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New invariants for complex manifolds and isolated

singularities

Rong Du, Hing Sun Luk and Stephen Yau

In this paper, we introduce some new invariants for complex mani-
folds. These invariants measure in some sense how far the complex
manifolds are away from having global complex coordinates. For
applications, we introduce two new invariants f (1,1) and g(1,1) for
isolated surface singularities. We show that f (1,1) = g(1,1) = 1 for
rational double points and cyclic quotient singularities.

Dedicated to Professor Michael Artin on the occasion of his 78th Birthday.

1. Introduction

Let M be a complex manifold of dimension n. It is a natural question to ask
how far this complex manifold is away from having global complex coordi-
nates. In this paper, we introduce some new biholomorphic invariants which
give some measurements for this purpose.

Definition 1.1. For any 1 ≤ p ≤ n, let Ωp
M be the sheaf of germs of holo-

morphic p-forms on M . Denote by < ΛpΓ(M,Ω1
M ) > the linear span of all

pth wedge products of global holomorphic one-forms on M . Define
γ(p)(M) := dim Γ(M,Ωp

M )/ < ΛpΓ(M,Ω1
M ) >. Then γ(p) is a biholomorphic

invariant of M .

If M is a complex submanifold in C
N , then given any global holomorphic

p-form α on M , there exists a holomorphic p-form α̃ on C
N such that the

restriction of α̃ on M is α. Obviously, α̃ is a pth wedge product of holo-
morphic one-forms. We see that γ(p)(M) = 0. If M is a compact complex
torus, then it is easy to see that γ(p)(M) = 0. It is an interesting question
to classify those compact complex manifolds with γ(p) = 0.

One of the most fundamental questions in complex geometry is the com-
plex Plateau problem. Given a strongly pseudoconvex CR manifoldX in C

N ,
the problem asks when X is the boundary of a complex manifold V in C

N .
By the beautiful work of Harvey–Lawson [5], the works of Yau [20] and Luk
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and Yau [8], X is a boundary of a complex variety V with only isolated
singularities if X is contained in the boundary of a strictly pseudoconvex
domain in C

N . Thus from the complex Plateau problem point of view, it
is very desirable to introduce a numerical invariant for isolated singularities
which never vanishes. Hopefully this numerical invariant is computable in
terms of X. The purpose of this paper is to use the above idea to study
singularities. Specifically, we introduce two new invariants f (1,1) and g(1,1)

for isolated surface singularities. Previously, numerical invariants are used
for the classification of surface singularities. The fundamental invariants are
the geometric genus pg and the arithmetic genus pa. In [1], Artin intro-
duced a definition for singularity to be rational, i.e., those singularities with
pg = 0. Wagreich [13] introduced a definition for singularity to be weakly
elliptic, i.e., for those singularities with pa = 1. Later, Laufer [6] studied the
so-called minimal elliptic singularities, i.e. for those Gorenstein singularities
with pg = 1. In a series of papers [15–19], Yau developed a novel theory
of elliptic sequence to study weakly elliptic singularities which may have
pg arbitrarily large. In particular, he classified all weighted dual graphs of
hypersurface singularities with pg = 2 [15]. In 1982, he considered another
invariant, namely irregularity q [21–23]. Later Wahl [14], Straten and Steen-
brink [12] studied this invariant further. Unfortunately, all these numerical
invariants vanish on rational singularities. In this paper, we shall give a
detailed study of f (1,1). We also give explicit calculation for f (1,1) and g(1,1)

for rational double points and cyclic quotient singularities and prove that
they do not vanish. The following are our main results.

Theorem A: Let (V, 0) be a two-dimensional normal Stein space with C
∗-

action and with an isolated singularity at 0. Then f (1,1) ≥ 1.

Theorem B: Let (V, 0) be a two-dimensional Stein space with 0 as its only
singular point. If 0 is a rational double point or cyclic quotient singularity,
then f (1,1) = g(1,1) = 1.

The invariant g(1,1) studied in this paper was used by Du and Yau [4] to
solve the regularity problem of the Harvey–Lawson solution to the complex
Plateau problem.

2. Invariants of singularities

Let V be a n-dimensional complex analytic subvariety in C
N with only

isolated singularities. In [22], Yau considered four kinds of sheaves of germs
of holomorphic p-forms
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(1) Ω̄p
V := π∗Ω

p
M , where π : M −→ V is a resolution of singularities of V .

(2) ¯̄Ωp
V := θ∗Ω

p
V \Vsing

where θ : V \Vsing −→ V is the inclusion map and
Vsing is the singular set of V .

(3) Ωp
V := Ωp

CN/K p, where K p = {fα+ dg ∧ β : α ∈ Ωp
CN ;β ∈ Ωp−1

CN ; f,
g ∈ I } and I is the ideal sheaf of V in C

N .

(4) ˜Ωp
V := Ωp

CN/H p, where H p = {ω ∈ Ωp
CN : ω|V \Vsing

= 0}.
Ωp

V is Grauert–Grothendieck sheaf of germs of holomorphic p-form on V .
In case V is a normal variety, the dualizing sheaf ωV of Grothendieck is
actually the sheaf ¯̄Ωn

V . Clearly Ωp
V , ˜Ωp

V are coherent. Ω̄p
V is a coherent sheaf

because π is a proper map. ¯̄Ωp
V is also a coherent sheaf by a theorem of Siu

(cf. Theorem A of [11]).

Definition 2.1. The Siu complex is a complex of coherent sheaves J• sup-
ported on the singular points of V which is defined by the following exact
sequence:

(2.1) 0 −→ Ω̄• −→ ¯̄Ω• −→ J• −→ 0.

Definition 2.2. Let V be a n-dimensional Stein space with 0 as its only
singular point. Let π : (M,A) → (V, 0) be a resolution of the singularity
with A as exceptional set. The geometric genus pg, the irregularity q and
the g(p)-invariant of the singularity are defined as follows (cf. [Ya7,St-St]):

pg := dim Γ(M\A,Ωn)/Γ(M,Ωn),(2.2)

q := dim Γ(M\A,Ωn−1)/Γ(M,Ωn−1),(2.3)

g(p) := dim Γ(M,Ωp
M )/π∗Γ(V,Ωp

V ).(2.4)

The s-invariant of the singularity is defined in [9] as follows:

(2.5) s := dim Γ(M\A,Ωn)/[Γ(M,Ωn) + dΓ(M\A,Ωn−1)].

The following lemma follows from a deep theorem of Straten and Steen-
brink.

Lemma 2.1. [12]. Let V be a n-dimensional Stein space with 0 as its only
singular point. Let J• be the Siu complex of coherent sheaves supported on 0.
Then



994 Rong Du, Hing Sun Luk & Stephen Yau

(1) dimJn = pg,

(2) dimJn−1 = q,

(3) dimJ i = 0, for 1 ≤ i ≤ n− 2.

Proposition 2.1. [12]. Let V be a n-dimensional Stein space with 0 as its
only singular point. Let J• be the Siu complex of coherent sheaves supported
on 0. Then the s-invariant is given by

(2.6) s := dimHn(J•) = pg − q

and

(2.7) dimHn−1(J•) = 0.

Definition 2.3. Let (V, 0) be a two-dimensional Stein analytic space with
an isolated singularity at 0. Let π : (M,A) → (V, 0) be a resolution of the
singularity with A as exceptional set. Define a sheaf of germs Ω̄1,1

V by the
sheaf associated to the presheaf

U �→< Γ(π−1(U),Ω1
M ) ∧ Γ(π−1(U),Ω1

M ) >,

where U is an open set of V and < Γ(π−1(U),Ω1
M ) ∧ Γ(π−1(U),Ω1

M ) >
means that it is generated by elements in Γ(π−1(U),Ω1

M ) ∧ Γ(π−1(U),Ω1
M )

over the ring Γ(π−1(U),OM ).

Lemma 2.2. Let (V, 0) be a two-dimensional Stein analytic space with an
isolated singularity at 0. Let π : (M,A) → (V, 0) be a resolution of the sin-
gularity with A as exceptional set. Then Ω̄1,1

V is coherent and there is a short
exact sequence

(2.8) 0 −→ Ω̄1,1
V −→ Ω̄2

V −→ F (1,1) −→ 0,

where F (1,1) is a sheaf supported on the singular point of V . Let

(2.9) F (1,1)(M) := Γ(M,Ω2
M )/ < Γ(M,Ω1

M ) ∧ Γ(M,Ω1
M ) >,

then dimF
(1,1)
0 = dimF (1,1)(M).

Proof. Since the sheaf of germ Ω̄1
V is coherent by the direct image theorem,

for any point w ∈ V there exists an open neighborhood U of w in V such that
Γ(π−1(U),Ω1

M ) is finitely generated over Γ(π−1(U),OM ). So Γ(π−1(U),Ω1
M )
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∧ Γ(π−1(U),Ω1
M ) is also finitely generated over Γ(π−1(U), OM ), which

means Ω̄1,1
V is a sheaf of finite type. It is obvious that Ω̄1,1

V is a subsheaf
of Ω̄2

V which is also coherent. So Ω̄1,1
V is also coherent.

Notice that the stalk of Ω̄1,1
V and Ω̄2

V coincide at each point different
from the singular point 0, F (1,1) is supported at 0. It follows from Cartan
Theorem B that:

dimF
(1,1)
0 = dim Γ(V, Ω̄2

V )/Γ(V, Ω̄1,1
V ) = dimF (1,1)(M).

�

Observe that Γ(M,Ω2
M ) and < Γ(M,Ω1

M ) ∧ Γ(M,Ω1
M ) > are birational

invariants. Thus, from Lemma 2.2, we can define a local invariant of a sin-
gularity which is independent of resolution.

Definition 2.4. Let V be a two-dimensional Stein space with 0 as its only
singular point. Let π : (M,A) → (V, 0) be a resolution of the singularity with
A as exceptional set. Let

(2.10) f (1,1)(0) := dimF
(1,1)
0 = dimF (1,1)(M).

We will omit 0 in f (1,1)(0) if there is no confusion from the context.
f (1,1) is independent of the resolution of V .
The following proposition is to show that f (1,1) is bounded above by g(2).

Proposition 2.2. Let V be a two-dimensional Stein space with 0 as its
only singular point. Then f (1,1) ≤ g(2).

Proof. Since

f (1,1) = dim Γ(M,Ω2
M )/ < Γ(M,Ω1

M ) ∧ Γ(M,Ω1
M ) >,

g(2) := dim Γ(M,Ω2)/π∗Γ(V,Ω2
V ),

and

π∗Γ(V,Ω2
V ) =< π∗Γ(V,Ω1

V ) ∧ π∗Γ(V,Ω1
V ) >⊆< Γ(M,Ω1

M ) ∧ Γ(M,Ω1
M ) >,

the result follows. �
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Definition 2.5. Let (V, 0) be a Stein germ of a 2-dimensional analytic
space with an isolated singularity at 0. Define a sheaf of germs ¯̄Ω1,1

V by the
sheaf associated to the presheaf

U �→< Γ(U, ¯̄Ω1
V ) ∧ Γ(U, ¯̄Ω1

V ) >,

where U is an open set of V .

Lemma 2.3. Let V be a two-dimensional Stein space with 0 as its only
singular point in C

N . Let π : (M,A) → (V, 0) be a resolution of the singu-
larity with A as exceptional set. Then ¯̄Ω1,1

V is coherent and there is a short
exact sequence

(2.11) 0 −→ ¯̄Ω1,1
V −→ ¯̄Ω2

V −→ G (1,1) −→ 0,

where G (1,1) is a sheaf supported on the singular point of V . Let

(2.12) G(1,1)(M\A) := Γ(M\A,Ω2
M )/ < Γ(M\A,Ω1

M ) ∧ Γ(M\A,Ω1
M ) >,

then dimG
(1,1)
0 = dimG(1,1)(M\A).

Proof. This proof is the same as the proof of Lemma 2.2 with symbols
replaced according to the statement. �

Definition 2.6. Let V be a two-dimensional Stein space with 0 as its only
singular point. Let π : (M,A) → (V, 0) be a resolution of the singularity with
A as exceptional set. Let

(2.13) g(1,1)(0) := dimG
(1,1)
0 = dimG(1,1)(M\A).

We will omit 0 in g(1,1)(0) if there is no confusion from the context.
The following proposition is to show that g(1,1) is bounded above.

Proposition 2.3. Let V be a two-dimensional Stein space with 0 as its
only singular point. Then g(1,1) ≤ pg + g(2).

Proof. Since

g(1,1) = dim Γ(M\A,Ω2
M )/ < Γ(M\A,Ω1

M ) ∧ Γ(M\A,Ω1
M ) >,

pg = dim Γ(M\A,Ω2
M )/Γ(M,Ω2

M ),

g(2) := dim Γ(M,Ω2)/π∗Γ(V,Ω2
V ).
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and

π∗Γ(V,Ω2
V ) =< π∗Γ(V,Ω1

V ) ∧ π∗Γ(V,Ω1
V ) >

⊆ Γ(M,Ω1
M ) ∧ Γ(M,Ω1

M )

⊆ Γ(M\A,Ω1
M ) ∧ Γ(M\A,Ω1

M ),

(2.14)

the result follows. �
The next theorem is one of our main theorems (Theorem A).

Theorem 2.1. Let V be a two-dimensional Stein space with 0 as its only
normal singular point with C

∗-action. Then f (1,1) ≥ 1.

Proof. It suffices to prove there is a holomorphic two-form ω on M which
is not contained in < Γ(M,Ω1

M ) ∧ Γ(M,Ω1
M ) >. Embed (V, 0) locally into

C
m and let z1, . . . , zm be coordinate function of C

m. We are going to prove
this theorem by local calculation.

If pg > 0, there exists a holomorphic two-form ω0 on M\A but not on
M , i.e. ω0 ∈ Γ(M\A,Ω2

M )\Γ(M,Ω2
M ). So ω0 must have pole along some

irreducible component A1 of A. Suppose ω1 has the lowest order of pole along
A1 such that ω1 ∈ Γ(M\A,Ω2

M )\Γ(M,Ω2
M ). Then π∗(zj)ω1 is holomorphic

along A1 for all j, 1 ≤ j ≤ m. If π∗(zj)ω1 /∈ Γ(M,Ω2
M ), it must has pole

along another irreducible component A2 of A. Suppose ω2 ∈ Γ(M\A,Ω2
M )

has the lowest order of poles along A2 and holomorphic along A1. Then
π∗(zj)ω2 is holomorphic along A1 and A2, for all j, 1 ≤ j ≤ m. Since the
number of irreducible components of A is finite, by induction, there exists a
non-empty set Wk = {ω ∈ Γ(M\A,Ω2

M )\Γ(M,Ω2
M ) : ω has pole along some

irreducible component Ak and holomorphic along A1, . . . , Ak−1 such that
π∗(zj)ω ∈ Γ(M,Ω2

M ) for all j, 1 ≤ j ≤ m}. Suppose ωk ∈Wk, then choose
a point b in Ak which is a smooth point of A. Let(x1, x2) be a coordinate
system centered at b such that Ak is given locally by x1 = 0 at b. Take the
power series expansion of π∗(zj) around b:

(2.15) π∗(zj) � x
rj

1 fj , 1 ≤ j ≤ m,

where fj is holomorphic function such that fj(0, x2) 	= 0 and “�” means
local equality around b. Without loss of generality, we can suppose r1 =
min{r1, . . . , rm}. By local calculation, we know that for any element ψ in
π∗Γ(V,Ω2

V ), the vanishing order of ψ along Ak, which is denoted by OrdAk
ψ,

is at least 2r1 − 1. However, OrdAk
π∗(z1)ωk is at most r1 − 1. So π∗(z1)ωk ∈

Γ(M,Ω2
M )\π∗Γ(V,Ω2

V ). We pick such kind ω ∈ Γ(M,Ω2
M )\π∗Γ(V,Ω2

V ) which
has the lowest order of zeros, r, along Ak, i.e., OrdAk

ω = r. So r < r1.
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Let ξV ∈ Γ(V,ΘV ), where ΘV := H omOV
(Ω1

V ,OV ), denote the gener-
ating vector field of the C

∗-action and let iξV
denote the contraction map.

For every α ∈ Γ(V, Ω̄1
V ), write α as a sum

∑

αj of quasi-homogeneous ele-
ments where αj is a quasi-homogeneous element of degree lj > 0. Let LξV

=
iξV
d+ diξV

be the Lie derivation. Then

ljα
j = LξV

αj = iξV
d(αj) + diξV

(αj).

So

(2.16) Γ(V, Ω̄1
V ) = d(Γ(V,OV )) + iξV

(Γ(V, Ω̄2
V )).

Since for minimal good resolution, we have π∗ΘM = ΘV (cf [2]), where
ΘM is the vector field on M . Thus, there exists ξM which is a lift of ξV , i.e.,
π∗ξM = ξV . We know that ξM is tangential to the exceptional set, so

ξM � xa1
1 p

∂

∂x1
+ xa2

1 q
∂

∂x2
, a1 ≥ 1, a2 ≥ 0,

where p and q are holomorphic functions.
Let iξM

: Γ(M,Ω2
M ) −→ Γ(M,Ω1

M ) be the contraction map correspond-
ing to iξV

. If ζ ∈ Γ(M,Ω2
M ) and ζ � xu

1gdx1 ∧ dx2, then

iξM
(ζ) � iξM

(xu
1gdx1 ∧ dx2) = −xu+a2

1 qgdx1 + xu+a1
1 pgdx2.

From (2.16),

Γ(M,Ω1
M ) = d(Γ(M,OM )) + iξM

(Γ(M,Ω2
M )).

Since V is normal , g(0) = 0, i.e., Γ(M,OM ) = π∗(Γ(V,OV )).
We now prove that ω is not contained in < Γ(M,Ω1

M ) ∧ Γ(M,Ω1
M ) >.

Consider η, ϕ ∈ Γ(M,Ω1
M ) locally around b.

Suppose η = η1 + η2 and ϕ = ϕ1 + ϕ2, where η1, ϕ1 ∈ d(Γ(M,OM )), η2,
ϕ2 ∈ iξM

(Γ(M,Ω2
M )). Let

η2 = iξM
(ζ), ζ � xu

1gdx1 ∧ dx2, g(0, x2) 	= 0,

and
ϕ2 = iξM

(ς), ς � xv
1hdx1 ∧ dx2, h(0, x2) 	= 0.

Then
η ∧ ϕ = η1 ∧ ϕ1 + (η1 ∧ ϕ2 + η2 ∧ ϕ1) + η2 ∧ ϕ2.



New invariants for complex manifolds and isolated singularities 999

Since

dπ∗(zi) ∧ dπ∗(zj) =
(

rix
ri+rj−1
1 fi

∂fj

∂x2
− rjx

ri+rj−1
1 fj

∂fi

∂x2

)

dx1 ∧ dx2,

OrdAk
η1 ∧ ϕ1 ≥ 2 · r1 − 1 > r.

Write η2 and ϕ2 locally around b:

η2 � −xu+a2
1 qgdx1 + xu+a1

1 pgdx2,

ϕ2 � −xv+a2
1 qhdx1 + xv+a1

1 phdx2.

So η2 ∧ ϕ2 � 0.
Also notice that

dπ∗(zj) = rjx
rj−1
1 fjdx1 + x

rj

1

∂fj

∂x2
dx2.

So

OrdAk
η1 ∧ ϕ2 ≥ r1 + v > r

and

OrdAk
η2 ∧ ϕ1 ≥ r1 + u > r.

From the discussion above, we can get OrdAk
η ∧ ϕ > r.

Therefore ω is not a linear combination of elements in < Γ(M,Ω1
M ) ∧

Γ(M,Ω1
M ) >.

If pg = 0, from [24], the canonical bundle KM is generated by its global
sections in a neighborhood of the exceptional set. So there exists ω ∈ Γ(M,
Ω2

M ) such that ω does not vanish along some irreducible component Ak of
A. The rest of the argument is same as those in the case of pg > 0, with
r is 0. �

The following theorem is the crucial part for the solution of the classical
complex Plateau problem.

Theorem 2.2. ([Du-Ya]) Let V be a two-dimensional Stein space with 0
as its only normal singular point with C

∗-action, then g(1,1) ≥ 1.

In the next section we will show that this bound is sharp.
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3. Explicit calculation of new invariants for
special rational singularities

In this section, we suppose that V is a two-dimensional Stein space with 0 as
its only normal singularity and V is contractible to 0. It is well known that
the singularities of type An, Dn, E6, E7, E8 may be given by the following
equations in C

3, with singularities at the origin.

An F (x, y, z) = xy − zn+1 = 0, n ≥ 1,
Dn F (x, y, z) = x2z + y2 − zn−1 = 0, n even ≥ 4,

F (x, y, z) = x2 + y2z − zn−1 = 0, n odd ≥ 5,
E6 F (x, y, z) = x2 − y3 − z4 = 0,
E7 F (x, y, z) = x2 + y3 − yz3 = 0,
E8 F (x, y, z) = x2 − y3 + z5 = 0.

The cyclic quotient singularities are also well understood (see [7]). In
the following computation, we shall use explicit resolutions π : M → V of
An, Dn, E6, E7, E8 (see [10], where he splits Type Dn into two cases for
calculation) and cyclic quotient singularities to compute our new invariants.

Proposition 3.1. [3]. If (V, 0) is rational isolated singularity of dimension
n ≥ 2, then any closed holomorphic p-form η on V \{0} with 1 ≤ p ≤ 2 is
exact, i.e. after shrinking V as a neighborhood of 0, there exists a p− 1-
form ξ on V \{0} with d(ξ) = η.

Corollary 3.1. If (V, 0) is rational isolated singularity of dimension 2, M
is a resolution of the singularity, then H1

h(M) = H2
h(M) = 0.

Note that for these rational singularities of dimension 2, the irregularity
q = 0 (cf.[21]), so f (1,1) = g(1,1). In order to calculate our new invariants for
these rational singularities, we must know all the holomorphic one-forms and
holomorphic two-forms onM . Usually, it is not easy to calculate holomorphic
one-forms, but for rational singularities, we have the following lemma.

Lemma 3.1. If (V, 0) is rational isolated singularity of dimension 2 and
π : M → V is a resolution then for any ξ ∈ Γ(M,Ω1

M ) and ζ ∈ d−1(dξ), there
exists an f ∈ Γ(M,OM ), such that ξ = ζ + d(f), where d is the exterior
differential operator.
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Proof. From the corollary above, we have the following exact sequence:

0 → Γ(M,OM ) d−→ Γ(M,Ω1
M ) d−→ Γ(M,Ω2

M ) → 0.

For ξ ∈ Γ(M,Ω1
M ) and any ζ ∈ d−1(dξ), d(ξ − ζ) = 0. So there exist f ∈

Γ(M,OM ) such that ξ = ζ + d(f). �
From the lemma above, we see that in order to get holomorphic one-

forms on M , we only need to calculate holomorphic functions and holomor-
phic two-forms on M .

For rational double points, we may, without loss of generality, suppose V
contains {(x, y, z) : F (x, y, z) = 0, |x|2 + |y|2 + |z|2 < 1}, F (x, y, z) as above.
By abusing of notation, we denote local resolutions of the rational double
points at 0 by π : M → V .

Type An:
An explicit resolution π : M → V can be given in terms of coordinates

and transition functions on M as follows:
Coordinates charts: Wk = {(uk, vk)}, k = 0, 1, . . . , n
Transition functions:

⎧

⎨

⎩

uk+1 =
1
vk

vk+1 = ukv
2
k

or

⎧

⎨

⎩

uk = u2
k+1vk+1

vk =
1

uk+1

.

Projection map: π(uk, vk) = (uk+1
k vk

k , u
n−k
k vn−k+1

k , ukvk)
Exceptional set: A = π−1(0) = C1 ∪ · · · ∪ Cn, where Ck = {uk−1 = 0} ∪

{vk = 0}

� �

C1 C2

� �

Cn−1Cn.

� � �Dual graph:

Holomorphic functions on M :
Any holomorphic function on M has power series expansion

∑

α,β≥0 cαβ

uα
0 v

β
0 which converges for all (u0, v0) ∈W0. Under changes of charts,

∑

α,β≥0

cαβu
α
0 v

β
0 = · · · =

∑

α,β≥0

cαβu
(k+1)α−kβ
k v

kα−(k−1)β
k

= · · · =
∑

α,β≥0

cαβu
(n+1)α−nβ
n vnα−(n−1)β

n .
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The kth power series has to converge for all (uk, vk) ∈Wk. This occurs for
all k if only if the indices α, β in each sum satisfy (n+ 1)α− nβ ≥ 0. Thus
any holomorphic function on M can be given by a convergent power series

∑

α,β≥0
(n+1)α−nβ≥0

cαβu
α
0 v

β
0

on W0.
Conversely, any such convergent power series in the (u0, v0) chart defines

a holomorphic function on M .
Holomorphic two-forms on M :
The holomorphic two-form du0 ∧ dv0 = · · · = dun ∧ dvn(= π∗(dx∧dy

Fz
)) is

nowhere vanishing on M . It follows that any holomorphic two-form on M
can be given in the (u0, v0) chart by a two-form

∑

α,β≥0
(n+1)α−nβ≥0

cαβu
α
0 v

β
0 du0 ∧ dv0,

whose power series coefficient converges on W0.
Conversely, any such two-forms in the (u0, v0) chart defines a holomor-

phic two-form on M .

Proposition 3.2. With the above notation for An singularities, f (1,1) = 1.

Proof. From the above calculation, we know that the holomorphic functions
on M are generated by a base {uα

0 v
β
0 }(n+1)α−nβ≥0 and holomorphic two-

forms are generated by a base {uα
0 v

β
0 du0 ∧ dv0}(n+1)α−nβ≥0. For every holo-

morphic two-form ω = uα
0 v

β
0 du0 ∧ dv0 on M , we consider ξ = −uα

0 vβ+1
0

β+1 du0. ξ
defines a holomorphic one-form on W0 and dξ = ω. It remains to check that
under all changes of charts, ξ transforms to define a holomorphic one-form
in each coordinate chart. In fact, changed to (uk, vk) chart, for k = 1, . . . , n,

ξ = − 1
β + 1

u
(k+1)α−kβ
k v

kα−(k−1)β
k ((k + 1)vkduk + kukdvk) on Wk,

which is holomorphic.
We also know that d(Γ(M,OM )) is generated by

{αuα−1
0 vβ

0 du0 + βuα
0 v

β−1
0 dv0}(n+1)α−nβ≥0, α≥1.
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By Lemma 3.1, Γ(M,Ω1
M ) is generated by

{αuα−1
0 vβ

0 du0 + βuα
0 v

β−1
0 dv0}(n+1)α−nβ≥0, α≥1 ∪ {uα

0 v
β+1
0 du0}(n+1)α−nβ≥0.

So by easy calculation Γ(M,Ω1
M ) ∧ Γ(M,Ω1

M ) is generated by

{uα
0 v

β
0 du0 ∧ dv0}(n+1)α−nβ≥0, α≥1.

Therefore

Γ(M,Ω2
M )

< Γ(M,Ω1
M ) ∧ Γ(M,Ω1

M ) >
=< u0 ∧ v0 >,

and

f (1,1) = dim
Γ(M,Ω2

M )
< Γ(M,Ω1

M ) ∧ Γ(M,Ω1
M ) >

= 1.

�

Type Dn, n ≥ 4 and even:
An explicit resolution π : M → V can be given in terms of coordinate

charts and transition functions on M as follows.
Coordinate charts:

Wk = {(uk, vk) : un−k−3
k vn−k−2

k 	= 1}, 0 ≤ k ≤ n− 4
Wk = {(uk, vk)}, k = n− 3, n− 2

Wk = {(uk, vk) : u2
kvk 	= −1}, k = n− 1, n.

Transition functions:
⎧

⎪

⎨

⎪

⎩

uk = u2
k+1vk+1,

vk =
1

uk+1
,

0 ≤ k ≤ n− 3

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

un−2 =
1

1 + u2
n−1vn−1

vn−2 =
1 + u2

n−1vn−1

un−1

and

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

un−2 =
u2

nvn

1 + u2
nvn

vn−2 =
1 + u2

nvn

un

.
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Projection map: π(uk, vk) = (x, y, z), where

x = u0(un−3
0 vn−2

0 − 1)
n

2
−1(un−3

0 vn−2
0 − 2) = · · ·

= u
n

2
−1

n−2 v
n−2
n−2(1 − un−2)

n

2
−1(1 − 2un−2) =

v
n

2
−1

n−1 (u2
n−1vn−1 − 1)

1 + u2
n−1vn−1

=
v

n

2
−1

n (1 − u2
nvn)

1 + u2
nvn

y = 2u2
0v0(u

n−3
0 vn−2

0 − 1)
n

2 = · · ·

= 2u
n

2
n−2v

n−1
n−2(1 − un−2)

n

2 =
2un−1v

n

2
n−1

1 + u2
n−1vn−1

=
2unv

n

2
n

1 + u2
nvn

z = u2
0v

2
0(u

n−3
0 vn−2

0 − 1) = · · · = un−2v
2
n−2(1 − un−2) = vn−1 = vn.

Exceptional set: A = π−1(0) = C1 ∪ · · · ∪ Cn, where

Ck = {uk−1 = 0} ∪ {vk = 0} 1 ≤ k ≤ n− 2

Cn−1 = {vn−3 = 1} ∪ {un−2 = 1} ∪ {vn−1 = 0},
Cn = {un−2 = 0} ∪ {vn = 0}.

�

C1

�

C2

� � � � � �

Cn−2

�

Cn.

� Cn−1

Dual graph:

Holomorphic functions on M :
Any holomorphic function f on M has a series expansion of the form

∑

α≥0 fα(un−2)vα
n−2 on Wn−2, where

fα(un−2) =
1

2πi

∫

|v|=r

f(un−2, v)
vα+1

dv,

provided {un−2} × {|vn−3| ≤ r} ⊂Wn−2.
∑

α≥0 fα(un−2)vα
n−2 converges

absolutely and uniformly on any subset of Wn−2 of the form (compact set) ×
(closed disc centered at 0), while fα(un−2) is holomorphic for all u2. Then
fα(un−2) has an expansion fα(un−2) =

∑

β≥0 cαβu
β
n−2 on C and f has an

expansion
∑

α≥0(
∑

β≥0 cαβu
β
n−2)v

α
n−2 on Wn−2. Note that the expansion

rearranges into a convergent power series near (0, 0), but not necessarily
on all Wn−2.
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Under changes of charts, the expressions of f take on the following forms:

∑

α

⎛

⎝

∑

β

cαβu
β
n−2v

α
n−2

⎞

⎠ =
∑

α

⎛

⎝

∑

β

cαβu
α
n−3v

2α−β
n−3

⎞

⎠ = · · ·

=
∑

α

⎛

⎝

∑

β

cαβu
(n−2)α−(n−3)β
0 v

(n−1)α−(n−2)β
0

⎞

⎠ .

Since all these series have to be convergent power series in respective neigh-
borhoods of (0, 0), the indices α, β restrict to (n− 1)α ≥ (n− 2)β. Thus

f =
∑

α≥0

⎛

⎜

⎝

∑

0≤β≤n−1
n−2

α

cαβu
β
n−2

⎞

⎟

⎠
vα
n−2 on Wn−2.

Lemma 3.2. With the above notation for Dn (n even), any holomorphic
function f on M has the expansions

(3.1) f =
∑

α≥0

⎛

⎜

⎝

∑

1
2
α≤β≤n−1

n−2
α

cαβu
(n−k−2)α−(n−k−3)β
k v

(n−k−1)α−(n−k−2)β
k

⎞

⎟

⎠

on Wk for k = 0, 1, . . . , n− 2,

(3.2) f =
∑

α≥0

⎛

⎜

⎝

∑

1
2
α≤β≤n−1

n−2
α

cαβu
−α
n−1(1 + u2

n−1vn−1)α−β

⎞

⎟

⎠
on Wn−1

and

(3.3) f =
∑

α≥0

⎛

⎜

⎝

∑

1
2
α≤β≤n−1

n−2
α

cαβu
2β−α
n vβ

n(1 + u2
nvn)α−β

⎞

⎟

⎠
on Wn.

In each expansion, the sum over β is holomorphic on the corresponding Wk

for each α ≥ 0, and the sum over α is absolutely convergent.
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Proof. 1◦ With f =
∑

α(
∑

β cαβu
β
n−2v

α
n−2) on Wn−2, changing from (un−2,

vn−2) to (un−3, vn−3) gives f =
∑

α(
∑

β cαβu
α
n−3v

2α−β
n−3 ) on Wn−3\{vn−3 =

0}. For each α ≥ 0, the sum over β is a polynomial, say ϕα(un−3, vn−3). To
show that the expansion of f also holds on vn−3 = 0, consider any (c, 0) ∈
Wn−3 and take any ε > 0 such that {c} × {|vn−3| ≤ ε} ⊂Wn−3. Then, on
the circle {c} × {|vn−3| = ε},

(3.4)
∑

α

ϕα(c, vn−3) =
∑

α

⎛

⎝

∑

β

cαβu
β
n−2v

α
n−2

⎞

⎠ ,

where (un−2, vn−2) = (v−1
n−3, cv

2
n−3) lies on {|un−2| = ε−1} × {|vn−2| = |c|ε2}

in Wn−2. Since the right hand side of (3.4) converges uniformly on the indi-
cated subset of Wn−2, so does the left hand side on {c} × {|vn−3| = ε}. Then
∑

α ϕα(c, vn−3) is holomorphic on {c} × {|vn−3| ≤ ε}, hence coincides with
f , in particular at (c, 0). The absolute convergence of

∑

α ϕα(un−3, vn−3)
follows from that of

∑

α(
∑

β cαβu
β
n−2v

α
n−2) over α.

By the same argument, changing from (un−2, vn−2) to (uk, vk) via

un−2 =
1

un−k−3
k vn−k−2

k

, vn−2 = un−k−2
k vn−k−1

k

gives (3.1) first on Wk\{ukvk = 0} and then on Wk, for k = 0, 1, . . . , n− 4. It
suffices to remark that for c 	= 0, small circle {c} × {|vk| = ε} (resp. {|uk| =
ε} × {c}) in Wk correspond to (un−2, vn−2) with |un−2| =

1
|c|n−k−3εn−k−2 , |vn−2| = |c|n−k−2εn−k−1 (resp. |un−2| = 1

εn−k−3|c|n−k−2 , |vn−2| =
εn−k−2|c|n−k−1) in Wn−2.

2◦ Changing from (un−2, vn−2) to (un−1, vn−1) gives (3.2) on Wn−1\
{un−1 = 0}, where 1 + u2

n−1vn−1 	= 0. We need a trick to ensure that for
each α, the sum over β is holomorphic on Wn−1. Since (V, 0) is normal,
f is the pullback under π of some power series

∑

i,j,k ≥ 0 c̃ijkx
iyjzk which

converges in some neighborhood ˜U of 0 in C
3. On π−1(˜U) ∩Wn−2,

∑

α

⎛

⎝

∑

β

cαβu
β
n−2

⎞

⎠ vα
n−2(3.5)

=
∑

c̃ijk(u
n

2
−1

n−2 v
n−2
n−2(1 − un−2)

n

2
−1(1 − 2un−2))i

· (2u
n

2
n−2v

n−1
n−2(1 − un−2)

n

2 )j(un−2v
2
n−2(1 − un−2))k,
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which implies that for each α ≥ 0,

∑

0≤β≤n−1
n−2

α

cαβu
β
n−2v

α
n−2(3.6)

=
∑

(n−2)i+(n−1)j+2k=α

c̃ijk(u
n

2
−1

n−2 v
n−2
n−2(1 − un−2)

n

2
−1(1 − 2un−2))i

· (2u
n

2
n−2v

n−1
n−2(1 − un−2)

n

2 )j(un−2v
2
n−2(1 − un−2))k.

Take a neighborhood Un−1 of (0, 0) in Wn−1 such that Un−1 ⊂ π−1(˜U) ∩
Wn−1. Changing the finite sums on both side of (3.6) to (un−1, vn−1) gives,
on Un−1\{un−1 = 0},

∑

0≤β≤n−1
n−2

α

cαβu
−α
n−1(1 + u2

n−1vn−1)α−β

(3.7)

=
∑

(n−2)i+(n−1)j+2k=α

c̃ijk

(

v
n

2
−1

n−1 (u2
n−1vn−1 − 1)

1 + u2
n−1vn−1

)i(

2un−1v
n

2
n−1

1 + u2
n−1vn−1

)j

vk
n−1.

The two sides of (3.7) being rational functions of (un−1, vn−1), they must
be identical. Since the right-hand side is holomorphic on Wn−1, so is the left
hand side.

Denote
∑

0≤β≤n−1
n−2

α cαβu
−α
n−1(1 + u2

n−1vn−1)α−β by ψα(un−1, vn−1). Since
all ψα are holomorphic, to prove (3.2) also at un−1 = 0, say at any (0, c) ∈
Wn−1, it suffices, as before, to find some ε > 0 such that (i) {|un−1| ≤
ε} × {c} ⊂Wn−1 and (ii)

∑

α ψα(un−1, c) converges uniformly on the circle
{|un−1| = ε} × {c}. We can clearly take ε>0 satisfying (i). Then (un−1,
vn−1) = (εeiθ, c), θ ∈ R, corresponds to (un−2, vn−2) = ( 1

1+cε2 e2iθ ,
1+cε2 e2iθ

ε eiθ ) ∈
Wn−2. If we can bound these (un−2, vn−2) within some S =(compact set) ×
(closed disc centered at 0) ⊂Wn−2, then the uniform convergence of

∑

α

(
∑

β cαβu
β
n−2v

α
n−2) on S gives (ii). To get S, it suffices to choose a suffi-

ciently smaller ε > 0 such that for all θ, ( 1
1+cε2 e2iθ ,

maxφ|1+cε2 e2iφ|
ε ) ∈Wn−2.

Since (un−1, vn−1) = (εeiθ, c) ∈Wn−1 for all θ, |x|2 + |y|2 + |z|2 < 1 on
Wn−1 gives

(3.8) |c|n−2

∣

∣

∣

∣

1 − cε2 e2iθ

1 + cε2 e2iθ

∣

∣

∣

∣

2

+
4|c|nε2

|1 + cε2 e2iθ|2 + |c|2 < 1 for all θ.
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Let |1 + cε2 e2iθ0 | = maxθ|1 + cε2 e2iθ|. Then ( 1
1+cε2 e2iθ ,

|1+cε2 e2iθ0 |
ε ) ∈

Wn−2 if the corresponding inequality |x|2 + |y|2 + |z|2 < 1 is satisfied, namely,

|c|n−2

∣

∣

∣

∣

1 − cε2 e2iθ

1 + cε2 e2iθ

∣

∣

∣

∣

2∣
∣

∣

∣

1 + cε2 e2iθ0

1 + cε2 e2iθ

∣

∣

∣

∣

2n−4

(3.9)

+
4|c|nε2

|1 + cε2 e2iθ|2
∣

∣

∣

∣

1 + cε2 e2iθ0

1 + cε2 e2iθ

∣

∣

∣

∣

2n−2

+ |c|2
∣

∣

∣

∣

1 + cε2 e2iθ0

1 + cε2 e2iθ

∣

∣

∣

∣

4

< 1.

In view of (3.8), a sufficiently smaller ε > 0 can be chosen such that (3.9)
holds for all θ. With such choice of ε, the lemma for k = n− 1 follows.

3◦ Changing from (un−2, vn−2) to (un, vn) gives (3.3) on Wn\{un = 0},
where 1 + u2

nvn 	= 0. To see that for each α, the sum over β is holomorphic
on Wn, it suffices to check that 2β − α ≥ 0. By (3.6),

∑

0≤β≤n−1
n−2

α

cαβu
β
n−2 =

∑

(n−2)i+(n−1)j+2k=α

c̃ijk(u
n

2
−1

n−2 (1 − un−2)
n

2
−1(1 − 2un−2))i

(3.10)

· (2u
n

2
n−2(1 − un−2)

n

2 )j(un−2(1 − un−2))k.

Equation (3.10) implies that for (n− 2)i+ (n− 1)j + 2k = α, β ≥ (n
2 − 1)

i+ n
2 j + k. Hence 2β − α ≥ 0.
To check (3.3) holds at any (0, c) ∈Wn, we repeat the argument for

Wn−1. Then it suffices to find some ε > 0 such that (i)′ (un, vn) = (εeiθ, c)
and (ii)′ (un−2, vn−2) = ( cε2 e2iθ

1+cε2 e2iθ ,
1+cε2 e2iθ

εeiθ ) ∈Wn−2 lies in some S′ = (com-
pact set) × (closed disc centered at 0) ⊂Wn−2, for all θ ∈ R. We first take
ε > 0 satisfying (i)′. Then, letting |1 + cε2 e2iθ0 | = maxθ|1 + cε2 e2iθ|, we com-
pare the inequality |x|2 + |y|2 + |z|2 < 1 on Wn guaranteed by (i)′ with the
inequality |x|2 + |y|2 + |z|2 < 1 on Wn−2 required for ( cε2 e2iθ

1+cε2 e2iθ ,
1+cε2 e2iθ

εeiθ ) ∈
Wn−2, for all θ ∈ R. It turns out that the inequalities are exactly the same
as (3.8) and (3.9) respectively. Thus we can choose ε, S′ and finish the
proof. We remark that the first factor of S′ is a compact neighborhood
of 0 while the first factor of S in the previous case is a compact
neighborhood of 1. �

Holomorphic two-forms on M :
The holomorphic two-form ϕ0 = du0 ∧ dv0 = du1 ∧ dv1 = · · · = dun−2 ∧

dvn−2 = −dun−1∧dvn−1

1+u2
n−1vn−1

= dun∧dvn

1+u2
nvn

(= π∗(dx∧dy
Fz

)) is nowhere zero on M . Hence
any holomorphic two-form onM is of the form fϕ0, where f is a holomorphic
function on M .
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Type Dn, n ≥ 5 and odd:
A resolution π : M → V can be given by the same charts and transition

functions as for even n, but with a different projection

x = u2
0v0(u

n−3
0 vn−2

0 − 1)
n−1

2 (un−3
0 vn−2

0 − 2) = · · ·

= u
n−1

2
n−2v

n−1
n−2(1 − un−2)

n−1
2 (1 − 2un−2) =

v
n−1

2
n−1(u

2
n−1vn−1 − 1)

1 + u2
n−1vn−1

=
v

n−1
2

n (1 − u2
nvn)

1 + u2
nvn

y = 2u0(un−3
0 vn−2

0 − 1)
n−1

2 = · · ·

= 2u
n−1

2
n−2v

n−2
n−2(1 − un−2)

n−1
2 =

2un−1v
n−1

2
n−1

1 + u2
n−1vn−1

=
2unv

n−1
2

n

1 + u2
nvn

z = u2
0v

2
0(u

n−3
0 vn−2

0 − 1) = · · · = un−2v
2
n−2(1 − un−2) = vn−1 = vn.

The exceptional set is given in the same way as for even n.
Holomorphic function on M is again given by (3.1), (3.2), (3.3). The

proof is similar as for odd n.
Any holomorphic two-form on M also has form fϕ0 where f is a holo-

morphic function on M and ϕ0 is the same as for even n.

Proposition 3.3. With the above notation for Dn singularities, f (1,1) = 1.

Proof. From the above calculation, we know that the holomorphic func-
tions on M are generated by a base {uβ

n−2v
α
n−2} 1

2
α≤β≤n−1

n−2
α and holomorphic

two-forms are generated by a base {uβ
n−2v

α
n−2dun−2 ∧ dvn−2} 1

2
α≤β≤n−1

n−2
α. For

every holomorphic two-form ω = uβ
n−2v

α
n−2dun−2 ∧ dvn−2 on M , we consider

ξ = −uβ
n−2v

α+1
n−2

α+1 dun−2. ξ defines a holomorphic one-form on Wn−2 and dξ = ω.
It remains to check that under all changes of charts, ξ transforms to define a
holomorphic one-form in each coordinate chart. In fact, changed to (uk, vk)
chart, for k = 1, . . . , n− 2, on zk,

ξ = − 1
α+ 1

u
(n−k−2)α−(n−k−3)β
k v

(n−k−1)α−(n−k−2)β
k

· ((n− k − 3)vkduk + (n− k − 2)ukdvk)
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which is holomorphic. And changing charts to (un−2, vn−3), we see by
Lemma 3.2 that

ξ = −v
2α−β
n−3 uα+1

n−3

α+ 1
dvn−3

defines a holomorphic one-form on Wn−3. Finally, changed to (un−1, vn−1)
and (un, vn) charts

ξ =

(

u−α
n−1(1 + u2

n−1vn−1)α−β

α+ 1

)

(

2vn−1dun−1 + un−1dvn−1

1 + u2
n−1vn−1

)

on Wn−1

and

ξ =

(

u2β−α
n vβ

n(1 + u2
nvn)α−β

α+ 1

)

(

2vndun + undvn

1 + u2
nvn

)

on Wn.

Again by Lemma 3.2, ξ is holomorphic on Wn−1 and Wn, respectively.
We also know that d(Γ(M,OM )) is generated by

{βuβ−1
n−2v

α
n−2dun−2 + αuβ

n−2v
α−1
n−2dvn−2} 1

2
α≤β≤n−1

n−2
α.

By Lemma 3.1, Γ(M,Ω1
M ) is generated by

{βuβ−1
n−2v

α
n−2dun−2 + αuβ

n−2v
α−1
n−2dvn−2} 1

2
α≤β≤n−1

n−2
α

∪ {uβ
n−2v

α+1
n−2dun−2} 1

2
α≤β≤n−1

n−2
α.

So by easy calculation, Γ(M,Ω1
M ) ∧ Γ(M,Ω1

M ) is generated by

{uβ
n−2v

α
n−2dun−2 ∧ dvn−2} 1

2
α≤β≤n−1

n−2
α, α≥1.

Therefore

Γ(M,Ω2
M )

< Γ(M,Ω1
M ) ∧ Γ(M,Ω1

M ) >
=< un−2 ∧ vn−2 >,

and

f (1,1) = dim
Γ(M,Ω2

M )
< Γ(M,Ω1

M ) ∧ Γ(M,Ω1
M ) >

= 1.

�
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Type En, n = 6, 7, 8:
Resolutions π : M → V for En, n = 6, 7, 8, can be given as follows.
Coordinate charts:

Wk = {(uk, vk) : u2−k
k v3−k

k 	= 1}, k = 0, 1

Wk = {(uk, vk)}, k = 2, 3

W4 = {(u4, v4) : u2
4v4 	= 1}

Wk = {(uk, vk) : uk−3
k vk−4

k 	= −1}, 5 ≤ k ≤ n

Transition functions:
⎧

⎪

⎨

⎪

⎩

uk = u2
k+1vk+1

vk =
1

uk+1

0 ≤ k ≤ 2 and 5 ≤ k ≤ n− 1

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

u3 =
1

1 + u2
4v4

v3 =
1 + u2

4v4
u4

and

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

u3 =
u2

5v5
1 + u2

5v5

v3 =
1 + u2

5v5
u5

Projection map: π(uk, vk) = (x, y, z), where
For E6:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x = 4u2
0(u

2
0v

3
0 − 1)3(u2

0v
3
0 + 1) = · · ·

= 4u4
3v

6
3(1 − u3)3(1 + u3) = · · · =

4v2
6(1 + 2u3

6v
2
6)

(1 + u3
6v

2
6)2

y = 4u2
0v0(u

2
0v

3
0 − 1)2 = · · ·

= 4u3
3v

4
3(1 − u3)2 = · · · =

4u6v
2
6

1 + u3
6v

2
6

z = 2u0(u2
0v

3
0 − 1)2 = · · · = 2u2

3v
3
3(1 − u3)2 = · · · =

2v6
1 + u3

6v
2
6

.
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For E7:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x = u3
0(u

2
0v

3
0 − 1)5 = · · ·

= u7
3v

9
3(1 − u3)5 = · · · =

u7v
3
7

(1 + u4
7v

3
7)3

y = u2
0(u

2
0v

3
0 − 1)3 = · · ·

= u5
3v

6
3(1 − u3)3 = · · · =

u2
7v

3
7

(1 + u4
7v

3
7)3

z = u2
0v0(u

2
0v

3
0 − 1)2 = · · · = u3

3v
4
3(1 − u3)2 = · · · =

v7
(1 + u4

7v
3
7)3

.

For E8:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x = u5
0(u

2
0v

3
0 − 1)8 = · · ·

= u12
3 v

15
3 (1 − u3)8 = · · · =

v3
8

(1 + u5
8v

4
8)5

y = u4
0v0(u

2
0v

3
0 − 1)5 = · · ·

= u8
3v

10
3 (1 − u3)5 = · · · =

v2
8

(1 + u5
8v

4
8)3

z = u2
0(u

2
0v

3
0 − 1)3 = · · · = u5

3v
6
3(1 − u3)3 = · · · =

u8v
2
8

(1 + u5
8v

4
8)2

.

Exceptional set: A = π−1(0) = C1 ∪ · · · ∪ Ck, where

Ck = {uk−1 = 0} ∪ {vk = 0}, 1 ≤ k ≤ 3 and 6 ≤ k ≤ n

C4 = {v2 = 1} ∪ {u3 = 1} ∪ {v4 = 0}
C5 = {u3 = 0} ∪ {v5 = 0}.

�

C1

�

C2

�

C3

�

C5

� �

Cn

� C4

� � �Dual graph:

Holomorphic function on M :
W3 (resp. W2) has the property that it intersects each plane {u3 =

constant} (resp. {v2 = constant}) in a disc centered at the point (u3, 0)
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(resp. (0, v2)) which belongs to A. Any holomorphic function of M has an
expression f =

∑

α≥0(
∑

β≥0 cαβu
β
3 )vα

3 on W3.

Lemma 3.3. With the above notation for En (n = 6, 7, 8), any holomorphic
function f on M has the expansions

(3.11) f =
∑

α≥0

⎛

⎜

⎝

∑

n−4
n−3

α≤β≤ 4
3
α

cαβu
(3−k)α−(2−k)β
k v

(4−k)α−(3−k)β
k

⎞

⎟

⎠
,

on Wk for 0 ≤ k ≤ 3,

(3.12) f =
∑

α≥0

⎛

⎜

⎝

∑

n−4
n−3

α≤β≤ 4
3
α

cαβu
−α
4 (1 + u2

4v4)
α−β

⎞

⎟

⎠
on W4

and

f =
∑

α≥0

⎛

⎜

⎝

∑

n−4
n−3

α≤β≤ 4
3
α

cαβu
(k−3)β−(k−4)α
k v

(k−4)β−(k−5)α
k (1 + uk−3

k vk−4
k )α−β

⎞

⎟

⎠

(3.13)

on Wk, 5 ≤ k ≤ n.

In each expansion, the sum over β is holomorphic on the corresponding Wk

for each α ≥ 0, and the sum over α is absolutely convergent.

Proof. The charts (uk, vk), 0 ≤ k ≤ 5, and their transition functions are the
same as those ofD5. The assertions for 0 ≤ k ≤ 5 can be proved as in Lemma
3.2, except that we need to check the different projection.

Case E6. The formulas corresponding to (3.7), (3.10) are
∑

β

cαβu
−α
4 (1 + u2

4v4)
α−β)(3.14)

=
∑

6i+4j+3k=α

c̃ijk

(

4v3
4(2 + u2

4v4)
(1 + u2

4v4)2

)i( 4v4
1 + u2

4v4

)j( 2u4v
2
4

1 + u2
4v4

)k

,

∑

β

cαβu
β
3 =

∑

6i+4j+3k=α

c̃ijk(4u4
3(1 − u3)3(1 + u3))i(3.15)

· (4u3
3(1 − u3)2)j(2u2

3(1 − u3)2)k,
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because v3 appears as powers of 6, 4, 3 in x, y, z, respectively.
(3.14) shows that the sum over β is holomorphic on W4. Equation (3.15)

shows that 3β − 2α ≥ 0, hence the sums over β in (3.13) are holomorphic
on each Wk.

To prove (3.12) at (0, c) ∈W4 (resp. (0, c) ∈W5, (0, c) and (c, 0) ∈W6),
we assume the inequality |x|2 + |y|2 + |z|2 < 1 at (u4, v4) = (εeiθ, c) (resp.
(u5, v5) = (εeiθ, c), (u6, v6) = (εeiθ, c) and (c, εeiθ)) for all θ ∈ R. Under coor-
dinate changes, we would get the same inequality for (u3, v3) = ( 1

1+cε2 e2iθ ,
1+cε2 e2iθ

εeiθ ) (resp. ( cε2 e2iθ

1+cε2 e2iθ ,
1+cε2 e2iθ

εeiθ ), ( c2ε3 e3iθ

1+c2ε3 e3iθ ,
1+c2ε3 e3iθ

cε2 e2iθ ) and ( c3ε2 e2iθ

1+c3ε2 e2iθ ,
1+c3ε2 e2iθ

c2εeiθ )). If for all θ, we change v3 to v◦3 = maxθ|1+cε2 e2iθ|
ε (resp.

maxθ|1+cε2 e2iθ|
ε , maxθ|1+c2ε3 e3iθ|

|c|ε2 and maxθ|1+c3ε2 e2iθ|
|c|2ε ), then the inequality corre-

sponding to (3.9) becomes

(3.16) |x|2
∣

∣

∣

∣

v◦3
v3

∣

∣

∣

∣

12

+ |y|2
∣

∣

∣

∣

v◦3
v3

∣

∣

∣

∣

8

+ |z|2
∣

∣

∣

∣

v◦3
v3

∣

∣

∣

∣

6

< 1

in all cases, because of the way v3 appears in x, y, z. It is clear that ε > 0
can be found such that (3.16) holds for all θ ∈ R. Then the proof for E6 can
be finished as for Lemma 3.2.

Case E7. The formulas corresponding to (3.7), (3.10) are

∑

β

cαβu
−α
4 (1 + u2

4v4)
α−β)

(3.17)

=
∑

9i+6j+4k=α

c̃ijk

(

u4v
5
4

(1 + u2
4v4)3

)i( v3
4

(1 + u2
4v4)2

)j( v2
4

1 + u2
4v4

)k

,

(3.18)
∑

β

cαβu
β
3 =

∑

9i+6j+4k=α

c̃ijk(u7
3(1 − u3)5)i(u5

3(1 − u3))j(u3
3(1 − u3)2)k.

Again 3.18, implies 4β − 3α(≥ i+ 2j) ≥ 0.
The inequality corresponding to (3.9) for proving the various cases of

(3.12), (3.13) is

(3.19) |x|2
∣

∣

∣

∣

v◦3
v3

∣

∣

∣

∣

18

+ |y|2
∣

∣

∣

∣

v◦3
v3

∣

∣

∣

∣

12

+ |z|2
∣

∣

∣

∣

v◦3
v3

∣

∣

∣

∣

8

< 1

under a corresponding assumption |x|2 + |y|2 + |z|2 < 1. The rest of the
proof is similar.
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Case E8. The formulas corresponding to (3.7), (3.10) are

∑

β

cαβu
−α
4 (1 + u2

4v4)
α−β)

(3.20)

=
∑

15i+10j+6k=α

c̃ijk

(

u4v
8
4

(1 + u2
4v4)5

)i( v5
4

(1 + u2
4v4)3

)j( v3
4

(1 + u2
4v4)2

)k

,

(3.21)
∑

β

cαβu
β
3 =

∑

15i+10j+6k=α

c̃ijk(u12
3 (1 − u3)8)i(u8

3(1 − u3)5)j(u5
3(1 − u3)3)k.

Again 3.21, implies 5β − 4α(≥ k) ≥ 0.
The inequality corresponding to (3.9) takes the form

(3.22) |x|2
∣

∣

∣

∣

v◦3
v3

∣

∣

∣

∣

30

+ |y|2
∣

∣

∣

∣

v◦3
v3

∣

∣

∣

∣

20

+ |z|2
∣

∣

∣

∣

v◦3
v3

∣

∣

∣

∣

12

< 1.

The proof is then clear. �

Holomorphic two-forms on M :
The holomorphic two-form ϕ0 = π−1(dx∧dy

Fz
) = du0 ∧ dv0 = · · · = du3 ∧

dv3 = dun−2 ∧ dvn−2 = −du4∧dv4
1+u2

4v4
= duk∧dvk

1+uk−3
k vk−4

k

, 5 ≤ k ≤ n, is nowhere zero
on M . Hence any holomorphic two-form on M is of the form fϕ0, where f
is a holomorphic function on M .

Proposition 3.4. With the above notation for En singularities, n = 6, 7,
8, f (1,1) = 1.

Proof. From the above calculation, we know that the holomorphic functions
on M are generated by a base {uβ

3v
α
3 }n−4

n−3
α≤β≤ 4

3
α and holomorphic two-forms

are generated by a base {uβ
3v

α
3 du3 ∧ dv3}n−4

n−3
α≤β≤ 4

3
α. For every holomorphic

two-form ω = uβ
3v

α
3 du3 ∧ dv3 on M , we consider ξ = −uβ

3 vα+1
3

α+1 du3. ξ defines
a holomorphic one-form on W3 and dξ = ω. It remains to check that under
all changes of charts, ξ transforms to define a holomorphic one-form in each
coordinate chart. In fact, changed to (uk, vk) chart, for k = 0, 1, 2, on Wk,

ξ = − 1
α+ 1

u
(3−k)α−(2−k)β
k v

(4−k)α−(3−k)β
k ((2 − k)vkduk + (3 − k)ukdvk),
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which is holomorphic. And changing charts to (u4, v4) chart, we see by
Lemma 3.3 that

ξ = − u−α
4

α+ 1
(1 + u2

4v4)
α−β

(

2v4du4 + u4dv4
1 + u2

4vk

)

defines a holomorphic one-form on W4. Finally, changed to (uk, vk) chart,
for 5 ≤ k ≤ n, charts

ξ = −u
(k−3)β−(k−4)α
k v

(k−4)β−(k−5)α
k

α+ 1
(1 + uk−3

k vk−4
k )α−β

×
(

(k − 3)vkduk + (k − 4)ukdvk

1 + uk−3
k vk−4

k

)

Again by Lemma 3.3, ξ is holomorphic on Wk, for 5 ≤ k ≤ n.
We also know that d(Γ(M,OM )) is generated by

{βuβ−1
3 vα

3 du3 + αuβ
3v

α−1
3 dv3}n−4

n−3
α≤β≤ 4

3
α.

By Lemma 3.1, Γ(M,Ω1
M ) is generated by

{βuβ−1
3 vα

3 du3 + αuβ
3v

α−1
3 dv3}n−4

n−3
α≤β≤ 4

3
α ∪ {uβ

3v
α+1
3 du3}n−4

n−3
α≤β≤ 4

3
α.

So by easy calculation Γ(M,Ω1
M ) ∧ Γ(M,Ω1

M ) is generated by

{uβ
3v

α
3 du3 ∧ dv3}n−4

n−3
α≤β≤ 4

3
α, α≥1.

Therefore

Γ(M,Ω2
M )

< Γ(M,Ω1
M ) ∧ Γ(M,Ω1

M ) >
= < u3 ∧ v3 >,

and

f (1,1) = dim
Γ(M,Ω2

M )
< Γ(M,Ω1

M ) ∧ Γ(M,Ω1
M ) >

= 1.

�

Cyclic quotient singularities:
An explicit resolution π : M → V can be given in terms of coordinates

and transition functions on M as follows:
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Coordinates charts: Wk = C
2 = {(uk, vk)}, k = 0, 1, . . . , n

Transition functions :

⎧

⎨

⎩

uk = u
ek+1

k+1 vk+1

vk =
1

uk+1

.

Exceptional set: A = π−1(0) = C1 ∪ · · · ∪ Cn, where Ck = {uk−1 = 0} ∪
{vk = 0}

� �

C1

−e1

C2

−e2
� �

Cn,

−en
� � �Dual graph:

where ei ≥ 2 is the self-intersection number, i = 1, 2, . . . , n.
Holomorphic functions on M :
Let

q0(α, β) = α, q1(α, β) = e1q0(α, β) − β = e1α− β,

qi(α, β) = eiqi−1(α, β) − qi−2(α, β), i = 2, 3, . . . , n.

Any holomorphic function onM has power series expansion
∑

α,β≥0 cαβu
α
0 v

β
0 ,

which converges for all (u0, v0) ∈W0. Under changes of charts,

∑

α,β≥0

cαβu
α
0 v

β
0 =

∑

α,β≥0

cαβu
q1(α,β)
1 v

q0(α,β)
1 =

∑

α,β≥0

cαβu
q2(α,β)
2 v

q1(α,β)
2

= · · · =
∑

α,β≥0

cαβu
qn(α,β)
n vqn−1(α,β)

n .

The kth power series has to converge for all (uk, vk) ∈Wk. This occurs for
all k if only if the indices α, β in each sum satisfy qi(α, β) ≥ 0,
β ≥ 0, i = 0, 1, . . . , n. Thus any holomorphic function on M can be gen-
erated by

{uα
0 v

β
0 }qi(α,β)≥0, β≥0, i=0,1,...,n,

on W0.
Conversely, any such convergent power series in the (u0, v0) chart defines

a holomorphic function on M .
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Holomorphic two-forms on M :
We know

⎧

⎪

⎨

⎪

⎩

dui = ei+1u
ei+1−1
i+1 vi+1dui+1 + u

ei+1

i+1 dvi+1

dvi = − 1
u2

i+1

dui+1.

The holomorphic two-form

du0 ∧ dv0 = u
q1(1,1)−1
1 du1 ∧ dv1 = u

q2(1,1)−1
2 v

q1(1,1)−1
2 du2 ∧ dv2 = · · ·

= uqn(1,1)−1
n vqn−1(1,1)−1

n dun ∧ dvn.

So

uα
0 v

β
0 du0 ∧ dv0 = u

q1(α+1,β+1)−1
1 v

q0(α+1,β+1)−1
1 du1 ∧ dv1

= u
q2(α+1,β+1)−1
2 v

q1(α+1,β+1)−1
2 du2 ∧ dv2 = · · ·

= uqn(α+1,β+1)−1
n vqn−1(α+1,β+1)−1

n dun ∧ dvn.

It follows that any holomorphic 2-form on M can be generated in the (u0, v0)
chart by 2-forms

{uα
0 v

β
0 du0 ∧ dv0}qi(α+1,β+1)≥1, β≥0, i=0,1,...,n.

Proposition 3.5. With the above notation for cyclic quotient singularities,
f (1,1) = 1.

Proof. From the above calculation, we know that the holomorphic functions
on M are generated by a base

{uα
0 v

β
0 }qi(α,β)≥0, β≥0, i=0,1,...,n

and holomorphic two-forms are generated by a base

{uα
0 v

β
0 du0 ∧ dv0}qi(α+1,β+1)≥1, β≥0, i=0,1,...,n.

For every holomorphic two-form ω = uα
0 v

β
0 du0 ∧ dv0 on M , we consider ξ =

−uα
0 vβ+1

0
β+1 du0. ξ defines a holomorphic one-form on W0 and dξ = ω. It remains

to check that under all changes of charts, ξ transforms to define a
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holomorphic one-form in each coordinate chart. In fact, changed to (uk, vk)
chart, for k = 1, . . . , n, on Wk,

ξ = − 1
β + 1

u
qk(α+1,β+1)−1
k

× v
qk−1(α+1,β+1)−1
k (qk(0,−1)vkduk + qk−1(0,−1)ukdvk),

which is holomorphic.
We also know that d(Γ(M,OM )) is generated by

{uα
0 v

β
0 }qi(α,β)≥0, β≥0, α≥1, i=0,1,...,n.

By Lemma 3.1, Γ(M,Ω1
M ) is generated by

{uα
0 v

β
0 }qi(α,β)≥0, β≥0, α≥1, i=0,1,...,n

∪ {uα
0 v

β+1
0 du0}qi(α+1,β+1)≥1, β≥0, i=0,1,...,n.

So by easy calculation Γ(M,Ω1
M ) ∧ Γ(M,Ω1

M ) is generated by

{uα
0 v

β
0 du0 ∧ dv0}qi(α+1,β+1)≥1, β≥0, α≥1 i=0,1,...,n.

Therefore

Γ(M,Ω2
M )

< Γ(M,Ω1
M ) ∧ Γ(M,Ω1

M ) >
= < u0 ∧ v0 >,

and

f (1,1) = dim
Γ(M,Ω2

M )
< Γ(M,Ω1

M ) ∧ Γ(M,Ω1
M ) >

= 1.

�
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