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Parallel and symmetric 2-tensor fields on
pseudo-Riemannian cones

PIERRE MOUNOUD

We study the complete pseudo-Riemannian manifolds whose cone
admits a non-trivial parallel symmetric 2-tensor field. We are able
to give an extensive description of these manifolds except when the
tensor field is given by a nilpotent endomorphism. In this case, we
are able to describe only a dense open subset of them. Moreover, we
construct examples with non-constant curvature where this open
set is proper.

1. Introduction

Let (M,g) be a pseudo-Riemannian manifold (we will consider that a
Riemannian metric is also a_pseudo-Riemannian one). It is interesting to
associate to (M, g) its cone (M,g) defined by M = Rsg x M and g = dr? +
r2g. This construction appears in different contexts. For example (pseudo-)
Sasakian manifolds are characterized by the fact that their cone is (pseudo-)
Kaéhler (see [3]). Cones are also used by Bér in [2] to classify Riemannian
manifolds admitting a non-trivial Killing spinor: indeed a Riemannian man-
ifold admits a real Killing spinor if and only if its cone admits a parallel
spinor (see [4] for the pseudo-Riemannian analogue). In [5], Gallot used
cones to study the Obata equation. This situation led Alekseevski et al. to
study in [1] the holonomy of cones as a subject on its own.

In this paper we are interested in describing the pseudo-Riemannian
manifolds (M, g) whose cone has a non-trivial parallel symmetric 2-tensor.
As such it can be seen as a contribution to the study of the holonomy of
cones, in the same spirit as [1]. Indeed most of our results extend, more or
less directly, results of [1]. Besides, Gallot proved in [5] (see also [7]) that
there is a one-to-one correspondence (recalled in Section 2.1) between these
tensors and the solutions of the Obata equation of (M, g). We recall that a
function « is a solution of the Obata equation if, for any tangent vector wu,
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v and w,

DDDa(u,v,w) +2(Da @ g)(u, v, w) + (D @ g)(v, u, w)
+ (Da® g)(w,u,v) =0,

where D is the Levi-Civita connection of g.

The interest of Gallot in this equation came from spectral geometry as
an eigenfunction for the third eigenvalue of the Laplacian of the sphere is
a solution of this equation. But this equation is also present in projective
geometry: it appears in the work of Solodovnikov [10] (see also the work of
Kiosak and Matveev [6] in the pseudo-Riemannian case) where it is related
to the existence of projectively equivalent metrics, i.e., metrics having the
same unparameterized geodesics.

Gallot and Tanno have independently shown (see [5, 11]) that if (M, g)
is a complete Riemannian manifold admitting a non-constant solution to the
Obata equation then (M, g) is a quotient of the round sphere. This result has
been extended to the pseudo-Riemannian case, keeping the conclusion, by
Matveev and the author in [7] under the hypothesis that (M, g) is compact
but not necessarily geodesically complete.

Hence, this work is also a way to obtain a further generalization of the
Gallot—Tanno theorem. As we are interested in global results, we need an
hypothesis of maximality on (M, g). Ideally, we would like to assume only
that (M, g) is non-extendable (i.e., that it is not isometric to a proper open
subset of any other manifold). Unfortunately, this is not clear whether this
hypothesis is sufficient. Consequently, we will use the original hypothesis
of geodesical completeness. But, as in the pseudo-Riemannian context this
hypothesis is quite restrictive, we will also consider the alternative hypothe-
sis that there exists a solution « of the Obata equation which is proper, i.e.,
such that for any compact K C R, a~1(K) is compact.

From now on, all manifolds will be assumed to be connected. Let us con-
sider a parallel tensor field T on M and T the endomorphism associated to T’
(i.e., we have T'(u,v) = g(u, T(v))). If T is not trivial, i.e., not proportional
to g, we can assume (see Proposition 2.6) that:

e cither 72 = T which means that (]\//.7 ,g) is decomposable, i.e., M admits
a_non-degenerate proper parallel distribution or equivalently that
(M,9g) is locally a product,

e cither 72 = —Id, in this case (]\/4\ ,g,T) defines a complex Riemannian
structure, i.e., T' defines a complex structure on M and g — 1T defines
a field of non-degenerate complex bilinear forms on M,
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o or T2 = 0, i.e., T is 2-step nilpotent, in this case (as far as the author
knows) there is no classical geometric interpretation.

It turns out that the simplest case is the complex Riemannian one. In this
situation, we are able to describe the whole manifold and therefore a large
family of manifolds admitting non-trivial solutions to the Obata equation.

Theorem 1.1. Let (M,g) be a non-extendable connected pseudo-Rieman-
nian manifold having a complex Riemannian cone (M,g,T). Let o be the
function on M associated to T. If (M, g) is complete or if a has compact
levels then there exists a complex Riemannian manifold (N, h,S) such that
M =R x N and

g = —ds* 4+ h — sinh(2s)8S.

Conversely, the cone over such a manifold admits a complex Riemannian
structure.

We are also able to classify, under any of our global hypotheses on
(M, g,a), the pseudo-Riemannian manifolds with decomposable cone. This
result extends Theorem 7.1 from [1] and can be stated as follows:

Theorem 1.2. Let (M,g) be a connected pseudo-Riemannian manifold
with decomposable cone. If g is complete or if the function o associated
to the cone decomposition is proper then

e cither g has constant curvature equal to 1,

e or ]TI/, the universal cover of M, is a warped product of a negative def-
inite hyperbolic space (possibly 1-dimensional) and a pseudo-Rieman-
nian manifold (F, gr).

More precisely, using polar coordinates on the hyperbolic space the met-
ric reads g = —ds? — sinh?(s)gs + cosh?(s)gr, where gs is the stan-
dard metric of the sphere.

More precisions about the topology of M are given in Theorem 4.11.

The last situation corresponds to cones admitting a parallel nilpotent
symmetric endomorphism field. In this case, we obtain a description of an
open dense subset of (M, g). This is a generalization of Theorem 9.1 of [1],
which corresponds to the case where the rank of T is 1.

Theorem 1.3. Let (M,g) be a non-extendable pseudo-Riemannian mani-
fold such that (M,q) has a non-trivial parallel symmetric 2-tensor field T
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such that T2 = 0. Let o be the function associated to T. Then M \ a~*(0)
is dense; let U be one of its connected component.
If (M, g) is complete or if a has compact levels then there exists a pseudo-

Riemannian manifold (N, h) endowed with a parallel symmetric and nilpo-
tent 2-tensor field S such that U =R x N and

g=—ds*+e*(h—8)+ 5.

Unfortunately, we have not been able to describe the whole manifold in
this case. But we provide in Section 5 a family of pseudo-Riemannian man-
ifolds with non-constant curvature having a cone endowed with a nilpotent
parallel endomorphism field and such that a~'(0) is not empty. These met-
rics are perturbations of the pseudo-sphere SP4 = {x € RPY19 | (x, ) = 1},
where RPT1:4 stands for RPT9*! endowed with a quadratic form of signature
(p+1,q). It is our opinion that, even if it is not clear that our examples are
complete, this construction shows a lack of rigidity that explains why the
classification is more complicated in this case.

We conclude this paper by explicating how under certain conditions a
parallel 2-tensor on M provides projectively equivalent metrics on M.

The author wishes to thank the referees for their suggestions and com-
ments in order to improve this article.

2. Parallel symmetric 2-tensors on the cone over a manifold
2.1. Link with the Obata equation

We start by giving the definition of cones over pseudo-Riemannian manifolds.
Definition 2.1. Let (M, g) be a pseudo-Riemannian manifold. We call cone
manifold over (M, g) the manifold M = R5g x M endowed with the metric
g defined by g = dr? + rg.

We will denote by D the Levi-Civita connection of g and by D the
Levi—Civita connection of g. Those connections are related by the following

fact.

Fact 2.2. The Levi-Civita connection of g is given by

o ~ ~ ~ 1
DxY = DxY —rg(X,Y)d,, Dp0,=0, Dy X =Dx0, = -X.
T
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The holonomy of cones over pseudo-Riemannian manifolds is strongly
related to the Obata equation seen in the introduction. This relation is
given by the following proposition, which is proved in [7] by following the
lines of [5].

Proposition 2.3 (see [7], Proposition 3.1). Let (M,g) be a pseudo-
Riemannian manifold. Let (]\7, g) be the cone manifold over (M,qg). There
exists a smooth non-constant function o : M — R such that for any vectors
u, v, w tangent to M we have:

DDDa(u,v,w) +2(Da ® g)(u,v,w) + (Da ® g)(v, u, w)
+ (Da® g)(w,u,v) =0,

if and only if there exists a non-trivial symmetric parallel 2-tensor field on
(,5).

More precisely if o is a non-trivial solution of the above equation then
the Hessian of the function A : M — R defined by A(r,m) = r2a(m) is par-
allel (z'.e.;\DDDA =0). Conversely if T is a symmetric parallel 2-tensor
field on M then T(0,,0,) does not depend on r and is a solution of the
above equation. Moreover, 2T is the Hessian of the function Ar defined by

AT(’I”, m) = 7“2T(T7m) (87«, GT) .

We just quote the following Lemma, it is one of the steps of the proof
of Proposition 2.3 and it will be useful further.

Lemma 2.4 ([7], Corollary 3.3). LetT be a symmetric parallel 2-tensor-
field on (M,g), and let o =T(0y,0;). Let u, v, w be vectors tangent to M
also seen as vectors perpendicular to O, in M. We have

2T(0r,u) = rDa(u),
2T (u,v) = r?(2g(u, v)a + DDa(u, v)),
2DT (u,v,w) = —Da ® g(v,u,w) — Da ® g(w, u,v).

Example 2.5. It follows from Fact 2.2, that the curvature of g is given by

~

R(u,v)w = R(u,v)w — g(v, w)u + g(u, w)v,

where R and R are the curvature tensors of g and g. Thus, a simply connec-
ted pseudo-Riemannian manifold (M, g) with constant curvature equal to 1
has a cone, which is flat and simply connected. Hence the cone over (M, g)
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admits any kind of parallel tensor fields. This is somehow a trivial example.
We are going to look for non-trivial ones.

Contrarily to the Riemannian case, the existence of a parallel symmetric
2-tensor on a pseudo-Riemannian manifold does not imply that the manifold
is decomposable (i.e., it possesses parallel non-degenerate distributions). But
the following proposition shows that it suffices to consider only three cases.

Proposition 2.6. If a pseudo-Riemannian manifold (N, h) admits a non-
trivial symmetric parallel endomorphism T then there exists on (N,h) a

symmetric parallel endomorphism T' such that T =T, T'> =0 or T'? =
—1d.

Proof. If (N, h) is decomposable, i.e., if there exists a non-degenerate parallel
distribution V_on (N, h) then the pro Jectlon on V is a parallel endomorphism
P satisfying P2=P. IfTisa symmetric parallel endomorphism then it is
also the case of its nilpotent part. If it is not trivial and if we take an appro-
priate power of it we obtain a non-trivial symmetric parallel endomorphism
T' such that 7" = 0.

At last, if (IV,h) is not decomposable and if T is a non-trivial semi-
simple symmetric parallel endomorphism then there exits A = a +ib € C\ R
such that the minimal polynomial of T"is (X — A)(X — A). But in this case
T = T 71d is parallel and symmetric and satisfies T = —1d. O

Example 2.5 shows that any of these situations may occur on a cone
over a complete pseudo-Riemannian manifold. However it is proven in [7]
that on a cone over a compact manifold there is only one type of symmetric
2-tensor field to investigate:

Proposition 2.7 ([7], Proposition 3.4). Let (M,g) be a closed pseudo-
Riemannian manifold. If the Obata equation has a non-constant solution
then (M,g) is decomposable.

2.2. Basic properties

Let (M,g) be a pseudo-Riemannian manifold such that its cone (]\/J\ ,9)
admits a non-trivial symmetric parallel 2-tensor field 7' Proposition 2.6
tells us that we can assume that its associated parallel endomorphism T'
satisfies T2 =T, T?> =0 or T? = —Id.
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We recall that if A is an eigenvalue of T (here we can only have A =0
or 1) then the eigenspace V) associated to A is a parallel distribution and
therefore is integrable, i.e., it defines a foliation.

As in Section 2, we define on M the functions a = T(9,,0,) and A
by A(r,m) = r?a(m). We recall that « is actually a function on M. We
start with two corollaries of Proposition 2.3. The first one actually implies
Proposition 2.7.

Corollary 2.8. The set of critical values of a is included in o(T), the
spectrum of T (i.e., the set of its real eigenvalues).

Proof. Let m € M be a critical point of a. Lemma 2.4 and Proposition 2.3
imply that for any r > 0,

DDA )0y, .) = 2a(m)§ (0, ).

It means that 0,(r,m) belongs to the eigenspace of T associated to the
eigenvalue a(m). In our cases it implies that a(m) = 0 or 1. O

Corollary 2.9. If a is constant on an open subset U of M then « is con-
stant on M and T is trivial.

Proof. As for any k € R, the tensor field T + kg is also parallel, we can
assume that for any m € U, a(m) = 0. Hence A vanishes on R+¢ x U and
so does the Hessian of A. But the Hessian of A is equal to 2T which is
parallel. It means that T is trivial and therefore « is constant. O

We consider the vector field Y on M defined by
Y =T(8,).

We decompose now the vector field Y according to the splitting M =
RO, & T M, we have

Y =ad + X,
where X is a vector field on M tangent to M. We have:
a—a?, if 72 = f,
G(X,X) =< —a?, if T2 =0,
—1-a? i T?=-Id.

The following proposition generalizes Corollary 4.1 of [1] (which concerns
the case T2 = T)).
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Proposition 2.10. The vector field 2rX projects on a vector field on M
which is the gradient of a (with respect to the metric g).

Proof. Let Z be a vector field on M. Denoting also by Z its lift to M and
using Lemma 2.4, we have:

Da(Z) = 2T (iz ar> _ 95 <iz Y) _ %g(z, ad) + X) = g(Z,2rX).

Corollary 2.11. The gradient of A is the vector field 2rY . It satisfies

rY, if 72 =T,
DyyrY =<0, if 72 =0,
—rd,, ifT?=-Id

and is therefore, in the first two cases, a pregeodesic vector field (i.e., up to
reparameterization its integral curves are geodesics). The vector field rX is
pregeodesic for the metric g, more precisely we have

(1-2a)rX, ifT2=T,
D, xrX =<{ —2arX, if T2 =0,
—2arX, if T2 = —Id.

Proof. We have dA = 2radr + r’da. Let v = = a0y + h be a vector tangent to
M decomposed according to the splitting ™M = RO, ® T'M. We verify that
g(2rY,.) = dA. Using Proposition 2.10, we have

dA(v) = 2raa + r2do(h)
= 2raa +1r2g(2rX, h)
= 2rg(ad, + X,v).

The fact that the covariant derivative commutes with the musical isomor-
phisms (# and b) implies §( (2rY), .) is equal to the Hessian of A. Hence
G(Dyy (2rY), ) = 2T(rY, .) and DyyrY = rT2(0,).

According to Fact 2.2, D,.xrX is the projection on T'M of ﬁrx’l“X. Using
the fact that rX = rY — ard, and Fact 2.2 again, it is straightforward to
compute lA)r x7X and therefore D, xrX. O
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Corollary 2.12. The function A is constant along the leaves of the foliation
spanned by kerT'.

Proof. Tt follows from the fact that for any Z€ ker T we have 0 =T'(2rd,, Z)=
9(2rY, Z) = dA(Z). O

3. Description of the regular locus of o

Definition 3.1. Let a be a non-trivial solution of the Obata equation. We
call regular locus of a the open dense set of M defined by M\ a~!(o(T)),
where o(T') denotes the spectrum of 7' (hence in our case o(T) C {0,1}).

We are able now to give a complete description of the regular locus of a
solution «. Everything starts from the following consequence of Section 2:

Corollary 3.2. Let U be the open dense subset of M defined by U = {m €
M | gm(rX,rX) # 0}. The vector field X defined on U by

— 1
X = — 2rX
lg(2rX,2rX)|

is geodesic (i.e., it satisfies DYY = 0) and its local flow preserves the foli-
ation of U by level sets of a. Moreover, if v is an integral curve of X, there
ezists a constant ¢ such that we have

cos?(s + ¢), ifT2=T7T and 0<a<l,
cosh?(s + ¢), if T2=T and o> 1,
—sinh?(s + ¢), if T2=T and « <0,
a0 () =\ paree. ifT2=0 and a>0,

—e e, if 72=0 and a <0,
| sinh(2s + ¢), if 72 = —Id.

Proof. The vector field X is pregeodesic and unitary, therefore it is geodesic.
To see that it preserves the foliation of U by level sets of «, we compute X - a.
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According to Proposition 2.10, we have 2rX - a = ¢g(2rX, 2rX) and therefore

1 1
- 9(2rX,2rX)

2rX -a=
lg(2r X, 2rX)| V0g2rX,2rX)|
+2\/la —a?], i T2=T,
= { 2|al, if T2 =0,
21+ a2, if T2 = —Id.
The existence of such an equation implies that the local flow of X pre-

serves the foliation. Solving these ordinary differential equations, we obtain
the expression of o along an integral line of X. OJ

We recall that a pseudo-Riemannian manifold is said to be non-extendable
if it is not isometric to a proper (i.e., non-closed) open subset of any other
manifold. Clearly, a complete or compact pseudo-Riemannian manifold is
non-extendable. Now, we can state the following theorem, it actually con-
tains Theorems 1.1 and 1.3 given in the introduction.

Theorem 3.3. Let (M,g) be a non-extendable pseudo-Riemannian man-
ifold such that (M,g) has a parallel symmetric 2-tensor field T' such that
T? =T, 0 or —1d. Let v be the function on M associated to T and o(T) be
the spectrum of T. Let U be a connected component of M \ a=(a(T)).

If (M, g) is complete or if all level sets of o« on U are compact, then there
exist an open interval I, a pseudo-Riemannian manifold (N, h) endowed with
a parallel symmetric 2-tensor field S (possibly trivial) such that U =1 x N
and

1. IfT? =0, then I =R, a(s,n) = € and

g=—ds®+ (ezs(h -S)+5),
Tispxn = €S,

2. If T> = —1d, then I =R, a(s,n) = sinh(2s), U = M and

g = —ds® + (h —sinh(2s)9),
,.Z_“{S}XN = S + sinh(2s)h.

3. IfT? =T and 0 < a < 1, then I = 10,7/2], a(s,n) = cos?(s) and

g = ds®> + (sin(s)(h — S) + cos?(s)S),
Tisyxn = cos?(s)S.
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4. IfT?2=T and a > 1 (respectively o < 0), then I =Rsg (resp. I =
Rg), a(s,n) = cosh®s (resp. a(s,n) = —sinh®s) and

g = —ds* + (sinh?(s)(h — S) 4 cosh?(s)9),
T\{s}xN = COShQ(S)S
(resp. Ti{syxn = sinh?(s)(h — 9)).

Conversely, if (N, h) is a pseudo-Riemannian manifold endowed with a
parallel symmetric 2-tensor S such that S = S, 0 or —Id then the pseudo-
Riemannian manifolds (I x N, g) given by the above formulas are well defined
and the cone over any of them admits a non-trivial parallel symmetric

2-tensor field T.
Proof. We begin the proof by the following Lemma.

Lemma 3.4. Under the hypotheses of Theorem 3.3, and keeping the nota-
tion therein, there exist a manifold N such that U = R x N. Moreover each
submanifold {x} x N corresponds to a level of ajyy and the vector field rX
is everywhere tangent to the factor R.

Proof of Lemma 3.4. Let a and b in R such that a < b and [a,b] C a(U). Let
e > 0 such that [a — ,b + ] C a(U). We denote by K the subset of U given
by K = a~*([a,b]). We choose a bump function [ such that [(K) = {1} and
[ vanishes outside a~1(Ja —€,b + ¢[). As g is geodesically complete or as «
has compact levels, the vector field [X is complete.

Moreover, Corollary 3.2 says that the local flow of X preserves the foli-
ation of U by level set of a. It entails that the flow of [X has the same
property on K. We obtain that a~!([a, b]) is diffeomorphic to J x a~*({a}),
where J is a closed interval.

Thus U is a fibre bundle over a one-dimensional manifold with fiber N
diffeomorphic to a=({a}). As « is constant along the fibers the base can
not be compact, thus it is diffeomorphic to R. The base being contractible,
the fibre bundle is trivial, i.e., U is diffeomorphic of R x N. O

On the factor R given by Lemma 3.4, we choose a parameterization t
such that 0; = r X. The line is therefore identified with an open interval J.
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Lemma 3.5. We denote by w the projection on J, by Sy and g¢ the restric-
tions of T and g to {t} x N, then

(3.1) g = —2a(t)gs + 25,
S, = —2a(t)S; + 257,

where @ is the function on J such that @ om = a and S? is the 2-tensor field
associated to the endomorphism S?. Moreover, denoting Dt the Levi-Civita
connexion of g;, we have D'S; = 0.

Proof of Lemma 3.5. If we denote by L,x the Lie derivative according to
rX, we have

Lrxg(u,v) = g(DyrX,v) + g(DyrX,v) = D2a(u,v).
By Lemma 2.4 we thus have
Lrxg=—2ag+2T,

which clearly implies (3.1).
On the other hand, by Lemma 2.4 we have

DT (rX,u,v) =0

for any wu, v perpendicular to rX. We deduce that if u and v are perpendicular
to rX then

LoxT(u,v) =T (DyrX,v) + T(DyrX,u)

)+
= g(DurX, T(v)) +g<D rX,T(u))
)+

= | Da(u, T(v)

= —Oég(u T(v)) + ( T(v)) - ag(v,T(u)) + T (v, T(u))
= —2ag(u, T(v)) + 29(u, T*(v)).

L D2, T (u))

This shows the second assertion.
Let u, v and w three vectors tangent to {t} x N at a point (¢,n). Using
Lemma 2.4 we can write:

0 = DT (u,v,w) = D'Sy(u,v,w) + T(II;(u,v)X,w) + T I;(u,w)X,v),
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where I[; stands for the second fundamental form of {t} x N. But for
any n € N, we have T"(8,.) € Span(9,, rX) therefore T'(X,u) = T(X,v) = 0.
Consequently, D'S; = 0. O

With our choice of parameter on R the metric reads g = g(rX, rX)dt? +
g¢. This is not the desired shape. Thus we need to reparameterize R, we
choose a parameter s such that 0, = X. The equations obtained at
Lemma 3.5 turn into:

/ —1 —
9s = —=——=(—20(s)gs + 255),
lg(rX,rX))|
-1
S = (—2a(s)S, + 252).
lg(rX,rX))|

If 72 = 0, according to Corollary 3.2, we obtain the equations

g. = €2gs — 2e~ S,
S! = €28,

where € is the sign of a.
If T? = —1d, according to Corollary 3.2, we obtain the equations

2
! — 2tanh(2 -8
gs anh(2s)gs cosh(25)
S’ = 2tanh(2s)S —_— 0.
5 anh(2s) s + cosh(2s)gs

FT2=Tand0< a < 1, according to Corollary 3.2, we obtain the equations

2 2
~ tan(s)”* " cos(s) sin(s)
S! = —2tan(s)Ss.

S

’
Ys

S

FT2=T and a < 0, according to Corollary 3.2, we obtain the equations

b2 2 g
e = tanh(s)gs cosh(s)sinh(s) "’

S! = 2tanh(s)Ss.

The case T2 = T and « > 1 is similar to the later.
There exists a unique solution to each of these systems of differential
equations with given initial data. Now there is no difficulty to check that
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these solutions are the one given in the statement. If the interval I is smaller
than the one given in the statement then (M, g) is clearly extendable. Thus,
we proved the first half of the theorem. Let us remark that the endomor-
phisms S do not depend on s.

For the converse, the first thing to check is that the metrics g5 given
in the statement are never degenerate. As it is a pointwise property, it is
linear algebra. We denote by I the identity matrix of order k, and by N

the matrix (8 é) Let S and g, such that S = h(S.,.) and gs = h(gs., ).
It is easy to find a frame of T,V such that the matrix of S is given by
Ik 0 a2 _ ~
<0 O)’ when S° =5,
N
,  when 52 = 0,
N
0
0 —I» 9
<I; 0 ) , when S = —Id.

The matrix in those frames of gs are now easy to write down. They are
clearly non-degenerate. .

If there exists a parallel tensor 7" on M inducing S on N, then there
exists a vector field Y such that the endomorphism 7T is given by :

0,—0, or Y (according to the relation between S and S2),
5(2),

T(Z) = 5(Z), for any vector Z tangent to {s} x N.

As we already know the function «, it is not difficult to give Y. It has to be:

Y = a(s)d, — % 3(5)0s,

where
| — a2, if 72 =T,
B={a? if T2 =0,
1+ a2, if 72 = —1d.

We have only to check that the tensor field 7" on M given in the statement
is parallel. The main difficulty is solved by the following Lemma.
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Lemma 3.6. Let (g, S;) be path of metrics and symmetric 2-tensors on a
manifold N satisfying (3.1) and (3.2) and such that D S;, = 0 and SE = 0,
—1d or Sy,. Then for any t we have D'S; = 0.

Proof of Lemma 3.6. The first point is that DS, and D%g, are solutions
of a differential equation. Indeed we have:

(3:3) (D'gi)' = D" (g;) = —2a(t) D" (g¢) + 2D" (S}),
(3.4) (D% Sy) = D% (S}) = —2a(t)D™(S;) + 2D (S%).

As 5? =0, —Id or §t, this equation is in fact linear. But for ¢t =ty we
have D'g; =0 and D%S; = 0; therefore for any ¢ we have D' g, = 0 and
Dt S, = 0. It means that D = D! and D!S; = 0.

We leave to the reader the last verifications. [l

As we said in the introduction, the case S = 0 of part 3.3 of Theorem 3.3
can be find in [1]. The parts 3.3 and 3.3 of Theorem 3.3 have also already
appeared in [1] under a slightly different form. To obtain the former version,
we just have to apply the De Rham—Wu Theorem, locally or globally, to the
triplet (N, h, S). However, in order to write down the global version, we need
an assumption of completeness on N (see [9]), except in the Riemannian or
in the Lorentzian case it is not enough to suppose the manifold compact. It
is undoubtedly a very interesting question to know if there exist decompos-
able compact pseudo-Riemannian manifolds whose universal cover is not a
product.

Corollary 3.7. Let (M,g) be a pseudo-Riemannian manifold such that
its cone (M,q) has a parallel symmetric 2-tensor field T such that T2=T
(i.e., (M,g) has a decomposable cone). Let U be a connected component of
M\ o 1({0,1}) and U denote its universal cover. If the foliation defined by
the kernel of the restriction of T to M is geodesically complete (for example if
g s geodesically complete or if a has compact levels and ker T is spacelike)
then there exists two pseudo-Riemannian manifolds (N1,h1) and (Na, hg)

such that

U=1x N1 X NQ,
and g = ds® 4 cos?(s)hy + sin®(s)ha,
or g = —ds®+ cosh?(s)hy + sinh?(s)hs.
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4. Decomposable cones

In this section, we suppose that M is decomposable or equivalently that
T? = T. We will also assume that (M, g) is complete or that « is proper.
The assumption of properness is stronger than the assumption that « has
compact levels. It is mainly a way to say that no connected component of
the levels a=1(0) or a=*(1) is missing. It follows from Theorem 3.3 that the
image of v is a union of sets chosen among the following ones: |—o0,0[, {0},

10,1, {1}, ]1, +o0l.

Definition 4.1. We denote by F the foliation of M spanned by ker T and
by G the foliation defined by Im T'.

A parallel distribution being integrable these foliations do exist. Moreover,
their roles are symmetric as it is always possible to replace T by Id — T.
These foliations will play an important role in what follows.

To begin with, we suppose that the function « is bounded and that
(M, g) is complete. Actually, Theorem 4.2 is almost proven in [1] by follow-
ing Gallot’s proof from [5]. The missing point (the fact that the metric is
Riemannian) is in [7]. But for the convenience of the reader, we recall its
proof (except for the Lemmas 4.3 and 4.4 that are stated without proof).
We modified the presentation of some arguments in order to make clear how
it is possible to adapt it to the case where « is supposed proper.

Theorem 4.2. Let (M, g) be a complete pseudo-Riemannian manifold with
decomposable cone. We have 0 < a(m) <1 for all m € M if and only if
(M, g) is finitely covered by a Riemannian round sphere.

Proof. We suppose (M, g) complete. Let Y = T(8,), T be the geodesic of
(M, g) starting from the point (rg,mg) in the direction —rY (rg, mg) and
the geodesic of (M, g) starting from mg in the direction —rX (mg). Let us
remark that I7(¢) is never lightlike and that, by Corollary 2.11, Y (I'(¢)) is
always proportional to IV(t).

As in [1] and [5] we prove that I" contains a point where Y vanishes.

Lemma 4.3 (see [1], section 5). We denote by ag the number a(my).
We have ~(t) = (r(t),7(f(?))), with

r(t) = \/(ao t+710)?+ (g — a%)r%tQ,
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(a0 — od)rot

1
—————— arctan , if ao—a%>0,
1/040—063 Ckot‘i‘r()

1 VaoZ —agrot 9
f(t) = ————argtanh | Y2 ——— |, if «ay—ad<O.
®) Vad —ag agt+ro 0

The geodesic T" is thus defined on [0, 1]. We deduce from Corollary 2.11
that

AoT'(t) = —2rg\/ag\/ Ao L'(t).

Therefore, AoT\(t) = (—rgaopt? + r3cp) and AoT(1) =0. It implies that
g(Y(I'(1)),Y(I'(1))) = 0. As Y(I'(1)) can not be lightlike, it has to be zero.

The point I'(1) is a minimum for A therefore its Hessian is positive, but
(cf. Proposition 2.3) DDA = 2T and T is a projector. This means that the
restriction of g to Im T is Riemannian.

But, we can replace T' by Id —T" and repeat this proof. We obtain that
the restriction of g to ker T is also Riemannian.

It is well known (and it follows from Fact 2.2) that the curvature of g is
given by

~

R(X,Y)Z = R(X,Y)Z — g(Y, 2)X + g(X, Z)Y,

where R and R are the curvatures of g and g. It implies that (]/\4\ ,g) is flat
if and only if (M, g) has constant curvature equal to 1.
To prove that g is flat, we use the following Lemma from [5] and [1].

Lemma 4.4 ([5] Lemma 3.2 or [1] Lemma 6.3). IfY(r,m) =0 then
the leaf of G (the foliation spanned by Im T') containing (r,m) is flat.

We have proven that G is flat. In order to prove that (]\/4\ ,g) is flat, we
have to show that F is also flat. It is done by repeating the proof with the
tensor field g — T in place of T O

As we said at the beginning of the section, we are also interested in
replacing the assumption of geodesic completeness by the assumption that
« is proper. To adapt the proof above to this case, we just have to prove the
following proposition:

Proposition 4.5. Let m € M such that a(m) <1 and a(m) # 0 and let
G (r,m) be the leaf of G containing the point (r,m). If v is proper then there
exists a point p in Gy, such that Y (p) = 0.
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Proof. The proof starts the same way. We are looking for a critical point of
the restriction of A to Gy, ). Classically, we follow (backward) the integral
curves of the gradient. We note that the gradient of the restriction of A
is also 2rY because Y is tangent to G. Let (r,7) : ]a,b] — G(r,m) be the
maximal integral curve of —rY such that (r(0),~(0)) = (r,m).

Lemma 4.6. The image of the restriction of v to [0,b] lies in a compact
set of M.

Proof. The value of « is bounded along this curve, as « is proper, we just
have to show that r(]a,0]) is contained in a compact subset of |0, +o0].

We suppose a(m) > 0 (respectively a(m) < 0). First, we remark that
—rY.r = —ra <0 (resp. > 0). This implies that

vt € [0,b[,7(t) < r(0) =7 (resp. r(t) > r(0)).

We thus have a upper bound (resp. lower bound) on r(t).

If we apply Corollary 2.12 to the parallel tensor field g — T', we obtain
that the function r2(1 — ) is constant along the leaves of G.

Hence, if (r/,m’) is a point of G(; ) we have (1 —a(m’)) = r*(1 —
a(m)) #0. Moreover 1—a(m’) <1 (resp. 1—a(m’)>1) therefore
' >1roy/1—a(m) (resp ' <rgy/1 —a(m)). As for all t € |a,b[, we have
(r(t),7(t)) € G(rm), this gives a lower bound (resp. a upper bound)
for r(t). O

It follows from Lemma 4.6 that there exists a sequence (t,)nen of points
of [0, b[ converging to b and such that the sequence (7(t;,))nen converges in
M to a point (re, Moo ). Let U be a foliated neighborhood for G of (70, Moo)-
There are two possibilities: either (ro,moo) belongs to G(; ) or the points
7¥(tn) belong to an infinite number of connected components of U NG, )
(called plaques). The last case implies that the leaf G, ,,) accumulates
around (7o, Moo ). As the vector d; is never tangent to G|, this is incom-
patible with the following straightforward consequence of Corollary 2.12.

Fact 4.7. Let m € M, if the set R~ x {m} NG, ;) contains more than
one point then R x {m} C G ).

Hence (o0, Moo) € Gy and is therefore a critical point of the restric-
tion of A to G, ). It means that the gradient vanishes at this point, i.e.,
that Y (re0, moo) = 0. O
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Replacing T by g — T, we get:

Corollary 4.8. Let m € M such that a(m) >0 and a(m) # 1 and let
F(ym) be the leaf of F containing the point (r,m). If o is proper then there
exists a point p in Fi,. .,y such that Y (p) = 0.

We can therefore replace the hypothesis “g is complete” by “« is proper”
and repeat the proof of Theorem 4.2. However, if « is bounded and proper
then M is actually compact. Therefore, we can use Proposition 2.7 to improve
the statement. We get the following statement which is actually the main
result of [7]:

Corollary 4.9 (see [7] Theorem 1). If (M, g) is closed (compact without
boundary) and if its cone admits a non-trivial parallel symmetric 2-tensor
field then (M, g) is finitely covered by a Riemannian round sphere.

Proof. Proposition 2.7 says that if M is compact then (]\//.7 ,g) is decompos-
able. The manifold M being closed, there exists (m,m_) € M? such that
a(my) = maxpen a(m) and a(m—) = ming,ecps a(m), therefore da(my) =
0. According to Corollary 2.8, the only critical values of o are 0 and 1 there-
fore a(m_) =0 and a(my) = 1. Then Proposition 4.5 enable us to adapt
the proof of Theorem 4.2. O

There is a shorter way to prove Corollary 4.9. It consists in proving first
that (M, g) is Riemannian and therefore complete (or apply the Gallot—Tano
Theorem). It is what is done in [7]. Anyway, our purpose was rather to use
Proposition 4.5 than to give a proof of Corollary 4.9.

The following result extends Theorem 4.2, together they say that, hith-
erto, there are only trivial examples.

Theorem 4.10. Let (M,g) be a connected pseudo-Riemannian manifold
with decomposable cone and « be the associated solution of the Obata equa-
tion. If (M, g) is complete or if a is proper and if there exists m € M such
that 0 < a(m) < 1 then (M, g) has constant curvature equal to 1.

Proof. We assume (M, g) complete but using Proposition 4.5, it is easy to
adapt the proof to the case where « is proper.

The first step consists in repeating the proof of Theorem 4.2. Doing so
we obtain that the metric g is flat on R~ x a~%(]0,1[) (it was also proven
in [1]). -

Let p € M be a point such that Y (p) = 0 (resp. Y (p) = 0,). We are going
to see that the curvature vanishes at p. Corollary 2.9 tells us that p belongs



222 Pierre Mounoud

to the closure of R~o x a~1(]0, 1[) (and the curvature of § therefore vanishes
at p) unless p is a local maximum (resp. minimum). But in that case the
restriction of g to Im T' (resp. ker T') is negative Riemannian. Hence Y (p)
(resp. Y(p) — 0r) is never lightlike. Therefore if a(m) =0 (resp a(m) = 1)
then Y (r,m) =0 (resp. Y(p) = 0,). It means that for all m € M we have
a(m) < 0 (resp. a(m) > 1) and this contradicts our hypotheses.

We suppose there exists a point m € M such that a(m) <0 and we
choose 7 > 0, then according to Lemma 4.3 the geodesic starting from (r, m)
with initial speed —rY (which is contained in a leaf of G) is defined on [0, 1].
Hence, reproducing the proof above, it contains a point p such that Y (p) = 0,
therefore it follows from Lemma 4.4 that the curvature of g vanishes along
the leaf of G containing (r,m). But, as we just saw, the curvature of g
vanishes at p. The two points p and (r,m) lie in the same leaf of G. As the
distribution ker T is parallel and is perpendicular to G, the curvature of the
restriction of g to ker T" is the same at p and at (r,m). It proves that g is
flat at (r,m), therefore that g is flat on a=!(]—o0,0]). N

To study the set a1([1, +oc[), we consider the endomorphism Id — T'.
The function associated to it is 1 — «, hence this case is similar to the
former. We proved that g is flat therefore that g has constant curvature
equal to 1. O

The last case needs more work, in particular we need a better understanding
of the set a~1({0,1}). It is also more interesting, as it provides examples
with non-constant curvature.

Theorem 4.11. Let (M,g) be a connected pseudo-Riemannian manifold
with decomposable cone and « be the associated solution of the Obata equa-
tion. We suppose g is complete or « is proper. If for allm € M, a(m) <0 or
a(m) > 1 then there exists a pseudo-Riemannian manifold (F,gr)
such that:

o cither up to a 2-cover, M =R x F and g = —ds* + cosh?(s)gr;

e or ]TJ/, the universal cover of M, is a warped product of the negative
definite n-dimensional hyperbolic space and (F, gr).
More precisely M is diffeomorphic to R™ x F' and using polar coordi-
nates on R™ the metric g is given by g= —ds® — sinh2(8)95 +
cosh?(s)gr, where gg is the standard metric of the (n — 1)-sphere.
Moreover, there exist a group A acting freely and properly discon-

tinuously on F, a morphism p from A to the group of isometries of
H" fizing a given point such that M = (H* x F')/(p(A), A).
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Conversely, the manifolds above have a decomposable cone. Furthermore,
they are complete if and only if (F,gr) is complete and they admit a proper
solution to the Obata equation if and only if F/A or F is compact.

Proof. If we replace T by Id—f7 we permute the cases a(m) > 1 and
a(m) < 0. Thus, without loss of generality, we will now suppose that for
all m € M, a(m) < 0. We start the proof by the following lemma.

Lemma 4.12. Let m be a point of M and v be the geodesic such that
7(0) = m and v'(0) = X(m) then there exists t € R such that a(y(t)) = 0.
The set a=1(0) is a submanifold of M and its dimension is dim(ker T') — 1.

The restriction of g to Im T is negative definite.

Proof. The first point is given by Proposition 4.5 when « is proper and by
Lemma 4.3 and the discussion that follows when g is complete.

As 0 is the maximum of a, any element of a~1(0) is a critical point. By
the argument used in the proof of Theorem 4.2, it entails that the restriction
of g to Im T is negative definite.

Furthermore, it follows from Corollary 2.12 that if a(m) =0 then A
vanishes on any leaf of F (the foliation spanned by ker T") containing a point
(r,m). According to Proposition 2.3, the Hessian of A is twice the restriction
of g to Im T'. It means that the singular points of the restriction of A to any
leaf of G (the foliation spanned by Im f) are non-degenerate and therefore
isolated. Hence, A~1(0) is a union of isolated leaves of F. Moreover, the
vector field 9, is everywhere tangent to these leaves. The set a1 (0) being the
projection of A~1(0), it is therefore a (dim(ker T') — 1)-dimensional smooth
submanifold. O

Lemma 4.13. The projection of the distribution Im T to M is a smooth,
integrable, totally geodesic and non-degenerate distribution. We denote it by
V and by G’ the foliation it defines. If n = dim(Im T') > 1, then any leaf of
G’ is isometric to the negative definite hyperbolic space H™ .

Proof. As 0, is geodesic and Tm T is parallel, we know that the projection of
Im T'(r,m) on T,, M does not depend on r. Moreover, Im T never contains
Or; therefore the distribution V' is smooth and integrable. The restriction
of g to Im T' is negative definite, therefore the restriction of g to V' is also
negative definite. .

Let Z, Z' be two vector fields tangent to V. Their lift to M, still denoted
by Z, 7' lie in Im T & RO,. This last distribution is clearly totally geodesic.
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Moreover, from Fact 2.2, we know that D;Z' = DzZ' —rg(Z,2")0,. Tt
means that Dz Z’ is tangent to V and therefore that V' is totally geodesic.
Let u and v be two vectors of T,,, M, from Lemma 2.4 we have

A~ A~

(4.1) 2T (u,v) = DDA(u,v) = r*(DDa(u,v) + 2g(u, v)a(m)).

If m is a critical point of a, we have a(m) =0 and Im T perpendicular to
Or. Hence, the Hessian of a at m is given by the restriction of g to Vj,.
Therefore, the restriction of a to any leaf G’ of G’ is a Morse function and
the critical points of a|g/ are isolated. In particular, when n > 1, the set of
regular points of the restriction of « to G’ is connected.

Moreover, as the vector field 2rX is tangent to G’, it is also the gradient
of a|g/. Hence (using geodesic completeness or the properness of «) there
exists a critical point of « in the closure of G'. This critical point belongs to
a~1(0), which is transverse to G, therefore the point lies on G’.

We use now the vector field X = —rX/y/—g(rX,rX), which is defined
on M\ a~1(0). Let ¢; < c2 <0 and ¢ > 0 such that ¢y +e < 0. Let [ be a
function vanishing outside a~1(Je; — €, c2 + €[) and being constant equal to
one on a~(]ey, e2[). The vector field I X is complete in both cases. According
to Corollary 3.2, its flow restricted to a~!(]cy,ca]) sends level sets of «
on level sets of a. It follows that any two regular level sets of ag are
diffeomorphic.

If (/)" (c1) is not connected, we can saturate its connected compo-
nents by the gradient lines in order to obtain a partition of the set of regular
points of G’. This set being connected, we have a contradiction, therefore
the level sets of o|g are connected.

Hence, as ag/ is a Morse function, any level set of the restriction of
to a leaf of G’ is diffeomorphic to the sphere S"~!. Consequently, the leaves
of G’ are diffeomorphic to R™.

We have shown that the function « vanishes on any leaf of G’ therefore
the function A vanishes on any leaf of G. It follows from Lemma 4.4 that
the curvature of g vanishes along Im T, and, by Fact 2.2, that the curvature
of g is constant and equal to one on V' (this point is proven in [1]).

Thus, we have shown that any leaf G’ of G’ is diffeomorphic to R™ and
that g|g is negative definite and has constant curvature equal to 1. As,
moreover, the flow of X is future complete (even if we suppose « proper), it
means that any leaf of G’ is isometric to H™. O

We denote by W the orthogonal complement of V' in T'M. This distri-
bution is integrable, its leaves being the intersection of the level sets of «
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(which are all smooth) with the projection on M of the leaves of F. We
denote by F’ the foliation spanned by W. In particular, «~!(0) is a union
of leaves of F'. _

We assume now that n = dim(Im 7") = 1. Taking eventually a 2-cover,
the direction field given by the projection of Im T is well defined and ori-
ented. Moreover, the vector field 2rX belongs to this field. It means that
it is possible to extend to M the vector field X = rX//—g(rX,rX). The
function a being unbounded, Corollary 3.2 implies that this vector field has
to be complete. Always by Corollary 3.2, its flow sends levels of « on levels
of a.. Moreover, the leaves of G’ cannot be compact, therefore there exists a
manifold F' such that M is diffeomorphic to R x F' (see Lemma 3.4). Even-
tually, Corollary 3.7 (see also Theorem 7.1 from [1]) shows that g is given on
R* x F by —ds? + cosh?(s)gr, where g is a metric on F. The first assertion
of Theorem 4.11 follows then by continuity.

We assume now that n = dim(Im 7") > 1.

Fact 4.14. The submanifold a~1(0) is connected. The universal cover of
M is diffeomorphic to R™ x F, where F is the universal cover of a~1(0).

Proof. The foliation G’ is totally geodesic, complete (it is isometric to H™)
and its orthogonal is integrable, therefore Theorem 2 of [9] implies that M ,
the universal cover of M, is diffeomorphic to the product of the universal
cover of a leaf of G’ by the universal cover of a leaf of F’. Moreover, we have
seen that the function o vanishes only once on each leaf of G’. Consequently,
a~1(0) is connected and is equal to exactly one leaf of F". ]

We denote by g, @, F’ and G’ the lifts to J\Zof g, o, F' and G'. Fact 4.14
and the proof of Lemma 4.13 imply that M \ a~!(0) is diffeomorphic to
R x 8”1 x I, where the factor Rs( corresponds to the direction of the
vector field X. Furthermore, according to Theorem 3.3, there exists a metric
hon N = S"1 x F and a parallel tensor S on (N, h) such that the metric g
reads —ds? + sinh?(s)(h — S) 4 cosh? S. From the proof of Theorem 3.3, we
deduce that h — S is a metric on S™ !, and S is a metric on F, we denote
these metrics respectively —gg and gp. The term —ds? — sinh?(s)gs is the
metric of H” in polar coordinates, therefore gg is the canonical metric of
the sphere. Hence, (M, g) is the warped product of H” and (F,gr) by the
function f defined by f(z) = cosh?(dg (O, x)), where dj is the hyperbolic
distance and O is a point of H", therefore we denote it now H" xj F.

The manifold M is the quotient of H" X F' by the action of its funda-
mental group II. This action preserves in particular the metric, the func-
tion @ and the foliations G’ and F’, therefore II C Isom(H") x Diff(F).
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We denote by A the projection of II on Diff(F). As the leaves of G’ are
always diffeomorphic to R™, any element of II fixing a point of F' has to be
trivial. It means that there exists a morphism p : A — Isom(H" ) such that
IT = (p(A), A). Moreover, the action of IT on M preserves a~1(0), therefore
p(A) fixes the point O, A C Isom(F, gr) and A acts freely and properly dis-
continuously on F (and F/A = a~1(0)).

Conversely, let f : H" — R defined as above and let (F, gr) be a pseudo-
Riemannian manifold. Clearly (see Examples 6.4 for more details), H" x; F
has a decomposable cone. Moreover, for any group A acting freely, properly
discontinuously and isometrically on (F, gr) and for any morphism p: A —
Isom(H™" ) such that p(A) fixes O, the quotient (H™ x; F)/(p(A), A) is a well
defined pseudo-Riemannian manifold. Finally, the parallel decomposition of
the cone over H X F being invariant by the action of (p(A), A), it induces
a parallel decomposition of the cone over (H” x ¢ F')/(p(A), A).

The last point to investigate is the geodesic completeness of (M, g) and
(F, gr). Our main tool is the following proposition.

Proposition 4.15 (see [8] Proposition 7.38 p. 208). A curve v =
(71,72) in H® x s F is a geodesic if and only if

(42) '7{/ = h(’}/é’f)/é)f oM gradf?
-2
(4.3) vy = (f om)' 7.

fom

The point O being a critical point of f, we deduce from Proposition 4.15
that {O} x F' is totally geodesic. Hence, if (M, g) is geodesically complete
then (F,gp) is also complete.

Conversely, we suppose (F, gr) complete. Let v(t) = (71(t),72(t)) be a
geodesic of (M, g) and let I'y be the locus of the geodesic of (F,gr) with
initial speed 74(0). It follows from Proposition 4.15 that H™ x I's is a totally
geodesic submanifold of (M, g) that contains . There are three cases to
consider according to the type of +5(0).

If h(v4,~4) = 0, then 71 is a geodesic of H™. We write v2(t) as y2(u(t)),
where u is a geodesic parameterization of I'y. We have

—2(fem)'(t) ,

)= v

therefore w/(t) = C(f oy1)~2(t). Moreover, fo~; — oo implies ¢ — oo.
Hence the geodesic « is complete.
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If h(vh,7%) <0, then the restriction of g to H™ xI'y is negative
Riemannian and is therefore complete (see [8] Lemma 7.40 p. 209).

If h(v5, %) > 0, then the restriction of g to H" x I'y has constant curva-
ture equal to 1 (see, for example, Corollary 2.3 of [1]). Moreover its signature
is (1,n) and it contains a codimension 1 foliation by hyperbolic spaces and a
complete geodesic (the one above O) perpendicular to this foliation. It means
that the universal cover of H” x I'y is the universal cover of the (negative)
anti de Sitter space and is therefore complete.

As v C H? xT'9, we have proven that H” x (F,gr) (and therefore
(M, g)) is complete. O

5. Cones admitting a parallel nilpotent symmetric
endomorphism field

We denote by RPT14 the space RPT9H! equipped with the standard pseudo-
Euclidean metric of signature (p + 1,¢). We choose coordinates such that
the metric reads 2z122 + 3 3-,<) 19 z? — > pt3<i<ptat 33? We consider the
pseudo-sphere SP4 = {2 € RPT1L4 | (z, z) = 1} endowed with its natural met-
ric. The cone over SP7 is the open subspace of RPT1:4 given by {z € RPT14 |
(z,z) > 0}, the vector field 8, being (z,z)~'/?z.

Obviously, the functions on RPT1¢ having a non-trivial parallel Hessian
are the polynomial functions of degree 2. We choose A(z) = 22, Tts Hessian is
defined by the 2-step nilpotent endomorphism 27" where T'(u) = g(02, u)0s.
The function « is just the restriction of A to SP9. The idea is to deform the
metric of SP¢ in such a way that the function « remains a solution of the
Obata equation.

It is clear that a~!(0) is a codimension 1 totally geodesic lightlike sub-
manifold. Actually, the level sets of o define a smooth codimension 1 foliation
(a is not a submersion but it has a square root, which is a submersion). Each
connected component of SP?\ a~1(0) is isometric to R x RPT9~! endowed
with the metric gg = —dt®> + e ?'hg, where hg is the usual flat metric of
RPa—1,

We keep the notation of Section 2.2 and denote by 2rX the gradient of
a. According to the proof of Theorem 3.3, we can choose the isometry above
in such a way that it sends the vector field 9; to X = |[(2rX,2rX)|~%/2 2rX.
Clearly, we have 2rX = 2219y — 2220,. Hence, if ¥ = (V1, ..., Yp+q+1) is an
integral curve of 2rX such that v1(0) = 1 and ~2(0) = ¢, then we have

(5.1) ni(t) = (4t + 1),
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(5.2) Ya(t) = (2t + ¢) (4t +1)71/2,

Let hy be any perturbation with compact support K of the metric hg on
RPtI=1 We endow SP7\ o~ 1(0) with the metric g; = —dt? + e 2 hy. The
metrics gg and g7 coincide outside the union of the integral curves of d;, or
equivalently of 2rX, starting from {0} x K. It follows from (5.1) and (5.2)
that this set is a closed subset of SP¢ which does not meet a~1(0). It means
that there exists an open neighborhood U of a~1(0) such that the metrics
go and g; coincide on U \ a~1(0). Consequently, the metric g; extends to a
smooth metric g on SP+4.

It follows from Theorem 3.3 that the restriction of « is a solution of
the Obata equation on the manifold SP4\ a~1(0) endowed with the metric
g1. Thus, « is a solution of the Obata equation on an open dense subset of
(SP1, g) and therefore on the whole manifold.

We can construct this way a large family of pseudo-Riemannian mani-
folds with non-constant curvature whose cone admits a rank 1 parallel nilpo-
tent symmetric endomorphism field. This absence of rigidity, that contrasts
with the decomposable case, is related to the fact that the gradient lines of
« never accumulate on critical points.

Let us look at the lacks of the examples we have constructed:

e We did not prove that i1 can be chosen such that g is geodesically com-
plete. The main reason is that ¢ is clearly non-extendable, therefore,
in some sense, complete enough.

e We have chosen a situation where the rank of T is 1. It allowed us to
perturb hg without thinking of T'. If S is a parallel nilpotent symmetric
endomorphism on a flat manifold (N, h), it is possible to perturb h

while keeping the endomorphism S parallel. Hence, our construction
could also provide examples with T" of higher rank.

e The metric g is still flat on a neighborhood of a~1(0). This is per-
haps the main problem. We did not start the discussion about all the
admissible metrics hi. For example, it seems reasonable to think that
we can replace the metric h; by a metric which is asymptotically flat.
In fact, we prefer to ask if there exist non-flat real analytic examples.

6. Application to projective geometry

We define the degree of mobility of a pseudo-Riemannian metric g as the
dimension of the space of metrics projectively (or geodesically) equivalent
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to g, i.e., the set of metrics having the same unparameterized geodesics as
g. This number is well defined see [6] for details. It is always positive as
the connection is invariant when ¢ is multiplied by a constant. We will say
that two metrics are affinely equivalent if they have the same parameterized
geodesics, i.e., if their Levi—Civita connections coincide.

Using results of [6], Matveev and the author proved in [7] the following
result:

Theorem 6.1. Let g be a pseudo-Riemannian metric on an (n > 1)—dimen-
sional closed connected manifold. Then, if the metric g on M is geodesically
equivalent to g, but not affinely equivalent to g, then the degree of mobility
of g is precisely 2 or there exists ¢ # 0 such that c g is Riemannian and has
constant curvature equal to one.

This result is still true, with no hypotheses on the topology of M, if the
metrics g and g are assumed to be complete (see [6]). We will see that it is not
the case if ¢ only is assumed to be complete. As we said in the introduction,
there is a link between the Obata equation and projective geometry. In [6], it
is proven that if the degree of mobility of a metric is greater than 2 then the
Obata equation has a non-trivial solution. The following proposition (which
is probably known) explicit the converse, i.e., how a geodesically equivalent
metric g is obtained from a parallel tensor 7" on M.

Proposition 6.2. If (M, g) is a manifold such that its cone admits a non-
trivial parallel symmetric 2-tensor field T such that T(0y,0y) is bounded
from above or below then there exists a metric g on M which is projectively
equivalent to g but not affinely equivalent to g.

Proof. Let T be a non-trivial parallel symmetric 2-tensor field on M such
that T(0,,0,) is bounded from above or below. As for any (a,b) € R? the
tensor field aT + bg is parallel, we can assume that T is non-degenerate and
a =T(0r,0,) is positive. Thus it is a pseudo-Riemannian metric. Its Levi-
Civita connection is the only torsion free connection V such that V1 = 0.
As DT = 0, this connection is D.

We are going to change the parameterization of the factor R in order
to see that T is also a cone metric. Let ¢ : M — M defined by (m) =
(a(m)~Y2,m). Tt follows from Corollary 2.10 that the submanifold (M) is
orthogonal to 9, with respect to T

According to Fact 2.2, we have D (rd,) = Id, therefore

(6.1) (Ly5,T)(u,v) = T(Dy(rd,), v) + T(Dy(rd,),u) = 2T (u, v).
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We put p = ry/a, as pd, = r0, the equation (6.1) implies that
T — dp2 + ,029/

where ¢’ is the restriction of T to ¢(M). Thus, T is the cone metric of
((M),q"). A cone metric being a warped product, we have:

Fact 6.3 (see [8] p. 208). The projection of a geodesic of (M, ) on M
(resp. on 1p(M)) is a pregeodesic of (M, g) (resp. of (v(M),g")).

In order to obtain a metric on M, we put g = 1*¢’ = ¢*T. The geodesics
of (¢ (M), g’) being projected on the geodesics of (M, g), we deduce from
Fact 6.3 that the metrics g and g are projectively equivalent. To see that
they are not affinely equivalent, it is possible to compute explicitly the
reparameterization of the geodesics. It can be done with the help of section 5
of [1], where the geodesic lift of a geodesic of (M, g) to M is explicitly com-
puted (see also [6] section 2.4). There always exist geodesics that are not
affinely reparameterized. O

Examples 6.4. 1. Let M = SP9 = {x e RP*19|(z,2) = 1}. We have
already seen in Section 5 that M = {x € RP*19| (x,z) > 0}. The ten-
sor T considered in the proof of Proposition 6.2 is the restriction to M
of a non-degenerate bilinear form on RP*9+! such that the radial vector
field of ] RPH4FL is never lightlike with respect to T. Moreover ¢ (M) =
{z € M|T(x,x) =1}, i.e., it is the intersection of the (pseudo)sphere
of T" and M. Eventually, the metric g is the pull-back of T}, () on
M = SP9, When M is the round sphere and T is positive definite,
we obtain the classical Beltrami examples of geodesically equivalent
spheres. If T and g are neither both Riemannian nor proportional,
then (M) is a proper open subset of the (pseudo)sphere of T and
therefore g is not complete.

2. Let (M,g) =H" x; F be one of the manifolds obtained in Theo-
rem 4.11. We see H” as a connected component of S*" and we choose
coordinates (zg, 1, .. xn) on RY™ such that the metric reads dag —
ZKK” dz?. The cone M is {z e RI™ |<IL‘ x) >0, zg > 0} x F and the
metric g reads d:ro ZKK” dm + xo gr. The parallel n-dimensional
flat distribution of (M g) is clearly Span(0y,,...,0s,). Let To be the
projection on this distribution and 7" = Id — 27y. The 2-tensor field T'
reads dag + Y1 i<, do} + 5 gF-
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Using polar coordinates on H”, the function ¢ defined in the proof
of Proposition 6.2 can be seen as a function from Rsg x S"~! x F to
RY™ x F. Using the coordinates introduced above on R'" and seeing
S"~1 as a submanifold of R”, it reads

W(s,p.z) = cosh(s) ’ sinh(s) bt
\/coshQ(s) + sinh?(s) \/coshQ(s) + sinh?(s)
It follows that
sinh?(s) cosh?(s)

VT = g = £(s)ds® +

cosh?(s) + sinh2(s)gs cosh?(s) + Sinh2(s)gF’

where ¢(s) = (sinh?(s) + n cosh?(s))(cosh?(s) + sinh?(s)) ™ and gg is
the standard metric on the sphere. The fact that £ is not constant
shows that g and g are not affinely equivalent. As f0+oo & (s)l/ 2ds < o0,
the metric g is not geodesically complete.

Moreover, if n > 1, the distribution Span(dy,,...,0s, ,) is another

parallel distribution of M. We can repeat the construction above with
the projection on this distribution in place of Ty and produce another
geodesically equivalent metric. Actually, it is possible to do the con-
struction with almost any linear combination of these projections, con-
sequently the degree of mobility of ¢ is greater than 2.
Let us remark that, as there exists a (n — 1)-dimensional parallel dis-
tribution on M, Theorem 4.11 says that (M, g) is also the warped
product of H" ™! and a pseudo-Riemannian manifold (F’,gp ). It is
not difficult to see that (F’, gr) = (R x F, —dt? + gr).

3. We could also use the example of Section 5, to obtain a more exotic
family of projectively equivalent metrics with non-constant curvature.
But in this case, the degree of mobility is probably equal to 2.

We have proven in point 2 of Examples 6.4:

Corollary 6.5. There exist pseudo-Riemannian metrics g and g both with
non-constant curvature on a manifold M such that

1. g is geodesically complete,
2. g and g are projectively equivalent but not affinely equivalent,

3. the degree of mobility of g and g is greater than 2.
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It seems natural to wonder now if the metrics above are the only complete
pseudo-Riemannian manifolds with non-constant curvature and a degree of
mobility greater than 2 that admit projectively but not affinely equivalent
metrics. In particular, we can ask if there exist complete pseudo-Riemannian
manifolds with non-constant curvature whose cone admits a higher order
nilpotent endomorphism.
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