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Scalar curvature rigidity with a volume constraint

Pengzi Miao and Luen-Fai Tam

Motivated by Brendle–Marques–Neves’ counterexample to the
Min-Oo’s conjecture, we prove a volume constrained scalar cur-
vature rigidity theorem which applies to the hemisphere.

1. Introduction

Recently, Brendle, Marques and Neves [6] have solved the long-standing
Min-Oo’s conjecture [15] by constructing a counterexample.

Theorem 1.1 (Brendle, Marques and Neves [6]). Suppose n ≥ 3. Let
ḡ be the standard metric on the hemisphere S

n
+. There exists a smooth metric

g on S
n
+, which can be made to be arbitrarily close to ḡ in the C∞-topology,

satisfying

• the scalar curvature of g is at least that of ḡ at each point in S
n
+,

• g and ḡ agree in a neighborhood of ∂S
n
+,

but g is not isometric to ḡ.

In this paper, we observe that if the metric g in Theorem 1.1 is assumed
to satisfy an additional volume constraint, then it must be isometric to ḡ.
Precisely, we have

Theorem 1.2. Let ḡ be the standard metric on S
n
+. Let g be another metric

on S
n
+ with the properties

• R(g) ≥ R(ḡ) in S
n
+,

• H(g) ≥ H(ḡ) on ∂S
n
+,

• g and ḡ induce the same metric on ∂S
n
+,

where R(g), R(ḡ) are the scalar curvature of g, ḡ, and H(g), H(ḡ) are the
mean curvature of ∂S

n
+ in (Sn

+, g), (Sn
+, ḡ). Suppose in addition

V (g) ≥ V (ḡ),
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where V (g), V (ḡ) are the volume of g, ḡ. If ||g − ḡ||C2(S̄n
+) is sufficiently

small, then there is a diffeomorphism ϕ : S
n
+ → S

n
+ with ϕ|∂Sn

+
= id, the iden-

tify map on ∂S
n
+, such that ϕ∗(g) = ḡ.

Theorem 1.2 is indeed a special case of a more general result:

Theorem 1.3. Let (Ω, ḡ) be an n-dimensional compact Riemannian man-
ifold, of constant sectional curvature 1, with smooth boundary Σ. Suppose
II + H̄γ̄ ≥ 0 (i.e., II + H̄γ̄ is positive semi-definite), where γ̄ is the induced
metric on Σ and II, H̄ are the second fundamental form, the mean cur-
vature of Σ in (Ω, ḡ). Suppose the first nonzero Neumann eigenvalue μ of
(Ω, ḡ) satisfies μ > n − 2

n+1 .
Consider a nearby metric g on Ω with the properties

• R(g) ≥ n(n − 1) where R(g) is the scalar curvature of g,

• H(g) ≥ H̄ where H(g) is the mean curvature of Σ in (Ω, g),

• g and ḡ induce the same metric on Σ,

• V (g) ≥ V (ḡ) where V (g), V (ḡ) are the volumes of g, ḡ.

If ||g − ḡ||C2(Ω̄) is sufficiently small, then there is a diffeomorphism ϕ on Ω
with ϕ|Σ = id, such that ϕ∗(g) = ḡ.

As a by-product of the method used to derive Theorem 1.3, we obtain
a volume estimate for metrics close to the Euclidean metric in terms of the
scalar curvature.

Theorem 1.4. Let Ω ⊂ R
n be a bounded domain with smooth boundary Σ.

Suppose II + H̄γ̄ > 0 (i.e., II + H̄γ̄ is positive definite), where II, H̄ are the
second fundamental form, the mean curvature of Σ in R

n and γ̄ is the metric
on Σ induced from the Euclidean metric ḡ. Let g be another metric on Ω̄
satisfying

• H(g) ≥ H̄, where H(g) is the mean curvature of Σ in (Ω, g)

• g and ḡ induce the same metric on Σ.

Given any point a ∈ R
n, there exists a constant Λ >

maxq∈Ω̄ |q−a|2
4(n−1) , depending

only on Ω and a, such that if ||g − ḡ||C3(Ω̄) is sufficiently small, then

(1.1) V (g) − V (ḡ) ≥
∫

Ω
R(g)Φ dvolḡ,

where Φ(x) = − 1
4(n−1) |x − a|2 + Λ > 0 on Ω̄.
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Theorem 1.4 may be compared to a previous theorem of Bartnik [2],
which estimates the total mass [1] of an asymptotically flat metric that is a
perturbation of the Euclidean metric.

Theorem 1.5 (Bartnik [2]). Let g be an asymptotically flat metric on
R

3. If g is sufficiently close to the Euclidean metric ḡ (in certain weighted
Sobolev space), then

(1.2) 16πm(g) ≥
∫

R3

R(g) dvolḡ,

where m(g) is the total mass of g.

Our proofs of Theorems 1.2–1.4 follow a recent perturbation analysis
of Brendle and Marques in [5], where they established a scalar curvature
rigidity theorem for “small” geodesic balls in S

n.

Theorem 1.6 (Brendle and Marques [5]). Let Ω ⊂ S
n be a geodesic

ball of radius δ. Suppose

(1.3) cos δ ≥ 2√
n + 3

.

Let ḡ be the standard metric on S
n. Let g be another metric on Ω with the

properties

• R(g) ≥ n(n − 1) at each point in Ω,

• H(g) ≥ H̄ at each point on ∂Ω,

• g and ḡ induce the same metric on ∂Ω,

where R(g) is the scalar curvature of g, and H(g), H̄ are the mean curvature
of ∂Ω in (Ω, g), (Ω, ḡ). If g − ḡ is sufficiently small in the C2-norm, then
ϕ∗(g) = ḡ for some diffeomorphism ϕ : Ω → Ω such that ϕ|∂Ω = id.

In Theorem 1.6, the condition (1.3) is equivalently to

(1.4) H̄ ≥ 4 tan δ

because the mean curvature H̄ of ∂B(δ) is (n − 1) cos δ
sin δ . As another applica-

tion of the formulas in Section 2, we obtain a generalization of Theorem 1.6
to convex domains in S

n.



4 P. Miao & L.-F. Tam

Theorem 1.7. Let Ω ⊂ S
n be a smooth domain contained in a geodesic ball

B of radius less than π
2 . Let ḡ be the standard metric on S

n. Let II, H̄ be
the second fundamental form, the mean curvature of ∂Ω in (Ω, ḡ). Suppose
Ω is convex, i.e., II ≥ 0. At ∂Ω, suppose

(1.5) H̄ ≥ 4 tan r,

where r is the ḡ-distance to the center of B. Then the conclusion of Theorem
1.6 holds on Ω.

Theorem 1.7 is an immediate corollary of Theorem 5.1 in Section 5. In
a simpler setting, where the background metric ḡ is a flat metric, we have

Theorem 1.8. Let Ω be a compact manifold with smooth boundary Σ. Sup-
pose there is a flat metric ḡ on Ω such that II + H̄γ̄ ≥ 0 (i.e., II + H̄γ̄ is
positive semi-definite), where II, H̄ are the second fundamental form, the
mean curvature of Σ, and γ̄ is the induced metric on Σ. Given another
metric g on Ω such that

• R(g) ≥ 0 on Ω,

• H(g) ≥ H̄ at Σ,

• g and ḡ induce the same metric on Σ,

if ||g − ḡ||C2(Ω̄) is sufficiently small, then ϕ∗(g) = ḡ for some diffeomorphism
ϕ : Ω → Ω with ϕ|Σ = id.

Similar calculation at the infinitesimal level provides examples of com-
pact 3-manifolds of nonnegative scalar curvature whose boundary surface
does not have positive Gaussian curvature but still has positive Brown–
York mass [7, 8]. We include this in the end of the paper to compare with
known results in [17].

Theorem 1.9. Let Σ ⊂ R
n be a connected, closed hypersurface satisfying

II + H̄γ̄ ≥ 0, where II, H̄ are the second fundamental form, the mean cur-
vature of Σ, and γ̄ is the induced metric on Σ. Let Ω be the domain enclosed
by Σ in R

n. Let h be any nontrivial (0, 2) symmetric tensor on Ω satisfying

(1.6) divḡh = 0, trḡh = 0, h|TΣ = 0.

Let {g(t)}|t|<ε be a 1-parameter family of metrics on Ω satisfying

(1.7) g(0) = ḡ, g′(0) = h, R(g(t)) ≥ 0, g(t)|TΣ = ḡ|TΣ.
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Then

(1.8)
∫

Σ
H̄dσḡ >

∫
Σ

H(g(t))dσḡ

for small t �= 0, where H(g(t)) is the mean curvature of Σ in (Ω, g(t)).

This paper is organized as follows. In Section 2, we derive a basic formula
concerning a perturbed metric (Theorem 2.1), which corresponds to [5, The-
orem 10] of Brendle and Marques. In Section 3, we prove Theorem 1.3, which
implies Theorem 1.2. In Section 4, we give a proof of Theorem 1.4. In Sec-
tion 5, we consider other applications of the formulas in Section 2 and prove
Theorem 1.7–1.9.

2. Basic formulas for a perturbed metric

Let Ω be an n-dimensional, smooth, compact manifold with boundary Σ.
Let ḡ be a fixed smooth Riemannian metric on Ω. Given a tensor η, let “|η|”
denote the length of η measured with respect to ḡ. Denote the covariant
derivative with respect to ḡ by ∇. Indices of tensors are raised by ḡ. Let
R̄ikjl denote the curvature tensor of ḡ such that if ḡ has constant sectional
curvature κ, then R̄ikjl = κ(gijgkl − gilgkj). Consider a nearby Riemannian
metric g = ḡ + h where h is a symmetric (0, 2) tensor with |h| very small,
say |h| ≤ 1

2 .
The following pointwise estimates of the scalar curvature of g and the

mean curvature of Σ were derived by Brendle and Marques in [5].

Proposition 2.1 (Brendle and Marques [5]). The scalar curvatures R(g),
R(ḡ) of the metrics g, ḡ satisfy

|R(g) − R(ḡ) + 〈Ric(ḡ), h〉 − 〈Ric(ḡ), h2〉 +
1
4
|∇h|2 − 1

2
ḡij ḡklḡpq∇ihkp∇lhjq

+
1
4
|∇(trḡh)|2 + ∇i[gikgjl(∇khjl −∇lhjk)]|

≤ C
(|h||∇h|2 + |h|3) ,

where Ric(ḡ) is the Ricci curvature of ḡ, h2 is the ḡ-square of h, i.e.,
(h2)ik = ḡjlhijhkl, 〈·, ·〉 is taken with respect to ḡ, and C is a positive con-
stant depending only on n.
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Remark 2.1. If the background metric ḡ is Ricci flat, i.e., R̄ik = 0, then
there will be no |h|3 term in the above estimate. That is because

R(g) = gikR̄ik − gikglj
(∇i,khjl −∇i,lhjk

)
+ gikgjlgpq

(
Γq

ilΓ
p
jk − Γq

jlΓ
p
ik

)
,

where each term on the right, except gikR̄ik, involves derivatives of h.

Proposition 2.2 (Brendle and Marques [5]). Assume that g and ḡ induce
the same metric on Σ, i.e., h|TΣ = 0 where TΣ is the tangent bundle of
Σ. Then the mean curvatures H(g), H(ḡ) of Σ in (Ω, g), (Ω, ḡ), each with
respect to the outward normals, satisfy∣∣∣∣∣2 [H(g) − H(ḡ)] −

(
h(ν, ν) − 1

4
h(ν, ν)2 +

n−1∑
α=1

h(eα, ν)2
)

H(ḡ)

+
(

1 − 1
2
h(ν, ν)

) n−1∑
α=1

[
2∇eα

h(eα, ν) −∇νh(eα, eα)
]∣∣∣∣∣

≤ C
(|h|2|∇h| + |h|3) ,

where {eα | 1 ≤ α ≤ n − 1} is a local orthonormal frame on Σ, ν is the ḡ-
unit outward normal vector to Σ, and C is a positive constant depending
only on n.

To derive the main formula (2.23) in this section, we let

(2.1) DRḡ(h) = −Δḡ(trḡh) + divḡdivḡh − 〈Ric(ḡ), h〉

be the linearization of the scalar curvature at ḡ along h. Here “Δḡ, divḡ”
denote the Laplacian, the divergence with respect to ḡ.

Lemma 2.1. With the same notations in Proposition 2.1, assume in addi-
tion divḡh = 0, then

R(g) − R(ḡ) = DRḡ(h) − 1
2
DRḡ(h2) + 〈h,∇2trḡh〉 − 1

4
(|∇h|2 + |∇(trḡh)|2)

+
1
2
hijhklRikjl + E(h) + ∇i(Ei

1(h)),
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where E(h) is a function and E1(h) is a vector field on Ω satisfying

|E(h)| ≤ C(|h||∇h|2 + |h|3), |E1(h)| ≤ C|h|2|∇h|

for a positive constant C depending only on n.

Proof. First note that

(2.2) −∇i

[
ḡikḡjl

(∇khjl −∇lhjk

)]− 〈Ric(ḡ), h〉 = DRḡ(h).

Suppose gik = ḡik + τ ik. Then τ ik = −hik + Eik
2 (h) where hik = ḡijhjlḡ

lk

and |E2(h)| ≤ C|h|2. Hence,

gikgjl − ḡikḡjl = −ḡikhjl − ḡjlhik + Eikjl
3 (h),

where |E3(h)| ≤ C|h|2. Therefore,

−∇i[(gikgjl − ḡikḡjl)(∇khjl −∇lhjk)](2.3)

= ∇i[(ḡikhjl + ḡjlhik − Eikjl
3 (h))(∇khjl −∇lhjk)]

=
1
2
Δḡ|h|2 + 〈h,∇2trḡ(h)〉ḡ − divḡdivḡ(h2)

−∇i(E
ikjl
3 (∇khjl −∇lhjk)).

Applying the Ricci identity, one has

1
2
ḡij ḡklḡpq∇ihkp∇lhjq =

1
2
divḡdivḡ(h2) − 1

2
〈Ric(ḡ), h2〉(2.4)

+
1
2
hijhklRikjl.

The lemma follows from Proposition 2.1, (2.2), (2.3) and (2.4). �

Next, let DHḡ(h) denote the linearization of the mean curvature at ḡ
along h. Proposition 2.2 implies

(2.5) DHḡ(h) =
1
2

[
h(ν, ν)H(ḡ) −

n−1∑
α=1

(
2∇eα

h(eα, ν) −∇νh(eα, eα)
)]

.
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For later use, we note the following equivalent expression of DHḡ(h) (see [13,
(34)] for instance)

(2.6) DHḡ(h) =
1
2
{[d(trḡh) − divḡh](ν) − divΣX} ,

where X is the vector field on Σ dual to the 1-form h(ν, ·)|TΣ.
Let DR∗̄

g(·) denote the formal L2 ḡ-adjoint of DRḡ(·), i.e.,

(2.7) DR∗
ḡ(λ) = −(Δḡλ)ḡ + ∇2

ḡλ − λRic(ḡ)

where λ is a function and ∇2
ḡλ denotes the Hessian of λ with respect to ḡ.

The content of the following lemma had been used in [13].

Lemma 2.2. Let p be any smooth (0, 2) symmetric tensor on Ω, then∫
Ω

DRḡ(p)λ dvolḡ =
∫

Ω
〈DR∗

ḡ(λ), p〉 dvolḡ −
∫

Σ
2DHḡ(p)λ dσḡ(2.8)

+
∫

Σ
λν (trḡ(p) − p(ν, ν)) dσḡ,

where λν = ∂νλ denotes the directional derivative of λ along ν.

Proof. Let Y be the vector field on Σ dual to the 1-form p(ν, ·)|TΣ. Integrat-
ing by parts, one has∫

Ω
DRḡ(p)λ dvolḡ −

∫
Ω
〈DR∗

ḡ(λ), p〉 dvolḡ(2.9)

=
∫

Σ
−λ∂ν(trḡp) + (trḡp)∂νλ + λdivḡp(ν) − p(ν,∇λ) dσḡ

=
∫

Σ
λ[−∂ν(trḡp) + divḡp(ν)] − 〈Y,∇Σ

λ〉 dσḡ

+
∫

Σ
λν (trḡ(p) − p(ν, ν)) dσḡ

=
∫

Σ
λ[−∂ν(trḡp) + divḡp(ν) + divΣY ] dσḡ

+
∫

Σ
λν (trḡ(p) − p(ν, ν)) dσḡ,

where ∇Σ(·) denotes the gradient on Σ with respect to the induced metric.
From this and (2.6) the Lemma follows. �

Using Lemma 2.2, we can estimate
∫
Ω[R(g) − R(ḡ)]λ dvolḡ.
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Proposition 2.3. Suppose g and ḡ induce the same metric on Σ and h
satisfies divḡh = 0. Given any C2 function λ on Ω, one has∫

Ω
[R(g) − R(ḡ)] λ dvolḡ

=
∫

Ω
〈h, DR∗

ḡ(λ)〉 dvolḡ − 1
2

∫
Ω
〈h2, DR∗

ḡ(λ)〉 dvolḡ

+
∫

Ω

[
(trḡh)〈h,∇2

ḡλ〉 +
1
2
hijhklR̄ikjlλ − 1

4
(|∇h|2 + |∇(trḡh)|2)λ

]
dvolḡ

+
∫

Σ

[
−(hnn)2 − 1

2
|X|2

]
λ;n dσḡ −

∫
Σ

hnn〈X,∇Σ
λ〉 dσḡ

+
∫

Σ

[
−1

2
(hnn)2H(ḡ) − 1

2
II(X, X) − 3

2
|X|2H(ḡ)

]
λ dσḡ

−
∫

Σ
(2 − 2trḡh)DHḡ(h)λ dσḡ +

∫
Ω

E(h)λ dvolḡ

−
∫

Ω
Ei

1(h)∇iλ dvolḡ +
∫

Σ
F1(h)λ dσḡ,

where II is the second fundamental form of Σ in (Ω, ḡ) with respect to ν, X
is the vector field on Σ that is dual to the 1-form h(ν, ·)|TΣ, E(h) and Ei

1(h)
are as in Lemma 2.1, and F1(h) is a function on Σ satisfying

|F1(h)| ≤ C|h|2|∇h|

for a positive constant C depending only on n.

Proof. By (2.8) with p = h, using the fact that h|T (Σ) = 0, we have

(2.10)
∫

Ω
DRḡ(h)λ dvolḡ =

∫
Ω
〈DR∗

ḡ(λ), h〉 dvolḡ −
∫

Σ
2DHḡ(h)λ dσḡ.

By the second line in (2.9) with p = h2, and integrating by parts, we also
have ∫

Ω
−λ

2
DRḡ(h2) + λ〈h,∇2trḡh〉 dvolḡ(2.11)

=
∫

Ω
−1

2
〈DR∗

ḡ(λ), h2〉 + trḡh〈h,∇2
λ〉 dvolḡ + B,
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where

B =
∫

Σ

1
2
[
λ∂ν(|h|2) − |h|2∂νλ − λ(divḡh

2)(ν) + (h2)(ν,∇λ)
]

dσḡ(2.12)

+
∫

Σ

[
λh(ν,∇trḡh) − trḡhh(ν,∇λ)

]
dσḡ.

To compute B, let {eα | 1 ≤ α ≤ n − 1} be an orthonormal frame on Σ
and let en = ν. Denote ∇ also by “;”, thus hij;k = ∇khij . The assumptions
h|TΣ = 0 and divḡh = 0 imply the following facts on Σ:

|h|2 = (hnn)2 + 2|X|2, (h2)nn = (hnn)2 + |X|2, (h2)nα = hnnhnα,(2.13)

(h2)(ν,∇λ) = [(hnn)2 + |X|2]λ;n + hnn〈X,∇Σ
λ〉,(2.14)

hβγ;α = hβnIIγα + hnγIIβα,(2.15)

hnn;α = (trḡh);α −
n−1∑
β=1

hββ;α = (trḡh);α − 2II(X, eα),(2.16)

0 = (divh)α = hαn;n +
n−1∑
β=1

hαβ;β = hαn;n + hnαH(ḡ) + II(X, eα),(2.17)

0 = (divḡh)n = hnn;n +
n−1∑
α=1

hnα;α = hnn;n + divΣX + hnnH(ḡ),(2.18)

2DHḡ(h) = (trḡh);n − divΣX,(2.19)

where (2.19) follows from (2.6). By (2.16)–(2.18), we have

∂ν(|h|2) − (divḡh
2)(ν) = 3hnαhnα;n + hnnhnn;n − hnαhnn;α(2.20)

= −II(X, X) − 3H(ḡ)|X|2 − H(ḡ)(hnn)2

− hnndivΣX − 〈X,∇Σtrḡh〉.

By (2.12), (2.13), (2.14), (2.20) and integration by parts, we have

B =
∫

Σ

[
−(hnn)2 − 1

2
|X|2

]
λ;n −

∫
Σ

hnn〈X,∇Σ
λ〉

(2.21)

+
∫

Σ

[
−1

2
II(X, X) − 3

2
H(ḡ)|X|2 − 1

2
H(ḡ)(hnn)2 + 2hnnDHḡ(h)

]
λdσḡ.
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Note that

(2.22)
∫

Ω
(∇iE

i
1(h))λ dvolḡ = −

∫
Ω

Ei
1(h)∇iλ dvolḡ +

∫
Σ

λF1(h) dσḡ,

where |F1(h) = 〈E1(h), ν〉| ≤ C|h|2|∇h|. Proposition 2.3 now follows from
Lemma 2.1, (2.10), (2.11), (2.21) and (2.22). �

The formula (2.23) below is a general form of [5, Theorem 10], which
Brendle and Marques derived for geodesic balls in S

n.

Theorem 2.1. Suppose g and ḡ induce the same metric on Σ and h satisfies
divḡh = 0. Given any C2 function λ on Ω, one has

∫
Ω

[R(g) − R(ḡ)] λ dvolḡ +
∫

Σ
(2 − trḡh) [H(g) − H(ḡ)] λ dσḡ

=
∫

Ω
〈h, DR∗

ḡ(λ)〉 dvolḡ − 1
2

∫
Ω
〈h2, DR∗

ḡ(λ)〉 dvolḡ

+
∫

Ω

[
(trḡh)〈h,∇2

ḡλ〉 +
1
2
hijhklR̄ikjlλ − 1

4
(|∇h|2 + |∇(trḡh)|2)λ

]
dvolḡ

+
∫

Σ

[
−1

4
(hnn)2H(ḡ) − 1

2
(II(X, X) + H(ḡ)|X|2)

]
λ dσḡ

+
∫

Σ
λ;n

[
−(hnn)2 − 1

2
|X|2

]
dσḡ +

∫
Σ
(−1)hnn〈X,∇Σ

λ〉 dσḡ

+
∫

Ω
E(h)λ dvolḡ +

∫
Ω

Zi(h)∇iλ dvolḡ +
∫

Σ
F (h)λ dσḡ,

(2.23)

where E(h) is a function and Z(h) is a vector field on Ω satisfying

|E(h)| ≤ C(|h||∇h|2 + |h|3), |Z(h)| ≤ C|h|2|∇h|,

and F (h) is some function on Σ satisfying

|F (h)| ≤ C(|h|2|∇h| + |h|3).

Proof. Proposition 2.2 implies

(2.24) 2[H(g) − H(ḡ)] = 2DHḡ(h) + J(h) + F2(h)
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where

J(h) =
[
1
4
(hnn)2 + |X|2

]
H(ḡ) − hnnDHḡ(h)

and F2(h) is some function on Σ satisfying |F2(h)| ≤ C(|h|2|∇h| + |h|3).
Therefore

(2 − hnn)[H(g) − H(ḡ)] = (2 − 2hnn)DHḡ(h)(2.25)

+
[
1
4
(hnn)2 + |X|2

]
H(ḡ)

+ F2(h) − 1
2
hnn[J(h) + F2(h)].

(2.23) now follows readily from Proposition 2.3 and (2.25). �

The term DR∗̄
g(λ) in (2.23) may suggest that one consider a background

metric ḡ which admits a nontrivial function λ such that DR∗̄
g(λ) = 0 (such

metrics are known as static metrics [10].) For instance, if Ω is a geodesic
ball B in S

n, ḡ is the standard metric on S
n and λ = cos r, where r is

the ḡ-distance to the center of B, then (2.23) reduces to the formula in
[5, Theorem 10].

Besides static metrics, one can also consider those metrics ḡ with the
property that there exists a function λ such that

(2.26) DR∗
ḡ(λ) = ḡ.

These metrics were studied by the authors in [13, 14]. In this case, the terms∫
Ω
〈h, DR∗

ḡ(λ)〉 dvolḡ − 1
2

∫
Ω
〈h2, DR∗

ḡ(λ)〉 dvolḡ

in (2.23) become ∫
Ω

trḡh dvolḡ − 1
2

∫
Ω
|h|2 dvolḡ.

To compensate these terms, one can include the difference between the vol-
umes of g and ḡ into (2.23).

Corollary 2.1. Suppose ḡ is a metric on Ω with the property that there
exists a function λ satisfying DR∗̄

g(λ) = ḡ. Let g = ḡ + h be a nearby metric
such that g and ḡ induce the same metric on Σ and h satisfies divḡh = 0.
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Let V (g), V (ḡ) denote the volume of (Ω, g), (Ω, ḡ). Then

−2(V (g) − V (ḡ)) +
∫

Ω
[R(g) − R(ḡ)] λ dvolḡ

+
∫

Σ
(2 − trḡh) [H(g) − H(ḡ)] λ dσḡ

=
∫

Ω

[
−1

4
− 1

n − 1

]
(trḡh)2 dvolḡ

+
∫

Ω

[
−1

4
(|∇h|2 + |∇ḡ(trḡh)|2)λ

]
dvolḡ

+
∫

Ω

[
1

1 − n
R(ḡ)(trḡh)2 + 〈h, Ric(ḡ)〉(trḡh) +

1
2
hijhklRikjl

]
λ dvolḡ

+
∫

Σ

[
−1

4
(hnn)2H(ḡ) − 1

2
(II(X, X) + H(ḡ)|X|2)

]
λ dσḡ

+
∫

Σ
λ;n

[
−(hnn)2 − 1

2
|X|2

]
dσḡ +

∫
Σ
(−1)hnn〈X,∇Σ

λ〉 dσḡ

+
∫

Ω
G(h) dvolḡ +

∫
Ω

E(h)λ dvolḡ +
∫

Ω
Zi(h)∇iλ dvolḡ

+
∫

Σ
F (h)λ dσḡ,

(2.27)

where G(h) and E(h) are functions on Ω satisfying

|G(h)| ≤ C|h|3, |E(h)| ≤ C(|h||∇h|2 + |h|3),

Z(h) is a vector field on Ω satisfying

|Z(h)| ≤ C|h|2|∇h|,

and F (h) is a function on Σ satisfying

|F (h)| ≤ C(|h|2|∇h| + |h|3).

Proof. The difference between the volumes of ḡ and g = ḡ + h is

(2.28) V (g) − V (ḡ) =
∫

Ω

1
2
(trḡh) +

[
1
8
(trḡh)2 − 1

4
|h|2
]

+ G(h) dvolḡ,
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where G(h) is a function satisfying |G(h)| ≤ C|h|3 for a constant C depend-
ing only on n. Suppose DR∗̄

g(λ) = ḡ, i.e.,

−(Δḡλ)ḡ + ∇2
ḡλ − λRic(ḡ) = ḡ.

Taking trace, one has Δḡλ = 1
1−n [R(ḡ)λ + n]. Thus,

(2.29) ∇2
ḡλ =

1
1 − n

[R(ḡ)λ + 1]ḡ + λRic(ḡ).

(2.27) follows from (2.23), (2.28) and (2.29). �

3. Volume constrained rigidity

We prove Theorem 1.3 in this section. First, we recall its statement:

Theorem 3.1. Let (Ω, ḡ) be an n-dimensional compact Riemannian man-
ifold, of constant sectional curvature 1, with smooth boundary Σ. Suppose
II + H̄γ̄ ≥ 0 (i.e., II + H̄γ̄ is positive semi-definite), where γ̄ is the induced
metric on Σ and II, H̄ are the second fundamental form, the mean cur-
vature of Σ in (Ω, ḡ). Suppose the first nonzero Neumann eigenvalue μ of
(Ω, ḡ) satisfies μ > n − 2

n+1 .
Consider a nearby metric g on Ω with the properties

• R(g) ≥ n(n − 1) where R(g) is the scalar curvature of g,

• H(g) ≥ H̄ where H(g) is the mean curvature of Σ in (Ω, g),

• g and ḡ induce the same metric on Σ,

• V (g) ≥ V (ḡ) where V (g), V (ḡ) are the volumes of g, ḡ.

If ||g − ḡ||C2(Ω̄) is sufficiently small, then there is a diffeomorphism ϕ on Ω
with ϕ|Σ = id, which is the identity map on Σ, such that ϕ∗(g) = ḡ.

Proof. Fix a real number p > n. By [5, Proposition 11], if ||g − ḡ||W 2,p(Ω) is
sufficiently small, there exists a W 3,p diffeomorphism ϕ on Ω with ϕ|Σ = id
such that h = ϕ∗(g) − g is divergence free with respect to ḡ, and
||h||W 2,p(Ω) ≤ N ||g − ḡ||W 2,p(Ω) for some positive constant N depending only
on (Ω, ḡ). Replacing g by ϕ∗(g), we may assume g = ḡ + h with divḡh = 0.
We want to prove that if ||h||C1(Ω̄) is sufficiently small and g satisfies the
conditions in the theorem, then h must be zero.
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Since ḡ has constant sectional curvature 1, we choose λ = − 1
n−1 such

that DR∗̄
g(λ) = ḡ. Corollary 2.1 then shows

− 2(V (g) − V (ḡ)) − 1
n − 1

∫
Ω

[R(g) − R(ḡ)] dvolḡ

− 1
n − 1

∫
Σ
(2 − trḡh) [H(g) − H(ḡ)] dσḡ

≥ 1
4(n − 1)

∫
Ω

[−(n + 1)(trḡh)2 + 2|h|2 + |∇h|2 + |∇(trḡh)|2] dvolḡ

+
1

4(n − 1)

∫
Σ

[
(hnn)2H(ḡ) + 2(II(X, X) + H(ḡ)|X|2)] dσḡ

− C||h||C1(Ω̄)

[∫
Ω
(|h|2 + |∇h|2) dvolḡ +

∫
Σ
|h|2 dσḡ

]

(3.1)

for a constant C depending only on (Ω, ḡ).
Using the variational property of μ, we have

(3.2)∫
Ω
|∇(trḡh)|2 dvolḡ ≥ μ

[(∫
Ω
(trḡh)2 dvolḡ

)
− 1

V (ḡ)

(∫
Ω

trḡh dvolḡ

)2
]

.

By (2.28),
∫
Ω trḡh dvolḡ is related to (V (g) − V (ḡ)) by

∫
Ω

trḡh dvolḡ = 2(V (g) − V (ḡ)) −
∫

Ω

{[
1
4
(trḡh)2 − 1

2
|h|2
]

+ 2G(h)
}

dvolḡ,

(3.3)

where G(h) ≤ C|h|3.
Given any constant 0 < ε < 1, using (3.2) and the fact |h|2 ≥ 1

n(trḡh)2

and |∇h|2 ≥ 1
n |∇(trḡh)|2, we have

∫
Ω

[−(n + 1)(trḡh)2 + 2|h|2 + |∇h|2 + |∇ḡ(trḡh)|2] dvolḡ

(3.4)

≥
∫

Ω

[
ε|h|2 + ε|∇h|2 +

[
−(n + 1) +

2 − ε

n

]
(trḡh)2

+
[
(1 − ε)

n
+ 1
]
|∇(trḡh)|2

]
dvolḡ
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≥
∫

Ω

[
ε|h|2 + ε|∇h|2 +

[
−(n + 1) +

2 − ε

n
+

(1 − ε)
n

μ + μ

]
(trḡh)2

]
dvolḡ

−μ

[
(1 − ε)

n
+ 1
]

1
V (ḡ)

(∫
Ω

trḡh dvolḡ

)2

.

Since μ > n − 2
n+1 , we can chose ε (depending only on μ and n) such that

(3.5)
[
−(n + 1) +

2 − ε

n
+

(1 − ε)
n

μ + μ

]
≥ 0.

Then it follows from (3.3), (3.4) and (3.5) that

∫
Ω

(−(n + 1)(trḡh)2 + 2|h|2 + |∇h|2 + |∇(trḡh))|2) dvolḡ(3.6)

≥ ε

∫
Ω

(|h|2 + |∇h|2) dvolḡ − C1(V (g) − V (ḡ))2 − C1

∫
Ω
|h|4 dσḡ,

where C1 is a positive constant depending only on (Ω, ḡ).
At the boundary Σ, the assumption II + H(ḡ)γ̄ ≥ 0 implies H(ḡ) ≥ 0,

therefore

(3.7)
∫

Σ

[
(hnn)2H(ḡ) + 2(II(X, X) + H(ḡ)|X|2)] dσḡ ≥ 0

for any h. By (3.1), (3.6) and (3.7), we have

−8(n − 1)(V (g) − V (ḡ)) − 4
∫

Ω
[R(g) − R(ḡ)] dvolḡ(3.8)

−4
∫

Σ
(2 − trḡh) [H(g) − H(ḡ)] dσḡ

≥ ε

∫
Ω

(|h|2 + |∇h|2) dvolḡ

− C(V (g) − V (ḡ))2 − C

∫
Ω
|h|4 dvolḡ

− C||h||C1(Ω̄)

[∫
Ω
(|h|2 + |∇h|2) dvolḡ +

∫
Σ
|h|2 dσḡ

]

for some positive constant C depending only on (Ω, ḡ).
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Finally, we note that

(3.9) (V (g) − V (ḡ))2 ≤ C

(∫
Ω
|h| dvolḡ

)
(V (g) − V (ḡ))

by (3.3) and the assumption V (g) ≥ V (ḡ). Also, by the trace theorem,

(3.10) ||h||L2(Σ) ≤ C||h||W 1,2(Ω)

for a constant C only depending on Ω. Therefore, by (3.8), (3.9), (3.10) and
the assumptions V (g) ≥ V (ḡ), R(g) ≥ R(ḡ) and H(g) ≥ H(ḡ) , we conclude
that if ||h||C1(Ω̄) is sufficiently small, then

(3.11) 0 ≥ ε

2

∫
Ω
(|h|2 + |∇h|2) dvolḡ,

which implies h must be identically zero. This completes the proof. �

Remark 3.1. In Theorem 3.1, if Σ is indeed empty, i.e., (Ω, ḡ) is a closed
space form, its first nonzero Neumann eigenvalue satisfies μ ≥ n as (Ω, ḡ)
is covered by S

n. In this case, Theorem 3.1 says that V (g) ≥ V (ḡ) implies
g is isometric to ḡ for a nearby metrics g with R(g) ≥ R(ḡ). This could
be compared to a more profound theorem known in three-dimension: “If
(M, g) is closed 3-manifold with R(g) ≥ 6, Ric(g) ≥ g and V (g) ≥ V (S3),
then (M, g) is isometric to S

3.” (See [4, Corollary 5.4] and earlier reference
of [3, 11])

When Σ �= ∅, the boundary assumption II + H̄γ̄ ≥ 0 in Theorem 3.1 can
be relaxed in certain circumstances. A detailed examination of the above
proof shows, if

(3.12) II(v, v) + H̄γ̄ ≥ −βγ̄

for some positive constant β, where β is sufficiently small comparing to the
constant ε in (3.5) and the constant C in (3.10), then the conclusion of
Theorem 3.1 still holds on such an (Ω, ḡ). In particular, this shows

Corollary 3.1. Let (M, ḡ) be an n-dimensional Riemannian manifold of
constant sectional curvature 1. Suppose Ω ⊂ M is a bounded domain with
smooth boundary Σ, satisfying the assumptions in Theorem 3.1, i.e., μ >
n − 2

n+1 and II + H̄γ̄ ≥ 0 on Σ. Let Ω̃ ⊂ M be another bounded domain
with smooth boundary Σ̃. If Σ̃ is sufficiently close to Σ in the C2 norm, then
the conclusion of Theorem 3.1 holds on Ω̃.
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It is known that the fist nonzero Neumann eigenvalue of S
n
+ is n (see [9,

Theorem 3]). Therefore, Theorem 1.2 follows from Theorem 3.1. Moreover,
by Corollary 3.1, Theorem 3.1 holds on a geodesic ball in S

n whose radius
is slightly larger than π

2 .
By the next lemma, we know Theorem 3.1 also holds on any geodesic

ball in S
n that is strictly contained in S

n
+.

Lemma 3.1. Let B(δ) ⊂ S
n be a geodesic ball of radius δ. Let μ(δ) be the

first nonzero Neumann eigenvalue of B(δ).

(i) μ(δ) is a strictly decreasing function of δ on (0, π
2 ].

(ii) For any 0 < δ < π
2 ,

μ(δ) > n +
(sin δ)n−2 cos δ∫ δ

0 (sin t)n−1dt
>

n

(sin δ)2
.

Proof. By [9, Theorem 2, p.44], μ(δ) is characterized by the fact that

(3.13)
{
(sin t)n−1J ′}′ + [μ(δ) − (n − 1)(sin t)−2](sin t)n−1J = 0

has a solution J = J(t) on [0, δ] satisfying

(3.14) J(0) = 0, J ′(δ) = 0, J ′(t) �= 0, ∀t ∈ [0, δ).

Given 0 < δ1 < δ2 ≤ π
2 , let Ji = Ji(t) be a solution to (3.13) with μ(δ)

replaced by μ(δi), satisfying (3.14) on [0, δi], i = 1, 2. Replacing Ji by −Ji

if necessary, we may assume that J ′
i > 0 on [0, δi), hence Ji > 0 on (0, δi].

Define

fi =
(sin t)n−1J ′

i

Ji
, βi(t) =

[
μ(δi) − n − 1

(sin t)2

]
(sin t)n−1.

By (3.13), fi satisfies

f ′
i = −βi − 1

(sin t)n−1
f2

i .

Therefore, on (0, δ1],

(3.15) (f1 − f2)′ =
1

(sin t)n−1
(f2

2 − f2
1 ) + [μ(δ2) − μ(δ1)](sin t)n−1.

Note that f1(t), f2(t) can be extended continuously to 0 such that f1(0) =
f2(0). Moreover, f1 > 0, f2 > 0 on (0, δ1), f2(δ1) > 0 = f1(δ1). Let 0 ≤ t0 <
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δ1 be such that f1 = f2 at t0 and f2 > f1 for t0 < t ≤ δ1. On (t0, δ1], one
would have (f1 − f2)′ > 0 if μ(δ2) ≥ μ(δ1), which is a contradiction to f2 >
f1. Therefore, μ(δ2) < μ(δ1). This proves (i).

To prove (ii), we further claim that t0 = 0, i.e., f2 > f1 on (0, δ1]. If not,
there would be a nonpositive local minimum of (f2 − f1) at some t̃0 ∈ (0, t0].
At t̃0, (3.15) implies

(3.16) 0 = (f1 − f2)′ ≤ [μ(δ2) − μ(δ1)](sin t̃0)n−1 < 0

because 0 < f2(t̃0) ≤ f1(t̃0) and μ(δ2) < μ(δ1). Hence f2 > f1 on (0, δ1]. Inte-
grating (3.15) on [0, δ1], we have

(3.17) −f2(δ1) =
∫ δ1

0
(f1 − f2)′dt > [μ(δ2) − μ(δ1)]

∫ δ1

0
(sin t)n−1dt.

Therefore

(3.18) μ(δ1) > μ(δ2) +
f2(δ1)∫ δ1

0 (sin t)n−1dt
.

Now let δ1 = δ ∈ (0, π
2 ) and δ2 = π/2. Applying the fact that μ(π

2 ) = n, J2 =
sin t, and

f2 = (sin t)n−2 cos t,

we have

μ(δ) > n +
(sin δ)n−2 cos δ∫ δ

0 (sin t)n−1dt
(3.19)

> n +
(sin δ)n−2 cos2 δ∫ δ
0 cos t(sin t)n−1dt

=
n

sin2 δ
.

Therefore, (ii) is proved. �

4. A volume estimate on domains in R
n

On R
n, the standard Euclidean metric ḡ satisfies DR∗̄

g(λ) = ḡ with

(4.1) λ(x) = − 1
2(n − 1)

|x − a|2 + L
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where | · | denotes the Euclidean length, a ∈ R
n is any fixed point and L is

an arbitrary constant. In this section, we use this fact and Corollary 2.1 to
prove Theorem 1.4 in the introduction. First we need some lemmas.

Lemma 4.1. On a compact Riemannian manifold (Ω, ḡ) with smooth
boundary Σ, there exists a positive constant C depending only on (Ω, ḡ)
such that, for any Lipschitz function φ on Σ, there is an extension of φ to
a Lipschitz function φ̃ on Ω such that

(4.2)
∫

Ω

(
|φ̃|2 + |∇φ̃|2

)
dvolḡ ≤ C

∫
Σ

(
φ2 + |∇Σ

φ|2
)

dσḡ,

where ∇, ∇Σ denote the gradient on Ω, Σ respectively.

Proof. Let d(·, Σ) be the distance to Σ. Let δ > 0 be a small constant
such that the tubular neighborhood U2δ = {x ∈ Ω| d(x, Σ) < 2δ} can be
parametrized by F : Σ × [0, 2δ) → U2δ, with F (y, t) = expy(tν(y)) where
expy(·) is the exponential map at y ∈ Σ and ν(y) is the inward unit nor-
mal at y. In U2δ, the metric ḡ takes the form dt2 + σt, where {σt}0≤t<2δ is a
family of metrics on Σ. By choosing δ sufficiently small, one can assume σt

is equivalent to σ0 in the sense that 1
2 ≤ σt(v, v) ≤ 2 for any tangent vector

v with σ0(v, v) = 1, ∀0 ≤ t < 2δ.
Let ρ = ρ(t) be a fixed smooth cut-off function on [0,∞) such that 0 ≤

ρ ≤ 1, ρ(t) = 1 for 0 ≤ t ≤ δ and ρ(t) = 0 for t ≥ 3
2δ. On U2δ, consider the

function φ̃(y, t) = φ(y)ρ(t). Since φ̃ is identically zero outside U 3
2
δ = {x ∈

Ω| d(x, Σ) < 3
2δ}, φ̃ can be viewed as an extension of φ on Ω. For such an

φ̃, one has

(4.3)
∫

Ω
|φ̃|2dvolḡ ≤

∫ 2δ

0

(∫
Σ
|φ|2dσt

)
dt ≤ Cδ

∫
Σ
|φ|2dσḡ

and ∫
Ω
|∇φ̃|2dvolḡ ≤ 2

∫
U2δ

(|∇ρ|2φ2 + |∇φ|2ρ2
)
dvolḡ(4.4)

≤ Cδ

∫
Σ
|φ|2dσḡ + 2

∫ 2δ

0

(∫
Σ
|∇Σ

t φ|2dσt

)
dt

≤ C

[∫
Σ
|φ|2dσḡ +

∫
Σ
|∇Σ

φ|2dσḡ

]
,

where ∇Σ
t denotes the gradient on (Σ, σt) and C is a positive constant

depending only on (Ω, ḡ). (4.2) now follows from (4.3) and (4.4). �
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Lemma 4.2. On a compact Riemannian manifold (Ω, ḡ) with smooth
boundary Σ, there exists a positive constant C depending only on (Ω, ḡ)
such that, for any smooth (0, 2) symmetric tensor h on Ω, one has

(4.5)∫
Ω
|h|3dvolḡ ≤ C

(∫
Σ
|h|3dσḡ + ||h||C2(Ω)

∫
Σ
|h|2dσḡ +

∫
Ω
|h||∇h|2dvolḡ

)
.

Proof. On Ω, let φ = |h| 32 . By lemma 4.1, there exists a Lipschitz function
φ̃ on Ω such that φ̃|Σ = φ|Σ and

∫
Ω

(
|φ̃|2 + |∇φ̃|2

)
dvolḡ ≤ C

∫
Σ

(
φ2 + |∇Σ

φ|2
)

dσḡ.

Let λ1 > 0 be the first Dirichlet eigenvalue of (Ω, ḡ), then

∫
Ω

φ2 dvolḡ ≤ 2
∫

Ω

[
φ̃2 + (φ − φ̃)2

]
dvolḡ(4.6)

≤ 2
∫

Ω
φ̃2 dvolḡ + 2λ−1

1

∫
Ω
|∇(φ − φ̃)|2dvolḡ

≤ C

[∫
Σ

(
φ2 + |∇Σ

φ|2
)

dσḡ +
∫

Ω
|∇φ|2dvolḡ

]
,

where

(4.7)
∫

Ω
|∇φ|2dvolḡ =

∫
Ω
|∇|h| 32 |2dvolḡ ≤ 9

4

∫
Ω
|h||∇h|2dvolḡ.

To handle the boundary term
∫
Σ |∇Σ

φ|2dσḡ, given any constant ε > 0,
one considers

(4.8)
∫

Σ
|∇Σ(|h|2 + ε)

3
4 |2dσḡ = −

∫
Σ
(|h|2 + ε)

3
4 ΔΣ(|h|2 + ε)

3
4 dσḡ,

where ΔΣ denotes the Laplacian on Σ. Let {eα | α = 1, . . . , n − 1} be a local
orthonormal frame on Σ and en be the outward unit normal to Σ. Let H̄ be
the mean curvature of Σ with respect to en. Denote covariant differentiation
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Ω by “;”. Let i, j run through {1, . . . , n}. One has

ΔΣ|h|2 =
∑
α

(|h|2);αα − H̄(|h|2);n(4.9)

=
∑
α,i,j,

2(hijhij;αα + h2
ij;α) − H̄

∑
i,j

2hijhij;n

≥ −C||h||C2(Ω̄)|h|.

Therefore,

ΔΣ(|h|2 + ε)
3
4 =

3
4
(|h|2 + ε)−

1
4 ΔΣ|h|2 − 3

16
(|h|2 + ε)−

5
4 |∇Σ|h|2|2

≥ −C||h||C2(Ω̄)(|h|2 + ε)−
1
4 |h| − 3

16
(|h|2 + ε)−

5
4 |∇Σ|h|2|2.

(4.10)

It follows from (4.8) and (4.10) that∫
Σ
|∇Σ(|h|2 + ε)

3
4 |2dσḡ ≤ C||h||C2(Ω̄)

∫
Σ
(|h|2 + ε)

1
2 |h|dσḡ(4.11)

+
1
3

∫
Σ
|∇Σ(|h|2 + ε)

3
4 |2dσḡ.

Letting ε → 0, one has

(4.12)
∫

Σ
|∇Σ|h| 32 |2dσḡ ≤ C||h||C2(Ω̄)

∫
Σ
|h|2dσḡ.

(4.5) now follows from (4.6), (4.7) and (4.12). �
We recall the statement of Theorem 1.4 and give its proof.

Theorem 4.1. Let Ω ⊂ R
n be a bounded domain with smooth boundary Σ.

Suppose II + H̄γ̄ > 0 (i.e., II + H̄γ̄ is positive definite), where II, H̄ are the
second fundamental form, the mean curvature of Σ in R

n and γ̄ is the metric
on Σ induced from the Euclidean metric ḡ. Let g be another metric on Ω̄
satisfying

• g and ḡ induce the same metric on Σ.

• H(g) ≥ H̄, where H(g) is the mean curvature of Σ in (Ω, g).

Given any point a ∈ R
n, there exists a constant Λ >

maxq∈Ω̄ |q−a|2
4(n−1) , which

depends only on Ω and a, such that if ||g − ḡ||C3(Ω̄) is sufficiently small,
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then

(4.13) V (g) − V (ḡ) ≥
∫

Ω
R(g)Φ dvolḡ,

where Φ = − 1
4(n−1) |x − a|2 + Λ > 0 on Ω̄.

Proof. Fix a number p > n. By the proof of [5, Proposition 11], one knows if
||g − ḡ||W 3,p(Ω) is sufficiently small, then there exists a W 4,p diffeomorphism
ϕ : Ω → Ω such that ϕ|Σ = id, h = ϕ∗(g) − ḡ is divergence free with respect
to ḡ, and ||h||W 3,p(Ω) ≤ N ||g − ḡ||W 3,p(Ω) for a positive constant N depending
only on (Ω, ḡ). In what follows, we will work with φ∗(g). For convenience,
we still denote φ∗(g) by g.

Given a ∈ R
n, consider λ(x) = − 1

2(n−1) |x − a|2 + L where L is a constant
to be determined. First, we require L > 1

2(n−1) maxq∈Ω̄ |q − a|2 so that λ > 0
on Ω̄. Since λ satisfies DR∗̄

g(λ) = ḡ, Corollary 2.1 shows

−2(V (g) − V (ḡ)) +
∫

Ω
R(g)λ dvolḡ +

∫
Σ
(2 − trḡh)

[
H(g) − H̄

]
λ dσḡ

≤ −
∫

Ω

1
4
|∇h|2λ dvolḡ +

∫
Σ

[
−1

4
(hnn)2H̄ − 1

2
(II(X, X) + H̄|X|2)

]
λ dσḡ

+
∫

Σ
λ;n

[
−(hnn)2 − 1

2
|X|2

]
dσḡ +

∫
Σ
(−1)hnn〈X,∇Σ

λ〉 dσḡ

+
∫

Ω
G(h) dvolḡ +

∫
Ω

E(h)λ dvolḡ +
∫

Ω
Zi(h)∇iλ dvolḡ

+
∫

Σ
F (h)λ dσḡ,

(4.14)

where |G(h)| ≤ C|h|3, |E(h)| ≤ C(|h||∇h|2 + |h|3), |Z(h)| ≤ C|h|2|∇h|,
|F (h)| ≤ C(|h|2|∇h| + |h|3) for some constant C depending only on Ω.

At Σ, λ;n and ∇Σ
λ are determined solely by Ω and a (in particular they

are independent on L). Apply the assumption II + H̄γ̄ > 0 (which implies
H̄ > 0) and the fact |h|2 = (hnn)2 + 2|X|2, we have[

−1
4
(hnn)2H̄ − 1

2
(II(X, X) + H̄|X|2)

]
λ(4.15)

+ λ;n

[
−(hnn)2 − 1

2
|X|2

]
+ (−1)hnn〈X,∇Σ

λ〉
≤ −LC1|h|2 + C2|h|2,
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where C1, C2 are positive constants depending only on Ω and a. We fix L
such that

(4.16) LC1 − C2 > 0

and let m = 1
4 minΩ̄ λ (note that λ is fixed now). (4.14)–(4.16) imply

−2(V (g) − V (ḡ)) +
∫

Ω
R(g)λ dvolḡ +

∫
Σ
(2 − trḡh)

[
H(g) − H̄

]
λ dσḡ

≤ −m

∫
Ω
|∇h|2 dvolḡ − (LC1 − C2)

∫
Σ
|h|2dσḡ

+ C3

(∫
Ω
(|h||∇h|2 + |h|3)dvolḡ +

∫
Σ
(|h|2|∇h| + |h|3) dσḡ

)
,

(4.17)

where C3 depends only on Ω, a and L. Apply Lemma 4.2 to the term∫
Ω |h|3 dvolḡ on the right side of (4.17), we have

−2(V (g) − V (ḡ)) +
∫

Ω
R(g)λ dvolḡ +

∫
Σ
(2 − trḡh)

[
H(g) − H̄

]
λ dσḡ

≤ −m

∫
Ω
|∇h|2 dvolḡ − (LC1 − C2)

∫
Σ
|h|2dσḡ

+ C||h||C2(Ω̄)

(∫
Ω
|∇h|2dvolḡ +

∫
Σ
|h|2 dσḡ

)
,

where C is independent on h. From this, we conclude that if ||h||C2(Ω̄) is
sufficiently small, then (4.13) holds with Φ = 1

2λ. This completes the proof.
�

Remark 4.1. When Ω ⊂ R
n is a ball of radius R, one can take a to be the

center of Ω. In this case, by computing H̄, II and λ;n explicitly in (4.16),
the constant L can be chosen to be any constant satisfying

L >

[
1

2(n − 1)
+

4
(n − 1)2

]
R2.

Remark 4.2. By the results in [12, 17] based on the positive mass theo-
rem [16, 18], a metric g on Ω satisfying the boundary conditions in Theorem
4.1 must be isometric to the Euclidean metric if R(g) ≥ 0. Therefore, a
nontrivial metric g in Theorem 4.1 necessarily has negative scalar curva-
ture somewhere. For such a g, Theorem 4.1 shows if the weighted integral∫
Ω R(g)Φ dvolḡ is nonnegative, then V (g) ≥ V (ḡ).
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5. Other related results

In this section, we collect some other by-products of the formulas derived
in Section 2. First, we discuss a scalar curvature rigidity result for general
domains in S

n.

Theorem 5.1. Let Ω ⊂ S
n be a smooth domain contained in a geodesic ball

B of radius less than π
2 . Let ḡ be the standard metric on S

n. Let II, H̄ be
the second fundamental form, the mean curvature of Σ = ∂Ω in (Ω, ḡ) with
respect to the outward unit normal ν. Suppose II ≥ −cγ̄, where c ≥ 0 is a
function on Σ and γ̄ is the induced metric on Σ. Let q be the center of B.
Suppose at Σ \ {q},

(5.1) H̄ − c ≥
[

5 cos θ +
√

cos2 θ + 8
2

]
tan r,

where r is the ḡ-distance to q and θ is the angle between ν and ∇r. Then
the conclusion of Theorem 1.6 holds on Ω.

Proof. As before, replacing g by ϕ∗(g) for some diffeomorphism ϕ, we may
assume divḡh = 0 where h = g − ḡ. On Ω, let λ = cos r > 0, where r is the
ḡ-distance to q. At Σ \ {q}, we have

(5.2) λ;n = − sin r cos θ, |∇Σ
λ| = sin r sin θ.

Apply Theorem 2.1, using the fact DR∗̄
g(λ) = 0 and the assumptions on

R(g) and H(g), we have∫
Ω

[
1
4
(|∇h|2 + |∇(trḡh)|2) +

1
2
(|h|2 + (trḡh)2

)]
cos r dvolḡ(5.3)

≤
∫

Σ

[
−1

4
(hnn)2H̄ − 1

2
(II(X, X) + H̄|X|2)

]
cos r dσḡ

+
∫

Σ\{q}

[
(hnn)2 +

1
2
|X|2

]
(sin r cos θ) dσḡ

+
∫

Σ\{q}
|hnn||X|(sin r sin θ) dσḡ

+ C||h||C1(Ω̄)

{∫
Ω
(|h|2 + |∇h|2) dvolḡ +

∫
Σ
|h|2 dσḡ

}
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≤ −
∫

Σ\{q}

[(
1
4
(H̄ − c) cos r − sin r cos θ

)
(hnn)2

+
1
2
(
(H̄ − c) cos r − sin r cos θ

) |X|2

− |hnn||X|(sin r sin θ)
]

dσḡ

+ C||h||C1(Ω̄)

{∫
Ω
(|h|2 + |∇h|2) dvolḡ +

∫
Σ
|h|2 dσḡ

}
for some positive constant C independent on h.

Note that the assumption (5.1) implies

(5.4)
1
4
(H̄ − c) cos r − (sin r cos θ) ≥ 0

and

(5.5) (H̄ − c) cos r − (sin r cos θ) ≥ 0.

By (5.1), (5.4) and (5.5), we have

0 ≤
(

1
4
(H̄ − c) cos r − sin r cos θ

)
(hnn)2 − |hnn||X|(sin r sin θ)(5.6)

+
1
2
(
(H̄ − c) cos r − sin r cos θ

) |X|2

for any hnn and X. The result now follows from (5.3) and (5.6). �

Remark 5.1. It is clear from the proof of Theorem 5.1 that the center q
of B does not need to be inside Ω.

Theorem 5.1 directly implies Theorem 1.7 in the introduction.

Proof of Theorem 1.7. Choose c = 0 in Theorem 5.1. Since

4 ≥ 5 cos θ +
√

cos2 θ + 8
2

for any θ, the result follows from Theorem 5.1. �

Next, we consider a corresponding scalar curvature rigidity result when
the background metric ḡ is a flat metric.
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Theorem 5.2. Let Ω be a compact manifold with smooth boundary Σ. Sup-
pose ḡ is a smooth Riemannian metric on Ω such that ḡ has zero sectional
curvature and II + H̄γ̄ ≥ 0 on Σ, where II, H̄ are the second fundamental
form, the mean curvature of Σ, and γ̄ is the induced metric on Σ. Suppose
g is another metric on Ω satisfying

• R(g) ≥ 0 where R(g) is the scalar curvature of g,

• g and ḡ induce the same metric on Σ,

• H(g) ≥ H̄ where H(g) is the mean curvature of Σ in (Ω, g).

If ||g − ḡ||C2(Ω̄) is sufficiently small, then there is a diffeomorphism ϕ on Ω
with ϕ|Σ = id such that ϕ∗(g) = ḡ.

Proof. As before, we may assume divḡh = 0 where h = g − ḡ. Choose λ = 1
in (2.23), one has∫

Ω

[
1
4
(|∇h|2 + |∇(trḡh)|2)

]
dvolḡ(5.7)

+
∫

Σ

[
1
4
(hnn)2H(ḡ) +

1
2
(II(X, X) + H(ḡ)|X|2)

]
dσḡ

≤
∫

Ω
E(h) dvolḡ +

∫
Σ

F (h) dσḡ,

where |F (h)| ≤ C(|h|2|∇h| + |h|3) and |E(h)| ≤ C|h||∇h|2 by Remark 2.1.
The result follows from (5.7). �

To finish, we mention that the positive Gaussian curvature condition of
the boundary surface in [17] is not a necessary condition for the positivity
of its Brown–York mass.

Theorem 5.3. Let Σ ⊂ R
n be a connected, closed hypersurface satisfying

II + H̄γ̄ ≥ 0, where II, H̄ are the second fundamental form, the mean cur-
vature of Σ, and γ̄ is the induced metric on Σ. Let Ω be the domain enclosed
by Σ in R

n. Let h be any nontrivial (0, 2) symmetric tensor on Ω satisfying

(5.8) divḡh = 0, trḡh = 0, h|TΣ = 0.

Let {g(t)}|t|<ε be a 1-parameter family of metrics on Ω satisfying

(5.9) g(0) = ḡ, g′(0) = h, R(g(t)) ≥ 0, g(t)|TΣ = ḡ|TΣ.
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Then

(5.10)
∫

Σ
H̄dσḡ >

∫
Σ

H(g(t)))dσḡ

for small t �= 0, where H(g(t)) is the mean curvature of Σ in (Ω, g(t)).

Proof. By Lemma 2.2, one knows

d

dt

(∫
Ω

[R(g(t)) − R(ḡ)] dvolḡ − 2
∫

Σ
[H̄ − H(g(t))] dσḡ

) ∣∣∣
t=0

= 0.

Direct calculation using Lemma 2.2, (2.17) and (5.8) shows

d2

dt2

(∫
Ω

[R(g(t)) − R(ḡ)] dvolḡ − 2
∫

Σ
[H̄ − H(g(t))] dσḡ

) ∣∣∣
t=0

(5.11)

= −1
2

∫
Ω
|∇h|2 dvolḡ −

∫
Σ

[
(II(X, X) + H(ḡ)|X|2)] dσḡ,

which is negative by the assumption on II + H̄γ̄. Thus, for small t,

(5.12) 2
∫

Σ
[H̄ − H(g(t))] dσḡ >

∫
Ω

[R(g(t)) − R(ḡ)] dvolḡ ≥ 0. �

Given an h satisfying (5.8), a family of deformation {g(t)} satisfying (5.9)
is given by g(t) = u(t)

4
n−2 (ḡ + th) for small t, where u(t) > 0 is a conformal

factor such that R(g(t)) = 0 (see [13, Lemma 4]).
An example of a non-convex surface Σ ⊂ R

3, which is topologically a
2-sphere and satisfies the condition II + H̄γ̄ ≥ 0, is given by a capsule-
shaped surface with its middle slightly pinched.
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