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Steady gradient Ricci soliton with curvature in L1

Alix Deruelle

We characterize complete nonnegatively curved steady gradient
soliton with curvature in L1. We show that there are isometric
to a product ((R2, gcigar) × (Rn−2, eucl))/Γ where Γ is a Bieber-
bach group of rank n− 2. We prove also a similar local splitting
result under weaker curvature assumptions.

1. Introduction

A steady gradient Ricci soliton is a triple (Mn, g,∇f) where (Mn, g)
is a Riemannian manifold and f is a smooth function on Mn such that
Ric = Hess(f). It is said complete if (Mn, g) is complete and the vector
field ∇f is complete. By [15], the completeness of (Mn, g) suffices to ensure
the completeness of ∇f .

In this paper, we prove a rigidity result for steady gradient soliton of
nonnegative sectional curvature with curvature in L1(Mn, g).

Theorem 1.1. Let (Mn, g,∇f) be a complete nonflat steady gradient Ricci
soliton such that

(i) K ≥ 0, where K is the sectional curvature of g,

(ii) R ∈ L1(Mn, g).

Then any soul of Mn has codimension 2 and is flat. Moreover, the uni-
versal covering of Mn is isometric to

(R2, gcigar) × (Rn−2, eucl),

and π1(Mn) is a Bieberbach group of rank n− 2.

This result is relevant in dimensions greater than two. Indeed, the cigar
soliton is the only two-dimensional nonflat steady gradient soliton, see [4]
for a proof. Moreover, condition (i) is always true for an ancient solution of
dimension 3 with bounded curvature on compact time intervals because of
the Hamilton-Ivey estimate ([4], Chap. 6, Section 5 for a detailed proof).

31



32 Alix Deruelle

Now, by [15], a steady soliton has always nonnegative scalar curvature.
Therefore, by the soliton equation (see Lemma 2.2 below), a steady soliton
has bounded scalar curvature, in case of nonnegative sectional curvature, it
means that such a steady soliton has bounded curvature. Hence the following
corollary.

Corollary 1.1. Let (M3, g,∇f) be a complete nonflat steady gradient Ricci
soliton such that

R ∈ L1(M3, g).

Then (M3, g) is isometric to

((R2, gcigar) × R)/〈(t, θ, u) → (t, θ + α, u+ a)〉,

with (α, a) ∈ R × R
∗.

We make some remarks about Theorem 1.1. First we recall the defini-
tion of the cigar soliton discovered by Hamilton. The cigar metric on R

2,
in special radial coordinates, is gcigar := ds2 + tanh2 sdθ2. A standard calcu-
lation shows that R(gcigar) = 16/(es + e−s)−2. The curvature is positive and
decreases exponentially, moreover this metric is asymptotic to a cylinder of
radius 1, therefore R ∈ L1(R2, gcigar).

Theorem 1.1 can be seen as a gap theorem in the terminology of Greene–
Wu for the curvature decay of steady gradient solitons. In fact, one could
assume in Theorem 1.1 that the scalar curvature decays faster than 1/r1+ε

for ε > 0 instead of R ∈ L1(Mn, g). The proof is quite the same. Then the
result is that the curvature decays exponentially. In this way, let us mention
a result of Greene and Wu [6] on nonnegatively curved spaces which are flat
at infinity.

Theorem 1.2 (Greene–Wu). Let Mn be a complete noncompact Rieman-
nian manifold of nonnegative sectional curvature. If Mn is flat at infinity,
then either (a) Mn is flat or (b) any soul of Mn is flat and has codimension
2, the universal covering of Mn splits isometrically as R

n−2 × Σ0 where Σ0

is diffeomorphic to R
2 and is flat at infinity but not flat everywhere, and

finally the fundamental group of Mn is a Bieberbach group of rank n− 2.

The idea of the proof of Theorem 1.1 consists in analysing the volume and
the diameter of the level sets of f where f is seen like a Morse function. By
a blow-up argument inspired by Perelman’s proof of classification of three-
dimensional shrinking gradient Ricci soliton [11], we show that the level
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sets of f are diffeomorphic to flat compact manifolds. In fact, by Bochner’s
theorem, the level sets of f are metrically flat. From this, the global splitting
of the universal cover is easily obtained. Finally, we follow closely the argu-
ments of the proof of Theorem 1.2 to show that any soul has codimension 2.

Organization. In Section 2, we recall basic equations for steady soli-
tons, and study the topological structure at infinity. We establish some vol-
ume and diameter estimates of the level sets of f . In Section 3, we prove
Theorem 1.1, and, under weaker curvature assumptions, a local splitting
result (cf. Theorem 3.2). We give also a rigidity result on steady breathers.
In Section 4, we make some further remarks about the link between the
volume growth and the scalar curvature decay of a steady soliton.

2. Geometry and topology of the level sets of f

We begin by recalling the link ([4], Chap. 4) between steady gradient solitons
and the Ricci flow.

Theorem 2.1. If (Mn, g,∇f) is a complete steady gradient Ricci soliton
then there exist a solution g(τ) to the Ricci flow with g(0) = g, a family of
diffeomorphisms (ψτ )τ∈R with ψ0 = IdMn and functions f(τ) with f(0) = f
defined for all τ ∈ R such that

(i) ψτ : Mn →Mn is the 1-parameter group of diffeomorphisms generated
by −∇gf ,

(ii) g(τ) = ψτ
∗g, i.e., for all τ ∈ R, i.e., g(τ) is isometric to g,

(iii) f(τ) = ψτ
∗f , for all τ ∈ R.

Therefore, a steady soliton is an ancient solution to the Ricci flow, i.e.,
defined on an interval ]−∞, ω), where ω can be +∞. Let us quote from
([4], Chap. 2; Lemma 2.18) a result which follows from the strong and weak
maximum principles for heat-type equations:

Lemma 2.1 (Nontrivial ancient solutions have positive scalar cur-
vature). If (Mn, g(τ)) is a complete ancient solution (i.e., (Mn, g(τ)) is
complete for all τ ∈ (−∞, ω)) to the Ricci flow with bounded curvature on
compact time intervals then, either R(g(τ)) > 0 for all τ ∈ (−∞, ω), either
Ric(g(τ)) = 0 for all τ ∈ (−∞, ω).

Next, we collect the basic identities satisfied by a steady gradient soliton
([4], Chap. 4).
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Lemma 2.2. Let (Mn, g,∇f) be a complete steady gradient soliton. Then:

(i) Δf = R, where Δ := traceg Hess,

(ii) ∇R+ 2 Ric(∇f) = 0,

(iii) |∇f |2 +R = C.

By the third identity, a steady soliton with bounded curvature is always
complete because |∇f | is bounded. In the sequel, we only consider steady
gradient Ricci solitons with positive scalar curvature and bounded curvature.
Such solitons are necessarily noncompact.

Lemma 2.3 (Topological structure at infinity). Let (Mn, g,∇f) be a
steady gradient soliton such that Ric ≥ 0 with R > 0. Suppose that,

lim
+∞R = 0.

Then R attains its supremum, Rmax, at a point p, and on Mn,

|∇f |2 +R = Rmax.

Moreover, f attains its minimum at p and there exist constants positive
ci = ci(Mn, f, R) (i = 1, . . . , 6) such that

(i) |∇f | ≤ c1, on Mn,

(ii) c2 ≤ |∇f |, at infinity,

(iii) c3rp(x) + c4 ≤ f(x) ≤ c5rp(x) + c6 at infinity, where rp is the distance
function centered at p.

In particular, Mn has finite topological type.

Note that José A. Carrillo and Lei Ni [2] have shown a similar lemma
under weaker hypotheses: lim supx→+∞R < supMn R = R(p) = Rmax (R is
supposed to attain its supremum). To be complete, we give a short proof of
this lemma following [2].

Proof of Lemma 2.3. As the scalar curvature R tends to 0 at infinity, it
attains its maximum Rmax > 0 at a point p of Mn. Moreover, we know
that there exists a constant C > 0 such that |∇f |2 +R = C. In particular,
C ≥ Rmax. Assume that Rmax < C. Consider the flow (ψτ (p))τ generated
by the vector field ∇f . This flow is defined on R because ∇f is complete.
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Define the function F (τ) := f(ψτ (p)) for τ ∈ R. Then,

F ′(τ) = |∇f |2 and F ′′(τ) = 2 Ric(∇f,∇f),

implicitely evaluated at the point ψτ (p). By assumption, F ′(τ) ≥ C −
Rmax > 0 and F ′(0) = C −Rmax = minMn |∇f |2. Now F ′′(τ) ≥ 0 for
Ric ≥ 0, i.e., F ′ is a non-decreasing function on R. So F ′ is constant on
]−∞, 0] and F (τ) = (C −Rmax)τ + f(p) for τ ≤ 0. In particular, limτ→−∞
F (τ) = −∞. As f is continue (since it is smooth!) on Mn, this implies that
(ψτ (p))τ is not bounded for τ ≤ 0. Therefore, there exists a subsequence
τk → −∞ such that rp(ψτk

(p)) → +∞. Thus, limk→+∞R(ψτk
(p)) = 0. Now,

F ′′(τ) = 2 Ric(∇f,∇f) = −g(∇R,∇f) = 0 for τ ≤ 0, i.e., R(ψτ (p)) =
Rmax > 0 for τ ≤ 0. Contradiction. We have shown that |∇f |2 +R = Rmax.
Then ∇f(p) = 0 and as Hess(f)(p) ≥ 0, f attains its minimum at p. We
deduce that lim infx→+∞ |∇f |2 ≥ λ > 0. Finally, we can show the inequalities
satisfied by f as in Carrillo. �

Remember that the critical set of a convex function is exactly the set
where it attains its minimum. With the notations of the previous lemma,
we have {

f = min
Mn

f

}
= {∇f = 0} = {R = Rmax}.

In the following, we suppose that minMn f = 0. Now, consider the com-
pact hypersurfaces Mt := f−1(t), levels of f , for t positive. We will also
denote the sublevels (resp. superlevels) of f by M≤t := f−1(]−∞, t]) (resp.
M≥t := f−1([t,+∞[)).

Let (φt)t be the 1-parameter group of diffeomorphisms generated by the
vector field ∇f/|∇f |2 defined on Mn \M0. For t0 > 0, φt−t0 is a diffeo-
morphism between Mt0 and Mt for t ≥ t0. Outside a compact set, Mn is
diffeomorphic to [t0,+∞[×Mt0 for t0 > 0. We suppose n > 2.

Proposition 2.1 (Volume estimate). Let (Mn, g,∇f) be a complete
steady gradient soliton such that

(i) Ric ≥ 0 and R > 0,

(ii) lim+∞R = 0.

Then

0 ≤ A′(t) ≤ c(t0)
∫

Mt

R

|∇f |dAt, ∀t ≥ t0,



36 Alix Deruelle

where A(t) := V olgt
Mt, gt is the induced metric on Mt by g and c(t0) is a

positive constant depending on infM≥t0
|∇f |.

Proof of Proposition 2.1. The curvature assumptions allows to apply
Lemma 2.3. Thus, the hypersurfaces Mt are well-defined for t > 0. The flow
of the hypersurface Mt satisfies ∂φt

∂t = (∇f/|∇f |2)(φt). Therefore, the first
variation formula for the area of Mt is given by

A′(t) =
∫

Mt

Ht

|∇f |dA,

where Ht is the mean curvature of Mt. Now the second fundamental form
of Mt is

ht :=
Hess(f)
|∇f | =

Ric
|∇f | .

So,

A′(t) =
∫

Mt

R− Ric(n,n)
|∇f |2 dA,

where n := ∇f/|∇f | is the unit outward normal to the hypersurface Mt.
The first inequality comes from the nonnegativity of the Ricci curvature.
The second one is due to the nonnegativity of the Ricci curvature and to
the uniform boundedness from below of |∇f | on M≥t0 := {f ≥ f(t0)}. �

We deduce the following corollary by the co-area formula.

Corollary 2.1. Let (Mn, g,∇f) a complete steady gradient soliton satisfy-
ing the hypotheses of Proposition 2.1. Then,

A(t0) ≤ A(t) ≤ A(t0) + c(t0)
∫

Mt0≤s≤t

Rdμ, ∀t ≥ t0,

where Mt0≤s≤t := M≥t0 ∩M≤t.

Consequently, a steady gradient soliton satisfying the assumptions of
Proposition 2.1 with R ∈ L1(Mn, g) has linear volume growth, i.e., for any
p ∈Mn, there exist positive constants C1 and C2 such that for all r large
enough,

C1r ≤ VolB(p, r) ≤ C2r.
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Proposition 2.2 (Comparison of the metrics φ∗t−t0gt and gt0). Let
(Mn, g,∇f) be a complete steady gradient soliton satisfying the assumptions
of Proposition 2.1. Let V be a vector field tangent to Mt0. Then,

gt0(V, V ) ≤ (φ∗t−t0gt)(V, V ), ∀t ≥ t0.

Proof of Proposition 2.2. Define V (t) := dφt−t0(V ) where V is a unit tan-
gent vector to Mt0 . Note that V (t) is a tangent vector to Mt by construction.
Thus,

|V |′ =
g(V ′, V )

|V | =
|V |

|∇f |2 Hess(f)
(
V

|V | ,
V

|V |
)

=
|V |

|∇f |2 Ric
(
V

|V | ,
V

|V |
)
.

Hence,

log
( |V |(t)
|V |(t0)

)
=

∫ t

t0

|V |′(s)
|V |(s) ds =

∫ t

t0

1
|∇f |2(s) Ric

(
V (s)
|V |(s) ,

V (s)
|V |(s)

)
ds.

The inequality follows from the assumption Ric ≥ 0. �
We deduce the following corollary.

Corollary 2.2 (Distance comparison). Let (Mn, g,∇f) be a complete
steady gradient soliton satisfying the assumptions of Proposition 2.1. Then,

dgt0
≤ dφ∗

t−t0
gt
, ∀t ≥ t0.

Remark. By the proof of Proposition 2.2, we also have the following upper
estimate for t ≥ t0,

dt ≤ e
∫ t

t0

supMs
R

|∇f|2(s)
ds
dt0 ,

which will not be used in this paper.

From now on, we consider the sequence of compact Riemannian mani-
folds (Mt, gt)t≥t0 for t0 > 0. In order to take a smooth Cheeger–Gromov limit
of this sequence, one has to control the injectivity radius and the curvature
and its derivatives of the metrics gt uniformly.

Lemma 2.4 (Injectivity radius of (Mn, g)). Let (Mn, g,∇f) be a com-
plete steady gradient soliton such that

(i) Ric ≥ 0 and R > 0,

(ii) lim+∞R = 0.
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Then for any t0 > 0,

inj(M≤t) ≥ min

{
π√
K[t0,t]

, inj(M≤t0)

}
, ∀t ≥ t0,

where K[t0,t] bounds from above the sectional curvatures of g on Mt0≤s≤t.
In particular, if (Mn, g) has bounded curvature then it has positive injec-

tivity radius.

Proof of Lemma 2.4. Let t > 0 and define the topological retraction Πt :
Mn →Mn as follows: Πt(p) = p if f(p) ≤ t and Πt(p) = (φf(p)−t)−1(p) oth-
erwise. The proof consists in showing that Πt is a distance-nonincreasing
map. Then one can argue as in the proof of Sharafutdinov [13] to show the
injectivity radius estimate. Therefore, we want to show that Πt does not
increase distances, i.e.,

d(Πt(p0),Πt(p1)) ≤ d(p0, p1), (p0, p1 ∈Mn).

Let p0, p1 ∈Mn, t0 = f(p0) and t1 = f(p1). Assume w.l.o.g. that t0 ≤ t1.
Consider three cases. (1) t ≥ t1. There is nothing to prove because Πt(p0) =
p0 and Πt(p1) = p1. (2) t0 ≤ t ≤ t1. It suffices to show that s→ d(p0, φs−t

(q1)) is a nondecreasing function for s ≥ t and q1 ∈Mt. Take a minimal
geodesic γ joining p0 to φs−t(q1). Now, f ◦ γ is a convex function. Thus, 0 ≤
s− t0 = f(φs−t(q1)) − f(p0) = f(γ(1)) − f(γ(0)) ≤ g(∇f(γ(1)), γ̇(1)). This
proves the result. (3) t ≤ t0. It is equivalent to show that d(φt0−t(q0),
φt1−t(q1)) ≥ d(q0, q1), for q0, q1 ∈Mt. By Proposition 2.2,

d(q0, q1) ≤ d(φt0−t(q0), φt0−t(q1)),

and by (2),

d(φt0−t(q0), φt0−t(q1)) ≤ d(φt1−t0(φt0−t(q1)), φt0−t(q0)).

This gives the desired inequality. �

Remark. By Sharafutdinov’s retraction [13], a Riemannian manifold with
bounded nonnegative sectional curvature (without any soliton structure) has
positive injectivity radius. This fact will be used in the proof of Theorem
1.1. Therefore, Lemma 2.4 is only used in the proof of Proposition 2.3.
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Corollary 2.3 (Diameter estimate). Let (Mn, g,∇f) be a complete
steady gradient soliton with bounded curvature satisfying

(i) Ric ≥ 0, R > 0 and lim+∞R = 0,

(ii) R ∈ L1(Mn, g).

Then, for any t0 > 0, there exists a positive constant D = D(t0) such that,

diam(gt) ≤ D(t0), (∀t ≥ t0).

Proof of Corollary 2.3. On the one hand, by Lemma 2.4 and boundedness
assumption on curvature, the volume of small balls is uniformly bounded
from below. On the other hand, by assumption (ii) and Corollary 2.1, the
volume of any tubular neighbourhood of Mt with fixed width is uniformly
bounded from above, i.e., for α > 0, VolMt−α≤s≤t+α is uniformly bounded
from above in t. Therefore, by a ball packing argument, one can uniformly
bound the diameter of Mt. �

We should now estimate the derivatives of the curvature of gt.

Lemma 2.5. Let (Mn, g,∇f) be a complete steady gradient soliton satis-
fying

(i) Ric ≥ 0 and R > 0,

(ii) lim+∞ |Rm(g)| = 0.

Then there exist constants (Ck)k≥0 depending on t0 > 0 such that for all
t ≥ t0, we have

|∇k Rm(gt)| ≤ Ck.

Moreover, limt→+∞ supMt
|Rm(gt)| = 0.

Proof of Lemma 2.5. The fact that limt→+∞ supMt
|Rm(gt)| = 0 follows

from the Gauss equations:

(2.1) Kgt
(X,Y ) = Kg(X,Y ) + detht(X,Y ),

where X and Y are tangent to Mt.
In order to estimate the covariant derivatives ∇gt,k Rm(gt), it suffices

to control those of Rm(g). Indeed, if A is a p-tensor and (Xi)0≤i≤p, p+ 1
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tangent vectors to Mt, then

(∇gt −∇g)A(X0, X1, . . . , Xp) =
p∑

i=1

A(X1, . . . , (∇g
X0
Xi −∇gt

X0
Xi), . . . , Xp).

Now (∇g
X0
Xi −∇gt

X0
Xi) = −ht(X0, Xi)n. Consequently,

(∇gt −∇g)A = A ∗ ht,

where, if A and B are two tensors, A ∗B means any linear combination
of contractions of the tensorial product of A and B. Define Uk := (∇gt,k −
∇g,k)A for k ∈ N

∗. Then,

Uk+1 = (∇gt,k+1 −∇g,k+1)A

= (∇gt −∇g)(∇gt,kA) + ∇g(∇gt,k −∇g,k)A

= (∇gt,kA) ∗ ht + ∇gUk

= ∇g,kA ∗ ht + Uk ∗ ht + ∇gUk.

By induction on k, we show that Uk is a linear combination of contrac-
tions of the tensorial products of (∇g,iA)0≤i≤k−1 and (∇g,jht)0≤j≤k−1.

Now, bounding (∇g,jht)j≥0 means bounding (∇g,i Rm)i≥0 and bound-
ing from below |∇f |. If we take A = Rm(g), we see that bounding
(∇gt,k Rm(gt))k≥0 amounts to bounding (∇g,k Rm(g))k≥0 and bounding from
below |∇f |. By Theorem 1.1 in [14] due to W.X. Shi, there exists
T = T (n, supMn |K|) > 0 and constants C̃k = C̃k(n, supMn |K|) such that
for any time τ ∈]0, T ] and for all k ≥ 0, one has

sup
Mn

|∇g(τ),k Rm(g(τ))|2 ≤ C̃k

τk
.

In our situation, the Ricci flow acts by isometries: g(τ) = ψ∗
τg, for all τ ∈ R,

where (ψτ )τ is the 1-parameter group of diffeomorphisms of Mn generated
by −∇f . Modulo a translation at a time slice 0 < τ ≤ T , we can assume

sup
Mn

|∇g,k Rm(g)|2 ≤ Ck,

where Ck = Ck(n, supMn |Kg|). This completes the proof. �

We are now in a position to apply the following theorem to the hyper-
surfaces (Mt, gt)t≥t0 assuming that R ∈ L1(Mn, g).
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Theorem 2.2 (Cheeger–Gromov). Let n ≥ 2, (λi)i≥0, v,D ∈ (0,+∞).
The class of compact n-Riemannian manifolds (Nn, g) satisfying

|∇i Rm | ≤ λi, diam ≤ D, v ≤ Vol,

is compact for the smooth topology.

Apply this theorem to the sequence (Mk, gk)k≥t0 with

λi := Ci, v = A(t0), D := D(t0),

where the sequence (Cp)p comes from Lemma 2.5 and D(t0) (resp. A(t0))
is obtained by Corollary 2.3 (resp. by Corollary 2.1). There exists a sub-
sequence (Mki

, gki
)i converging to a flat compact manifold (M∞, g∞) by

assumption on the sectional curvature of Mn. As Mt and M∞ are compact,
the manifolds Mt and M∞ are diffeomorphic for t > 0.

To sum it up, we have shown the

Proposition 2.3. Let (Mn, g,∇f) be a complete steady gradient soliton
satisfying

(i) Ric ≥ 0 and R > 0,

(ii) lim+∞ |Rm(g)| = 0,

(iii) R ∈ L1(Mn, g).

Then the level sets of f , Mt for t > 0, are connected and are diffeomor-
phic to a compact flat (n− 1)-manifold.

Proof. The only thing we have to check is the connectedness of the hyper-
surfaces Mt for t > 0. If Mt have more than one component then Mn would
be disconnected at infinity and therefore, by the Cheeger–Gromoll theorem,
it would split isometrically as a product (R ×N, dt2 + g0) where N is com-
pact. Then, (N, g0) would be a compact steady gradient soliton, necessarily
trivial and so (Mn, g). Contradiction. This proves the connectedness of the
hypersurfaces Mt. �

3. The local and global splitting

As seen in the introduction, a fundamental example of steady soliton dis-
covered by Hamilton is the cigar soliton. An example of nontrivial steady
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gradient Ricci solitons with nonnegative sectional curvature and scalar cur-
vature in L1 in higher dimensions is the following: consider the metric prod-
uct (R2, gcigar) × (Rn−2, eucl) and take a quotient by a Bieberbach group of
rank n− 2.

Theorem 1.1 shows that this is the only example satisfying these assump-
tions. We prove this result in Section 3.1 below. A local splitting theorem
under weaker curvature assumptions is proved in Section 3.2.

3.1. The global splitting

First, we need some background from the theory of nonnegatively curved
Riemannian spaces. The presentation below follows closely Petersen [12].
The main difficulty to have a global result comes from the set M0 = {f =
minMn f}. Such a set is totally convex, i.e., any geodesic of M connecting
two points ofM0 is contained inM0. More generally, any sublevel of a convex
function f , M≤t = {p ∈Mn/f(p) ≤ t} is totally convex. In order to have a
better understanding of this notion, we sum up briefly its general properties
([12], Chap. 11).

Proposition 3.1. Let A ⊂ (Mn, g) be a totally convex subset of a Rieman-
nian manifold. Then A has an interior which is a totally convex submanifold
of Mn and a boundary ∂A non necessarily smooth which satisfies the hyper-
plane separation property.

Moreover, if A is closed, there exists a unique projection on A defined
on a neighbourhood of A. More precisely, we state Proposition 1.2 of Greene
and Shiohama [5]:

Proposition 3.2 (Greene-Shiohama). Let A ⊂ (Mn, g) be a totally con-
vex closed subset. Then there exists an open subset U ⊂Mn such that

(i) A ⊂ U ,

(ii) for any point p ∈ U , there exists a unique point π(p) ∈ A verifying
d(p,A) = d(p, π(p)),

(iii) the application π : U → A is continuous,

(iv) for any p ∈ U , there exists a unique geodesic connecting p to A and it
is contained in U .

If A is compact, we can choose U as {p ∈Mn/d(p,A) < ε}, where ε
depends on the compactness of A.
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Therefore, the geometric situation near a totally convex closed subset
is the same as in the case of R

n. In the case of Theorem 1.1, we have a
smooth convex exhaustion function f and a special totally convex compact
set {f = minMn f = 0} = M0. We would like to understand the topological
links (at least) between the levels Mt for t > 0 and the boundary of the
ε-neighbourhood M0,ε := {p ∈Mn/d(p,M0) ≤ ε} of M0 for ε > 0. Cheeger–
Gromoll [3] and Greene–Wu [6] give a nice answer:

Proposition 3.3 (Cheeger–Gromoll; Greene–Wu). Let f be a smooth
convex exhaustion function on a Riemannian manifold (Mn, g) with sec-
tional curvature bounded from above. Then, with the previous notations, for
ε > 0 small enough and 0 < δ � ε, the boundary of the δ-neighbourhood of
M0 and the level Mε are homeomorphic, i.e.,

∂M0,δ �Mε.

Finally, we recall the notion of soul. A soul S ⊂M of a Riemannian
manifold (M, g) is a closed totally convex submanifold. This notion has
been famous by the Soul theorem [3] by Cheeger and Gromoll.

Theorem 3.1 (Soul Theorem). Let (Mn, g) be a complete Riemannian
manifold with nonnegative sectional curvature. Then there exists a soul Sk

of Mn such that Mn is diffeomorphic to the normal bundle of Sk.

We now are in position to prove Theorem 1.1.

Proof of Theorem 3.1. First of all, as the Ricci flow acts by isometries in
this case, the sectional curvature is nonnegative for any time in R. Consider
for p ∈Mn and for time τ ∈ R,

η(p, τ) := {v ∈ TpM/Ricg(τ)(v) = 0}.

We recall that the evolution equation of the Ricci curvature under the
Ricci flow g(τ) satisfies: ∂τ Ric = ΔL Ric, where ΔL means the Lichnerowicz
laplacian for the metric g(τ) acting on symmetric 2-tensors T by ΔLTij :=
ΔTij + 2RikljTkl −RikTjk −RjkTik.

Thus, we can use Lemma 8.2 of Hamilton [7] to claim that η(p, τ) is a
smooth distribution invariant by parallel translation and time-independent.
Here, time-independence is clear because the flow acts by isometries. For
any p ∈Mn, we have an orthogonal decomposition invariant by parallel
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transport,

TpM = η(p, 0) ⊕ {v ∈ TpM/Ricg(v, v) > 0} =: η(p) ⊕ η⊥(p).

As these distributions are parallel, by the weak de Rham’s Theorem [[12],
Chap. 8], there exists a neighbourhood Up for any point p ∈Mn such that

(Up, g) = (U1, g1) × (U2, g2),

where TU1 = η | U1 and TU2 = η⊥ | U2.

Claim 3.1. dim η(p) = n− 2 for every p ∈Mn.

Proof of Claim 1. We remind that the second fundamental form ht of Mt

satisfies

ht =
Hess(f)
|∇f | .

Thus, the second fundamental form is nonnegative, i.e., Mt is convex. More-
over, the Gauss equation tells us

(3.1) Kgt
(X,Y ) = Kg(X,Y ) + detht(X,Y ),

where X and Y are tangent to Mt. Consequently, if we take an orthonormal
basis (Ei)i of TMt, orthogonal to n, we have

(3.2) Ric(gt)(X,X) = Ric(g)(X,X) −Kg(X,n) +
∑

i

detht(X,Ei),

where X is tangent to Mt. Tracing the previous identity, we get

(3.3) R(gt) = R(g) − 2 Ric(g)(n,n) + (Ht)2 − |ht|2.

By (3.1), we conclude that we have a family of metrics gt for t > 0 on Mt

of nonnegative sectional curvature. Now, as (Mn, g) has bounded nonnega-
tive sectional curvature, as said in the introduction, we know that (Mn, g)
has positive injectivity radius by Sharafutdinov’s retraction [13]. Therefore,
as the scalar curvature is a Lipschitz function since ∇R = −2 Ric(∇f) is
bounded on Mn, one has lim+∞ |Rm(g)| = 0. Consequently, Proposition 2.3
can be applied and Mt is diffeomorphic to a compact flat (n− 1)-manifold.
Therefore, by Bieberbach’s theorem ([1] for a geometric proof), there exists a
finite covering M̃t ofMt which is topologically a torus T

n−1. To sum it up, we
have a family of metrics g̃t, for t > 0, of nonnegative sectional curvature on a
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(n− 1)-torus. So, we conclude that the metrics g̃t are flat (and so are the gt)
by the equality case in the Bochner theorem [[12], Chap. 7]. Consequently,
the previous identities implies

R = 2 Ric(n,n)(> 0),(3.4)
Ric(g)(X,X) = Kg(X,n) for any spherical X,(3.5)

detht(X,Ei) = 0, for any i and any spherical X,(3.6)
Kg(X,Y ) = 0 for any spherical plane (X,Y ).(3.7)

By (3.4), n is in η⊥. (3.6) means that the rank of Ric restricted to the
hypersurfaces Mt for t > 0 is at most 1. Finally, the meancurvature Ht =
R− Ric(n,n) = Ric(n,n) is positive, unless it would contradict (3.4). Thus,
the rank of Ric restricted to the hypersurfaces Mt for t > 0 is exactly 1. �

Now, the universal covering M̃n of Mn is isometric to (M2
1 , g1) ×

(Mn−2
2 , g2) where TM1 = {Ricg > 0} and TM2 = {Ricg ≡ 0}. Because of

the nonnegativity of sectional curvature, (Mn−2
2 , g2) = (Rn−2, eucl). Thus

(M2
1 , g1(τ))τ∈R is a complete two-dimensional steady gradient soliton with

positive scalar curvature. By [[4], corollary B.12], (M2
1 , g1(τ))τ∈R is neces-

sarily the cigar soliton.
The last thing we need is the nature of the fundamental group of Mn.

Claim 3.2. If S is a soul of Mn then it has codimension 2 and it is flat.

Proof of Claim 2. Indeed, as S is compact and f is convex, f|S is constant
so TS ⊂ {Ricg ≡ 0}. Thus, S has codimension at least 2 and S is flat since
S is totally geodesic in a flat space. Moreover, by Bieberbach’s theorem, the
rank on Z of π1(S) is dimS.

Assume that S has codimension greater than 2. We obtain a contradic-
tion by linking the fundamental groups π1(Mt) of the hypersurfaces Mt and
π1(S) as in Greene–Wu [6]. One can assume that S ⊂M0 by construction
of a soul. On the one hand, Lemma 3.3 tells us that for δ small enough,

π1(Mt) = π1(∂M0,δ).

On the other hand, M0,δ and the δ-disc bundle ν≤δ(S) := {(p, v) ∈ S ×
(TpS)⊥/|v| ≤ δ} are homeomorphic by [3]. Thus, π1(Mt) = π1(νδ(S)) where
νδ(S) := {(p, v) ∈ S × (TpS)⊥/|v| = δ}. Now, the fibre of the fibration
νδ(S) → S is a k-sphere with k ≥ 2 hence simply-connected since the
codimension of S is at least 3. The homotopy sequence of the fibration
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shows that π1(νδ(S)) = π1(S). To sum it up we have for t > 0,

π1(S) = π1(Mt).

Now the hypersurfaces (Mt, gt) are flat. In particular, this implies that the
rank on Z of π1(Mt) is n− 1 > dimS = rkZ(π1(S)). Contradiction. �

Finally, by [3], we know that the inclusion Sn−2 →Mn is a homo-
topy equivalence, in particular π1(Mn) = π1(S). So, π1(Mn) is a Bieberbach
group of rank n− 2. �

3.2. The local splitting

Without the nonnegativity of sectional curvature, we loose the global split-
ting. Nonetheless, under a weaker assumption on the sign of curvature, we
still get a local splitting, away from the minimal set M0 of f . More precisely,

Theorem 3.2. Let (Mn, g,∇f) be a complete steady gradient soliton such
that

(i) Ric ≥ 0 and R > 0,

(ii) |∇f |2R ≥ 2 Ric(∇f,∇f),

(iii) lim+∞ |Rm(g)| = 0,

(iv) R ∈ L1(Mn, g).

Then, Mn \M0 is locally isometric to (R2, gcigar) × (Rn−2, eucl).

Remark. Assumption (ii) seems to be ad hoc. Nonetheless, note that (ii)
is verified if the sum of the spherical sectional curvatures is nonnegative,
i.e., if for any t > 0,

n−1∑
i=1

Kg(X,Ei) ≥ 0,

where X is tangent to Mt and (Ei)1≤i≤n−1 is an orthonormal basis of TMt.
Note that R = 2 Ric(n,n) +

∑
1≤i,j≤n−1Kg(Ei, Ej), where n is the unit out-

ward normal to Mt. This condition is clearly implied if (Mn, g) has non-
negative sectional curvature. Finally, the inequality (ii) is an equality for
surfaces. Therefore, Theorem 3.2 can be seen as a comparison theorem with
the geometry of the cigar soliton.
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Proof of Theorem 3.2. On the one hand, by assumptions (i), (iii) and (iv),
we know (Proposition 2.3) that the hypersurfaces Mt have a finite covering
diffeomorphic to a (n− 1)-torus. On the other hand, (3.3) in the previous
proof,

R(gt) = R(g) − 2 Ric(g)(n,n) + (Ht)2 − |ht|2,

associated with assumption (ii) shows that the hypersurfaces (Mt, gt) have
nonnegative scalar curvature. Therefore, we have obtained a sequence of (n−
1)-torus (M̃t, g̃t) with nonnegative scalar curvature. The Gromov–Lawson
theorem (which is relevant in the case n− 1 ≥ 3) [9] asserts that the metrics
g̃t are flat. Thus, so are the gt for t > 0. Now, along the same lines of the
proof of Theorem 1.1, we get the following identities

R = 2 Ric(n,n)(> 0),(3.8)
Ric(g)(X,X) = Kg(X,n) for any spherical X,(3.9)

detht(X,Ei) = 0, for any i and any spherical X,(3.10)
Kg(X,Y ) = 0, for any spherical plane (X,Y ).(3.11)

In particular, identities (3.9) and (3.11) show that the sectional curvature
Kg is nonnegative outside the minimal set M0. Here, the flow does not act
isometrically on Mn \M0. Nonetheless, for any p ∈Mn \M0, there exists a
neighbourhood (Up, g(t))t∈[−Tp,Tp] with Tp > 0 contained in (Mn \M0, g) so
that the sectional curvature restricted to (Up, g(t))t∈[−Tp,Tp] remains nonneg-
ative. Thus, as the argument is local, we can use Lemma 8.2 in Hamilton [7]
to claim that η|Up is a smooth distribution invariant by parallel translation.
According to the weak version of de Rham’s theorem, for any p ∈Mn \M0,
there exists a neighbourhood Up such that

(Up, g) = (U1, g1) × (U2, g2),

where TU1 = η | U1 and TU2 = η⊥ | U2. We can show, with the same
arguments as before, that dim η(p) = n− 2 for any p ∈Mn \M0.

Claim 3.3. n := ∇f/|∇f | is an eigenfunction for Ric.

Proof of Claim 3. Let p ∈Mt for t > 0 and (ei)i=1,...,n−1 an orthonormal
basis of TMt at p. We assume that η(p) is generated by (ei)i=2,...,n−1 and
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that η⊥(p) is generated by n and e1. By the previous local splitting,

Ricg(n, ei) = Ricg2(n, 0) + Ricg1(0, ei) = 0,

for i = 2, . . . , n− 1 and

Ricg(n, e1) = Ricg2(n, e1) =
Rg2(p)

2
g2(n, e1) = 0,

since dim η⊥(p) = 2! Consequently, Ric stabilizes n. �

Now, Ric restricted to TMt is given by

Ric(X) = Rm(X,n)n,

for any spherical X. As Ric is a symmetric endomorphism of TMn, it
stabilizes TMt too. Moreover, as ∇R+ 2 Ric(∇f) = 0, we have for any
spherical X,

g(∇R,X) = 0.

Thus, R and |∇f |2 are radial functions.
Let p∈Mn \M0 and Up a neighbourhood such that (Up, g) = (Un−2

1 , g1) ×
(U2

2 , g2). Locally, g2 is

g2 = dt2 + φ2(t, θ)dθ2,

where φ is a smooth positive function on U2. We claim that φ is radial, i.e.,
does not depend on θ. We know that g = g1 + g2 = dt2 + gt on Up and gt

is flat, i.e., φ2(t, θ)dθ2 + g1 is flat. In particular, the coefficients of such a
metric are coordinates independent since all the Christoffel symbols vanish.
This proves the claim. �

To sum it up, for any p ∈Mn \M0, there exists a neighbourhood Up

such that

(Up, g) = (Un−2
1 , g1) × (U2

2 , dt
2 + φ2(t)dθ2),

where (U1, g1) is flat and Rg1 = Rg = −φ′′/φ > 0.
Consequently, (U2

2 , dt
2 + φ2(t)dθ2) is a two-dimensional rotationally

symmetric steady gradient soliton with positive curvature. An easy calcula-
tion ([4], App. B) shows that φ(t) = 1

a tanh(at), for a > 0 i.e., g2 is a cigar
metric.
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3.3. Steady breathers with nonnegative curvature operator and
scalar curvature in L1

We end this section with a rigidity result on steady breathers. Recall that a
solution (Mn, g(t)) to the Ricci flow is called a steady breather if there exists
T > 0 and a diffeomorphism φ of Mn such that g(T ) = φ∗g(0). It is quite
clear that a steady breather can be extended in an eternal solution. Perelman
[11] showed that compact steady breathers are compact steady gradient Ricci
solitons, hence Ricci-flat. In the noncompact case, the question is still open.
In this direction, Hamilton [8] proved a more general result on (noncompact)
eternal solutions with nonnegative curvature operator.

Theorem 3.3 (Hamilton). If (Mn, g(t))t∈R is a simply connected com-
plete eternal solution to the Ricci flow with nonnegative curvature operator,
positive Ricci curvature and such that supMn×RR is attained at some space
and time, then (Mn, g(t)) is a steady gradient Ricci soliton.

Combining this result with Theorem 1.1, we get the following corollary.

Corollary 3.1. Let (Mn, g(t))t∈[0,T ] be a complete steady breather with
nonnegative curvature operator bounded on Mn × [0, T ] and Rg(0) ∈ L1(Mn,
g(0)). Then the universal covering of Mn is isometric to

(R2, gcigar) × (Rn−2, eucl),

and π1(Mn) is a Bieberbach group of rank n− 2.

Proof of Corollary 3.1. Recall that ancient solutions with bounded nonneg-
ative curvature operator have nondecreasing scalar curvature [[4], Chap. 10],
i.e., R(x, t1) ≤ R(x, t2) for t1 ≤ t2 and x ∈Mn. Therefore t→ supMn Rg(t)

is nondecreasing and is constant on a steady breather. Now, as Rg(0) ∈
L1(Mn, g(0)), Rg(0) is Lipschitz and K ≥ 0, lim+∞Rg(0) = 0 because a Rie-
mannian manifold with bounded nonnegative sectional curvature has pos-
itive injectivity radius [13]. Hence, supMn×RR is attained. Consider the
universal Riemannian covering (M̃n, g̃(t)) of (Mn, g(t)). By the Hamilton’s
maximum principle [7], (M̃n, g̃(t)) = (Nk, h(t)) × (Rn−k, eucl), where (Nk,
h(t)) is a simply connected complete eternal solution with nonnegative cur-
vature operator, positive Ricci curvature and such that supNk×RRh(t) is
attained. By Hamilton’s Theorem 3.3, (Nk, h(t)) is a steady gradient soli-
ton (Nk, h,∇f), and so is (M̃n, g̃) with the same potential function f . The
only thing to check according to Theorem 1.1 is that (Mn, g(0)) = (Mn, g)
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is a steady gradient soliton, i.e., the potential function f is well-defined
on Mn. By [[3], Section 6], the fundamental group π1(Mn) is a subgroup
of Isom(Nk, h) × Isom(Rn−k). Let ψ ∈ Isom(Nk, h). We want to prove that
ψ∗f = f . As ψ is an isometry for the metric h, Hessh(f − ψ∗f) = 0. There-
fore, |∇(f − ψ∗f)| = Cst = 0 because Nk contains no lines, i.e., f − ψ∗f =
Cst. Moreover, as Rich > 0, i.e., f is strictly convex, the scalar curvature
attains its maximum at a unique point p ∈ Nk. Thus, ψ(p) = p. This proves
that f = ψ∗f . �

4. Scalar curvature decay and volume growth on a steady
gradient soliton

In this section, we try to understand the relations between the scalar cur-
vature decay and the volume growth on a steady gradient soliton. We recall
a result due to Munteanu and Sesum [10].

Lemma 4.1. Let (Mn, g,∇f) be a complete steady gradient soliton. Then,
for any p ∈Mn, there exists a constant cp > 0 such that

VolB(p, r) ≥ cpr,

for any r ≥ 1.

What happens if we assume a minimal volume growth on a steady gra-
dient soliton? The answer can be given in term of scalar curvature decay:

Lemma 4.2. Let (Mn, g,∇f) be a complete steady gradient soliton. Assume
that there exists Cp > 0 such that

VolB(p, r) ≤ Cpr,

for a fixed p ∈Mn and r ≥ 1.
Then R belongs to L1(Mn, g).

Proof of Lemma 4.2. Let p ∈Mn and r ≥ 1. Then, by the Stokes theorem
applied to f ,

∫
B(p,r)

Rdμ =
∫

B(p,r)
Δfdμ ≤

∫
∂B(p,r)

|∇f |dA ≤ CA(p, r),

where A(p, r) is the (n− 1)-dimensional volume of the geodesic sphere
S(p, r) = ∂B(p, r) and where C = supMn |∇f | < +∞.
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Now,
∫ r
0 A(p, s)ds = VolB(p, r). Hence, the volume growth assumption

tells us that there exists a sequence of radii rk → +∞ such that the sequence
A(p, rk) is bounded.

Therefore, there exists C = C(p,∇f) such that for any k ∈ N,
∫

B(p,rk)
Rdμ ≤ C.

As Mn = ∪kB(p, rk), R is in L1(Mn, g). �

We end with a lemma concerning the “minimal” curvature decay of a
steady gradient soliton with nonnegative Ricci-curvature: the scalar curva-
ture decay is at most inversely proportional to the distance in an average
sense. More precisely,

Lemma 4.3. Let (Mn, g,∇f) be a complete steady gradient soliton with
Ric ≥ 0. Then, for any p ∈Mn and every r > 0,

1
VolB(p, r)

∫
B(p,r)

Rdμ ≤ C

r
,

where C = C(Mn,∇f).

Proof of Lemma 4.3. As in the proof of Lemma 4.2,

1
VolB(p, r)

∫
B(p,r)

Rdμ=
1

VolB(p, r)

∫
B(p,r)

Δfdμ≤ supMn |∇f |
r

rA(p, r)
VolB(p, r)

.

Now, by the Bishop-Gromov theorem ([16] for a recent and more general
proof),

rA(p, r)
VolB(p, r)

≤ n,

for any p ∈Mn and every r > 0 since Mn has nonnegative Ricci-curvature.
The result is immediate with C := n supMn |∇f |. �
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