Scalar curvature rigidity with a volume constraint Pengzi Miao and Luen-Fai Tam

Motivated by Brendle–Marques–Neves' counterexample to the Min-Oo's conjecture, we prove a volume constrained scalar curvature rigidity theorem which applies to the hemisphere.

1. Introduction

Recently, Brendle, Marques and Neves [6] have solved the long-standing Min-Oo's conjecture [15] by constructing a counterexample.

Theorem 1.1 (Brendle, Marques and Neves [6]). *Suppose* $n \geq 3$ *. Let* \bar{g} be the standard metric on the hemisphere \mathbb{S}^n_+ *. There exists a smooth metric* g on \mathbb{S}^n_+ , which can be made to be arbitrarily close to \bar{g} in the C^{∞} -topology, *satisfying*

- the scalar curvature of g is at least that of \bar{g} at each point in \mathbb{S}^n_+ ,
- \bullet *g* and \bar{g} agree in a neighborhood of $\partial \mathbb{S}^n_+$,

but g *is not isometric to* \bar{q} *.*

In this paper, we observe that if the metric g in Theorem 1.1 is assumed to satisfy an additional volume constraint, then it must be isometric to \bar{g} . Precisely, we have

Theorem 1.2. Let \bar{g} be the standard metric on \mathbb{S}^n_+ . Let g be another metric on \mathbb{S}^n_+ *with the properties*

- $R(g) \ge R(\bar{g})$ in \mathbb{S}^n_+ ,
- $H(g) \geq H(\bar{g})$ on $\partial \mathbb{S}_{+}^{n}$,
- g and \bar{g} *induce the same metric on* $\partial \mathbb{S}^n_+$,

where $R(g)$ *,* $R(\bar{g})$ *are the scalar curvature of g,* \bar{g} *, and* $H(g)$ *<i>,* $H(\bar{g})$ *are the mean curvature of* $\partial \mathbb{S}^n_+$ *in* $(\mathbb{S}^n_+, g), (\mathbb{S}^n_+, \bar{g})$ *. Suppose in addition*

$$
V(g) \ge V(\bar{g}),
$$

where $V(g)$ *,* $V(\bar{g})$ *are the volume of g,* \bar{g} *. If* $||g-\bar{g}||_{C^2(\bar{S}_1^n)}$ *is sufficiently*
cmall then there is a diffeomorphism (x, \bar{S}_1^n) , (\bar{S}_1^n) with $(x|\bar{S}_1^n)$ is the iden *small, then there is a diffeomorphism* $\varphi : \mathbb{S}^n_+ \to \mathbb{S}^n_+$ *with* $\varphi|_{\partial \mathbb{S}^n_+} = \text{id}$ *, the identify* $\max_{\mathbb{S}^n_+} \partial \mathbb{S}^n_-$ and $\partial \mathbb{S}^n_+$ *such that* $\varphi^*(\alpha) = \overline{\overline{\alpha}}$ $\text{tify map on } \partial \mathbb{S}_{+}^{n}, \text{ such that } \varphi^*(g) = \bar{g}.$

Theorem 1.2 is indeed a special case of a more general result:

Theorem 1.3. Let (Ω, \bar{g}) be an *n*-dimensional compact Riemannian man*ifold, of constant sectional curvature* 1*, with smooth boundary* Σ*. Suppose* $\overline{\mathbb{II}} + \overline{H}\overline{\gamma} \geq 0$ *(i.e.,* $\overline{\mathbb{II}} + \overline{H}\overline{\gamma}$ *is positive semi-definite), where* $\overline{\gamma}$ *is the induced metric on* Σ *and* $\overline{\mathbb{II}}$ *, H are the second fundamental form, the mean curvature of* Σ *in* (Ω, \bar{g}) *. Suppose the first nonzero Neumann eigenvalue* μ *of* (Ω, \bar{g}) *satisfies* $\mu > n - \frac{2}{n+1}$.
Consider a nearby metric

Consider a nearby metric g *on* Ω *with the properties*

- $R(g) \geq n(n-1)$ where $R(g)$ is the scalar curvature of g,
- $H(q) \geq \overline{H}$ *where* $H(q)$ *is the mean curvature of* Σ *in* (Ω, g) *,*
- q and \bar{q} *induce the same metric on* Σ *,*
- $V(g) \geq V(\bar{g})$ *where* $V(g)$ *,* $V(\bar{g})$ *are the volumes of g,* \bar{g} *.*

 $I_f^f||g - \bar{g}||_{C^2(\bar{\Omega})}$ *is sufficiently small, then there is a diffeomorphism* φ *on* Ω
inith $\varphi|_{\Omega} = id$ *such that* $\varphi^*(g) = \bar{g}$ *with* $\varphi|_{\Sigma} = id$ *, such that* $\varphi^*(q) = \overline{q}$ *.*

As a by-product of the method used to derive Theorem 1.3, we obtain a volume estimate for metrics close to the Euclidean metric in terms of the scalar curvature.

Theorem 1.4. *Let* $\Omega \subset \mathbb{R}^n$ *be a bounded domain with smooth boundary* Σ *.* $Suppose \ \overline{\mathbb{II}} + \overline{H} \overline{\gamma} > 0 \ \text{ (i.e., } \overline{\mathbb{II}} + \overline{H} \overline{\gamma} \text{ is positive definite), where } \overline{\mathbb{II}}, \overline{H} \text{ are the }$ *second fundamental form, the mean curvature of* Σ *in* \mathbb{R}^n *and* $\overline{\gamma}$ *is the metric on* Σ *induced from the Euclidean metric* \bar{q} *. Let* g *be another metric on* Ω *satisfying*

- $H(q) > \overline{H}$, where $H(q)$ is the mean curvature of Σ in (Ω, g)
- g and \bar{g} *induce the same metric on* Σ *.*

Given any point $a \in \mathbb{R}^n$, there exists a constant $\Lambda > \frac{\max_{q \in \Omega} |q-a|^2}{4(n-1)}$, depending only on Ω and a , such that if $||a - \overline{a}||$ and \overline{a} is sufficiently email, then *only on* Ω *and* a *, such that if* $||g - \bar{g}||_{C^3(\bar{\Omega})}$ *is sufficiently small, then*

(1.1)
$$
V(g) - V(\bar{g}) \ge \int_{\Omega} R(g) \Phi \, d\mathrm{vol}_{\bar{g}},
$$

where $\Phi(x) = -\frac{1}{4(n-1)}|x - a|^2 + \Lambda > 0$ *on* $\bar{\Omega}$ *.*

Theorem 1.4 may be compared to a previous theorem of Bartnik [2], which estimates the total mass [1] of an asymptotically flat metric that is a perturbation of the Euclidean metric.

Theorem 1.5 (Bartnik [2]). *Let* g *be an asymptotically flat metric on* \mathbb{R}^3 . If g is sufficiently close to the Euclidean metric \bar{g} *(in certain weighted Sobolev space), then*

(1.2)
$$
16\pi \mathfrak{m}(g) \geq \int_{\mathbb{R}^3} R(g) d\mathrm{vol}_{\bar{g}},
$$

where $\mathfrak{m}(g)$ *is the total mass of g.*

Our proofs of Theorems 1.2–1.4 follow a recent perturbation analysis of Brendle and Marques in [5], where they established a scalar curvature rigidity theorem for "small" geodesic balls in \mathbb{S}^n .

Theorem 1.6 (Brendle and Marques [5]). *Let* $\Omega \subset \mathbb{S}^n$ *be a geodesic ball of radius* δ*. Suppose*

(1.3)
$$
\cos \delta \ge \frac{2}{\sqrt{n+3}}.
$$

Let \bar{g} be the standard metric on \mathbb{S}^n . Let g be another metric on Ω with the *properties*

- $R(g) \geq n(n-1)$ *at each point in* Ω *,*
- $H(q) \geq \overline{H}$ *at each point on* $\partial\Omega$ *,*
- q and \bar{q} *induce the same metric on* $\partial\Omega$ *,*

where $R(g)$ *is the scalar curvature of g, and* $H(g)$ *,* \overline{H} *are the mean curvature of* $\partial\Omega$ *in* (Ω, g) *,* (Ω, \bar{g}) *. If* $g - \bar{g}$ *is sufficiently small in the* C^2 *-norm, then* $\varphi^*(q) = \overline{q}$ *for some diffeomorphism* $\varphi : \Omega \to \Omega$ *such that* $\varphi|_{\partial \Omega} = id$ *.*

In Theorem 1.6, the condition (1.3) is equivalently to

$$
(1.4) \t\t \bar{H} \ge 4 \tan \delta
$$

because the mean curvature \bar{H} of $\partial B(\delta)$ is $(n-1)\frac{\cos \delta}{\sin \delta}$. As another application of the formulas in Section 2, we obtain a generalization of Theorem 1.6 tion of the formulas in Section 2, we obtain a generalization of Theorem 1.6 to convex domains in \mathbb{S}^n .

Theorem 1.7. *Let* $\Omega \subset \mathbb{S}^n$ *be a smooth domain contained in a geodesic ball* B of radius less than $\frac{\pi}{2}$. Let \bar{g} be the standard metric on \mathbb{S}^n . Let $\overline{\mathbb{II}}$, \bar{H} be *the second fundamental form, the mean curvature of* $\partial\Omega$ *in* (Ω, \bar{g}) *. Suppose* Ω *is convex, i.e.,* $\mathbb{II} \geq 0$ *. At* $\partial \Omega$ *, suppose*

$$
(1.5) \t\t \bar{H} \ge 4\tan r,
$$

where r *is the* \bar{g} -distance to the center of B. Then the conclusion of Theorem *1.6 holds on* Ω*.*

Theorem 1.7 is an immediate corollary of Theorem 5.1 in Section 5. In a simpler setting, where the background metric \bar{g} is a flat metric, we have

Theorem 1.8. Let Ω be a compact manifold with smooth boundary Σ . Sup*pose there is a flat metric* \bar{q} *on* Ω *such that* $\mathbb{H} + H\bar{\gamma} \geq 0$ *(i.e.,* $\mathbb{H} + H\bar{\gamma}$ *is positive semi-definite), where* $\overline{\mathbb{II}}$, \overline{H} *are the second fundamental form, the mean curvature of* Σ *, and* $\bar{\gamma}$ *is the induced metric on* Σ *. Given another metric* g *on* Ω *such that*

- $R(q) \geq 0$ *on* Ω ,
- $H(q) \geq \overline{H}$ *at* Σ *,*
- g and \bar{q} *induce the same metric on* Σ *,*

 $if ||g - \bar{g}||_{C^2(\bar{\Omega})}$ *is sufficiently small, then* $\varphi^*(g) = \bar{g}$ *for some diffeomorphism* $\varphi : \Omega \to \Omega$ *with* $\varphi|_{\Sigma} = id$.

Similar calculation at the infinitesimal level provides examples of compact 3-manifolds of nonnegative scalar curvature whose boundary surface does not have positive Gaussian curvature but still has positive Brown– York mass [7, 8]. We include this in the end of the paper to compare with known results in [17].

Theorem 1.9. *Let* $\Sigma \subset \mathbb{R}^n$ *be a connected, closed hypersurface satisfying* $\overline{\mathbb{II}} + \overline{H} \overline{\gamma} \geq 0$, where $\overline{\mathbb{II}}$, \overline{H} are the second fundamental form, the mean cur*vature of* Σ , and $\bar{\gamma}$ *is the induced metric on* Σ *. Let* Ω *be the domain enclosed* $by \Sigma$ *in* \mathbb{R}^n . Let h be any nontrivial $(0, 2)$ *symmetric tensor on* Ω *satisfying*

(1.6)
$$
\text{div}_{\bar{g}} h = 0, \quad \text{tr}_{\bar{g}} h = 0, \quad h|_{T\Sigma} = 0.
$$

Let ${g(t)}_{t|\langle \epsilon \rangle}$ be a 1*-parameter family of metrics on* Ω *satisfying*

(1.7)
$$
g(0) = \bar{g}, \quad g'(0) = h, \quad R(g(t)) \ge 0, \quad g(t)|_{T\Sigma} = \bar{g}|_{T\Sigma}.
$$

(1.8)
$$
\int_{\Sigma} \bar{H} d\sigma_{\bar{g}} > \int_{\Sigma} H(g(t)) d\sigma_{\bar{g}}
$$

for small $t \neq 0$ *, where* $H(g(t))$ *is the mean curvature of* Σ *in* $(\Omega, g(t))$ *.*

This paper is organized as follows. In Section 2, we derive a basic formula concerning a perturbed metric (Theorem 2.1), which corresponds to [5, Theorem 10] of Brendle and Marques. In Section 3, we prove Theorem 1.3, which implies Theorem 1.2. In Section 4, we give a proof of Theorem 1.4. In Section 5, we consider other applications of the formulas in Section 2 and prove Theorem 1.7–1.9.

2. Basic formulas for a perturbed metric

Let Ω be an *n*-dimensional, smooth, compact manifold with boundary Σ . Let \bar{g} be a fixed smooth Riemannian metric on Ω . Given a tensor η , let "| η |" denote the length of η measured with respect to \bar{q} . Denote the covariant derivative with respect to \bar{q} by $\bar{\nabla}$. Indices of tensors are raised by \bar{q} . Let \bar{R}_{ikjl} denote the curvature tensor of \bar{g} such that if \bar{g} has constant sectional curvature κ, then $\bar{R}_{ikjl} = \kappa (g_{ij}g_{kl} - g_{il}g_{kj})$. Consider a nearby Riemannian metric $g = \bar{g} + h$ where h is a symmetric $(0, 2)$ tensor with |h| very small, say $|h| \leq \frac{1}{2}$.

The following pointwise estimates of the scalar curvature of g and the mean curvature of Σ were derived by Brendle and Marques in [5].

Proposition 2.1 (Brendle and Marques [5]**).** *The scalar curvatures* R(g)*,* $R(\bar{g})$ *of the metrics* g, \bar{g} *satisfy*

$$
|R(g) - R(\bar{g}) + \langle \text{Ric}(\bar{g}), h \rangle - \langle \text{Ric}(\bar{g}), h^2 \rangle + \frac{1}{4} |\overline{\nabla} h|^2 - \frac{1}{2} \bar{g}^{ij} \bar{g}^{kl} \bar{g}^{pq} \overline{\nabla}_i h_{kp} \overline{\nabla}_l h_{jq}
$$

+
$$
\frac{1}{4} |\overline{\nabla}(\text{tr}_{\bar{g}} h)|^2 + \overline{\nabla}_i [g^{ik} g^{jl} (\overline{\nabla}_k h_{jl} - \overline{\nabla}_l h_{jk})]|
$$

$$
\leq C (|h| |\overline{\nabla} h|^2 + |h|^3),
$$

where $\text{Ric}(\bar{g})$ *is the Ricci curvature of* \bar{g} , h^2 *is the* \bar{g} -*square of* h, *i.e.*, $(h^2)_{ik} = \bar{g}^{jl} h_{ij} h_{kl}, \ \langle \cdot, \cdot \rangle$ *is taken with respect to* \bar{g} *, and C is a positive constant depending only on* n*.*

Remark 2.1. If the background metric \bar{g} is Ricci flat, i.e., $\bar{R}_{ik} = 0$, then there will be no $|h|^3$ term in the above estimate. That is because

$$
R(g) = g^{ik}\overline{R}_{ik} - g^{ik}g^{lj}(\overline{\nabla}_{i,k}h_{jl} - \overline{\nabla}_{i,l}h_{jk}) + g^{ik}g^{jl}g_{pq}\left(\Gamma_{il}^q\Gamma_{jk}^p - \Gamma_{jl}^q\Gamma_{ik}^p\right),
$$

where each term on the right, except $g^{ik}\overline{R}_{ik}$, involves derivatives of h.

Proposition 2.2 (Brendle and Marques [5]). *Assume that* g and \bar{g} *induce the same metric on* Σ , *i.e.*, $h|_{T\Sigma} = 0$ *where* $T\Sigma$ *is the tangent bundle of* $Σ.$ Then the mean curvatures $H(g)$, $H(\bar{g})$ of $Σ$ *in* $(Ω, g)$, $(Ω, \bar{g})$ *, each with respect to the outward normals, satisfy*

$$
\left| 2 \left[H(g) - H(\bar{g}) \right] - \left(h(\overline{\nu}, \overline{\nu}) - \frac{1}{4} h(\overline{\nu}, \overline{\nu})^2 + \sum_{\alpha=1}^{n-1} h(e_{\alpha}, \overline{\nu})^2 \right) H(\bar{g}) \right|
$$

+
$$
\left(1 - \frac{1}{2} h(\overline{\nu}, \overline{\nu}) \right) \sum_{\alpha=1}^{n-1} \left[2 \overline{\nabla}_{e_{\alpha}} h(e_{\alpha}, \overline{\nu}) - \overline{\nabla}_{\overline{\nu}} h(e_{\alpha}, e_{\alpha}) \right] \right|
$$

$$
\leq C \left(|h|^2 |\overline{\nabla} h| + |h|^3 \right),
$$

where ${e_{\alpha} \mid 1 \leq \alpha \leq n-1}$ *is a local orthonormal frame on* Σ *,* $\overline{\nu}$ *is the* \overline{g} *unit outward normal vector to* Σ , and C *is a positive constant depending only on* n*.*

To derive the main formula (2.23) in this section, we let

(2.1)
$$
DR_{\bar{g}}(h) = -\Delta_{\bar{g}}(\text{tr}_{\bar{g}}h) + \text{div}_{\bar{g}}\text{div}_{\bar{g}}h - \langle \text{Ric}(\bar{g}), h \rangle
$$

be the linearization of the scalar curvature at \bar{g} along h. Here " $\Delta_{\bar{g}}$, div $_{\bar{g}}$ " denote the Laplacian, the divergence with respect to \bar{g} .

Lemma 2.1. *With the same notations in Proposition 2.1, assume in addition* div_{$\bar{q}h = 0$ *, then*}

$$
R(g) - R(\bar{g}) = DR_{\bar{g}}(h) - \frac{1}{2}DR_{\bar{g}}(h^2) + \langle h, \overline{\nabla}^2 \text{tr}_{\bar{g}} h \rangle - \frac{1}{4} \left(|\overline{\nabla} h|^2 + |\overline{\nabla} (\text{tr}_{\bar{g}} h)|^2 \right) + \frac{1}{2} h^{ij} h^{kl} \overline{R}_{ikjl} + E(h) + \overline{\nabla}_i (E_1^i(h)),
$$

where $E(h)$ *is a function and* $E_1(h)$ *is a vector field on* Ω *satisfying*

$$
|E(h)| \leq C(|h||\overline{\nabla}h|^2 + |h|^3), \quad |E_1(h)| \leq C|h|^2|\overline{\nabla}h|
$$

for a positive constant C *depending only on* n*.*

Proof. First note that

(2.2)
$$
-\overline{\nabla}_i \left[\bar{g}^{ik} \bar{g}^{jl} \left(\overline{\nabla}_k h_{jl} - \overline{\nabla}_l h_{jk} \right) \right] - \langle \text{Ric}(\bar{g}), h \rangle = DR_{\bar{g}}(h).
$$

Suppose $g^{ik} = \bar{g}^{ik} + \tau^{ik}$. Then $\tau^{ik} = -h^{ik} + E_2^{ik}(h)$ where $h^{ik} = \bar{g}^{ij}h_{jl}\bar{g}^{ik}$ and $|E_2(h)| \le C|h|^2$. Hence,

$$
g^{ik}g^{jl} - \bar{g}^{ik}\bar{g}^{jl} = -\bar{g}^{ik}h^{jl} - \bar{g}^{jl}h^{ik} + E_3^{ikjl}(h),
$$

where $|E_3(h)| \le C|h|^2$. Therefore,

(2.3)
$$
-\overline{\nabla}_{i}[(g^{ik}g^{jl} - \overline{g}^{ik}\overline{g}^{jl})(\overline{\nabla}_{k}h_{jl} - \overline{\nabla}_{l}h_{jk})]
$$

\n
$$
= \overline{\nabla}_{i}[(\overline{g}^{ik}h^{jl} + \overline{g}^{jl}h^{ik} - E_{3}^{ikjl}(h))(\overline{\nabla}_{k}h_{jl} - \overline{\nabla}_{l}h_{jk})]
$$

\n
$$
= \frac{1}{2}\Delta_{\overline{g}}|h|^{2} + \langle h, \nabla^{2}\text{tr}_{\overline{g}}(h)\rangle_{\overline{g}} - \text{div}_{\overline{g}}\text{div}_{\overline{g}}(h^{2})
$$

\n
$$
- \overline{\nabla}_{i}(E_{3}^{ikjl}(\overline{\nabla}_{k}h_{jl} - \overline{\nabla}_{l}h_{jk})).
$$

Applying the Ricci identity, one has

(2.4)
$$
\frac{1}{2}\bar{g}^{ij}\bar{g}^{kl}\bar{g}^{pq}\overline{\nabla}_{i}h_{kp}\overline{\nabla}_{l}h_{jq} = \frac{1}{2}\text{div}_{\bar{g}}\text{div}_{\bar{g}}(h^{2}) - \frac{1}{2}\langle\text{Ric}(\bar{g}),h^{2}\rangle + \frac{1}{2}h^{ij}h^{kl}\overline{R}_{ikjl}.
$$

The lemma follows from Proposition 2.1, (2.2) , (2.3) and (2.4) .

Next, let $DH_{\bar{q}}(h)$ denote the linearization of the mean curvature at \bar{g} along h. Proposition 2.2 implies

$$
(2.5) \tDH_{\bar{g}}(h) = \frac{1}{2} \left[h(\overline{\nu}, \overline{\nu}) H(\bar{g}) - \sum_{\alpha=1}^{n-1} \left(2 \overline{\nabla}_{e_{\alpha}} h(e_{\alpha}, \overline{\nu}) - \overline{\nabla}_{\overline{\nu}} h(e_{\alpha}, e_{\alpha}) \right) \right].
$$

 \Box

For later use, we note the following equivalent expression of $DH_{\bar{g}}(h)$ (see [13, (34)] for instance)

(2.6)
$$
DH_{\bar{g}}(h) = \frac{1}{2} \left\{ [d(\text{tr}_{\bar{g}}h) - \text{div}_{\bar{g}}h](\overline{\nu}) - \text{div}_{\Sigma}X \right\},\,
$$

where X is the vector field on Σ dual to the 1-form $h(\overline{\nu}, \cdot)|_{T\Sigma}$.

Let $DR_{\bar{g}}^*(\cdot)$ denote the formal L^2 \bar{g} -adjoint of $DR_{\bar{g}}(\cdot)$, i.e.,

(2.7)
$$
DR_{\bar{g}}^{*}(\lambda) = -(\Delta_{\bar{g}}\lambda)\bar{g} + \nabla_{\bar{g}}^{2}\lambda - \lambda \text{Ric}(\bar{g})
$$

where λ is a function and $\nabla_{\bar{g}}^2 \lambda$ denotes the Hessian of λ with respect to \bar{g} .
The content of the following lemma had been used in [13] The content of the following lemma had been used in [13].

Lemma 2.2. *Let* p *be any smooth* $(0, 2)$ *symmetric tensor on* Ω *, then*

(2.8)
$$
\int_{\Omega} DR_{\bar{g}}(p)\lambda d\mathrm{vol}_{\bar{g}} = \int_{\Omega} \langle DR_{\bar{g}}^*(\lambda), p \rangle d\mathrm{vol}_{\bar{g}} - \int_{\Sigma} 2DH_{\bar{g}}(p)\lambda d\sigma_{\bar{g}} + \int_{\Sigma} \lambda_{\overline{\nu}} (\mathrm{tr}_{\bar{g}}(p) - p(\overline{\nu}, \overline{\nu})) d\sigma_{\bar{g}},
$$

where $\lambda_{\overline{\nu}} = \partial_{\overline{\nu}} \lambda$ *denotes the directional derivative of* λ *along* $\overline{\nu}$ *.*

Proof. Let Y be the vector field on Σ dual to the 1-form $p(\overline{\nu}, \cdot)|_{T\Sigma}$. Integrating by parts, one has

(2.9)
$$
\int_{\Omega} DR_{\bar{g}}(p)\lambda d\mathrm{vol}_{\bar{g}} - \int_{\Omega} \langle DR_{\bar{g}}^{*}(\lambda), p \rangle d\mathrm{vol}_{\bar{g}} \n= \int_{\Sigma} -\lambda \partial_{\overline{\nu}}(\mathrm{tr}_{\bar{g}}p) + (\mathrm{tr}_{\bar{g}}p)\partial_{\overline{\nu}}\lambda + \lambda \mathrm{div}_{\bar{g}}p(\overline{\nu}) - p(\overline{\nu}, \overline{\nabla}\lambda) d\sigma_{\bar{g}} \n= \int_{\Sigma} \lambda [-\partial_{\overline{\nu}}(\mathrm{tr}_{\bar{g}}p) + \mathrm{div}_{\bar{g}}p(\overline{\nu})] - \langle Y, \overline{\nabla}^{\Sigma}\lambda \rangle d\sigma_{\bar{g}} \n+ \int_{\Sigma} \lambda_{\overline{\nu}} (\mathrm{tr}_{\bar{g}}(p) - p(\overline{\nu}, \overline{\nu})) d\sigma_{\bar{g}} \n= \int_{\Sigma} \lambda [-\partial_{\overline{\nu}}(\mathrm{tr}_{\bar{g}}p) + \mathrm{div}_{\bar{g}}p(\overline{\nu}) + \mathrm{div}_{\Sigma}Y] d\sigma_{\bar{g}} \n+ \int_{\Sigma} \lambda_{\overline{\nu}} (\mathrm{tr}_{\bar{g}}(p) - p(\overline{\nu}, \overline{\nu})) d\sigma_{\bar{g}},
$$

where $\overline{\nabla}^{\Sigma}(\cdot)$ denotes the gradient on Σ with respect to the induced metric. From this and (2.6) the Lemma follows. \Box

Using Lemma 2.2, we can estimate $\int_{\Omega} [R(g) - R(\bar{g})] \lambda d\text{vol}_{\bar{g}}$.

Proposition 2.3. *Suppose* g and \bar{g} *induce the same metric on* Σ *and* h *satisfies* div_{$\bar{q}h = 0$ *. Given any* C^2 *function* λ *on* Ω *, one has*}

$$
\int_{\Omega} [R(g) - R(\bar{g})] \lambda d\text{vol}_{\bar{g}} \n= \int_{\Omega} \langle h, DR_{\bar{g}}^{*}(\lambda) \rangle d\text{vol}_{\bar{g}} - \frac{1}{2} \int_{\Omega} \langle h^{2}, DR_{\bar{g}}^{*}(\lambda) \rangle d\text{vol}_{\bar{g}} \n+ \int_{\Omega} \left[(\text{tr}_{\bar{g}} h) \langle h, \nabla_{\bar{g}}^{2} \lambda \rangle + \frac{1}{2} h^{ij} h^{kl} \bar{R}_{ikjl} \lambda - \frac{1}{4} (|\overline{\nabla} h|^{2} + |\overline{\nabla} (\text{tr}_{\bar{g}} h)|^{2}) \lambda \right] d\text{vol}_{\bar{g}} \n+ \int_{\Sigma} \left[-(h_{nn})^{2} - \frac{1}{2} |X|^{2} \right] \lambda_{;n} d\sigma_{\bar{g}} - \int_{\Sigma} h_{nn} \langle X, \overline{\nabla}^{2} \lambda \rangle d\sigma_{\bar{g}} \n+ \int_{\Sigma} \left[-\frac{1}{2} (h_{nn})^{2} H(\bar{g}) - \frac{1}{2} \overline{\mathbb{II}}(X, X) - \frac{3}{2} |X|^{2} H(\bar{g}) \right] \lambda d\sigma_{\bar{g}} \n- \int_{\Sigma} (2 - 2 \text{tr}_{\bar{g}} h) DH_{\bar{g}}(h) \lambda d\sigma_{\bar{g}} + \int_{\Omega} E(h) \lambda d\text{vol}_{\bar{g}} \n- \int_{\Omega} E_{1}^{i}(h) \overline{\nabla}_{i} \lambda d\text{vol}_{\bar{g}} + \int_{\Sigma} F_{1}(h) \lambda d\sigma_{\bar{g}},
$$

where $\overline{\mathbb{I}}$ *is the second fundamental form of* Σ *in* (Ω, \overline{g}) *with respect to* $\overline{\nu}$ *,* X *is the vector field on* Σ *that is dual to the* 1*-form* $h(\overline{\nu}, \cdot)|_{T\Sigma}$, $E(h)$ *and* $E_1^i(h)$ *are as in Lemma 2.1, and* $F_1(h)$ *is a function on* Σ *satisfying*

$$
|F_1(h)| \le C|h|^2 |\overline{\nabla} h|
$$

for a positive constant C *depending only on* n*.*

Proof. By (2.8) with $p = h$, using the fact that $h|_{T(\Sigma)} = 0$, we have

$$
(2.10) \qquad \int_{\Omega} DR_{\bar{g}}(h)\lambda \,d\mathrm{vol}_{\bar{g}} = \int_{\Omega} \langle DR_{\bar{g}}^*(\lambda), h \rangle \,d\mathrm{vol}_{\bar{g}} - \int_{\Sigma} 2DH_{\bar{g}}(h)\lambda \,d\sigma_{\bar{g}}.
$$

By the second line in (2.9) with $p = h^2$, and integrating by parts, we also have

(2.11)
$$
\int_{\Omega} -\frac{\lambda}{2} DR_{\bar{g}}(h^2) + \lambda \langle h, \overline{\nabla}^2 \text{tr}_{\bar{g}} h \rangle d\text{vol}_{\bar{g}} = \int_{\Omega} -\frac{1}{2} \langle DR_{\bar{g}}^*(\lambda), h^2 \rangle + \text{tr}_{\bar{g}} h \langle h, \overline{\nabla}^2 \lambda \rangle d\text{vol}_{\bar{g}} + \mathcal{B},
$$

where

$$
(2.12) \quad \mathcal{B} = \int_{\Sigma} \frac{1}{2} \left[\lambda \partial_{\overline{\nu}}(|h|^2) - |h|^2 \partial_{\overline{\nu}} \lambda - \lambda (\text{div}_{\overline{g}} h^2)(\overline{\nu}) + (h^2)(\overline{\nu}, \overline{\nabla} \lambda) \right] d\sigma_{\overline{g}} + \int_{\Sigma} \left[\lambda h(\overline{\nu}, \overline{\nabla} \text{tr}_{\overline{g}} h) - \text{tr}_{\overline{g}} h h(\overline{\nu}, \overline{\nabla} \lambda) \right] d\sigma_{\overline{g}}.
$$

To compute B, let $\{e_{\alpha} \mid 1 \leq \alpha \leq n-1\}$ be an orthonormal frame on Σ
let $e_{\alpha} = \overline{\Sigma}$ Denote $\overline{\overline{\Sigma}}$ also by "", thus $h_{\alpha} = \overline{\overline{\Sigma}}$ by The computing and let $e_n = \overline{\nu}$. Denote ∇ also by ";", thus $h_{ij;k} = \nabla_k h_{ij}$. The assumptions $h|_{T\Sigma} = 0$ and $\text{div}_{\bar{g}}h = 0$ imply the following facts on Σ :

$$
(2.13) \quad |h|^2 = (h_{nn})^2 + 2|X|^2, \ (h^2)_{nn} = (h_{nn})^2 + |X|^2, \ (h^2)_{n\alpha} = h_{nn}h_{n\alpha},
$$

(2.14)
$$
(h^2)(\overline{\nu}, \overline{\nabla}\lambda) = [(h_{nn})^2 + |X|^2]\lambda_{;n} + h_{nn}\langle X, \overline{\nabla}^{\Sigma}\lambda\rangle,
$$

(2.15)
$$
h_{\beta\gamma;\alpha} = h_{\beta n} \overline{\mathbb{II}}_{\gamma\alpha} + h_{n\gamma} \overline{\mathbb{II}}_{\beta\alpha},
$$

(2.16)
$$
h_{nn;\alpha} = (\text{tr}_{\bar{g}}h)_{;\alpha} - \sum_{\beta=1}^{n-1} h_{\beta\beta;\alpha} = (\text{tr}_{\bar{g}}h)_{;\alpha} - 2\overline{\mathbb{II}}(X, e_{\alpha}),
$$

$$
(2.17) \quad 0 = (\text{div} h)_{\alpha} = h_{\alpha n; n} + \sum_{\beta=1}^{n-1} h_{\alpha \beta; \beta} = h_{\alpha n; n} + h_{n\alpha} H(\bar{g}) + \overline{\mathbb{II}}(X, e_{\alpha}),
$$

(2.18)
$$
0 = (\text{div}_{\bar{g}} h)_n = h_{nn;n} + \sum_{\alpha=1}^{n-1} h_{n\alpha;\alpha} = h_{nn;n} + \text{div}_{\Sigma} X + h_{nn} H(\bar{g}),
$$

(2.19)
$$
2DH_{\bar{g}}(h) = (\text{tr}_{\bar{g}}h)_{;n} - \text{div}_{\Sigma}X,
$$

where (2.19) follows from (2.6) . By (2.16) – (2.18) , we have

(2.20)
$$
\partial_{\overline{\nu}}(|h|^2) - (\text{div}_{\overline{g}}h^2)(\overline{\nu}) = 3h_{n\alpha}h_{n\alpha;n} + h_{nn}h_{nn;n} - h_{n\alpha}h_{nn;\alpha}
$$

$$
= -\overline{\mathbb{II}}(X,X) - 3H(\overline{g})|X|^2 - H(\overline{g})(h_{nn})^2
$$

$$
-h_{nn}\text{div}_{\Sigma}X - \langle X, \overline{\nabla}^{\Sigma}\text{tr}_{\overline{g}}h \rangle.
$$

By (2.12), (2.13), (2.14), (2.20) and integration by parts, we have

$$
(2.21)
$$

\n
$$
\mathcal{B} = \int_{\Sigma} \left[-(h_{nn})^2 - \frac{1}{2} |X|^2 \right] \lambda_{,n} - \int_{\Sigma} h_{nn} \langle X, \overline{\nabla}^{\Sigma} \lambda \rangle
$$

\n
$$
+ \int_{\Sigma} \left[-\frac{1}{2} \overline{\mathbb{II}}(X, X) - \frac{3}{2} H(\overline{g}) |X|^2 - \frac{1}{2} H(\overline{g}) (h_{nn})^2 + 2h_{nn} D H_{\overline{g}}(h) \right] \lambda d\sigma_{\overline{g}}.
$$

Note that

$$
(2.22) \qquad \int_{\Omega} (\overline{\nabla}_i E_1^i(h)) \lambda \, d\text{vol}_{\overline{g}} = -\int_{\Omega} E_1^i(h) \overline{\nabla}_i \lambda \, d\text{vol}_{\overline{g}} + \int_{\Sigma} \lambda F_1(h) \, d\sigma_{\overline{g}},
$$

where $|F_1(h) = \langle E_1(h), \overline{\nu} \rangle \leq C|h|^2 |\overline{\nabla}h|$. Proposition 2.3 now follows from Lemma 2.1, (2.10) , (2.11) , (2.21) and (2.22) . \Box

The formula (2.23) below is a general form of [5, Theorem 10], which Brendle and Marques derived for geodesic balls in \mathbb{S}^n .

Theorem 2.1. *Suppose g and* \bar{g} *induce the same metric on* Σ *and* h *satisfies* $\text{div}_{\bar{q}}h = 0$. *Given any* C^2 *function* λ *on* Ω *, one has*

$$
(2.23)
$$
\n
$$
\int_{\Omega} [R(g) - R(\bar{g})] \lambda d\text{vol}_{\bar{g}} + \int_{\Sigma} (2 - \text{tr}_{\bar{g}} h) [H(g) - H(\bar{g})] \lambda d\sigma_{\bar{g}}
$$
\n
$$
= \int_{\Omega} \langle h, DR_{\bar{g}}^{*}(\lambda) \rangle d\text{vol}_{\bar{g}} - \frac{1}{2} \int_{\Omega} \langle h^{2}, DR_{\bar{g}}^{*}(\lambda) \rangle d\text{vol}_{\bar{g}}
$$
\n
$$
+ \int_{\Omega} \left[(\text{tr}_{\bar{g}} h) \langle h, \nabla_{\bar{g}}^{2} \lambda \rangle + \frac{1}{2} h^{ij} h^{kl} \bar{R}_{ikjl} \lambda - \frac{1}{4} (|\overline{\nabla} h|^{2} + |\overline{\nabla} (\text{tr}_{\bar{g}} h)|^{2}) \lambda \right] d\text{vol}_{\bar{g}}
$$
\n
$$
+ \int_{\Sigma} \left[-\frac{1}{4} (h_{nn})^{2} H(\bar{g}) - \frac{1}{2} (\overline{\mathbb{II}}(X, X) + H(\bar{g}) |X|^{2}) \right] \lambda d\sigma_{\bar{g}}
$$
\n
$$
+ \int_{\Sigma} \lambda_{;n} \left[-(h_{nn})^{2} - \frac{1}{2} |X|^{2} \right] d\sigma_{\bar{g}} + \int_{\Sigma} (-1) h_{nn} \langle X, \overline{\nabla}^{\Sigma} \lambda \rangle d\sigma_{\bar{g}}
$$
\n
$$
+ \int_{\Omega} E(h) \lambda d\text{vol}_{\bar{g}} + \int_{\Omega} Z^{i}(h) \overline{\nabla}_{i} \lambda d\text{vol}_{\bar{g}} + \int_{\Sigma} F(h) \lambda d\sigma_{\bar{g}},
$$

where $E(h)$ *is a function and* $Z(h)$ *is a vector field on* Ω *satisfying*

$$
|E(h)| \le C(|h||\overline{\nabla}h|^2 + |h|^3), \quad |Z(h)| \le C|h|^2|\overline{\nabla}h|,
$$

and $F(h)$ *is some function on* Σ *satisfying*

$$
|F(h)| \le C(|h|^2 |\overline{\nabla} h| + |h|^3).
$$

Proof. Proposition 2.2 implies

(2.24)
$$
2[H(g) - H(\bar{g})] = 2DH_{\bar{g}}(h) + J(h) + F_2(h)
$$

where

$$
J(h) = \left[\frac{1}{4}(h_{nn})^2 + |X|^2\right]H(\bar{g}) - h_{nn}DH_{\bar{g}}(h)
$$

and $F_2(h)$ is some function on Σ satisfying $|F_2(h)| \leq C(|h|^2 |\overline{\nabla} h| + |h|^3)$. Therefore

(2.25)
$$
(2 - h_{nn})[H(g) - H(\bar{g})] = (2 - 2h_{nn})DH_{\bar{g}}(h) + \left[\frac{1}{4}(h_{nn})^2 + |X|^2\right]H(\bar{g}) + F_2(h) - \frac{1}{2}h_{nn}[J(h) + F_2(h)].
$$

 (2.23) now follows readily from Proposition 2.3 and (2.25) .

The term $DR^*_{\bar{g}}(\lambda)$ in (2.23) may suggest that one consider a background
rig \bar{g} which admits a pontrivial function λ such that $DR^*(\lambda) = 0$ (such metric \bar{g} which admits a nontrivial function λ such that $DR_{\bar{g}}^{*}(\lambda) = 0$ (such metrics are known as *static metrics* [10]). For instance, if Q is a goodesic metrics are known as *static metrics* [10].) For instance, if Ω is a geodesic ball B in \mathbb{S}^n , \bar{g} is the standard metric on \mathbb{S}^n and $\lambda = \cos r$, where r is the \bar{q} -distance to the center of B, then (2.23) reduces to the formula in [5, Theorem 10].

Besides static metrics, one can also consider those metrics \bar{g} with the property that there exists a function λ such that

(2.26)
$$
DR_{\bar{g}}^*(\lambda) = \bar{g}.
$$

These metrics were studied by the authors in [13, 14]. In this case, the terms

$$
\int_{\Omega} \langle h, DR^*_{\bar{g}}(\lambda) \rangle d\text{vol}_{\bar{g}} - \frac{1}{2} \int_{\Omega} \langle h^2, DR^*_{\bar{g}}(\lambda) \rangle d\text{vol}_{\bar{g}}
$$

in (2.23) become

$$
\int_{\Omega} \text{tr}_{\bar{g}} h \, d\text{vol}_{\bar{g}} - \frac{1}{2} \int_{\Omega} |h|^2 \, d\text{vol}_{\bar{g}}.
$$

To compensate these terms, one can include the difference between the volumes of g and \bar{g} into (2.23).

Corollary 2.1. *Suppose* \bar{g} *is a metric on* Ω *with the property that there exists a function* λ *satisfying* $DR_5^*(\lambda) = \bar{g}$. Let $g = \bar{g} + h$ *be a nearby metric*
exists a gnd \bar{g} *induce the same metric on* \sum and *b satisfies* div-*b* $= 0$. *such that* g and \bar{g} *induce the same metric on* Σ *and* h *satisfies* div $_{\bar{g}}h = 0$.

Let $V(g)$, $V(\bar{g})$ *denote the volume of* (Ω, g) , (Ω, \bar{g}) *. Then*

$$
(2.27)
$$

\n
$$
-2(V(g) - V(\bar{g})) + \int_{\Omega} [R(g) - R(\bar{g})] \lambda dvol_{\bar{g}}
$$

\n
$$
+ \int_{\Sigma} (2 - tr_{\bar{g}} h) [H(g) - H(\bar{g})] \lambda d\sigma_{\bar{g}}
$$

\n
$$
= \int_{\Omega} \left[-\frac{1}{4} - \frac{1}{n-1} \right] (tr_{\bar{g}} h)^2 dvol_{\bar{g}}
$$

\n
$$
+ \int_{\Omega} \left[-\frac{1}{4} (|\overline{\nabla} h|^2 + |\nabla_{\bar{g}} (tr_{\bar{g}} h)|^2) \lambda \right] dvol_{\bar{g}}
$$

\n
$$
+ \int_{\Omega} \left[\frac{1}{1-n} R(\bar{g}) (tr_{\bar{g}} h)^2 + \langle h, Ric(\bar{g}) \rangle (tr_{\bar{g}} h) + \frac{1}{2} h_{ij} h_{kl} R_{ikjl} \right] \lambda dvol_{\bar{g}}
$$

\n
$$
+ \int_{\Sigma} \left[-\frac{1}{4} (h_{nn})^2 H(\bar{g}) - \frac{1}{2} (\overline{\mathbb{II}}(X, X) + H(\bar{g}) |X|^2) \right] \lambda d\sigma_{\bar{g}}
$$

\n
$$
+ \int_{\Sigma} \lambda_{;n} \left[-(h_{nn})^2 - \frac{1}{2} |X|^2 \right] d\sigma_{\bar{g}} + \int_{\Sigma} (-1) h_{nn} \langle X, \overline{\nabla}^{\Sigma} \lambda \rangle d\sigma_{\bar{g}}
$$

\n
$$
+ \int_{\Omega} G(h) dvol_{\bar{g}} + \int_{\Omega} E(h) \lambda dvol_{\bar{g}} + \int_{\Omega} Z^i(h) \overline{\nabla}_i \lambda dvol_{\bar{g}}
$$

\n
$$
+ \int_{\Sigma} F(h) \lambda d\sigma_{\bar{g}},
$$

where $G(h)$ *and* $E(h)$ *are functions on* Ω *satisfying*

$$
|G(h)| \le C|h|^3, \quad |E(h)| \le C(|h||\overline{\nabla}h|^2 + |h|^3),
$$

Z(h) *is a vector field on* Ω *satisfying*

$$
|Z(h)| \le C|h|^2 |\overline{\nabla} h|,
$$

and $F(h)$ *is a function on* Σ *satisfying*

$$
|F(h)| \le C(|h|^2|\overline{\nabla}h| + |h|^3).
$$

Proof. The difference between the volumes of \bar{g} and $g = \bar{g} + h$ is

(2.28)
$$
V(g) - V(\bar{g}) = \int_{\Omega} \frac{1}{2} (\text{tr}_{\bar{g}} h) + \left[\frac{1}{8} (\text{tr}_{\bar{g}} h)^2 - \frac{1}{4} |h|^2 \right] + G(h) \, d\text{vol}_{\bar{g}},
$$

where $G(h)$ is a function satisfying $|G(h)| \leq C|h|^3$ for a constant C depending only on *n*. Suppose $DR_{\bar{g}}^{*}(\lambda) = \bar{g}$, i.e.,

$$
-(\Delta_{\bar{g}}\lambda)\bar{g} + \nabla_{\bar{g}}^2\lambda - \lambda \text{Ric}(\bar{g}) = \bar{g}.
$$

Taking trace, one has $\Delta_{\bar{g}}\lambda = \frac{1}{1-n}[R(\bar{g})\lambda + n]$. Thus,

(2.29)
$$
\nabla_{\bar{g}}^2 \lambda = \frac{1}{1-n} [R(\bar{g})\lambda + 1]\bar{g} + \lambda \text{Ric}(\bar{g}).
$$

 (2.27) follows from (2.23) , (2.28) and (2.29) .

3. Volume constrained rigidity

We prove Theorem 1.3 in this section. First, we recall its statement:

Theorem 3.1. Let (Ω, \bar{q}) be an *n*-dimensional compact Riemannian man*ifold, of constant sectional curvature* 1*, with smooth boundary* Σ*. Suppose* $\mathbb{II} + H\bar{\gamma} \geq 0$ *(i.e.,* $\mathbb{II} + H\bar{\gamma}$ *is positive semi-definite), where* $\bar{\gamma}$ *is the induced metric on* Σ *and* \mathbb{II} *, H are the second fundamental form, the mean curvature of* Σ *in* (Ω, \bar{g}) *. Suppose the first nonzero Neumann eigenvalue* μ *of* (Ω, \bar{g}) *satisfies* $\mu > n - \frac{2}{n+1}$.
Consider a nearby metric

Consider a nearby metric g *on* Ω *with the properties*

- $R(q) > n(n-1)$ *where* $R(q)$ *is the scalar curvature of g,*
- $H(q) \geq \overline{H}$ *where* $H(q)$ *is the mean curvature of* Σ *in* (Ω, g) *,*
- g and \bar{q} *induce the same metric on* Σ *,*
- $V(g) \geq V(\bar{g})$ *where* $V(g)$ *,* $V(\bar{g})$ *are the volumes of g,* \bar{g} *.*

 $I_f^f||g - \bar{g}||_{C^2(\bar{\Omega})}$ is sufficiently small, then there is a diffeomorphism φ on Ω
with $\varphi|_{\Omega} = id$ which is the identity man on \sum such that $\varphi^*(\varphi) = \bar{g}$ $with \varphi|_{\Sigma} = id$ *, which is the identity map on* Σ *, such that* $\varphi^*(g) = \overline{g}$ *.*

Proof. Fix a real number $p > n$. By [5, Proposition 11], if $||g - \bar{g}||_{W^{2,p}(\Omega)}$ is sufficiently small, there exists a $W^{3,p}$ diffeomorphism φ on Ω with $\varphi|_{\Sigma} = id$ such that $h = \varphi^*(g) - g$ is divergence free with respect to \bar{g} , and $||h||_{W^{2,p}(\Omega)} \le N||g-\bar{g}||_{W^{2,p}(\Omega)}$ for some positive constant N depending only on (Ω, \bar{g}) . Replacing g by $\varphi^*(g)$, we may assume $g = \bar{g} + h$ with $\text{div}_{\bar{g}}h = 0$. We want to prove that if $||h||_{C^1(\bar{\Omega})}$ is sufficiently small and g satisfies the conditions in the theorem than h must be zero. conditions in the theorem, then h must be zero.

 \Box

Since \bar{g} has constant sectional curvature 1, we choose $\lambda = -\frac{1}{n-1}$ such $\Delta D R^*(\lambda) = \bar{g}$ Corollary 2.1 then shows that $DR_{\bar{g}}^*(\lambda) = \bar{g}$. Corollary 2.1 then shows

$$
(3.1)
$$
\n
$$
-2(V(g) - V(\bar{g})) - \frac{1}{n-1} \int_{\Omega} [R(g) - R(\bar{g})] \, d\text{vol}_{\bar{g}}
$$
\n
$$
- \frac{1}{n-1} \int_{\Sigma} (2 - \text{tr}_{\bar{g}} h) [H(g) - H(\bar{g})] \, d\sigma_{\bar{g}}
$$
\n
$$
\geq \frac{1}{4(n-1)} \int_{\Omega} \left[-(n+1)(\text{tr}_{\bar{g}} h)^{2} + 2|h|^{2} + |\overline{\nabla}h|^{2} + |\overline{\nabla}(\text{tr}_{\bar{g}} h)|^{2} \right] \, d\text{vol}_{\bar{g}}
$$
\n
$$
+ \frac{1}{4(n-1)} \int_{\Sigma} \left[(h_{nn})^{2} H(\bar{g}) + 2(\overline{\mathbb{II}}(X, X) + H(\bar{g}) |X|^{2}) \right] \, d\sigma_{\bar{g}}
$$
\n
$$
- C ||h||_{C^{1}(\bar{\Omega})} \left[\int_{\Omega} (|h|^{2} + |\overline{\nabla} h|^{2}) \, d\text{vol}_{\bar{g}} + \int_{\Sigma} |h|^{2} \, d\sigma_{\bar{g}} \right]
$$

for a constant C depending only on (Ω, \bar{g}) .

Using the variational property of μ , we have

(3.2)

$$
\int_{\Omega} |\overline{\nabla}(\text{tr}_{\bar{g}}h)|^2 d\text{vol}_{\bar{g}} \geq \mu \left[\left(\int_{\Omega} (\text{tr}_{\bar{g}}h)^2 d\text{vol}_{\bar{g}} \right) - \frac{1}{V(\bar{g})} \left(\int_{\Omega} \text{tr}_{\bar{g}}h d\text{vol}_{\bar{g}} \right)^2 \right].
$$

By (2.28), \int_{Ω} tr_{$\bar{g}h$} dvol_{\bar{g}} is related to $(V(g) - V(\bar{g}))$ by

(3.3)

$$
\int_{\Omega} \text{tr}_{\bar{g}} h \, d\text{vol}_{\bar{g}} = 2(V(g) - V(\bar{g})) - \int_{\Omega} \left\{ \left[\frac{1}{4} (\text{tr}_{\bar{g}} h)^2 - \frac{1}{2} |h|^2 \right] + 2G(h) \right\} d\text{vol}_{\bar{g}},
$$

where $G(h) \leq C|h|^3$.

Given any constant $0 < \epsilon < 1$, using (3.2) and the fact $|h|^2 \ge \frac{1}{n} (\text{tr}_{\bar{g}} h)^2$
and $|\overline{\nabla} h|^2 \ge \frac{1}{n} |\overline{\nabla} (\text{tr}_{\bar{g}} h)|^2$, we have

(3.4)
\n
$$
\int_{\Omega} \left[-(n+1)(\text{tr}_{\bar{g}}h)^{2} + 2|h|^{2} + |\overline{\nabla}h|^{2} + |\nabla_{\bar{g}}(\text{tr}_{\bar{g}}h)|^{2} \right] d\text{vol}_{\bar{g}}
$$
\n
$$
\geq \int_{\Omega} \left[\epsilon|h|^{2} + \epsilon|\overline{\nabla}h|^{2} + \left[-(n+1) + \frac{2-\epsilon}{n} \right] (\text{tr}_{\bar{g}}h)^{2} + \left[\frac{(1-\epsilon)}{n} + 1 \right] |\overline{\nabla}(\text{tr}_{\bar{g}}h)|^{2} \right] d\text{vol}_{\bar{g}}
$$

16 P. Miao & L.-F. Tam

$$
\geq \int_{\Omega} \left[\epsilon |h|^2 + \epsilon |\overline{\nabla} h|^2 + \left[-(n+1) + \frac{2-\epsilon}{n} + \frac{(1-\epsilon)}{n} \mu + \mu \right] (\text{tr}_{\bar{g}} h)^2 \right] d\text{vol}_{\bar{g}}
$$

$$
-\mu \left[\frac{(1-\epsilon)}{n} + 1 \right] \frac{1}{V(\bar{g})} \left(\int_{\Omega} \text{tr}_{\bar{g}} h \, d\text{vol}_{\bar{g}} \right)^2.
$$

Since $\mu > n - \frac{2}{n+1}$, we can chose ϵ (depending only on μ and n) such that

(3.5)
$$
\left[-(n+1) + \frac{2-\epsilon}{n} + \frac{(1-\epsilon)}{n} \mu + \mu \right] \ge 0.
$$

Then it follows from (3.3) , (3.4) and (3.5) that

$$
(3.6) \quad \int_{\Omega} \left(-(n+1)(\text{tr}_{\bar{g}} h)^2 + 2|h|^2 + |\overline{\nabla} h|^2 + |\overline{\nabla} (\text{tr}_{\bar{g}} h))|^2 \right) d\text{vol}_{\bar{g}}
$$

$$
\geq \epsilon \int_{\Omega} \left(|h|^2 + |\overline{\nabla} h|^2 \right) d\text{vol}_{\bar{g}} - C_1 (V(g) - V(\bar{g}))^2 - C_1 \int_{\Omega} |h|^4 d\sigma_{\bar{g}},
$$

where C_1 is a positive constant depending only on (Ω, \bar{g}) .

At the boundary Σ , the assumption $\overline{\mathbb{II}} + H(\overline{g})\overline{\gamma} \geq 0$ implies $H(\overline{g}) \geq 0$, therefore

(3.7)
$$
\int_{\Sigma} \left[(h_{nn})^2 H(\bar{g}) + 2(\overline{\mathbb{II}}(X,X) + H(\bar{g})|X|^2) \right] d\sigma_{\bar{g}} \ge 0
$$

for any h . By (3.1) , (3.6) and (3.7) , we have

(3.8)
$$
-8(n-1)(V(g) - V(\bar{g})) - 4 \int_{\Omega} [R(g) - R(\bar{g})] dvol_{\bar{g}}
$$

$$
-4 \int_{\Sigma} (2 - \text{tr}_{\bar{g}} h) [H(g) - H(\bar{g})] d\sigma_{\bar{g}}
$$

$$
\geq \epsilon \int_{\Omega} (|h|^2 + |\overline{\nabla} h|^2) dvol_{\bar{g}}
$$

$$
- C(V(g) - V(\bar{g}))^2 - C \int_{\Omega} |h|^4 dvol_{\bar{g}}
$$

$$
- C||h||_{C^1(\bar{\Omega})} \left[\int_{\Omega} (|h|^2 + |\overline{\nabla} h|^2) dvol_{\bar{g}} + \int_{\Sigma} |h|^2 d\sigma_{\bar{g}} \right]
$$

for some positive constant C depending only on (Ω, \bar{g}) .

Finally, we note that

(3.9)
$$
(V(g) - V(\bar{g}))^{2} \leq C \left(\int_{\Omega} |h| \, d\mathrm{vol}_{\bar{g}} \right) (V(g) - V(\bar{g}))
$$

by (3.3) and the assumption $V(g) \geq V(\bar{g})$. Also, by the trace theorem,

$$
||h||_{L^{2}(\Sigma)} \leq C||h||_{W^{1,2}(\Omega)}
$$

for a constant C only depending on Ω . Therefore, by (3.8), (3.9), (3.10) and the assumptions $V(q) \geq V(\bar{q}), R(q) \geq R(\bar{q})$ and $H(q) \geq H(\bar{q})$, we conclude that if $||h||_{C^1(\bar{\Omega})}$ is sufficiently small, then

(3.11)
$$
0 \geq \frac{\epsilon}{2} \int_{\Omega} (|h|^2 + |\overline{\nabla} h|^2) d\text{vol}_{\overline{g}},
$$

which implies h must be identically zero. This completes the proof. \Box

Remark 3.1. In Theorem 3.1, if Σ is indeed empty, i.e., (Ω, \bar{g}) is a closed space form, its first nonzero Neumann eigenvalue satisfies $\mu \geq n$ as (Ω, \bar{g}) is covered by \mathbb{S}^n . In this case, Theorem 3.1 says that $V(g) \geq V(\bar{g})$ implies q is isometric to \bar{q} for a nearby metrics q with $R(q) \geq R(\bar{q})$. This could be compared to a more profound theorem known in three-dimension: "*If* (M,g) *is closed* 3-manifold with $R(g) \geq 6$, Ric $(g) \geq g$ and $V(g) \geq V(\mathbb{S}^3)$, *then* (M, g) *is isometric to* \mathbb{S}^3 ." (See [4, Corollary 5.4] and earlier reference of [3, 11])

When $\Sigma \neq \emptyset$, the boundary assumption $\overline{\mathbb{II}} + \overline{H} \overline{\gamma} \geq 0$ in Theorem 3.1 can be relaxed in certain circumstances. A detailed examination of the above proof shows, if

(3.12)
$$
\overline{\mathbb{II}}(v,v) + \overline{H}\overline{\gamma} \ge -\beta\overline{\gamma}
$$

for some positive constant β , where β is sufficiently small comparing to the constant ϵ in (3.5) and the constant C in (3.10), then the conclusion of Theorem 3.1 still holds on such an (Ω, \bar{g}) . In particular, this shows

Corollary 3.1. Let (M, \bar{g}) be an *n*-dimensional Riemannian manifold of *constant sectional curvature* 1*. Suppose* $\Omega \subset M$ *is a bounded domain with smooth boundary* Σ *, satisfying the assumptions in Theorem 3.1, i.e.,* μ $n - \frac{2}{n+1}$ and $\overline{\mathbb{II}} + \overline{H} \overline{\gamma} \geq 0$ *on* Σ *. Let* $\tilde{\Omega} \subset M$ *be another bounded domain*
with empoth boundary $\tilde{\Sigma}$, If $\tilde{\Sigma}$ is sufficiently close to Σ in the C^2 norm, then *with smooth boundary* $\tilde{\Sigma}$ *. If* $\tilde{\Sigma}$ *is sufficiently close to* Σ *in the* C^2 *norm, then the conclusion of Theorem 3.1 holds on* $\tilde{\Omega}$ *.*

It is known that the fist nonzero Neumann eigenvalue of \mathbb{S}^n_+ is n (see [9, Theorem 3]). Therefore, Theorem 1.2 follows from Theorem 3.1. Moreover, by Corollary 3.1, Theorem 3.1 holds on a geodesic ball in \mathbb{S}^n whose radius is slightly larger than $\frac{\pi}{2}$.

By the next lemma, we know Theorem 3.1 also holds on any geodesic ball in \mathbb{S}^n that is strictly contained in \mathbb{S}^n_+ .

Lemma 3.1. *Let* $B(\delta) \subset \mathbb{S}^n$ *be a geodesic ball of radius* δ *. Let* $\mu(\delta)$ *be the first nonzero Neumann eigenvalue of* B(δ)*.*

- (i) $\mu(\delta)$ *is a strictly decreasing function of* δ *on* $(0, \frac{\pi}{2}]$ *.*
- (ii) *For any* $0 < \delta < \frac{\pi}{2}$,

$$
\mu(\delta) > n + \frac{(\sin \delta)^{n-2} \cos \delta}{\int_0^{\delta} (\sin t)^{n-1} dt} > \frac{n}{(\sin \delta)^2}.
$$

Proof. By [9, Theorem 2, p.44], $\mu(\delta)$ is characterized by the fact that

(3.13)
$$
\left\{ (\sin t)^{n-1} J' \right\}' + [\mu(\delta) - (n-1)(\sin t)^{-2}] (\sin t)^{n-1} J = 0
$$

has a solution $J = J(t)$ on $[0, \delta]$ satisfying

(3.14)
$$
J(0) = 0, \quad J'(\delta) = 0, \quad J'(t) \neq 0, \quad \forall t \in [0, \delta).
$$

Given $0 < \delta_1 < \delta_2 \leq \frac{\pi}{2}$, let $J_i = J_i(t)$ be a solution to (3.13) with $\mu(\delta)$ replaced by $\mu(\delta_i)$, satisfying (3.14) on [0, δ_i], $i = 1, 2$. Replacing J_i by $-J_i$ if necessary, we may assume that $J_i' > 0$ on $[0, \delta_i]$, hence $J_i > 0$ on $(0, \delta_i]$. Define

$$
f_i = \frac{(\sin t)^{n-1} J_i'}{J_i}, \quad \beta_i(t) = \left[\mu(\delta_i) - \frac{n-1}{(\sin t)^2} \right] (\sin t)^{n-1}.
$$

By (3.13) , f_i satisfies

$$
f_i' = -\beta_i - \frac{1}{(\sin t)^{n-1}} f_i^2.
$$

Therefore, on $(0, \delta_1]$,

(3.15)
$$
(f_1 - f_2)' = \frac{1}{(\sin t)^{n-1}} (f_2^2 - f_1^2) + [\mu(\delta_2) - \mu(\delta_1)] (\sin t)^{n-1}.
$$

Note that $f_1(t)$, $f_2(t)$ can be extended continuously to 0 such that $f_1(0)$ = $f_2(0)$. Moreover, $f_1 > 0$, $f_2 > 0$ on $(0, \delta_1)$, $f_2(\delta_1) > 0 = f_1(\delta_1)$. Let $0 \le t_0 <$ δ_1 be such that $f_1 = f_2$ at t_0 and $f_2 > f_1$ for $t_0 < t \leq \delta_1$. On $(t_0, \delta_1]$, one would have $(f_1 - f_2)' > 0$ if $\mu(\delta_2) \ge \mu(\delta_1)$, which is a contradiction to $f_2 >$ f_1 . Therefore, $\mu(\delta_2) < \mu(\delta_1)$. This proves (i).

To prove (ii), we further claim that $t_0 = 0$, i.e., $f_2 > f_1$ on $(0, \delta_1]$. If not, there would be a nonpositive local minimum of $(f_2 - f_1)$ at some $\tilde{t}_0 \in (0, t_0]$. At \tilde{t}_0 , (3.15) implies

(3.16)
$$
0 = (f_1 - f_2)' \leq [\mu(\delta_2) - \mu(\delta_1)] (\sin \tilde{t}_0)^{n-1} < 0
$$

because $0 < f_2(\tilde{t}_0) \le f_1(\tilde{t}_0)$ and $\mu(\delta_2) < \mu(\delta_1)$. Hence $f_2 > f_1$ on $(0, \delta_1]$. Integrating (3.15) on $[0, \delta_1]$, we have

$$
(3.17) \t -f_2(\delta_1) = \int_0^{\delta_1} (f_1 - f_2)' dt > [\mu(\delta_2) - \mu(\delta_1)] \int_0^{\delta_1} (\sin t)^{n-1} dt.
$$

Therefore

(3.18)
$$
\mu(\delta_1) > \mu(\delta_2) + \frac{f_2(\delta_1)}{\int_0^{\delta_1} (\sin t)^{n-1} dt}.
$$

Now let $\delta_1 = \delta \in (0, \frac{\pi}{2})$ and $\delta_2 = \pi/2$. Applying the fact that $\mu(\frac{\pi}{2}) = n$, $J_2 =$ $\sin t$, and

$$
f_2 = (\sin t)^{n-2} \cos t,
$$

we have

(3.19)
$$
\mu(\delta) > n + \frac{(\sin \delta)^{n-2} \cos \delta}{\int_0^{\delta} (\sin t)^{n-1} dt}
$$

$$
> n + \frac{(\sin \delta)^{n-2} \cos^2 \delta}{\int_0^{\delta} \cos t (\sin t)^{n-1} dt}
$$

$$
= \frac{n}{\sin^2 \delta}.
$$

Therefore, (ii) is proved. \Box

4. A volume estimate on domains in \mathbb{R}^n

On \mathbb{R}^n , the standard Euclidean metric \bar{g} satisfies $DR^*_{\bar{g}}(\lambda) = \bar{g}$ with

(4.1)
$$
\lambda(x) = -\frac{1}{2(n-1)}|x-a|^2 + L
$$

where $|\cdot|$ denotes the Euclidean length, $a \in \mathbb{R}^n$ is any fixed point and L is an arbitrary constant. In this section, we use this fact and Corollary 2.1 to prove Theorem 1.4 in the introduction. First we need some lemmas.

Lemma 4.1. On a compact Riemannian manifold (Ω, \bar{g}) with smooth *boundary* Σ *, there exists a positive constant* C *depending only on* (Ω, \bar{q}) *such that, for any Lipschitz function* ϕ *on* Σ *, there is an extension of* ϕ *to a Lipschitz function* φ *on* Ω *such that*

(4.2)
$$
\int_{\Omega} \left(|\widetilde{\phi}|^2 + |\overline{\nabla} \widetilde{\phi}|^2 \right) d\text{vol}_{\bar{g}} \leq C \int_{\Sigma} \left(\phi^2 + |\overline{\nabla}^{\Sigma} \phi|^2 \right) d\sigma_{\bar{g}},
$$

where $\overline{\nabla}$ *,* $\overline{\nabla}^{\Sigma}$ *denote the gradient on* Ω *,* Σ *respectively.*

Proof. Let $d(\cdot, \Sigma)$ be the distance to Σ . Let $\delta > 0$ be a small constant such that the tubular neighborhood $U_{2\delta} = \{x \in \Omega | d(x, \Sigma) < 2\delta \}$ can be parametrized by $F : \Sigma \times [0, 2\delta) \to U_{2\delta}$, with $F(y, t) = \exp_y(t\nu(y))$ where $\exp_y(\cdot)$ is the exponential map at $y \in \Sigma$ and $\nu(y)$ is the inward unit nor-
mal at u. In U_{Σ} , the metric \overline{a} takes the form $dt^2 + \sigma^t$, where $\{\sigma^t\}_t$, we as is a mal at y. In $U_{2\delta}$, the metric \bar{g} takes the form $dt^2 + \sigma^t$, where $\{\sigma^t\}_{0 \leq t < 2\delta}$ is a
family of metrics on Σ . By shaceing δ sufficiently small, one say assume σ^t . family of metrics on Σ . By choosing δ sufficiently small, one can assume σ^t is equivalent to σ^0 in the sense that $\frac{1}{2} \leq \sigma^t(v, v) \leq 2$ for any tangent vector v with $\sigma^0(v, v) = 1, \forall 0 \le t < 2\delta$.

Let $\rho = \rho(t)$ be a fixed smooth cut-off function on $[0, \infty)$ such that $0 \leq$ $\rho \leq 1$, $\rho(t) = 1$ for $0 \leq t \leq \delta$ and $\rho(t) = 0$ for $t \geq \frac{3}{2}\delta$. On $U_{2\delta}$, consider the function $\phi(y,t) = \phi(y)\rho(t)$. Since ϕ is identically zero outside $U_{\frac{3}{2}\delta} = \{x \in \mathbb{R} \mid \mathcal{U} \setminus \mathbb{R}^3 : \mathbb{R}^3 \leq \mathbb{R}^3 \}$ $\Omega | d(x, \Sigma) < \frac{3}{2}\delta$, $\tilde{\phi}$ can be viewed as an extension of ϕ on Ω . For such an ϕ , one has

(4.3)
$$
\int_{\Omega} |\tilde{\phi}|^2 d\mathrm{vol}_{\bar{g}} \leq \int_0^{2\delta} \left(\int_{\Sigma} |\phi|^2 d\sigma^t \right) dt \leq C\delta \int_{\Sigma} |\phi|^2 d\sigma_{\bar{g}}
$$

and

(4.4)
$$
\int_{\Omega} |\overline{\nabla} \widetilde{\phi}|^2 d\text{vol}_{\bar{g}} \leq 2 \int_{U_{2\delta}} \left(|\overline{\nabla} \rho|^2 \phi^2 + |\overline{\nabla} \phi|^2 \rho^2 \right) d\text{vol}_{\bar{g}} \\ \leq C \delta \int_{\Sigma} |\phi|^2 d\sigma_{\bar{g}} + 2 \int_0^{2\delta} \left(\int_{\Sigma} |\overline{\nabla}_t^{\Sigma} \phi|^2 d\sigma^t \right) dt \\ \leq C \left[\int_{\Sigma} |\phi|^2 d\sigma_{\bar{g}} + \int_{\Sigma} |\overline{\nabla}^{\Sigma} \phi|^2 d\sigma_{\bar{g}} \right],
$$

where $\overline{\nabla}_t^{\Sigma}$ denotes the gradient on (Σ, σ^t) and C is a positive constant depending only on (Ω, \bar{g}) . (4.2) now follows from (4.3) and (4.4). \Box **Lemma 4.2.** On a compact Riemannian manifold (Ω, \bar{g}) with smooth *boundary* Σ *, there exists a positive constant* C *depending only on* (Ω, \overline{g}) *such that, for any smooth* $(0, 2)$ *symmetric tensor* h *on* Ω *, one has*

$$
(4.5)
$$

$$
\int_{\Omega} |h|^3 d\mathrm{vol}_{\bar{g}} \leq C \left(\int_{\Sigma} |h|^3 d\sigma_{\bar{g}} + ||h||_{C^2(\Omega)} \int_{\Sigma} |h|^2 d\sigma_{\bar{g}} + \int_{\Omega} |h||\overline{\nabla}h|^2 d\mathrm{vol}_{\bar{g}} \right).
$$

Proof. On Ω , let $\phi = |h|^{\frac{3}{2}}$. By lemma 4.1, there exists a Lipschitz function ϕ on Ω such that $\phi|_{\Sigma} = \phi|_{\Sigma}$ and

$$
\int_{\Omega} \left(|\widetilde{\phi}|^2 + |\overline{\nabla} \widetilde{\phi}|^2 \right) d\text{vol}_{\bar{g}} \leq C \int_{\Sigma} \left(\phi^2 + |\overline{\nabla}^{\Sigma} \phi|^2 \right) d\sigma_{\bar{g}}.
$$

Let $\lambda_1 > 0$ be the first Dirichlet eigenvalue of (Ω, \bar{g}) , then

(4.6)
$$
\int_{\Omega} \phi^2 d\text{vol}_{\bar{g}} \leq 2 \int_{\Omega} \left[\tilde{\phi}^2 + (\phi - \tilde{\phi})^2 \right] d\text{vol}_{\bar{g}} \\ \leq 2 \int_{\Omega} \tilde{\phi}^2 d\text{vol}_{\bar{g}} + 2\lambda_1^{-1} \int_{\Omega} |\overline{\nabla}(\phi - \tilde{\phi})|^2 d\text{vol}_{\bar{g}} \\ \leq C \left[\int_{\Sigma} \left(\phi^2 + |\overline{\nabla}^2 \phi|^2 \right) d\sigma_{\bar{g}} + \int_{\Omega} |\overline{\nabla} \phi|^2 d\text{vol}_{\bar{g}} \right],
$$

where

(4.7)
$$
\int_{\Omega} |\overline{\nabla} \phi|^2 d\mathrm{vol}_{\bar{g}} = \int_{\Omega} |\overline{\nabla}| h|^{\frac{3}{2}} |^2 d\mathrm{vol}_{\bar{g}} \leq \frac{9}{4} \int_{\Omega} |h| |\overline{\nabla} h|^2 d\mathrm{vol}_{\bar{g}}.
$$

To handle the boundary term $\int_{\Sigma} |\overline{\nabla}^{\Sigma} \phi|^2 d\sigma_{\bar{g}}$, given any constant $\epsilon > 0$, one considers

(4.8)
$$
\int_{\Sigma} |\overline{\nabla}^{\Sigma}(|h|^2 + \epsilon)^{\frac{3}{4}}|^2 d\sigma_{\bar{g}} = - \int_{\Sigma} (|h|^2 + \epsilon)^{\frac{3}{4}} \Delta_{\Sigma}(|h|^2 + \epsilon)^{\frac{3}{4}} d\sigma_{\bar{g}},
$$

where Δ_{Σ} denotes the Laplacian on Σ . Let $\{e_{\alpha} \mid \alpha = 1, \ldots, n-1\}$ be a local orthonormal frame on Σ and e_n be the outward unit normal to Σ . Let \overline{H} be the mean curvature of Σ with respect to e_n . Denote covariant differentiation Ω by ";". Let i, j run through $\{1,\ldots,n\}$. One has

(4.9)
$$
\Delta_{\Sigma}|h|^{2} = \sum_{\alpha}(|h|^{2})_{;\alpha\alpha} - \bar{H}(|h|^{2})_{;n}
$$

$$
= \sum_{\alpha,i,j,} 2(h_{ij}h_{ij;\alpha\alpha} + h_{ij;\alpha}^{2}) - \bar{H} \sum_{i,j} 2h_{ij}h_{ij;n}
$$

$$
\geq -C||h||_{C^{2}(\bar{\Omega})}|h|.
$$

Therefore,

$$
(4.10)
$$

\n
$$
\Delta_{\Sigma}(|h|^{2} + \epsilon)^{\frac{3}{4}} = \frac{3}{4}(|h|^{2} + \epsilon)^{-\frac{1}{4}}\Delta_{\Sigma}|h|^{2} - \frac{3}{16}(|h|^{2} + \epsilon)^{-\frac{5}{4}}|\overline{\nabla}^{\Sigma}|h|^{2}|^{2}
$$

\n
$$
\geq -C||h||_{C^{2}(\overline{\Omega})}(|h|^{2} + \epsilon)^{-\frac{1}{4}}|h| - \frac{3}{16}(|h|^{2} + \epsilon)^{-\frac{5}{4}}|\overline{\nabla}^{\Sigma}|h|^{2}|^{2}.
$$

It follows from (4.8) and (4.10) that

(4.11)
$$
\int_{\Sigma} |\overline{\nabla}^{\Sigma} (|h|^2 + \epsilon)^{\frac{3}{4}}|^2 d\sigma_{\overline{g}} \leq C ||h||_{C^2(\overline{\Omega})} \int_{\Sigma} (|h|^2 + \epsilon)^{\frac{1}{2}} |h| d\sigma_{\overline{g}} + \frac{1}{3} \int_{\Sigma} |\overline{\nabla}^{\Sigma} (|h|^2 + \epsilon)^{\frac{3}{4}}|^2 d\sigma_{\overline{g}}.
$$

Letting $\epsilon \to 0$, one has

(4.12)
$$
\int_{\Sigma} |\overline{\nabla}^{\Sigma}| h|^{\frac{3}{2}} |^2 d\sigma_{\bar{g}} \leq C ||h||_{C^2(\overline{\Omega})} \int_{\Sigma} |h|^2 d\sigma_{\bar{g}}.
$$

 (4.5) now follows from (4.6) , (4.7) and (4.12) .

We recall the statement of Theorem 1.4 and give its proof.

Theorem 4.1. *Let* $\Omega \subset \mathbb{R}^n$ *be a bounded domain with smooth boundary* Σ *.* $Suppose \ \overline{\mathbb{II}} + \overline{H} \overline{\gamma} > 0 \ \text{ (i.e., } \overline{\mathbb{II}} + \overline{H} \overline{\gamma} \text{ is positive definite), where } \overline{\mathbb{II}}, \overline{H} \text{ are the }$ *second fundamental form, the mean curvature of* Σ *in* \mathbb{R}^n *and* $\overline{\gamma}$ *is the metric on* Σ *induced from the Euclidean metric* \bar{g} *. Let* g *be another metric on* Ω *satisfying*

- g and \bar{q} *induce the same metric on* Σ *.*
- $H(g) \geq \overline{H}$, where $H(g)$ is the mean curvature of Σ in (Ω, g) .

Given any point $a \in \mathbb{R}^n$, there exists a constant $\Lambda > \frac{\max_{q \in \bar{\Omega}} |q-a|^2}{4(n-1)}$, which depends only on Ω and a such that if $||a - \bar{a}||_{\infty}$ is sufficiently small. *depends only on* Ω *and* a *, such that if* $||g - \bar{g}||_{C^{3}(\bar{\Omega})}$ *is sufficiently small,* *then*

(4.13)
$$
V(g) - V(\bar{g}) \ge \int_{\Omega} R(g) \Phi \, d\text{vol}_{\bar{g}},
$$

 $where \Phi = -\frac{1}{4(n-1)}|x-a|^2 + \Lambda > 0 \text{ on } \bar{\Omega}.$

Proof. Fix a number $p > n$. By the proof of [5, Proposition 11], one knows if $||g - \bar{g}||_{W^{3,p}(\Omega)}$ is sufficiently small, then there exists a $W^{4,p}$ diffeomorphism $\varphi : \Omega \to \Omega$ such that $\varphi|_{\Sigma} = id$, $h = \varphi^*(g) - \bar{g}$ is divergence free with respect to \bar{g} , and $||h||_{W^{3,p}(\Omega)} \le N||g-\bar{g}||_{W^{3,p}(\Omega)}$ for a positive constant N depending only on (Ω, \bar{g}) . In what follows, we will work with $\phi^*(g)$. For convenience, we still denote $\phi^*(g)$ by g.

Given $a \in \mathbb{R}^n$, consider $\lambda(x) = -\frac{1}{2(n-1)}|x-a|^2 + L$ where L is a constant to be determined. First, we require $L > \frac{1}{2(n-1)} \max_{q \in \bar{\Omega}} |q - a|^2$ so that $\lambda > 0$
on $\bar{\Omega}$. Since λ satisfies $DR^*(\lambda) = \bar{a}$. Corollary 2.1 shows on $\overline{\Omega}$. Since λ satisfies $DR_{\overline{g}}^*(\lambda) = \overline{g}$, Corollary 2.1 shows

$$
(4.14)
$$

\n
$$
-2(V(g) - V(\bar{g})) + \int_{\Omega} R(g)\lambda \, d\text{vol}_{\bar{g}} + \int_{\Sigma} (2 - \text{tr}_{\bar{g}}h) [H(g) - \bar{H}] \, \lambda \, d\sigma_{\bar{g}}
$$

\n
$$
\leq - \int_{\Omega} \frac{1}{4} |\overline{\nabla}h|^2 \lambda \, d\text{vol}_{\bar{g}} + \int_{\Sigma} \left[-\frac{1}{4} (h_{nn})^2 \bar{H} - \frac{1}{2} (\overline{\mathbb{II}}(X, X) + \bar{H}|X|^2) \right] \lambda \, d\sigma_{\bar{g}}
$$

\n
$$
+ \int_{\Sigma} \lambda_{,n} \left[-(h_{nn})^2 - \frac{1}{2} |X|^2 \right] d\sigma_{\bar{g}} + \int_{\Sigma} (-1) h_{nn} \langle X, \overline{\nabla}^{\Sigma} \lambda \rangle d\sigma_{\bar{g}}
$$

\n
$$
+ \int_{\Omega} G(h) \, d\text{vol}_{\bar{g}} + \int_{\Omega} E(h) \lambda \, d\text{vol}_{\bar{g}} + \int_{\Omega} Z^i(h) \overline{\nabla}_i \lambda \, d\text{vol}_{\bar{g}}
$$

\n
$$
+ \int_{\Sigma} F(h) \lambda \, d\sigma_{\bar{g}},
$$

where $|G(h)| \leq C|h|^3$, $|E(h)| \leq C(|h||\overline{\nabla}h|^2 + |h|^3)$, $|Z(h)| \leq C|h|^2|\overline{\nabla}h|$, $|F(h)| \leq C(|h|^2|\overline{\nabla}h|+|h|^3)$ for some constant C depending only on Ω .

At Σ , λ_{n} and $\overline{\nabla}^{\Sigma} \lambda$ are determined solely by Ω and a (in particular they are independent on L). Apply the assumption $\overline{\mathbb{I}} + \overline{H}_{\gamma} > 0$ (which implies $\bar{H} > 0$) and the fact $|h|^2 = (h_{nn})^2 + 2|X|^2$, we have

(4.15)
$$
\left[-\frac{1}{4} (h_{nn})^2 \bar{H} - \frac{1}{2} (\overline{\mathbb{II}}(X, X) + \bar{H} |X|^2) \right] \lambda
$$

$$
+ \lambda_{,n} \left[-(h_{nn})^2 - \frac{1}{2} |X|^2 \right] + (-1) h_{nn} \langle X, \overline{\nabla}^{\Sigma} \lambda \rangle
$$

$$
\leq -LC_1 |h|^2 + C_2 |h|^2,
$$

where C_1 , C_2 are positive constants depending only on Ω and a. We fix L such that

$$
(4.16) \tLC_1 - C_2 > 0
$$

and let $m = \frac{1}{4} \min_{\bar{\Omega}} \lambda$ (note that λ is fixed now). (4.14)–(4.16) imply

$$
(4.17)
$$

\n
$$
-2(V(g) - V(\bar{g})) + \int_{\Omega} R(g) \lambda d\text{vol}_{\bar{g}} + \int_{\Sigma} (2 - \text{tr}_{\bar{g}} h) [H(g) - \bar{H}] \lambda d\sigma_{\bar{g}}
$$

\n
$$
\leq -m \int_{\Omega} |\overline{\nabla} h|^2 d\text{vol}_{\bar{g}} - (LC_1 - C_2) \int_{\Sigma} |h|^2 d\sigma_{\bar{g}}
$$

\n
$$
+ C_3 \left(\int_{\Omega} (|h| |\overline{\nabla} h|^2 + |h|^3) d\text{vol}_{\bar{g}} + \int_{\Sigma} (|h|^2 |\overline{\nabla} h| + |h|^3) d\sigma_{\bar{g}} \right),
$$

where C_3 depends only on Ω , a and L. Apply Lemma 4.2 to the term $\int_{\Omega} |h|^{3} dvol_{\bar{g}}$ on the right side of (4.17), we have

$$
-2(V(g) - V(\bar{g})) + \int_{\Omega} R(g)\lambda \, d\text{vol}_{\bar{g}} + \int_{\Sigma} (2 - \text{tr}_{\bar{g}} h) \left[H(g) - \bar{H} \right] \lambda \, d\sigma_{\bar{g}}
$$

\n
$$
\leq -m \int_{\Omega} |\overline{\nabla} h|^2 \, d\text{vol}_{\bar{g}} - (LC_1 - C_2) \int_{\Sigma} |h|^2 \, d\sigma_{\bar{g}}
$$

\n
$$
+ C||h||_{C^2(\bar{\Omega})} \left(\int_{\Omega} |\overline{\nabla} h|^2 \, d\text{vol}_{\bar{g}} + \int_{\Sigma} |h|^2 \, d\sigma_{\bar{g}} \right),
$$

where C is independent on h. From this, we conclude that if $||h||_{C^2(\bar{\Omega})}$ is
cufficiently small, then (4.12) holds with $\Phi = \frac{1}{2}$. This completes the proof sufficiently small, then (4.13) holds with $\Phi = \frac{1}{2}\lambda$. This completes the proof. П

Remark 4.1. When $\Omega \subset \mathbb{R}^n$ is a ball of radius R, one can take a to be the center of Ω . In this case, by computing \overline{H} , $\overline{\mathbb{II}}$ and $\lambda_{;n}$ explicitly in (4.16), the constant L can be chosen to be any constant satisfying

$$
L > \left[\frac{1}{2(n-1)} + \frac{4}{(n-1)^2}\right]R^2.
$$

Remark 4.2. By the results in [12, 17] based on the positive mass theorem [16, 18], a metric g on Ω satisfying the boundary conditions in Theorem 4.1 must be isometric to the Euclidean metric if $R(g) \geq 0$. Therefore, a nontrivial metric g in Theorem 4.1 necessarily has negative scalar curvature somewhere. For such a g , Theorem 4.1 shows if the weighted integral $\int_{\Omega} R(g) \Phi dvol_{\bar{g}}$ is nonnegative, then $V(g) \geq V(\bar{g})$.

5. Other related results

In this section, we collect some other by-products of the formulas derived in Section 2. First, we discuss a scalar curvature rigidity result for general domains in \mathbb{S}^n .

Theorem 5.1. *Let* $\Omega \subset \mathbb{S}^n$ *be a smooth domain contained in a geodesic ball* B of radius less than $\frac{\pi}{2}$. Let \bar{g} be the standard metric on \mathbb{S}^n . Let $\overline{\mathbb{II}}$, \bar{H} be *the second fundamental form, the mean curvature of* $\Sigma = \partial \Omega$ *in* (Ω, \bar{q}) *with respect to the outward unit normal* $\overline{\nu}$ *. Suppose* $\overline{\mathbb{I}\mathbb{I}} \geq -c\overline{\gamma}$ *, where* $c \geq 0$ *is a function on* Σ *and* $\bar{\gamma}$ *is the induced metric on* Σ *. Let q be the center of* B *. Suppose at* $\Sigma \setminus \{q\},\$

(5.1)
$$
\bar{H} - c \ge \left[\frac{5\cos\theta + \sqrt{\cos^2\theta + 8}}{2}\right] \tan r,
$$

where r *is the* \bar{g} -distance to q and θ *is the angle between* $\bar{\nu}$ *and* $\bar{\nabla}$ *r. Then the conclusion of Theorem 1.6 holds on* Ω*.*

Proof. As before, replacing g by $\varphi^*(g)$ for some diffeomorphism φ , we may assume div $_{\bar{q}}h = 0$ where $h = g - \bar{g}$. On Ω , let $\lambda = \cos r > 0$, where r is the \bar{g} -distance to q. At $\Sigma \setminus \{q\}$, we have

(5.2)
$$
\lambda_{;n} = -\sin r \cos \theta, \quad |\overline{\nabla}^{\Sigma} \lambda| = \sin r \sin \theta.
$$

Apply Theorem 2.1, using the fact $DR_{\bar{g}}^*(\lambda) = 0$ and the assumptions on $R_{g}^*(\lambda)$ and $H(a)$, we have $R(g)$ and $H(g)$, we have

(5.3)
$$
\int_{\Omega} \left[\frac{1}{4} (|\overline{\nabla} h|^2 + |\overline{\nabla} (\text{tr}_{\overline{g}} h)|^2) + \frac{1}{2} (|h|^2 + (\text{tr}_{\overline{g}} h)^2) \right] \cos r \, d\text{vol}_{\overline{g}}
$$

$$
\leq \int_{\Sigma} \left[-\frac{1}{4} (h_{nn})^2 \overline{H} - \frac{1}{2} (\overline{\mathbb{II}}(X, X) + \overline{H} |X|^2) \right] \cos r \, d\sigma_{\overline{g}}
$$

$$
+ \int_{\Sigma \setminus \{q\}} \left[(h_{nn})^2 + \frac{1}{2} |X|^2 \right] (\sin r \cos \theta) \, d\sigma_{\overline{g}}
$$

$$
+ \int_{\Sigma \setminus \{q\}} |h_{nn}| |X| (\sin r \sin \theta) \, d\sigma_{\overline{g}}
$$

$$
+ C ||h||_{C^1(\overline{\Omega})} \left\{ \int_{\Omega} (|h|^2 + |\overline{\nabla} h|^2) \, d\text{vol}_{\overline{g}} + \int_{\Sigma} |h|^2 \, d\sigma_{\overline{g}} \right\}
$$

26 P. Miao & L.-F. Tam

$$
\leq -\int_{\Sigma\backslash\{q\}} \left[\left(\frac{1}{4} (\bar{H} - c) \cos r - \sin r \cos \theta \right) (h_{nn})^2 + \frac{1}{2} \left((\bar{H} - c) \cos r - \sin r \cos \theta \right) |X|^2 - |h_{nn}| |X| (\sin r \sin \theta) \right] d\sigma_{\bar{g}}
$$

+ C||h||_{C¹(\bar{\Omega})} $\left\{ \int_{\Omega} (|h|^2 + |\overline{\nabla} h|^2) d\sigma \right\} + \int_{\Sigma} |h|^2 d\sigma_{\bar{g}} \right\}$

for some positive constant C independent on h .

Note that the assumption (5.1) implies

(5.4)
$$
\frac{1}{4}(\bar{H}-c)\cos r - (\sin r \cos \theta) \ge 0
$$

and

(5.5)
$$
(\bar{H} - c) \cos r - (\sin r \cos \theta) \ge 0.
$$

By (5.1) , (5.4) and (5.5) , we have

(5.6)
$$
0 \le \left(\frac{1}{4}(\bar{H}-c)\cos r - \sin r \cos \theta\right)(h_{nn})^2 - |h_{nn}||X|(\sin r \sin \theta) + \frac{1}{2}((\bar{H}-c)\cos r - \sin r \cos \theta) |X|^2
$$

for any h_{nn} and X. The result now follows from (5.3) and (5.6). \Box

Remark 5.1. It is clear from the proof of Theorem 5.1 that the center q of B does not need to be inside Ω .

Theorem 5.1 directly implies Theorem 1.7 in the introduction.

Proof of Theorem 1.7. Choose $c = 0$ in Theorem 5.1. Since

$$
4 \ge \frac{5\cos\theta + \sqrt{\cos^2\theta + 8}}{2}
$$

for any θ , the result follows from Theorem 5.1. \Box

Next, we consider a corresponding scalar curvature rigidity result when the background metric \bar{g} is a flat metric.

Theorem 5.2. Let Ω be a compact manifold with smooth boundary Σ . Sup $pose\bar{q}$ *is a smooth Riemannian metric on* Ω *such that* \bar{q} *has zero sectional curvature and* $\overline{\mathbb{II}} + \overline{H} \overline{\gamma} \geq 0$ *on* Σ *, where* $\overline{\mathbb{II}}$ *,* \overline{H} *are the second fundamental form, the mean curvature of* Σ *, and* $\bar{\gamma}$ *is the induced metric on* Σ *. Suppose* g *is another metric on* Ω *satisfying*

- $R(g) \geq 0$ *where* $R(g)$ *is the scalar curvature of g,*
- q and \bar{q} *induce the same metric on* Σ ,
- $H(q) \geq \overline{H}$ where $H(q)$ is the mean curvature of Σ *in* (Ω, q) *.*

 $I_f^f||g - \bar{g}||_{C^2(\bar{\Omega})}$ *is sufficiently small, then there is a diffeomorphism* φ *on* Ω
iiith φ $\varphi = id$ *even that* $\varphi^*(g) = \bar{g}$ *with* $\varphi|_{\Sigma} = id$ *such that* $\varphi^*(g) = \overline{g}$ *.*

Proof. As before, we may assume $\text{div}_{\bar{g}}h = 0$ where $h = g - \bar{g}$. Choose $\lambda = 1$ in (2.23), one has

(5.7)
$$
\int_{\Omega} \left[\frac{1}{4} (|\overline{\nabla} h|^2 + |\overline{\nabla} (\text{tr}_{\overline{g}} h)|^2) \right] d\text{vol}_{\overline{g}} + \int_{\Sigma} \left[\frac{1}{4} (h_{nn})^2 H(\overline{g}) + \frac{1}{2} (\overline{\mathbb{II}}(X, X) + H(\overline{g}) |X|^2) \right] d\sigma_{\overline{g}} \leq \int_{\Omega} E(h) d\text{vol}_{\overline{g}} + \int_{\Sigma} F(h) d\sigma_{\overline{g}},
$$

where $|F(h)| \leq C(|h|^2|\overline{\nabla}h|+|h|^3)$ and $|E(h)| \leq C|h||\overline{\nabla}h|^2$ by Remark 2.1. The result follows from (5.7) . \Box

To finish, we mention that the positive Gaussian curvature condition of the boundary surface in [17] is not a necessary condition for the positivity of its Brown–York mass.

Theorem 5.3. Let $\Sigma \subset \mathbb{R}^n$ be a connected, closed hypersurface satisfying $\overline{\mathbb{II}} + \overline{H} \overline{\gamma} \geq 0$, where $\overline{\mathbb{II}}$, \overline{H} are the second fundamental form, the mean cur*vature of* Σ *, and* $\bar{\gamma}$ *is the induced metric on* Σ *. Let* Ω *be the domain enclosed* $by \Sigma$ *in* \mathbb{R}^n . Let h be any nontrivial $(0, 2)$ *symmetric tensor on* Ω *satisfying*

(5.8)
$$
\text{div}_{\bar{g}} h = 0, \quad \text{tr}_{\bar{g}} h = 0, \quad h|_{T\Sigma} = 0.
$$

Let ${g(t)}_{t|\epsilon \epsilon}$ be a 1*-parameter family of metrics on* Ω *satisfying*

(5.9)
$$
g(0) = \bar{g}
$$
, $g'(0) = h$, $R(g(t)) \ge 0$, $g(t)|_{T\Sigma} = \bar{g}|_{T\Sigma}$.

Then

(5.10)
$$
\int_{\Sigma} \bar{H} d\sigma_{\bar{g}} > \int_{\Sigma} H(g(t))) d\sigma_{\bar{g}}
$$

for small $t \neq 0$ *, where* $H(g(t))$ *is the mean curvature of* Σ *in* $(\Omega, g(t))$ *.*

Proof. By Lemma 2.2, one knows

$$
\frac{d}{dt} \left(\int_{\Omega} \left[R(g(t)) - R(\bar{g}) \right] d\text{vol}_{\bar{g}} - 2 \int_{\Sigma} \left[\bar{H} - H(g(t)) \right] d\sigma_{\bar{g}} \right) \Big|_{t=0} = 0.
$$

Direct calculation using Lemma 2.2, (2.17) and (5.8) shows

(5.11)
$$
\frac{d^2}{dt^2} \left(\int_{\Omega} \left[R(g(t)) - R(\bar{g}) \right] d\text{vol}_{\bar{g}} - 2 \int_{\Sigma} \left[\bar{H} - H(g(t)) \right] d\sigma_{\bar{g}} \right) \Big|_{t=0}
$$

$$
= -\frac{1}{2} \int_{\Omega} |\overline{\nabla} h|^2 d\text{vol}_{\bar{g}} - \int_{\Sigma} \left[\left(\overline{\mathbb{II}}(X, X) + H(\bar{g}) |X|^2 \right) \right] d\sigma_{\bar{g}},
$$

which is negative by the assumption on $\overline{\mathbb{II}} + \overline{H}\overline{\gamma}$. Thus, for small t,

(5.12)
$$
2\int_{\Sigma} [\bar{H} - H(g(t))] d\sigma_{\bar{g}} > \int_{\Omega} [R(g(t)) - R(\bar{g})] d\mathrm{vol}_{\bar{g}} \geq 0.
$$

Given an h satisfying (5.8), a family of deformation $\{g(t)\}\$ satisfying (5.9) is given by $g(t) = u(t)^{\frac{1}{n-2}}(\bar{g}+th)$ for small t, where $u(t) > 0$ is a conformal factor such that $R(g(t)) = 0$ (see [13, Lemma 4]).

An example of a non-convex surface $\Sigma \subset \mathbb{R}^3$, which is topologically a 2-sphere and satisfies the condition $\overline{\mathbb{I}\mathbb{I}} + \overline{H}\overline{\gamma} \geq 0$, is given by a capsuleshaped surface with its middle slightly pinched.

Acknowledgments

P.M.'s work was partially supported by Australian Research Council Discovery Grant no. DP0987650 and by a 2011 Provost Research Award of the University of Miami. L.-F.T.'s work was partially supported by Hong Kong RGC General Research Fund no. CUHK 403011. The authors want to thank Simon Brendle and Fernando Marques for pointing out a false conjecture in a previous draft. The authors also want to thank the referees for useful comments that motivate Theorems 1.7 and 5.1.

References

- [1] R. Arnowitt, S. Deser and C.W. Misner, *Coordinate invariance and energy expressions in general relativity*, Phys. Rev. **122**(2) (1961), 997–1006.
- [2] R. Bartnik, *The mass of an asymptotically flat manifold*, Comm. Pure Appl. Math. **39** (1986), 661–693.
- [3] H. Bray, *The Penrose inequality in generla relativity and volume comparison theorems involving scalar curvature*, PhD thesis, Standford University, 1997.
- [4] S. Brendle, *Rigidity phenomena involving scalar curvature*, arXiv:1008.3097v2, to appear in Surveys in Differential Geometry.
- [5] S. Brendle and F.C. Marques, *Scalar curvature rigidity of geodesic balls* $in \mathbb{S}^n$, J. Differ. Geom. **88** (2011), 379–394.
- [6] S. Brendle, F.C. Marques and A. Neves, *Deformations of the hemisphere that increase scalar curvature*, Invent. Math. **185** (2011), 175–197.
- [7] J.D. Brown and J.W. York Jr., *Quasilocal energy in general relativity*, in Mathematical aspects of classical field theory (Seattle, WA, 1991), Contemp. Math. **132**, Amer. Math. Soc., Providence, RI, (1992), 129–142.
- [8] J.D. Brown and J.W. York Jr., *Quasilocal energy and conserved charges derived from the gravitational action*, Phys. Rev. D (3), **47**(4) (1993), 1407–1419.
- [9] I. Chavel, *Eigenvalue in Riemannian geometry*, in Pure and Applied mathematics **115**, Academic Press, (1984).
- [10] J. Corvino, *Scalar curvature deformation and a gluing construction for the Einstein constraint equations*, Commun. Math. Phys. **214**(1) (2000), 137–189.
- [11] M.J. Gursky and J.A. Viaclovsky, *Volume comparison and the* ^σk*-Yamabe problem*, Adv. Math. **¹⁸⁷**(2) (2004), 447–487.
- [12] P. Miao, *Positive mass theorem on manifolds admitting corners along a hypersurface*, Adv. Theor. Math. Phys. **6**(6) (2002), 1163–1182.
- [13] P. Miao and L.-F. Tam, *On the volume functional of compact manifolds with boundary with constant scalar curvature*, Calc. Var. **36** (2009), 141–171.
- [14] P. Miao and L.-F. Tam, *Einstein and conformally flat critical metrics of the volume functional*, Trans. Amer. Math. Soc. **363**(6) (2011), 2907–2937.
- [15] M. Min-Oo, *Scalar curvature rigidity of certain symmetric spaces*, in Geometry, topology, and dynamics (Montreal, 1995), CRM Proc. Lecture Notes vol. **15**, Amer. Math. Soc., Providence, RI, (1998), 127–137.
- [16] R. Schoen and S.-T. Yau, *On the proof of the positive mass conjecture in general relativity*, Comm. Math. Phys. **65** (1979), 45–76.
- [17] Y.-G. Shi and L.-F. Tam, *Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature*, J. Differ. Geom. **62** (2002), 79–125.
- [18] E. Witten, *A new proof of the positive energy theorem*, Commun. Math. Phys. **80** (1981), 381–402.

SCHOOL OF MATHEMATICAL SCIENCES Monash University VICTORIA 3800 Australia and DEPARTMENT OF MATHEMATICS University of Miami Coral Gables FL 33124 USA *E-mail address*: Pengzi.Miao@sci.monash.edu.au; pengzim@math.miami.edu

THE INSTITUTE OF MATHEMATICAL SCIENCES AND Department of Mathematics The Chinese University of Hong Kong **SHATIN** Hong Kong **CHINA** *E-mail address*: lftam@math.cuhk.edu.hk

Received September 14, 2011