
surface S. The boundary of a regular neighborhood of E in η(S) is a two-
sphere that contains the crossing disc D. The complement of the interior of
D in that two-sphere gives a disc bounded by the crossing circle L = ∂D
with its interior disjoint from the knot K = ∂S. �

3. Obstructing cosmetic crossings in genus one knots

A knot K is called algebraically slice if it admits a Seifert surface S such that
the Seifert form θ : H1(S) × H1(S) −→ Z vanishes on a half-dimensional
summand of H1(S); such a summand is called a metabolizer of H1(S). If
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a1 a2

α

Figure 3: A genus one surface S with generators a1 and a2 of H1(S) and a
non-separating arc α.

S has genus one, then the existence of a metabolizer for H1(S) is equiva-
lent to the existence of an essential oriented simple closed curve on S that
has zero self-linking number. If K is algebraically slice, then the Alexander
polynomial ΔK(t) is of the form ΔK(t) .= f(t)f(t−1), where f(t) ∈ Z[t] is
a linear polynomial with integer coefficients and .= denotes equality up to
multiplication by a unit in the ring of Laurent polynomials Z[t, t−1]. For
more details on these and other classical knot theory concepts we will use
in this and the next section, the reader is referred to [1] or [7].

Theorem 3.1. Let K be an oriented genus one knot. If K admits a cos-
metic crossing, then it is algebraically slice. In particular, there is a linear
polynomial f(t) ∈ Z[t] such that ΔK(t) .= f(t)f(t−1).

Proof. Let K ′ be a knot that is obtained from K by a cosmetic crossing
change C. By Proposition 2.1, there is a genus one Seifert surface S such
that a crossing disc supporting C intersects S in a properly embedded arc
α ⊂ S. Let S′ denote the result of S after the crossing change. Since C is
a cosmetic crossing, by Lemma 2.2, α is essential. Further, since the genus
of S is one, α is non-separating. We can find a simple closed curve a1 on
S that intersects α exactly once. Let a2 be another simple closed curve so
that a1 and a2 intersect exactly once and the homology classes of a1 and
a2 form a symplectic basis for H1(S) ∼= Z ⊕ Z. Note that {a1, a2} form a
corresponding basis of H1(S′). See figure 3.

The Seifert matrices of S and S′ with respect to these bases are

V =
(

a b
c d

)
and V ′ =

(
a − ε b

c d

)
,
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respectively, where a, b, c, d ∈ Z and ε = 1 or −1 according to whether C is
a positive or a negative crossing. The Alexander polynomials of K, K ′ are
given by

ΔK(t) .= det(V − tV T) = ad(1 − t)2 − (b − ct)(c − tb),

ΔK′(t) .= (a − ε)d(1 − t)2 − (b − ct)(c − tb).

Since K and K ′ are isotopic we must have ΔK(t) .= ΔK′(t) which easily
implies that d = lk(a2, a2) = 0. Hence K is algebraically slice and

ΔK(t) .= (b − ct)(c − tb) = (−t)(b − ct)(b − ct−1) .= (b − ct)(b − ct−1).

Setting f(t) = b − ct we obtain ΔK(t) .= f(t)f(t−1) as desired. Note that
since |b − c| is the intersection number between a1 and a2, by suitable ori-
entation choices, we may assume that c = b + 1. �

Recall that the determinant of a knot K is defined by det(K) =
|ΔK(−1)|. As a corollary of Theorem 3.1 we have the following.

Corollary 3.1. Let K be a genus one knot. If det(K) is not a perfect square
then K admits no cosmetic crossings.

Proof. Suppose that K admits a cosmetic crossing. By Theorem 3.1 ΔK(t) .=
f(t)f(t−1), where f(t) ∈ Z[t] is a linear polynomial. Thus, if K admits cos-
metic crossings we have det(K) = |ΔK(−1)| = [f(−1)]2. �

4. Further obstructions: homology of double covers

In this section, we derive further obstructions to cosmetic crossings in terms
of the homology of the double-branched cover of the knot. More specifically,
we will prove the following.

Theorem 4.1. Let K be an oriented genus one knot and let YK denote the
double cover of S3 branching over K. If K admits a cosmetic crossing, then
the homology group H1(YK) is a finite cyclic group.

To prove Theorem 4.1 we need the following elementary lemma. (Here,
given m ∈ Z we denote by Zm = Z/mZ the cyclic abelian group of order
|m|.)
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Lemma 4.1. If H denotes the abelian group given by the presentation

H ∼=
〈

c1, c2 2xc1 + (2y + 1)c2 = 0
(2y + 1)c1 = 0

〉
,

then we have

(1) H ∼= 0, if y = 0 or y = −1.

(2) H ∼= Zd ⊕ Z (2y+1)2

d

, if y �= 0, −1 and gcd(2x, 2y + 1) = d where 1 ≤
d ≤ 2y + 1.

Proof. If y = 0 or y = −1, clearly we have H ∼= 0. Suppose now that y �=
0, −1 and gcd(2x, 2y + 1) = d where 1 ≤ d ≤ 2y + 1. Then there are inte-
gers A and B such that 2x = dA, 2y + 1 = dB, and gcd(A, B) = 1. Let α and

β be such that αA + βB = 1. Since
(

dA dB
dB 0

)
is a presentation matrix of

H and
(

α β
−B A

)
is invertible over Z, we get that

(
α β
−B A

)(
dA dB
dB 0

)
=(

d dαB
0 −dB2

)
is also a presentation matrix for H. So

H ∼=
〈

c1, c2 dc1 + dαBc2 = 0
dB2c2 = 0

〉
.

Now letting c3 = c1 + αBc2, we have

H ∼=
〈

c2, c3 dc3 = 0
dB2c2 = 0

〉
.

Hence H ∼= Zd ⊕ ZdB2 = Zd ⊕ Z (2y+1)2

d

. �

Proof of Theorem 4.1. Suppose that a genus one knot K admits a cosmetic
crossing yielding an isotopic knot K ′. The proof of Theorem 3.1 shows that
K and K ′ admit Seifert matrices of the form

(4.1) V =
(

a b
b + 1 0

)
and V ′ =

(
a + ε b
b + 1 0

)
,

respectively, where a, b ∈ Z and ε = 1 or −1 according to whether C is a
negative or a positive crossing. In particular, we have

(4.2) ΔK(t) .= ΔK′(t) .= b(b + 1)(t2 + 1) − (b2 + (b + 1)2).
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Presentation matrices for H1(YK) and H1(YK′) are given by

(4.3) V + V T =
(

2a 2b + 1
2b + 1 0

)
and V ′ + (V ′)T =

(
2a + 2ε 2b + 1
2b + 1 0

)
,

respectively. It follows that Lemma 4.1 applies to both H1(YK) and H1(YK′).
By that lemma, H1(YK) is either cyclic or H1(YK) ∼= Zd ⊕ Z (2b+1)2

d

, with
b �= 0, −1 and gcd(2a, 2b + 1) = d where 1 < d ≤ 2b + 1. Similarly, H1(YK′)
is either cyclic or H1(Y ′

K) ∼= Zd′ ⊕ Z (2b+1)2

d′
, with gcd(2a + 2ε, 2b + 1) = d′

where 1 < d′ ≤ 2b + 1. Since K and K ′ are isotopic, we have H1(YK) ∼=
H1(YK′). One can easily verify this can only happen in the case that gcd(2a,
2b + 1) = gcd(2a + 2ε, 2b + 1) = 1 in which case H1(YK) is cyclic. �

It is known that for an algebraically slice knot of genus one every minimal
genus surface S contains a metabolizer (compare [8, Theorem 4.2]). After
completing the metabolizer to a basis of H1(S) we have a Seifert matrix V
as in (4.1) above.

Corollary 4.1. Let K be an oriented, algebraically slice knot of genus one.
Suppose that a genus one Seifert surface of K contains a metabolizer leading
to a Seifert matrix V as in (4.1) so that b �= 0,−1 and gcd(2a, 2b + 1) �= 1.
Then K cannot admit a cosmetic crossing.

Proof. Let d = gcd(2a, 2b + 1). As in the proof of Theorem 4.1, we use
Lemma 4.1 to conclude that H1(YK) ∼= Zd ⊕ Z (2b+1)2

d

and hence is non-cyclic
unless d = 1. Now the conclusion follows by Theorem 4.1. �

Theorems 3.1 and 4.1 immediately yield Theorem 1.1 stated in the intro-
duction.

5. S-equivalence of Seifert matrices

We begin by recalling the notion of S-equivalence.

Definition 5.1. We say that an integral square matrix V is a Seifert matrix
if det(V − V T) = 1. We say that two Seifert matrices are S-equivalent if they
are related by a finite sequence of the following moves or their inverses:

(1) replacing V by PV PT, where P is an integral unimodular matrix;
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(2) column expansion, where we replace an n × n Seifert matrix V with
an (n + 2) × (n + 2) matrix of the form:

⎛
⎜⎜⎜⎜⎜⎝

0 0

V
...

...
0 0

u1 · · · un 0 0
0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

,

where u1, . . . , un ∈ Z;

(3) a row expansion, which is defined analogously to the column expansion,
with the rôles of rows and columns reversed. �

Note that W is a row expansion of V if and only if WT is a column
expansion of V T. In the following, given two Seifert matrices V and W
we write V ∼ W if they are S-equivalent, and we write V ≈ W if they are
congruent.

The proof of Theorem 3.1 immediately gives Corollary 1.2 stated in the
introduction. This in turn leads to the following question.

Question 5.1. Let a, b and d be integers and ε ∈ {−1, 1}. Are the matrices

(
a b

b + 1 d

)
and

(
a + ε b
b + 1 d

)

S-equivalent?

Now we focus on Question 5.1. A first trivial observation is that if d = 0
and b = 0, then the two given matrices are congruent and, in particular,
S-equivalent. We therefore restrict ourselves to matrices with non-zero deter-
minant, or equivalently, to knots of genus one such that the Alexander poly-
nomial ΔK(t) = det(V − tV T) is non-trivial.

5.1. Knots with a unique minimal genus Seifert surface

In this subsection, we prove an auxiliary algebraic result about congruences
of Seifert matrices. As a first application of it we prove the nugatory crossing
conjecture for genus one knots with non-trivial Alexander polynomial and
with a minimal genus Seifert surface which, up to isotopy, is unique.
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Proposition 5.1. Suppose that the matrices
(

a b
b + 1 0

)
and

(
c b

b + 1 0

)
,

where a, b, c ∈ Z, are congruent over Z. Then there is an integer n such that
a + n(2b + 1) = c.

Before we prove Proposition 5.1 we explain one of its consequences. If
K is a knot with, up to isotopy, a unique minimal genus Seifert surface,
then the Seifert matrix corresponding to that surface only depends on the
choice of basis for the first homology. Put differently, the integral congruence
class of the Seifert matrix corresponding to the unique minimal genus Seifert
surface is an invariant of the knot K. Assuming Proposition 5.1, we have
the following theorem.

Theorem 5.1. Let K be an oriented genus one knot with a unique minimal
genus Seifert surface, which admits a cosmetic crossing. Then ΔK(t) .= 1.

Proof. Let K be a genus one knot with a unique minimal genus Seifert
surface, which admits a cosmetic crossing. It follows from Corollary 1.2 and
from the discussion preceding the statement of this theorem that K admits a

Seifert matrix
(

a b
b + 1 0

)
which is S-equivalent to

(
a + ε b
b + 1 0

)
for some ε ∈

{−1, 1}. For b �= 0, Proposition 5.1 precludes such congruences from being
possible. If b = 0, then the Alexander polynomial is 1. �

We now proceed with the proof of Proposition 5.1.

Proof of Proposition 5.1. To begin, we suppose that an integral unimodular
congruence exists as hypothesized. That is, suppose that there exist integers
x, y, z, t such that

(
x y
z t

)(
a b

b + 1 0

)(
x z
y t

)
=

(
c b

b + 1 0

)
.

The left-hand side multiplies out to give

(5.1)
(

x2a + xy(2b + 1) xza + yz(b + 1) + xtb
xza + xt(b + 1) + zyb z2a + zt(2b + 1)

)
.

Solving the bottom right entry equal to zero implies that either z = 0, or
(for a �= 0) z = −t(2b + 1)/a. We required that z was an integer, so it must
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also be the case that t is such that a divides t(2b + 1), but we shall not need
this. In the case that a = 0 and z �= 0, we then have t = 0.

First, if z = 0, then (5.1) becomes
(

x2a + (2b + 1)xy xtb
xt(b + 1) 0

)
.

We require that x = t = 1 or x = t = −1 for the top right and bottom left
entries to be correct. But then setting n = xy proves the proposition in this
case.

Next, suppose z �= 0 and a = 0. Then t = 0, and (5.1) becomes
(

(2b + 1)xy yz(b + 1)
zyb 0

)
.

The equations zyb = b + 1 and zy(b + 1) = b imply that b2 = (b + 1)2, which
has no integral solutions.

Now in the general case, i.e., z �= 0 and a �= 0, we substitute z =
−t(2b+1)/a into (5.1), to yield

(
xk −t(b + 1)k/a

−tbk/a 0

)
,

where k := ax + y(2b + 1). Setting this equal to
(

c b
b + 1 0

)
,

the equations
−t(b + 1)k/a = b

and
−tbk/a = b + 1

imply again that (b + 1)2 = b2. Since this does not have integral solutions,
we also rule out this case. The only congruences possible are therefore those
claimed, which occur when z = 0 and x = t = ±1. This completes the proof
of Proposition 5.1. �

5.2. Other algebraically slice genus one knots

In this subsection, we will show that, in general, the answer to Question
5.1 can be affirmative, even for matrices with non-zero determinant. This
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implies that the S-equivalence class of the Seifert matrix of a genus one knot
with non-trivial Alexander polynomial does not in general contain enough
information to resolve the nugatory crossing conjecture. In fact, we will prove
the following proposition:

Proposition 5.2. For any b > 4 such that b ≡ 0 or 2 mod 3, there exists
an a ∈ Z such that

V =
(

a b
b + 1 0

)
and V ′ =

(
a + 1 b
b + 1 0

)

are S-equivalent.

Since any Seifert matrix V can be realized as the Seifert matrix of a knot
it follows that the S-equivalence class of Seifert matrices cannot resolve the
nugatory crossing conjecture for genus one knots with non-trivial Alexander
polynomial.

We will need the following elementary lemma to prove Proposition 5.2.

Lemma 5.1. Let a, b, k ∈ Z, then the matrices

(
a b

b + 1 0

)
,

(
a + k(2b + 1) b

b + 1 0

)
and

(
ab2 b

b + 1 0

)

are S-equivalent.

Proof. It is obvious that the first two matrices are congruent. It remains
to show that the first and the third matrix are S-equivalent. This follows
immediately from the following sequence of S-equivalences:

(
a b

b + 1 0

)
⇒

⎛
⎜⎜⎝

a b 1 0
b + 1 0 0 0

0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ ⇒

⎛
⎜⎜⎝

a 0 1 0
b + 1 0 0 −b

0 0 0 1
0 0 0 0

⎞
⎟⎟⎠

⇒

⎛
⎜⎜⎝

a 0 1 0
0 0 0 0
0 1 0 0

b + 1 −b 0 0

⎞
⎟⎟⎠ ⇒

⎛
⎜⎜⎝

a 0 1 0
0 0 0 0
1 1 0 0
1 −b 0 0

⎞
⎟⎟⎠
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⇒

⎛
⎜⎜⎝

a ab 1 0
ab ab2 b 0
0 1 + b 0 0
1 0 0 0

⎞
⎟⎟⎠ ⇒

⎛
⎜⎜⎝

0 1 + b 0 0
b ab2 ba 0
1 ab a 0
0 0 1 0

⎞
⎟⎟⎠

⇒
(

0 1 + b
b ab2

)
⇒

(
ab2 b

b + 1 0

)

�

Using this lemma we can now prove the proposition:

Proof of Proposition 5.2. Let b > 4 and such that b ≡ 0 or 2 mod 3. It is
then straight–forward to see 1 + b is coprime to 2(b + 1) − 1 = 2b + 1 and
that b − 1 is coprime to 2(b − 1) + 3. In particular, 1 − b2 = (1 − b)(1 + b)
is coprime to 2b + 1. We can therefore find an a ∈ Z such that

a(1 − b2) ≡ −1 mod (2b + 1),

by the Chinese remainder theorem. Put differently, we can find a k ∈ Z such
that

a + 1 = ab2 + k(2b + 1).

It follows from the above lemma that
(

a b
b + 1 0

)
and

(
a + 1 b
b + 1 0

)

are S-equivalent. �

6. Low crossing knots

In this section, we combine Theorem 1.1 and Corollary 1.2 with the following
result of Trotter [13] to prove the nugatory crossing conjecture for all genus
one knots with up to 12 crossings.

Theorem 6.1 [13 Corollary 4.7]. Let V be a Seifert matrix with |det(V )|
a prime or 1. Then any matrix which is S-equivalent to V is congruent to
V over Z.

Theorem 6.2. Let K be a genus one knot that has a diagram with at most
12 crossings. Then K admits no cosmetic crossings.
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Table 1: Genus one knots with at most 12 crossings

K det(K) K det(K) K det(K)

31 3 92 15 11a362 39
41 5 95 23 11a363 35
52 7 935 27 11n139 9
61 9 946 9 11n141 21
72 11 101 17 12a803 21
74 15 103 25 12a1287 37
81 13 11a247 19 12a1166 33
83 17 11a343 31 – –

Proof. Table 1, obtained from KnotInfo [2], gives the 23 knots of genus one
with at most 12 crossings, with the values of their determinants. We observe
that there are four knots with square determinant. These are 61, 946, 103

and 11n139 which are all known to be algebraically slice. Thus Corollary 3.1
excludes cosmetic crossings for all but these four knots. Now 61 and 103 are
two-bridge knots; by Torisu [12] they do not admit cosmetic crossings. The
knot K = 946 is isotopic to the pretzel knot P (3, 3,−3) of figure 5 which has

Seifert matrix
(

3 2
1 0

)
since the pretzel knot P (p, q, r) has a Seifert matrix

given by 1
2

(
p + q q + 1
q − 1 q + r

)
; see [7, Example 6.9]. The homology H1(YK) is

represented by
(

6 3
3 0

)
(compare Corollary 7.2 below). Thus by Lemma 4.1,

H1(YK) ∼= Z3 ⊕ Z3, and by Theorem 4.1, K cannot have cosmetic crossings.

The only remaining knot from table 1 is the knot K = 11n139. This knot
is isotopic to the pretzel knot P (−5, 3,−3). There is therefore a genus one
surface for which a Seifert matrix is

V =
( −1 2

1 0

)
,

again by [7, Example 6.9]. Using this Seifert matrix we calculate H1(YK) ∼=
Z9. Thus Theorem 1.1 does not work for the knot 11n139. Next we turn
to Corollary 1.2. Since |det(V )| = 2 is prime, by Theorem 6.1 it suffices to
show that V is neither integrally congruent to

(
0 2
1 0

)
nor to

( −2 2
1 0

)
.



250 Cheryl Balm et al.

But this follows from Proposition 5.1, with a = −1 and b = 1, noting that
two matrices are congruent if and only if their transposes are. �

Remark 6.1. The method applied for 11n139 in the proof of Theorem 6.2
can also be used to show that the knots 61 and 946 do not admit cosmetic
crossings.

7. More examples

In this section, we discuss some families of examples for which Theorems 1.1
and 5.1 imply the nugatory crossing conjecture.

7.1. Twisted Whitehead doubles

Given a knot K let D+(K, n) denote the n-twisted Whitehead double of
K with a positive clasp and let D−(K, n) denote the n-twisted Whitehead
double of K with a negative clasp (figure 4).

Corollary 7.1. (a) Given a knot K, the Whitehead double D+(K, n)
admits no cosmetic crossing if either n < 0 or |n| is odd. Similarly D−(K, n)
admits no cosmetic crossing if either n > 0 or |n| is odd.

(b) If K is not a cable knot then D±(K, n) admits no cosmetic crossings
for every n �= 0.

Proof. (a) A Seifert surface of D+(K, n) obtained by plumbing an n-twisted
annulus with core K and a Hopf band gives rise to a Seifert matrix Vn =(−1 0
−1 n

)
[7, Example 6.8]. Thus the Alexander polynomial is of the form

(7.1) ΔK(t) .= ΔK′(t) .= −n(t2 + 1) + (1 + 2n)t =: Δn.

Figure 4: The (−4)-twisted negative-clasped double of the unknot.
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Suppose now that D+(K, n) admits a cosmetic crossing. Then Δn should be
of the form shown in equation (4.2). Comparing the leading coefficients in
the expressions (4.2) and (7.1) we obtain |n| = |b(b + 1)| which implies that
|n| should be even. We have shown that if |n| is odd then D+(K, n) admits no
cosmetic crossing changes. Suppose now that n < 0. Since the Seifert matrix
Vn depends only on n and not on K, the knot D+(K, n) is S-equivalent to
the n-twisted, positive-clasped double of the unknot. This is a positive knot
(all the crossings in the standard diagram of D+(O, n) are positive) and it
has non-zero signature [10]. Hence D+(K, n) is not algebraically slice and
by Theorem 3.1 it cannot admit cosmetic crossings.

A similar argument holds for D−(K, n).
(b) Suppose that K is not a cable knot. By results of Lyon and Whitten

[9, 14], for every n �= 0 the Whitehead doubles D±(K, n) have unique Seifert
surfaces of minimal genus. By (7.1), Δn �= 1, and the conclusion follows by
Theorem 5.1. �

7.2. Pretzel knots

Let K be a three string pretzel knot P (p, q, r) with p, q and r odd (see
figure 5). The knot determinant is given by det(K) = |pq + qr + pr| and if
K is non-trivial then it has genus one. It is known that K is algebraically
slice if and only if pq + qr + pr = −m2, for some odd m ∈ Z [6].

Corollary 7.2. The knot P (p, q, r) with p, q and r odd does not admit
cosmetic crossings if one of the following is true:

(a) pq + qr + pr �= −m2, for every odd m ∈ Z.

(b) q + r = 0 and gcd(p, q) �= 1.

(c) p + q = 0 and gcd(q, r) �= 1.

Figure 5: P (p, q, r) with p, q and r positive and P (3, 3,−3).



252 Cheryl Balm et al.

Proof. In case (a) the result follows from Theorem 3.1 and the discussion
above. For case (b) recall that there is a genus one surface for P (p, q, r)

for which a Seifert matrix is V(p,q,r) = 1
2

(
p + q q + 1
q − 1 q + r

)
[7, Example 6.9].

Suppose that q + r = 0. If gcd(p, q) �= 1, then gcd(p + q, q) �= 1 and the
conclusion in case (b) follows by Corollary 4.1. Case (c) is similar. �
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