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Analysis of weighted Laplacian and applications

to Ricci solitons

Ovidiu Munteanu and Jiaping Wang

We study both function theoretic and spectral properties of the
weighted Laplacian Δf on complete smooth metric measure space
(M, g, e−fdv) with its Bakry–Émery curvature Ricf bounded from
below by a constant. In particular, we establish a gradient estimate
for positive f -harmonic functions and a sharp upper bound of the
bottom spectrum of Δf in terms of the lower bound of Ricf and
the linear growth rate of f. We also address the rigidity issue when
the bottom spectrum achieves its optimal upper bound under a
slightly stronger assumption that the gradient of f is bounded.

Applications to the study of the geometry and topology of gra-
dient Ricci solitons are also considered. Among other things, it is
shown that the volume of a noncompact shrinking Ricci soliton
must be of at least linear growth. It is also shown that a nontrivial
expanding Ricci soliton must be connected at infinity provided its
scalar curvature satisfies a suitable lower bound.

1. Introduction

In our previous paper [20], we have studied some function theoretic and
spectral properties of the weighted Laplacian on a smooth metric measure
space with nonnegative Bakry–Émery curvature. We have also applied the
results to conclude a nontrivial steady gradient Ricci soliton must be con-
nected at infinity. The purpose of this sequel to [20] is two-fold. The first is
to continue our study of the weighted Laplacian on a smooth metric mea-
sure space, now under the more general assumption that its Bakry–Émery
curvature is bounded from below by a negative constant. The second is to
demonstrate that the results and techniques from such study lead to geomet-
ric and topological information of shrinking and expanding gradient Ricci
solitons.

Recall that a smooth metric measure space, denoted by
(
M, g, e−fdv

)

throughout the paper, is a Riemannian manifold (M, g) together with a
weighted volume form e−fdv, where f is a smooth function on M and dv
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the volume element induced by the Riemannian metric g. The associated
weighted Laplacian Δf is given by

Δfu := Δu− 〈∇f,∇u〉 ,

which is a self-adjoint operator on the space of square integrable functions
on M with respect to the measure e−fdv. A function u is called f -harmonic
if Δfu = 0. It is easy to see that f -harmonic functions are characterized as
the critical points of the weighted Dirichlet energy

∫
M |∇u|2e−fdv.

The Bakry–Émery curvature Ricf associated to smooth metric measure
space

(
M, g, e−fdv

)
is defined [1] by

Ricf := Ric + Hess (f) ,

where Ric denotes the Ricci curvature of (M, g) and Hess (f) the Hessian
of f.

The weighted Laplacian and the Bakry–Émery curvature are natural
objects in the geometric analysis. The most significant and interesting case
of our concern here is the so-called gradient Ricci solitons. Recall a com-
plete manifold (M, g) is a gradient Ricci soliton if the equation Ricf = λg
holds for some function f and scalar λ. The soliton is called expanding,
steady and shrinking, accordingly, if λ < 0, λ = 0 and λ > 0. It is custom-
ary to normalize the constant λ ∈ {−1/2, 0, 1/2} by scaling the metric g.
As suggested by the name, the gradient Ricci solitons arise from the study
of Ricci flows, particularly from the blow up analysis of the singularities of
the Ricci flows [11]. It is thus a central issue in the study of Ricci flows to
understand and classify gradient Ricci solitons. Note that the Ricci soliton
equation Ricf = λg reduces to the Einstein equation Ric = λg when f is a
constant function. So the soliton equation is also of own interest as a geo-
metric partial differential equation. We refer the readers to the book [9] for
more information on gradient Ricci solitons.

The Bakry–Émery curvature is closely related to the weighted Laplacian
as indicated by the following Bochner type identity.

Δf |∇u|2 = 2|Hess(u)|2 + 2 〈∇u,∇Δfu〉 + 2Ricf (∇u, ∇u).

This is of course very much in parallel to how the Ricci curvature is related to
the Laplacian on a complete manifold. Taking this point of view, in the first
part of the paper, we will develop some analogous results to the Laplacian
for the weighted Laplacian under the assumption that the Bakry–Émery
curvature is bounded from below. However, we would like to point out that
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unlike the classical case on the analysis of the Laplacian, the function f
enters into play in the behavior of the weighted Laplacian Δf . The assump-
tions on f dictate both the conclusions and the level of technical difficulties
involved in the arguments. As in [20], we continue to assume that f grows
at most linearly, that is,

|f | (x) ≤ αr(x) + β

for some constants α ≥ 0 and β ≥ 0, where r(x) := d (p, x) is the geodesic
distance to a fixed point p in M. The linear growth rate a of f is then defined
to be the infimum over all such α.

Also, as indicated, we assume that Ricf is bounded below by a negative
constant. After a suitable scaling of the metric, we may in fact assume
Ricf ≥ − (n− 1) , where n is the dimension of M.

Our first result is a gradient estimate for positive f -harmonic functions
on
(
M, g, e−fdv

)
.

Theorem 1.1. Let
(
M, g, e−fdv

)
be a smooth metric measure space of

dimension n with Ricf ≥ − (n− 1) . Assume that there exists constant a > 0
such that the oscillation of f over the unit ball Bx(1) for any x ∈M satisfies

sup
y∈Bx(1)

|f (y) − f(x)| ≤ a.

Then there exists a constant C (n, a) depending only on n and a such that
for any u > 0 with Δfu = 0 we have

|∇ log u| ≤ C (n, a) .

We remark that the assumption on f in Theorem 1.1 is satisfied, for
example, if |∇f | ≤ a or if f is bounded on M. In the case that |∇f | ≤ a, the
result can be proved more or less following the classical argument of Yau [30]
via the aforementioned Bochner identity. The reference [33] is a good source
for many other similar results concerning the weighted Laplacian, under
various curvature bounds. If Ricf ≥ 0, then the result has been proved in
[20]. In fact, the following stronger conclusion holds.

|∇ log u| ≤ C(n) a.

Our second result concerns the bottom spectrum of the weighted
Laplacian Δf . Let λ1 (Δf ) := inf Spec (−Δf ) . Then the variational
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characterization for λ1 (Δf ) implies that

λ1 (Δf ) = inf
φ∈C∞

0 (M)

∫
M |∇φ|2 e−f dv
∫
M φ2e−f dv

.

In the case Ricf ≥ 0, it was shown in [20] that λ1 (Δf ) has an optimal
upper bound of the form λ1 (Δf ) ≤ 1

4a
2, where a is the linear growth rate

of f. Here is a more general result.

Theorem 1.2. Let
(
Mn, g, e−fdv

)
be a complete smooth metric measure

space with Ricf ≥ − (n− 1) . Then we have

λ1 (Δf ) ≤ 1
4 (n− 1 + a)2 ,

where a ≥ 0 is the linear growth rate of f. In particular, if f is of sublinear
growth, then the bottom spectrum of Δf satisfies the following sharp upper
bound

λ1 (Δf ) ≤ (n− 1)2

4
.

This result is consistent with Cheng’s well-known estimate [3] in the
case f is constant, which says that λ1(M) is bounded above by (n−1)2

4 .
This incidentally indicates our estimate is sharp. We remark that under
the stronger assumption that |∇f | ≤ a, the result has also been established
in [27].

Motivated by the work of Li and the second author in [16–19] and our
generalization in [20] to the case of weighted Laplacian with Ricf ≥ 0, we
study the structure of manifolds on which λ1 (Δf ) achieves its maximal value
in the preceding estimate. Here, we need to impose a stronger assumption
on f that its gradient is bounded.

Theorem 1.3. Let
(
M, g, e−fdv

)
be a complete smooth metric measure

space of dimension n ≥ 3 with Ricf ≥ − (n− 1) . Assume that |∇f | ≤ a on
M for some constant a ≥ 0. If λ1 (Δf ) = 1

4 (n− 1 + a)2 , then either M is
connected at infinity or f is constant and M splits as a warped product M =
R ×N with ds2M = dt2 + h2(t)ds2N , where N is compact and the function
h(t) = et if n ≥ 4 and h(t) = et or h(t) = cosh t if n = 3.

Let us point out that in the case M is the warped product, its bottom
spectrum has maximal value (n−1)2

4 . Let us also point out that this result
has been independently proved by Su and Zhang in [27].
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In the second part of this paper, we consider some applications of our
study of the weighted Laplacian to gradient Ricci solitons. We first address
the issue whether a nontrivial expanding gradient Ricci soliton must be
connected at infinity. Recall that an expanding gradient Ricci soliton is a
manifold (M, g) such that Ricf = −1

2g for some function f. It is known [24]
that the scalar curvature S ≥ −n

2 on an expanding gradient Ricci soliton.
We have the following result concerning this issue.

Theorem 1.4. Let (M, g, f) be an expanding gradient Ricci soliton.
Assume that S ≥ −n−1

2 on M . Then either M is connected at infinity or
M is isometric to the product R ×N, where N is a compact Einstein man-
ifold and R the Gaussian expanding Ricci soliton.

Note that in the second case of M being a cylinder, its scalar curvature
S = −n−1

2 . This somewhat explains why we impose such an assumption on
S. However, at this point it is unclear to us whether the assumption is in
fact superfluous for nontrivial expanding gradient Ricci solitons, although
obviously there are Einstein manifolds with infinitely many ends.

As for the proof of Theorem 1.4, it does not follow directly from our
preceding rigidity theorem. This is because for expanding gradient Ricci
solitons, the potential function f is never of linear growth unless it is trivial
according to the following result.

Theorem 1.5. Let (M, g, f) be a nontrivial expanding gradient Ricci soli-
ton. Then for all r > 2,

1
4 r

2 − Cr
3
2

√
ln r ≤ sup

∂Bp(r)
(−f)(x) ≤ 1

4r
2 + Cr

for some constant C.

At this point, it seems interesting to compare our result with the case
of shrinking gradient Ricci solitons. It has been shown by Cao and Zhou [6]
that

1
4(r(x) − c)2 ≤ f(x) ≤ 1

4(r(x) + c)2

on a nontrivial, noncompact, shrinking gradient Ricci soliton. We also point
out that it was first observed in [24] that the gradient of the potential func-
tion f must be unbounded for a nontrivial expanding gradient Ricci soliton.

Another issue we resolve here is about the volume growth lower bound
for shrinking gradient Ricci solitons. As well known, volume growth rate
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is an important piece of geometric information. In [6], it was proved that
the volume of a shrinking gradient Ricci soliton is at most of polynomial
growth of order n, the dimension of the underlying manifold. Concerning
the lower bound, when the Ricci curvature is bounded, then it is known [7]
the volume grows at least linearly. The question whether this is the case
for general shrinking gradient Ricci solitons has been posed to the authors
by Huaidong Cao and Lei Ni, respectively. We confirm this to be the case
here. Note that this is sharp as shown by the cylinder examples. Indeed, for
M = R ×Nn−1, where Nn−1 is an Einstein manifold such that RicN = 1

2gN

and R is the Gaussian shrinking soliton with potential function f = 1
4 |x|2 ,

the volume of M grows linearly.

Theorem 1.6. Let (M, g, f) be a noncompact shrinking gradient Ricci soli-
ton. Then there exists a constant C > 0 such that

V (Bp (r)) ≥ Cr, for all r > 0.

The paper is organized as follows. In Section 2, we prove Theorem 1.2
after some discussions on Laplacian and volume comparison results. We
then prove Theorem 1.1 in Section 3. In Section 4, we study the structure of
manifolds with maximal bottom spectrum λ1(Δf ) and prove Theorem 1.3.
In Section 5, we consider the expanding Ricci solitons and prove both The-
orems 1.4 and 1.5. In the final Section 6, we deal with the shrinking Ricci
solitons and prove Theorem 1.6.

We would like to thank Huai–Dong Cao for his interest and stimulating
comments, which lead us to improve both Theorems 5.1 and 6.1.

2. Volume comparison theorem

In this section, following Wei and Wylie [28], we discuss Laplacian and
volume comparison results by assuming a lower bound on the Bakry–Émery
curvature tensor. As an immediate consequence, we obtain an upper bound
estimate for the bottom spectrum of Δf .

Let
(
M, g, e−fdv

)
be a smooth metric measure space. Take any point x ∈

M and express the volume form in the geodesic polar coordinates centered
at x as

dV |expx(rξ) = J (x, r, ξ) drdξ
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for r > 0 and ξ ∈ SxM, a unit tangent vector at x. It is well known that if
y ∈M is another point such that y = expx (rξ) , then

Δd (x, y) =
J ′ (x, r, ξ)
J (x, r, ξ)

and Δfd (x, y) =
J ′

f (x, r, ξ)
Jf (x, r, ξ)

,

where Jf (x, r, ξ) := e−fJ (x, r, ξ) is the f -volume form in the geodesic polar
coordinates. For a set Ω we will denote by V (Ω) the volume of Ω with
respect to the usual volume form dv, and Vf (Ω) the f -volume of Ω.

Lemma 2.1. Let
(
M, g, e−fdv

)
be a complete smooth metric measure space

with Ricf ≥ − (n− 1) . Assume for some nonnegative constants α and β,

|f | (x) ≤ αr(x) + β

for x ∈M. Then there exists a constant C > 0 such that the volume upper
bound

Vf (Bp (R)) ≤ Ce(n−1+α)R

holds for all R > 0.

Proof of Lemma 2.1. As discussed above, we write dV |expp(rξ) = J (r, ξ) drdξ
for ξ ∈ SpM. Let Jf (r, ξ) = e−f(r,ξ)J (r, ξ) be the corresponding weighted
volume form. In the following, we will omit the dependence of these quanti-
ties on ξ. Along a minimizing geodesic starting from p, we have

(
J ′

J

)′
(r) +

1
n− 1

(
J ′

J

)2

(r) + Ric
(
∂

∂r
,
∂

∂r

)
≤ 0,

where the differentiation is with respect to the r variable. Integrating this
inequality from 1 to r and using the assumption that

Ric
(
∂

∂r
,
∂

∂r

)
+ f ′′ (r) ≥ − (n− 1) ,

we get

J ′

J
(r) +

1
n− 1

∫ r

1

(
J ′

J

)2

(t)dt− f ′ (r) ≤ (n− 1) r + C0

for some constant C0 > 0 independent of r. Let us denote

u(t) :=
J ′

f (t)
Jf (t)

=
J ′

J
(r) − f ′ (r) .



62 Ovidiu Munteanu & Jiaping Wang

Then for any r ≥ 1,

(2.1) u (r) +
1

n− 1

∫ r

1

(
u(t) + f ′(t)

)2
dt ≤ (n− 1) r + C0.

The Cauchy–Schwarz inequality implies that

∫ r

1

(
u(t) + f ′(t)

)2
dt ≥ (r − 1)−1

{∫ r

1

(
u(t) + f ′(t)

)
dt

}2

.

Therefore, from (2.1) we obtain

(2.2) u (r) +
1

(n− 1) r

(
f (r) − f(1) +

∫ r

1
u(t)dt

)2

≤ (n− 1) r + C0.

We now claim that for any r ≥ 1,

(2.3)
∫ r

1
u(t)dt ≤ (n− 1 + α) r + α+ 2β + C0.

To prove this, define

v (r) := (n− 1 + α) r + α+ 2β + C0 −
∫ r

1
u(t)dt.

We show instead that v (r) ≥ 0 for all r ≥ 1. Clearly, v(1) > 0. Suppose that
v does not remain positive for all r ≥ 1 and let R > 1 be the first number
such that v (R) = 0. Then,

∫ R

1
u(t)dt = (n− 1 + α)R+ α+ 2β + C0.

In other words,

1
(n− 1)R

(
f (R) − f(1) +

∫ R

1
u(t)dt

)2

=
1

(n− 1)R
(f (R) − f(1) + (n− 1 + α)R+ α+ 2β + C0)2

≥ 1
(n− 1)R

((n− 1)R+ C0)2 ≥ (n− 1)R+ 2C0.

Plugging this into (2.2), we conclude u (R) ≤ −C0 < 0. This shows that
v′ (R) = (n− 1 + α) − u (R) > 0, which implies the existence of a small
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enough δ > 0 such that v (R− δ) < v (R) = 0. This obviously contradicts
with the choice of R.

We have thus proved that (2.3) is true for any r ≥ 1, or

log Jf (r) − log Jf (1) ≤ (n− 1 + α) r + α+ 2β + C0.

In particular, for R ≥ 1, we have the volume bound of the form

Vf (Bp (R)) ≤ Ce(n−1+α)R,

with the constant C depending on α, β and Bp (1) . �
We remark that in the special case of f being bounded, hence α = 0, the

estimate becomes
Vf (Bp (R)) ≤ Ce(n−1)R

for R ≥ 0. This improves a result in [28] in the sense that the rate of expo-
nential growth for the weighted volume does not depend on supM |f | .

Lemma 2.1 readily leads to the following estimate for the bottom spec-
trum of Δf .

Theorem 2.1. Let
(
M, g, e−fdv

)
be a complete smooth metric measure

space with Ricf ≥ − (n− 1) . Assume the linear growth rate of f is a. Then
we have

λ1 (Δf ) ≤ 1
4 (n− 1 + a)2 .

In particular, if f is of sublinear growth, then the bottom spectrum of the
weighted Laplacian has the following sharp upper bound:

λ1 (Δf ) ≤ (n− 1)2

4
.

Proof of Theorem 2.1. Let ψ be a cut-off function on Bp (R) such that ψ = 1
on Bp (R− 1) and |∇ψ| ≤ 2. Set φ (y) := e−

(n−1+a+ε)
2

r(y)ψ (y) as a test func-
tion in the variational principle for λ1 (Δf ) , where ε > 0 is an arbitrary
positive constant. Then, by Lemma 2.1, we obtain

λ1 (Δf ) ≤ (n− 1 + a+ ε)2

4
.

Since ε is arbitrary, this implies λ1 (Δf ) ≤ (n−1+a)2

4 .
In the case that f is of sublinear growth, we can take a = 0. Therefore,

λ1 (Δf ) ≤ 1
4 (n− 1)2 and the theorem is proved. �
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3. f-harmonic functions

In this section, we establish the following gradient estimate for positive
f -harmonic functions defined on M.

Theorem 3.1. Let
(
Mn, g, e−fdv

)
be a complete smooth metric measure

space with Ricf ≥ − (n− 1). Assume that for any x ∈M,

sup
y∈Bx(1)

|f (y) − f(x)| ≤ a.

Then there exists a constant C (n, a) depending only on n and a such that
for any u > 0 with Δfu = 0 we have

|∇ log u| ≤ C (n, a) .

Under the stronger assumption that |∇f | ≤ a, the result follows essen-
tially by Yau’s classical argument, see [29] for details. However, it seems no
longer possible to apply Yau’s approach directly once the hypothesis on f
only involves its oscillation on unit balls. Note that the theorem in particu-
lar is applicable to the case f is bounded on M. Our proof of Theorem 3.1
follows the strategy in [20]. We will first obtain local Neumann Poincaré and
Sobolev inequalities and then use the DeGiorgi–Nash–Moser theory. Let us
first recall the following Laplace comparison theorem from [28],

(3.1) Δfd (x, y) ≤ (n− 1) coth r +
2

sinh2 r

∫ r

0
(f(t) − f (r)) cosh (2t) dt,

where r := d (x, y) , f(t) := f (γ(t)) and γ(t) is a minimizing normal
geodesic such that γ (0) = x and γ (r) = y.

Using the assumption on f that |f(t) − f (r)| ≤ a, we get

Δfd (x, y) ≤ (n− 1 + 2a) coth r

for any 0 < r < 1. In particular, this yields

Jf (x, r2, ξ)
Jf (x, r1, ξ)

≤
(

sinh (r2)
sinh (r1)

)n−1+2a

,(3.2)

J (x, r2, ξ)
J (x, r1, ξ)

≤ e2a

(
sinh (r2)
sinh (r1)

)n−1+2a

,

for any 0 < r1 < r2 < 1.
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Now the arguments in [2, 10] (see also [20] for the case of smooth metric
measure spaces) imply that we have the following local Neumann Poincaré
and Sobolev inequalities.

Lemma 3.1. Let
(
M, g, e−fdv

)
be a smooth metric measure space of dimen-

sion n with Ricf ≥ − (n− 1) . Assume that for any x ∈M,

sup
y∈Bx(1)

|f (y) − f(x)| ≤ a.

Then for x ∈M and 0 < r < 1 we have
∫

Bx(r)

∣
∣ϕ− ϕBx(r)

∣
∣2 ≤ C · r2

∫

Bx(r)
|∇ϕ|2

for any ϕ ∈ C∞ (Bx (r)) , where ϕBx(r) := V −1 (Bx (r))
∫
Bx(r) ϕ and the con-

stant C depending only on the dimension n and a.

Note that the conclusion here that the constant C is independent of x
is stronger than that in [20]. This is due to the more restrictive assumption
on f in Lemma 3.1.

Lemma 3.2. Let
(
M, g, e−fdv

)
be a smooth metric measure space of dimen-

sion n with Ricf ≥ − (n− 1) . Assume that for any x ∈M,

sup
y∈Bx(1)

|f (y) − f(x)| ≤ a.

Then there exist constants ν > 2 and C depending only on n and a such that

(∫

Bx(1)

∣
∣ϕ− ϕBx(1)

∣
∣

2ν

ν−2

) ν−2
ν

≤ C

V (Bx(1))
2
ν

∫

Bx(1)
|∇ϕ|2

for any ϕ ∈ C∞ (Bx(1)) , where ϕBx(1) := V −1 (Bx(1))
∫
Bx(1) ϕ.

Although we have stated the Poincaré and Sobolev inequalities in Lem-
mas 3.1 and 3.2 in terms of the volume form dv, we point out that the same
statements hold true with respect to e−fdv as well with possibly a different
C. This is because the oscillation of f on Bx (1) is assumed to be uniformly
bounded.

We are now ready to prove Theorem 3.1. Our argument is a mixture of
both the Bochner identity and the DeGiorgi–Nash–Moser theory (see e.g.
[14, 25]).
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Proof of Theorem 3.1. Let u be a positive solution to Δfu = 0. Then the
Bochner formula asserts that

1
2Δf |∇u|2 = |uij |2 + 〈∇Δfu,∇u〉 + Ricf (∇u,∇u) .

Using the curvature lower bound, we get

Δf |∇u|2 ≥ −2 (n− 1) |∇u|2 .

In view of (3.2), Lemmas 3.1 and 3.2, we may apply the Moser iteration
argument (see [14, 25]) to |∇u|2 to conclude that

(3.3) sup
Bx( 1

16)
|∇u|2 ≤ C

Vf

(
Bx

(
1
8

))
∫

Bx( 1
8)

|∇u|2 e−f

for any x ∈M, where C depends only on n and a.
Now let φ be a cut-off function with support in Bx

(
1
4

)
such that φ = 1

on Bx

(
1
8

)
and |∇φ| ≤ 16. Then, using Δfu = 0, we have

∫

M
|∇u|2 φ2e−f = −2

∫

M
uφ 〈∇u,∇φ〉 e−f

≤ 1
2

∫

M
|∇u|2 φ2e−f + 2

∫

M
u2 |∇φ|2 e−f .

Therefore,
∫

M
|∇u|2 φ2e−f ≤ 4

∫

M
u2 |∇φ|2 e−f .

In view of (3.2), we conclude

1
Vf

(
Bx

(
1
8

))
∫

Bx( 1
8)

|∇u|2 e−f ≤ c

Vf

(
Bx

(
1
8

))
∫

Bx( 1
4)
u2e−f

≤ c
Vf

(
Bx

(
1
4

))

Vf

(
Bx

(
1
8

)) ( sup
Bx( 1

4)
u)2 ≤ C( sup

Bx( 1
4)
u)2.

Combining with (3.3), we obtain

(3.4) |∇u| (x) ≤ C sup
Bx( 1

4)
u.
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On the other hand, using (3.2), Lemmas 3.1 and 3.2, and applying the
Moser iteration argument to the equation Δfu = 0, we arrived at the fol-
lowing Harnack type inequality

sup
Bx( 1

4)
u ≤ C inf

Bx( 1
4)
u,

where C is a constant depending only on n and a. So we may rewrite (3.4)
into

|∇u| (x) ≤ C (n, a)u(x),

which is what we wanted to prove. �

4. Rigidity

In this section, we focus on the equality case of the estimate of the bottom
spectrum in Theorem 1.2 and prove the following rigidity theorem.

Theorem 4.1. Let
(
M, g, e−fdv

)
be a complete smooth metric measure

space of dimension n ≥ 3 with Ricf ≥ − (n− 1) . Assume that |∇f | ≤ a on
M for some constant a ≥ 0. If λ1 (Δf ) = 1

4 (n− 1 + a)2 , then either M is
connected at infinity or f is constant and M is a warped product M = R ×N
with ds2M = dt2 + h2(t)ds2N , where N is compact. The function h(t) = et if
n ≥ 4 and h(t) = et or h(t) = cosh t if n = 3.

Proof of Theorem 4.1. Assume that M has at least two ends. We will divide
our proof into two cases according to the ends being f -nonparabolic or
f -parabolic. Recall that a manifold is called f -nonparabolic if Δf admits a
positive symmetric Green’s function. Otherwise, it is called f -parabolic. For
an end of the manifold, the same definition applies, where now the Green’s
function refers to the one satisfying the Neumann boundary conditions.

We first deal with the case that there are at least two f -nonparabolic
ends. Then, according to a result in [15], there is a bounded nonconstant
f -harmonic function u on M such that

∫
M |∇u|2 e−f <∞.

By the Bochner formula, we have

Δf |∇u|2 = 2 |uij |2 + 2Ricf (∇u,∇u).

For each x ∈M, we may choose a local orthonormal frame {e1, e2, . . . , en}
such that at x we have u1 = |∇u| and ui = 0 if i > 1. Now a standard
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manipulation implies

|uij |2 ≥ |u11|2 + 2
n∑

j=2

|u1j |2 +
|Δu− u11|2

n− 1
.

Since Δfu = 0, we have

|Δu− u11|2 = |〈∇u,∇f〉 − u11|2 ≥ |u11|2 − 2 〈∇u,∇f〉 |u11|(4.1)

≥ |u11|2 − 2a |∇u| |u11|

as |∇f | ≤ a. Thus,

|uij |2 ≥ n

n− 1

n∑

j=1

|u1j |2 − 2a|u11||∇u|
n− 1

.

Since the orthonormal frame is chosen that e1 is in the direction of ∇u, it
is easy to see

|∇|∇u||2 =
n∑

j=1

|u1j |2

and
|u11| ≤ |∇|∇u||.

Therefore,

|uij |2 ≥ n

n− 1
|∇|∇u||2 − 2a

n− 1
|∇|∇u|||∇u|.

Together with the lower bound assumption on Ricf , we obtain

|∇u|Δf |∇u| ≥ 1
n− 1

|∇|∇u||2 − 2a|∇|∇u|||∇u|
n− 1

− (n− 1)|∇u|2.

Now let

α :=
n− 2
n− 1

+
√
n− 2 a

(n− 1)2
.

Using the elementary inequality

2|∇|∇u|||∇u| ≤
√
n− 2
n− 1

|∇|∇u||2 +
n− 1√
n− 2

|∇u|2,

we can rewrite the preceding inequality into

(4.2) Δf |∇u|α ≥ −
(√

n− 2 +
a

n− 1

)2

|∇u|α.
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Now the argument in [16] implies that λ1 (Δf ) ≤
(√

n− 2 + a
n−1

)2
.

Moreover, that the equality holds forces (4.2) into an equality also. In
the case of n ≥ 4, this contradicts with the assumption that λ1 (Δf ) =
1
4 (n− 1 + a)2 . In the case n = 3, this indeed becomes an equality. So (4.2)
and all the inequalities used to prove (4.2) are equalities. In particular,
from (4.1) we conclude 〈∇f,∇u〉 = 0 and a |∇u| |u11| = 0. Observe that we
also have |u11| = |∇ |∇u|| . Now if a 
= 0, then we conclude |∇ |∇u|| = 0 and
|∇u| = C on M. But this contradicts with

∫
M |∇u|2 e−f <∞ as

∫
M e−f = ∞

by the fact that M is f -nonparabolic. Therefore, a = 0 and f is constant.
So we are back to the standard Laplacian case. By [16], M = R ×N with
ds2M = dt2 + cosh2(t)ds2N , where N is compact.

We now focus on the case when the manifold has exactly one f -
nonparabolic end E. If M admits more than one end, then the end F :=
M\E must be f -parabolic. Using the fact that λ1 (Δf ) = 1

4 (n− 1 + a)2

and arguing as in [17], we obtain

(4.3) Vf (F\Bp (R)) ≤ Ce−(n−1+a)R.

Consider a ray γ contained in the end F and define the associated Busemann
function

β(x) := lim
t→∞ (t− d (x, γ(t))) .

Then, on the end F, we have β(x) ≤ r(x) + c, and on the end E, −r(x) − c ≤
β(x) ≤ −r(x) + c by [18].

Denote by τt (s) the minimizing geodesic from γ(t) to x that is param-
eterized by the arc length. According to the Laplace comparison theorem
in [28], we have

Δf (d (x, γ(t))) ≤ (n− 1) coth r − 1
sinh2 (r)

∫ r

0
f ′ (s) sinh (2s) ds,

where r := d (x, γ(t)) and f (s) := f (τt (s)) . Since |∇f | ≤ a, it is straight-
forward to see

Δf (d (x, γ(t))) ≤ (n− 1) coth r + a.

By the definition of the Busemann function, it is now standard to verify
that the following estimate holds in the sense of distributions.

(4.4) Δfβ(x) ≥ − (n− 1 + a) .



70 Ovidiu Munteanu & Jiaping Wang

Note by the Laplacian comparison theorem that Δfr ≤ (n− 1) coth r +
a, we have

(4.5) Vf (Bp (R) ∩ E) ≤ Ce(n−1+a)R

for all R > 0.
Consider the function

B := e
1
2
(n−1+a)β .

Using (4.4) and the fact that |∇β| = 1, we conclude

(4.6) ΔfB ≥ −1
4

(n− 1 + a)2B.

Let φ be a cut-off function with support in Bp (2R) such that φ = 1 on
Bp (R) and |∇φ| ≤ C

R . Then,

1
4

(n− 1 + a)2
∫

M
(Bφ)2 e−f +

∫

M
B (ΔfB)φ2e−f

≤
∫

M
|∇ (Bφ)|2 e−f +

∫

M
B (ΔfB)φ2e−f

=
∫

M
|∇φ|2B2e−f

≤ C

R
,

where we have used (4.3) and (4.5) in the last inequality. Letting R go
to infinity and taking into account of (4.6), we conclude ΔfB = −1

4(n−
1 + a)2B. Equivalently,

Δfβ = − (n− 1 + a) and |∇β| = 1

everywhere on M. So the Bochner formula implies that

0 =
1
2

Δf |∇β|2 = |βij |2 + 〈∇Δfβ,∇β〉 + Ricf (∇β,∇β)(4.7)

≥ |βij |2 − (n− 1) .

On the other hand, under an orthonormal frame {e1, e2, . . . , en} so that
β1 = |∇β| = 1 and βi = 0 for i > 1, one has β11 = 0. In particular,

(4.8) |βij |2 ≥ 1
n− 1

(Δβ)2 =
1

n− 1
(n− 1 + a− 〈∇f,∇β〉)2 .
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Since |〈∇f,∇β〉| ≤ a, clearly |βij |2 ≥ n− 1. In conclusion, both (4.7) and
(4.8) must be equalities. Reading from the equality case of (4.8), we assert
that (βij) is a diagonal matrix. Moreover, 〈∇f,∇β〉 = a, which implies ∇f =
a∇β or f = aβ up to a constant. Using again that Δfβ = − (n− 1 + a) and
〈∇f,∇β〉 = a, we deduce that Δβ = − (n− 1) . Hence, the diagonal entries
of (βij) are given by β11 = 0 and βii = −1 for i ≥ 2. This information on (βij)
together with the fact that |∇β| = 1 leads to the splitting of M as a warped
product R ×N with ds2M = dt2 + e−2tds2N . The manifold N is given by the
level set of the Busemann function β−1 (0) = {x : β(x) = 0} . The splitting
line is given by the integral curves of ∇β. The manifold N is necessarily
compact due to the fact that M is assumed to have (at least) two ends.
For more details, see [17].

Now we show that in fact f has to be constant in this case. Indeed,
according to a standard computation of the curvature of a warped product
metric, we have Ricij = RicN

ij − (n− 1) gij for i, j ≥ 2, where RicN is the
Ricci curvature of N. The condition that Ricf ≥ − (n− 1) is then equivalent
to RicN ≥ ae−2t on N. Since a ≥ 0 and t ∈ R is arbitrary, this is impossible
due to the compactness of N unless a = 0. This proves the theorem. �

5. Ends of expanding Ricci solitons

In this section, we investigate the issue of whether an expanding gradient
Ricci soliton is necessarily connected at infinity. Recall that an expand-
ing gradient Ricci soliton is a Riemannian manifold (M, g) such that Ric +
Hess (f) = −1

2g for some function f. Such f is called the potential function
of the soliton.

We begin by collecting some basic properties of expanding gradient Ricci
solitons. First, it is known that

(5.1) S + |∇f |2 = −f

after adding a suitable constant to f, where S denotes the scalar curvature
of M. Also, taking trace of the soliton equation, we obtain

(5.2) Δf + S = −n
2
.

On the other hand, by the maximum principle, it was proved in [24, 32] that

(5.3) S ≥ −n
2
.
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Moreover, if S = −n
2 at some point, then the manifold must be Einstein and

the potential function f is constant. Such soliton is called a trivial one.
Some elementary examples of expanding gradient Ricci solitons include

M = R
k ×Nn−k, where Nn−k is an Einstein manifold with RicN = −1

2gN

and R
k the Gaussian expanding Ricci soliton with potential function

f = −1
4 |x|2.

From (5.1) and (5.3), it is easy to see that (−f) grows at most quadrat-
ically. Indeed,

(−f) (x) ≤ 1
4r

2(x) + cr(x).

In view of this upper bound, it is natural to look for a matching lower
bound for −f, which has been achieved in the case of shrinking gradient
Ricci solitons [6]. However, in contrast to shrinking gradient Ricci solitons,
in general such a pointwise lower bound is not to be expected for expanding
gradient Ricci solitons. Indeed, for the preceding examples of the form M =
R

n−k ×Nk, the potential function is given by f(x, y) = −1
4 |x|2 for x ∈ R

n−k

and y ∈ N. If we take Nk to be the simply connected hyperbolic space of
Ricci curvature −1

2 , then N is noncompact and the potential function f does
not satisfy the desired bounds. Nonetheless, we have the following estimate
concerning the potential function f. The result in particular implies that an
expanding gradient Ricci soliton must be trivial if its potential function is
of subquadratic growth. Prior to our result, it was known from [24] that if
|∇f | is bounded on M, then M is Einstein.

Theorem 5.1. Let (M, g, f) be a nontrivial complete expanding gradient
Ricci soliton. Then there exists constant C such that

1
4 r

2 − C r
3
2

√
ln r ≤ sup

∂Bp(r)
(−f)(x) ≤ 1

4r
2 + Cr,

for all r > 2.

Proof of Theorem 5.1. As indicated above, we have

S + Δf = −n
2
,(5.4)

|∇f |2 + S = −f,
S > −n

2
.

Now the upper bound readily follows from (5.4). So we only need to prove
the lower bound.
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Let us denote

u :=
n

2
− f =

n

2
+ S + |∇f |2 > 0.

For k > 0, we compute

(5.5) Δe2k
√

u =
(
k√
u

Δu+
(
k2

u
− k

2u
√
u

)
|∇u|2

)
e2k

√
u.

From (5.4), we have

Δu =
(n

2
+ S

)
and(5.6)

|∇u|2 = u−
(n

2
+ S

)
.

It follows that

(5.7) Δe2k
√

u = k

{
k − 1

2
√
u

+
(n

2
+ S

)( 1√
u

+
1

2u
√
u
− k

u

)}
e2k

√
u.

Multiplying (5.7) by uk2
and integrating by parts on Bp (r), we have

∫

Bp(r)
uk2
(

Δe2k
√

u
)

= −
∫

Bp(r)

〈
∇e2k

√
u,∇uk2

〉
+
∫

∂Bp(r)
uk2 ∂

∂r

(
e2k

√
u
)

≤ −k3

∫

Bp(r)
|∇u|2 uk2− 3

2 e2k
√

u + k

∫

∂Bp(r)

1√
u
uk2 |∇u| e2k

√
u

= −k3

∫

Bp(r)

1√
u
uk2

e2k
√

u + k3

∫

Bp(r)

(n
2

+ S
) 1
u
√
u
uk2

e2k
√

u

+ k

∫

∂Bp(r)

1√
u
uk2 |∇u| e2k

√
u,

where in the last line we have used (5.6). Consequently, from (5.7) it follows:

∫

∂Bp(r)

|∇u|√
u
uk2

e2k
√

u

(5.8)

≥
∫

Bp(r)

{
k +

1√
u

(
k2 − 1

2

)
+
(n

2
+ S

)( 1√
u
− 1
u
√
u

(
k2 − 1

2

)
− k

u

)}

× uk2
e2k

√
u.
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We now claim that
(5.9)

k +
1√
u

(
k2 − 1

2

)
+
(n

2
+ S

)( 1√
u
− 1
u
√
u

(
k2 − 1

2

)
− k

u

)
≥ k

|∇u|√
u
.

We prove this directly by checking it at arbitrary point x ∈M. Let us
denote for simplicity

α :=
n

2
+ S(x),

and let

γ :=

√
u(x)
α

≥ 1.

The fact that γ ≥ 1 follows from (5.6). Notice that (5.9) is equivalent to

k
√
u+

(
k2 − 1

2

)
+ α

(
1 − 1

u

(
k2 − 1

2

)
− k√

u

)
≥ k

√
u− α.

This inequality is rewritten into the following equivalent form after replacing
u in terms of γ and rearranging the terms.

(5.10) α− k
√
α

(
1
γ
− γ +

√
γ2 − 1

)
+
(
k2 − 1

2

)(
1 − 1

γ2

)
≥ 0.

The discriminant of this quadratic inequality in
√
α is given by

D := k2

(
1
γ
− γ +

√
γ2 − 1

)2

− 4
(
k2 − 1

2

)(
1 − 1

γ2

)

=
(

1 − 1
γ2

){
k2
(
γ −

√
γ2 − 1

)2 − 4
(
k2 − 1

2

)}
.

Since

0 ≤ γ −
√
γ2 − 1 ≤ 1 and γ ≥ 1,

it follows that for k ≥ 1,

D ≤
(

1 − 1
γ2

)
{−3k2 + 2

} ≤ 0.

This proves that (5.10) is true for any γ ≥ 1 and for any α ≥ 0. Therefore,
(5.9) holds true at any x ∈M.
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From (5.8) and (5.9) we get that

k

∫

Bp(r)
|∇u|uk2− 1

2 e2k
√

u ≤
∫

∂Bp(r)
|∇u|uk2− 1

2 e2k
√

u.

Hence the function

w (r) :=
∫

Bp(r)
|∇u|uk2− 1

2 e2k
√

u

satisfies kw (r) ≤ w′ (r) for any r ≥ 0. Since (M, g, f) is assumed to be a
nontrivial Ricci soliton, there exists a positive radius r0 for which w (r0) > 0.
Integrating kw(t) ≤ w′(t) from t = r0 to t = r, we conclude that there exists
a positive constant C > 0 such that w (r) ≥ C ekr. Therefore, we have proved
that

(5.11)
∫

∂Bp(r)
|∇u|uk2− 1

2 e2k
√

u ≥ Cekr, for r ≥ r0.

We now prove that there exists a constant c(n) depending only on n such
that

(5.12) A (∂Bp (r)) ≤ Cec(n)r, for r ≥ r0.

Let us stress that (5.12) refers to the usual area, not the weighted one. This
claim follows as in Lemma 2.1. Indeed, from Lemma 2.1 we have

J ′

J
(r) +

1
n− 1

∫ r

1

(
J ′

J

)2

(t)dt ≤ f ′ (r) + 1
2r + C0.

Since

sup
Bp(r)

|∇f | ≤ 1
2
r + c,

it follows that

J ′

J
(r) +

1
(n− 1) r

(∫ r

1

J ′

J
(t)dt

)2

≤ r + C0.

The argument in Lemma 2.1 now shows that

A (∂Bp (r)) ≤ Ce2
√

n−1r.
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This proves (5.12) is true. Plugging this into (5.11) and using that

|∇u|2 ≤ u ≤ 1
4
r2 + cr,

we have

sup
∂Bp(r)

e2k
√

u ≥ Cekr−2k2 ln r−c(n)r.

In other words,

sup
∂Bp(r)

2
√
u ≥ r − 2k ln r − c

r

k
.

Since this estimate is true for each fixed r over all k, we may optimize by
choosing k =

√
r

ln r . It is easy to see that this proves the Theorem. �

Theorem 5.1 shows that the results we proved in Section 4 cannot be
applied directly to expanding gradient Ricci solitons as the boundedness
assumption on |∇f | is not available. To address the issue of connectedness
at infinity, we have to proceed somewhat differently to obtain a λ1 estimate.
Also, our proof to rule out the existence of small ends seems to rely on some
specific properties of expanding gradient Ricci solitons.

Theorem 5.2. Let (M, g, f) be a complete gradient expanding Ricci soli-
ton. Assume that S ≥ −n−1

2 on M. Then either M is connected at infinity
or M = R ×Nn−1, where N is a compact Einstein manifold and R is the
Gaussian expanding soliton.

Before proving the theorem, we first establish a weighted Poincaré
inequality for expanding gradient Ricci solitons. The importance of a
weighted Poincaré inequality for the issue of connectedness at infinity of
Riemannian manifolds has been exemplified in [19].

Lemma 5.1. Let (M, g, f) be a complete nontrivial expanding gradient
Ricci soliton. Define σ := S + n

2 . Then σ > 0 on M and

∫

M
σφ2e−f ≤

∫

M
|∇φ|2 e−f

for any φ ∈ C∞
0 (M).
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Proof of Lemma 5.1. The fact that σ > 0 is clear from (5.3). Using (5.1) and
(5.2), we compute

Δfef =
(

Δf (f) + |∇f |2
)

ef = (Δf) ef = −
(n

2
+ S

)
ef .

Now Proposition 1.1 in [19] implies the claimed weighted Poincaré
inequality. �

Using Lemma 5.1, we proceed to prove the theorem.

Proof of Theorem 5.2. Since M satisfies a weighted Poincaré inequality,
from [19] it follows that M is f -nonparabolic. By hypothesis S ≥ −n−1

2 ,
we see that

σ =
n

2
+ S ≥ 1

2
,

i.e., the bottom spectrum of the weighted Laplacian on M satisfies
λ1(Δf ) ≥ 1

2 .
We first show that all ends of M must be f -nonparabolic. Suppose E is

an f -parabolic end of M. Let us observe first that both |f | and |∇f | must
be bounded on E. To see this, let us denote by

u := n− 2f.

It is easy to check, using (5.4), that u has the following properties on M :

u ≥ 1,
Δfu = u,

|∇u|2 ≤ 2u.

Consequently, a direct computation shows that the function w := e−
1
2
u > 0

verifies Δfw ≤ 0. If u is an unbounded function on E, then w is a positive
f -superharmonic function on E, which achieves its infimum at the infinity
of E. It is well known that this implies that E is f -nonparabolic, see [13] for
details. This contradicts our assumption that E is f -parabolic, therefore u
must be bounded on E. In particular, there exists a constant A > 0 such that

(5.13) |f | + |∇f | ≤ A on E.

By the Laplace comparison theorem in [28], or cf. (3.1) here, it follows
that for any two points x, y ∈ E,

Δfd (x, y) ≤ a coth d (x, y) ,
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for some constant a independent of x or y. It is standard to obtain from
here that

(5.14) Vf (Bx (1)) ≥ C1e−C2r(x),

for C1 and C2 independent of x. Here, r(x) := d(p, x), for p ∈M fixed.
In the following, we obtain a contradiction to (5.14). Since σ ≥ 1

2 , it
follows by [16] that

(5.15)
∫

E\E(r)
e−f ≤ Ce−

√
2r,

where E (r) := E ∩Bp (r) and C is a constant independent of r. Since
Δfu = u, it is easy to see that

Δfu
k ≥ kuk, for all k ≥ 1.

We claim that Li–Wang’s result in [16] implies

(5.16)
∫

E\E(r)
u2ke−f ≤ e−

√
4k+2 (r−r0)

∫

E(r0)\E(r0−1)
u2ke−f ,

for any r > 2r0 and any positive integer k. For that, we need only to check
that

1
R

∫

E(R)
u2ke−

√
4k+2 re−f → 0 as R→ ∞.

This is clearly implied by the fact that u is bounded on E and by (5.15).
Hence, the claim (5.16) is true. Since u ≥ 1 is bounded, we see from (5.16)
that for any k ≥ 1, there exists a constant C (k) so that

∫

E\E(r)
e−f ≤ C (k) e−

√
4k+2 r, for all r > 2r0.

Choosing k large enough, this clearly contradicts with (5.14). In conclu-
sion, all ends of M must be f -nonparabolic.

We now deal with the f -nonparabolic ends. Suppose M has at least two
ends. Let E be an f -nonparabolic end. Then it follows that F := M\E is
also an f -nonparabolic end. By [15], there exists an f -harmonic function h
on M such that 0 < h < 1 and

∫
M |∇h|2 e−f <∞.
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Now the Bochner formula together with the Kato inequality shows

1
2Δf |∇h|2 = |hij |2 − 1

2 |∇h|2 ≥ |∇ |∇h||2 − 1
2 |∇h|2

or
Δf |∇h| ≥ −1

2 |∇h| .
We use this in the weighted Poincaré inequality to find that for any cut-off
function φ,
∫

M
σ |∇h|2 φ2e−f ≤

∫

M
|∇ (|∇h|φ)|2 e−f

=
∫

M

∣
∣
∣∇|∇h|2

∣
∣
∣φ2e−f +

1
2

∫

M

〈
∇|∇h|2 ,∇φ2

〉
e−f +

∫

M
|∇φ|2 |∇h|2 e−f

= −
∫

M
|∇h| (Δf |∇h|)φ2e−f +

∫

M
|∇φ|2 |∇h|2 e−f

≤ 1
2

∫

M
|∇h|2 φ2e−f +

∫

M
|∇φ|2 |∇h|2 e−f .

Notice that we may choose φ so that
∫

M
|∇φ|2 |∇h|2 e−f → 0.

Since σ ≥ 1
2 , this implies σ = 1

2 or S = −n
2 + 1

2 on M . The rigidity of gra-
dient Ricci solitons with constant scalar curvature has been studied in [22].
Our situation here is more special since we have a specific value for S. Let
us denote

v := 2

√

−f +
n− 1

2
= 2 |∇f | .

Notice that |∇v| = 1 at points where v 
= 0. Moreover, observe that since

Δfv
2 = 4Δf (−f) = 4

(n
2
− f

)
= v2 + 2

Δfv
2 = 2vΔfv + 2 |∇v|2 = 2vΔfv + 2,

we get that Δfv = 1
2v whenever v 
= 0. This implies that v is in fact smooth

and |∇v| = 1 everywhere on M. The Bochner formula gives

0 = 1
2Δf |∇v|2 = |vij |2 − 1

2 |∇v|2 + 〈∇Δfv,∇v〉 = |vij |2 .

Therefore, vij = 0 and M admits a parallel vector field ∇v. So M is isometric
to R ×N. Since M is assumed to have two ends, N must be a compact
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expanding gradient Ricci soliton. But it is well known that N then has to
be Einstein. The Theorem is proved. �

6. Volume of shrinking Ricci solitons

Consider a shrinking gradient Ricci soliton (M, g, f) . By definition, this is
a Riemannian manifold (M, g) for which there exists a smooth f so that
Ric + Hess (f) = 1

2g. Taking the trace of this equation, we also obtain S +
Δf = n

2 , where S denotes the scalar curvature of M. It is well known [11]
that S + |∇f |2 = f after adjusting f by adding a suitable constant. With
this normalization of f the Perelman’s invariant is defined by [7, 21]:

μ0 := − log
(

(4π)−
n

2

∫

M
e−f

)
<∞.

In this section we prove that the volume of a complete noncompact,
shrinking gradient Ricci soliton is of at least linear growth. As pointed
out in the introduction, this result is optimal. The corresponding result
for manifolds with nonnegative Ricci curvature was proved independently
by Calabi [4] and Yau [31].

Theorem 6.1. Let (M, g, f) be a complete noncompact, shrinking gradient
Ricci soliton. Then there exists a constant C > 0 depending only on dimen-
sion n and the Perelman’s invariant μ0 defined above such that

Vol (Bp (r)) ≥ Cr,

for all r ≥ r0, where p is a minimum point of f and r0 depends only on n.

Our proof of Theorem 6.1 involves Perelman’s ideas in [21, 26] and a loga-
rithmic Sobolev inequality for shrinking gradient Ricci solitons [7]. The main
difference here is that no extra assumptions are imposed on the curvature.

The proof of the Theorem consists of several steps. We begin by proving
that the volume of unit balls decay at most exponentially on a noncom-
pact shrinking gradient Ricci soliton. This may be of independent interest.
We then show that the volume of any noncompact shrinking gradient Ricci
soliton must be infinite in Lemma 6.2, a fact which also appeared in [5].
However, our approach here is different. With this fact, we then complete
our argument for Theorem 6.1.
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Lemma 6.1. Let (M, g, f) be a complete noncompact, shrinking gradient
Ricci soliton. Then there exists a constant C(n) > 0 depending only on
dimension n such that

V (Bx(1)) ≥ V (Bp(1)) e−C(n) d(p,x),

for all x ∈M, where p is a minimum point of f.

Proof of Lemma 6.1. Take any point x ∈M and express the volume form
in the geodesic polar coordinates centered at x as

dV |expx(rξ) = J (x, r, ξ) drdξ

for r > 0 and ξ ∈ SxM, a unit tangent vector at x. In the following, we will
omit the dependence of these quantities on ξ. Let x ∈M be arbitrary and

r := d (p, x) .

Notice that by the triangle inequality, Bp(1) ⊂ Bx (r + 1) \Bx (r − 1) . Let
γ (s) be a minimizing geodesic starting from x, such that γ (0) = x and
γ (T ) ∈ Bp(1), for some

(6.1) r − 1 ≤ T ≤ r + 1.

Along γ we have, by a standard formula:

J ′

J
(t) ≤ n− 1

t
− 1
t2

∫ t

0
s2Ric

(
γ′ (s) , γ′ (s)

)
ds.

Using the soliton equation that

Ric
(
γ′ (s) , γ′ (s)

)
= 1

2 − Hess (f)
(
γ′ (s) , γ′ (s)

)

and then integrating by parts we obtain:

(6.2)
J ′

J
(t) ≤ n− 1

t
− 1

6
t+ f ′(t) − 2

t2

∫ t

0
sf ′ (s) ds,

where f (s) := f (γ (s)) and 0≤ t≤T . We note that by the triangle inequality

d (p, γ (s)) ≤ d (p, γ (T )) + d (γ (T ) , γ (s)) ≤ T − s+ 1
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and
d (p, γ (s)) ≥ d (γ (T ) , γ (s)) − d (p, γ (T )) ≥ T − s− 1.

So by the estimates of f proved in [6, 12] together with (6.1) we obtain
that

1
4

[
(r − s− c(n))+

]2 ≤ f (γ (s)) ≤ 1
4 (r − s+ c(n))2 and(6.3)

|∇f | (γ (s)) ≤ 1
2

(r − s+ c(n)) ,

where c(n) is a constant depending only on n and a+ := max{a, 0}. In the
following, we will denote by c a constant depending only on n, which may
change from line to line.

Plugging this into (6.2) results in

J ′

J
(t) ≤ n− 1

t
− 1

6
t+ f ′(t) +

1
t2

∫ t

0
s (r − s+ c) ds

=
n− 1
t

+ c+ f ′(t) +
1
2

(r − t) .

Integrating from t = 1 to t = T we obtain that

(6.4) log
J (T )
J(1)

≤ cT + f (T ) − f(1) +
1
2

(
rT − 1

2
T 2

)
.

Notice that f (T ) ≤ c as γ (T ) ∈ Bp(1). On the other hand, by (6.3),

f(1) = f (γ(1)) ≥ 1
4
r2 − c(n)r.

Hence, combining with (6.1), one sees from (6.4) that

log
J (T )
J(1)

≤ cr.

In other words,

J (x, T, ξ) ≤ ecd(p,x)J (x, 1, ξ) , whenever expx (Tξ) ∈ Bp(1).

By integrating this over a subset of SxM consisting of all unit tangent vectors
ξ so that expx (Tξ) ∈ Bp(1) for some T, it follows that

V (Bp(1)) ≤ ecd(p,x)A (∂Bx(1)) ,

for a constant c depending only on n.
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The same argument implies in fact that

V (Bp(1)) ≤ ecd(p,x)A (∂Bx (ρ)) ,

for all 1/2 ≤ ρ ≤ 1. After integrating with respect to ρ, we have

V (Bx(1)) ≥ V (Bp(1)) e−cd(p,x).

The lemma is proved. �
We now establish the fact that the volume of a noncompact shrinking

gradient Ricci soliton is infinite.

Lemma 6.2. Let (M, g, f) be a complete noncompact, shrinking gradient
Ricci soliton. Then Vol(M) = ∞.

Proof of Lemma 6.2. Suppose to the contrary that

Vol(M) = V <∞.

Define
ρ := 2

√
f and D(t) := {ρ ≤ t} .

According to [6, 12],

d (p, x) − a ≤ ρ(x) ≤ d (p, x) + a,

for a constant a > 0 depending only on n. Moreover, it is easy to see that
|∇ρ| ≤ 1 on M. We let

V (t) := Vol (D(t)) and χ(t) :=
∫

D(t)
S.

By the co-area formula, we have

V ′(t) =
∫

∂D(t)

1
|∇ρ| and χ′(t) =

∫

∂D(t)

S

|∇ρ| .

Let us now recall the logarithmic Sobolev inequality from [7], which
holds for any compactly supported Lipschitz function u on M .

∫

M
u2 log u2 −

(∫

M
u2

)
log
(∫

M
u2

)
≤μ0

∫

M
u2 + 4

∫

M
|∇u|2 +

∫

M
Su2.

(6.5)
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For t ≥ 2, we define ut : R → R by

(6.6) ut (s) =

⎧
⎪⎨

⎪⎩

1, on s ≥ t,

s− (t− 1) , on t− 1 ≤ s ≤ t,

0 on 0 ≤ s ≤ t− 1

and a function on M by ut(x) := ut (ρ (x)).
Using the fact that S ≥ 0 (see [5, 8]) and χ(∞) =

∫
M S ≤ n

2 Vol(M) <
∞ (see [6]), one easily justifies that such ut is admissible in the preceding
logarithmic Sobolev inequality (6.5). Let us denote

y(t) :=
∫

M
u2

t .

The log-Sobolev inequality applied to ut implies

−y(t) log y(t) ≤ C (Vol(M) − V (t− 1)) +
∫

M
Su2

t ,

where C depends only on n and the Perelman’s invariant μ0. We have also
used above the elementary inequality u2

t log u2
t ≥ −1

e .
Since y(t) ≥ Vol(M) − V (t), we obtain

(6.7) −y(t) log y(t) ≤ Cy (t− 1) +
∫

M
Su2

t .

We now wish to express the term
∫
M Su2

t from (6.7) in terms of y(t). For
any T > t, since S = n

2 − Δf, we have

∫

D(T )
Su2

t =
n

2

∫

D(T )
u2

t −
∫

D(T )
(Δf) · u2

t(6.8)

=
n

2

∫

D(T )
u2

t +
∫

D(T )

〈∇f,∇u2
t

〉−
∫

∂D(T )

∂f

∂ν
u2

t ,

where ν is the unit normal to ∂D(t). In fact, since ∂
∂ν = ∇ρ

|∇ρ| , it follows
that ∂f

∂ν = 1
2ρ |∇ρ| ≥ 0. Moreover, observe that

〈∇f,∇u2
t

〉
has support in

D(t)\D (t− 1) and in that region we have

〈∇f,∇u2
t

〉
= 2 〈∇f,∇ρ〉ut = ρ |∇ρ|2 ut

≤ ρut.
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Using this in (6.8) we find that
∫

D(T )
Su2

t ≤ n

2

∫

D(T )
u2

t +
∫

D(t)\D(t−1)
ρut.

Hence, we can let T → ∞ in the above and get

(6.9)
∫

M
Su2

t ≤ n

2
y(t) + t

∫

D(t)\D(t−1)
ut.

By a direct calculation it follows that

(6.10)
d

dt
y(t) =

d

dt

∫

M
u2

t = −2
∫

D(t)\D(t−1)
ut.

Therefore, combining this with (6.9) we get
∫

M
Su2

t ≤ n

2
y(t) − 1

2
ty′(t).

We use this in (6.7) to conclude that

(6.11) ty′(t) − 2y(t) log y(t) ≤ Cy (t− 1)

for a constant C depending only on n and the Perelman’s invariant μ0. This
inequality is true for t ≥ c(n), where c(n) is a large enough constant so that
D(t) are nonempty.

In the following, we will use this differential inequality to show that the
function y(t) decays exponentially with arbitrarily large exponent. Here, our
argument is inspired by [23]. We first show y(t) is of exponential decay of
some order. We let

δ := e−C > 0,

where C is the constant from (6.11). There exists ε > 0 sufficiently small so
that

y

(
1
ε

)
< δe−2.

Indeed, this is because Vol(M) <∞, hence

lim
t→∞ y(t) = 0.

Clearly, we can assume eε < 2. Let us define t0 := 1
ε . We claim that

(6.12) y(t) < δe−εt, for any t0 ≤ t ≤ t0 + 1.
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Indeed, by (6.10) we know that y(t) is decreasing in t, therefore

y(t) ≤ y (t0) = y

(
1
ε

)
< δe−2,

for any t0 ≤ t ≤ t0 + 1. However, since t0ε = 1, we can write

δe−2 = δe−2εt0 < δe−εt,

where the last inequality is true because t ≤ t0 + 1 < 2t0. Hence, this proves
that (6.12) is true.

Now we claim that

(6.13) y(t) < δe−εt,

for any t0 ≤ t. If (6.13) fails to be true for all t ≥ t0, there exists a first t = r
so that y (r) = δe−εr. Then the choice of r implies

y (r) = δe−εr,

y′ (r) ≥ −εδe−εr.

Since (6.13) is true for t ≤ t0 + 1, we know that r − 1 ≥ t0. Consequently,
y (r − 1) ≤ δe−ε(r−1). Now (6.11) for t = r implies that

−εδre−εr + 2δe−εr (− log δ + εr) ≤ ry′ (r) − 2y (r) log y (r)
≤ Cy (t− 1)
≤ Cδeεe−εr.

Simplifying this gives

εr − 2 log δ ≤ Ceε.

However, εr ≥ εt0 = 1 and eε < 2 from the choice of ε. Since by definition
δ := e−C , this is a contradiction.

Hence (6.13) is true for all t ≥ t0. In particular,

(6.14) y(t) ≤ e−εt, for all t ≥ t0.

We have thus shown that y(t) decays exponentially. We now show that
y(t) has arbitrarily large exponential decay rate.
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Let us prove by induction on m that there exists tm such that

(6.15) y(t) ≤ e−( 3
2)m

εt, for all t ≥ tm.

Clearly, (6.14) means that (6.15) is true for m = 0. We now assume that
(6.15) is true for m ≥ 0 and prove so for m+ 1.

For a constant tm+1 ≥ tm to be picked later, let A be a constant so that

y(t) < Ae−
7
4( 3

2)m
εt, for all tm+1 ≤ t ≤ tm+1 + 1.

If this inequality holds true for all t ≥ tm+1, then by possibly renaming tm+1

to be a larger number, (6.15) holds for m+ 1 and the induction is complete.
Otherwise, there exists the first r > tm+1 + 1 so that y (r) = Ae−

7
4( 3

2)m
εr.

Then,

y (r) = Ae−
7
4( 3

2)m
εr,(6.16)

y′ (r) ≥ −7
4

(
3
2

)m

Aεe−
7
4( 3

2)m
εr.

Therefore, by (6.11) we get

(6.17) −7
4

(
3
2

)m

Aεe−
7
4( 3

2)m
εr ≤ 2

1
r
y (r) log y (r) +

C

r
y (r − 1) .

Using the induction hypothesis, we know

2 log y (r) ≤ −2
(

3
2

)m

εr.

From (6.16) and (6.17), it follows that

−7
4

(
3
2

)m

Aεe−
7
4( 3

2)m
εr ≤ −

(
2
(

3
2

)m

ε− C

r
e

7
4( 3

2)m
ε

)
Ae−

7
4( 3

2)m
εr.

After simplifying this inequality, we get

1
4

(
3
2

)m

ε ≤ C

r
e

7
4( 3

2)m
ε ≤ C

tm+1 + 1
e

7
4( 3

2)m
ε.

This is not possible if we pick tm+1 large enough. Therefore,

y(t) < Ae−
7
4( 3

2)m
εt, for all t ≥ tm+1.
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By choosing an even larger tm+1 if necessary, we have

y(t) < e−( 3
2)m+1

εt, for all t ≥ tm+1.

In other words, (6.15) is true for any m. Consequently, for any a > 0,

(6.18) y(t) ≤ C (a) e−at, for all t.

However, by Lemma 6.1, one sees that y(t) decays at most exponentially
with a fixed rate. Indeed, we may choose c(n) > 0 such that the geodesic ball

Bx(1) ⊂ D(t+ c(n) + 1) \D(t− c(n) − 1),

where d (p, x) = t. Then, by Lemma 6.1,

y(t− c(n) − 2) ≥ V (Bx(1)) ≥ C1(n)V (Bp(1)) e−C2(n)t,

and this contradicts (6.18). This contradiction necessarily implies
Vol(M) = ∞. The proof is completed. �

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. Recall D (r) := {ρ ≤ r} , where ρ := 2
√
f. According

to [6],

d (p, x) − a ≤ ρ(x) ≤ d (p, x) + a.

with constant a depending only on the dimension n. So we may choose
r0 > 100 only depending on n such thatD(r) has positive measure for r ≥ r0.

Let V (t) := Vol (D(t)) and χ(t) :=
∫
D(t) S. Then by [6],

χ(t) ≤ n

2
V (t)

for any t > 0. To prove Theorem 6.1, it is sufficient to show that V (r) ≥ C r,
for all r ≥ 2 r0 for some positive constant C depending only on n and μ0.
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We are going to prove this by contradiction. Let us assume that for ε > 0
small depending only on n and μ0 there exists r ≥ 2r0 such that

(6.19) V (r) ≤ εr.

The choice of ε will be made clear in the proof. Without loss of generality,
we may assume that r ∈ N. Consider the following set of positive integers:

Ω := {k ∈ N : V (t) ≤ 2εt, for all integers r ≤ t ≤ k} .

Clearly, r ∈ Ω. We now prove that in fact any integer k ≥ r is in Ω,
which follows from the following claim.

Claim 6.1. k + 1 ∈ Ω whenever k ∈ Ω.

Most of our argument is devoted to proving Claim 6.1. The following
logarithmic Sobolev inequality established by Carillo and Ni [7] will again
be central to our proof.

∫

M
u2 log u2 −

(∫

M
u2

)(
log
∫

M
u2

)
≤ μ0

∫

M
u2 +

∫

M
Su2 + 4

∫

M
|∇u|2

(6.20)

for any u ∈ C∞
0 (M), where μ0 is the Perelman’s invariant. Note that the

scalar curvature S ≥ 0 by [5, 8].
For t ≥ 2r0, define function u by

u(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, on D(t+ 1)\D(t),
t+ 2 − ρ(x), on D (t+ 2) \D(t+ 1),
ρ(x) − (t− 1) , on D(t)\D (t− 1) ,
0, otherwise.

Obviously, u is Lipschitz with compact support. Plugging u into the
preceding logarithmic Sobolev inequality and noting that x log x ≥ −1

e for
any x > 0, we conclude

−
(∫

M
u2

)
log(V (t+ 2) − V (t− 1)) ≤ C0 (V (t+ 2) − V (t− 1))(6.21)

+ (χ (t+ 2) − χ (t− 1)) ,

where C0 := μ0 + 4 + 1
e .



90 Ovidiu Munteanu & Jiaping Wang

On the other hand, according to [6],

(6.22)
V (t+ 1)
(t+ 1)n

− V (t)
tn

≤ 4
χ(t+ 1)

(t+ 1)n+2
, for any t >

√
2 (n+ 2).

Since χ(t) ≤ n
2V (t), we get from (6.22) that

V (t+ 1) − V (t) ≤ (t+ 1)n

(
V (t)
tn

+ 2n
V (t+ 1)

(t+ 1)n+2

)
− V (t)

=
(t+ 1)n − tn

tn
V (t) + 2n

V (t+ 1)
(t+ 1)2

.

Observe that

(t+ 1)n − tn

tn
≤ 2n

t
.

So we have

(6.23) V (t+ 1) − V (t) ≤ 2nV (t)
t

+ 2n
V (t+ 1)
(t+ 1)2

.

In particular, there exists C(n) depending only on n such that

(6.24) V (t+ 1) ≤ 2V (t),

for all t ≥ C(n).
Plugging this back into (6.23), we find that

(6.25) V (t+ 1) − V (t) ≤ C1
V (t)
t

for all t ≥ C(n), where C1 depends only on n. Moreover, using (6.24) and
(6.25) or, alternatively using the same argument as above, we also obtain

V (t+ 2) − V (t− 1) ≤ C2
V (t)
t

for all t ≥ C(n), where C2 depends only on n.
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Now for all integers r ≤ t ≤ k, note that t ∈ Ω. So V (t)
t ≤ 2ε, which

leads to

V (t+ 1) − V (t) ≤ 2C1ε,

V (t+ 2) − V (t− 1) ≤ 2C2ε.

Plugging this into (6.21), we arrive at

(V (t+ 1) − V (t)) log (2C2ε)
−1 ≤ C0 (V (t+ 2) − V (t− 1))(6.26)

+ (χ (t+ 2) − χ (t− 1))

provided ε is chosen to satisfy 2C2ε < 1.
Iterating (6.26) from t = r to t = k and summing up all the resulting

inequalities, we get

(V (k + 1) − V (r)) log (2C2ε)
−1 ≤ 3C0 (V (k + 2) + χ (k + 2)) .

Using again that χ (k + 2) ≤ n
2V (k + 2) and also (6.24), we obtain that

(V (k + 1) − V (r)) log (2C2ε)
−1 ≤ C3V (k + 1) ,

where C3 depends only on dimension n and the Perelman’s invariant μ0.
Rearranging the terms, and using (6.19), we get

V (k + 1) ≤ V (r)
log (2C2ε)

−1

log (2C2ε)
−1 − C3

(6.27)

≤ ε r
log (2C2ε)

−1

log (2C2ε)
−1 − C3

.

Let us choose ε small enough, depending on n and μ0, so that

log (2C2ε)
−1

log (2C2ε)
−1 − C3

≤ 2.

From (6.27) we conclude that

(6.28) V (k + 1) ≤ 2εr, for any k ∈ Ω.

Since r ≤ (k + 1) , by (6.28) this proves Claim 6.1.
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We have thus proved that

Ω = {k ∈ N : k ≥ r} .

However, (6.28) now implies that V (k) ≤ 2εr, for any integer k ≥ r. This
implies that the volume of M is finite, which is a contradiction to Lemma 6.2.

This contradiction indicates there exists no such r > r0 such that V (r) ≤
ε r with the ε > 0 chosen in the preceding argument, which depends only on
n and μ0. That is, V (r) ≥ ε r for r > r0. Theorem 6.1 is proved. �
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