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Curvature pinching estimate and singularities

of the Ricci flow

Xiaodong Cao

In this paper, we first derive a pinching estimate on the traceless
Ricci curvature in term of scalar curvature and Weyl tensor under
the Ricci flow. This generalizes a previous result of Knopf [15].
Then we apply this estimate to study finite-time singularity behav-
ior. We show that if the scalar curvature is uniformly bounded, then
the Weyl tensor has to blow up at least at a certain rate.

1. Introduction

Let (M, g) be a smooth, closed n-dimensional Riemannian manifold. In his
seminal paper [8], Hamilton proved that any closed three-manifold which
admits a Riemannian metric with strictly positive Ricci curvature must also
admit a metric of constant positive sectional curvature. He showed that
the original metric can be deformed into the constant-curvature metric by
introducing the Ricci flow:

(1.1)
∂

∂t
gij = −2Rij .

The Ricci flow equation is a (weakly) parabolic partial differential equation
system. Its short time existence was first proved by Hamilton [8] and later
the proof was simplified by DeTurck [6]. One of the main subjects in the
study of Ricci flow is the understanding of long time behavior and formation
of singularities. More precisely, we would like to ask when the flow can
exist for all time; and if the flow only exits up to finite time, we would like
to understand the profile of finite-time singularities, which in general will
permit us to understand geometry and topology of the underlying manifold
better.

A solution (M, g(t)) to the Ricci flow equation (1.1) is a (finite-time)
maximal solution if it is defined for t ∈ [0, T ), T < ∞. In [8], Hamilton
proved that the whole Riemannian curvature tensor Rm blows up as t →
T , i.e., lim sup[0,T ) |Rm| = ∞. In [25], Sesum showed that in fact the Ricci
curvature tensor Rc blows up as t → T , i.e., lim sup[0,T ) |Rc| = ∞. In other
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words, if the norm of Riemannian curvature or Ricci curvature is uniformly
bounded on [0, T ), then the flow can be smoothly extended past T . In [27],
Wang extended the above results even further by showing that if the Ricci
curvature tensor Rc is uniformly bounded from below and moreover, the
space-time integral of scalar curvature R is bounded, namely,

∫ T

0

∫
M

|R|α ≤ C, α ≥ n + 2
2

,

then the Ricci flow can be smoothly extended past T . Similar type results
also appeared in [29] by Ye and in [16] by Ma and Cheng.

There is a well-known conjecture that the scalar curvature R should also
blow up at the finite singular time T . Recently, Enders et al. [7] partially
confirmed this conjecture in the case of Type I maximal solutions. They used
blow-up argument based on Perelman’s reduced distance and pseudolocality
theorem. In the case of Kähler–Ricci flow, this was proved by Zhang [30].

Definition 1.1. A maximal solution (M, g(t)), 0 ≤ t < T < ∞, is called a
Type I maximal solution of the Ricci flow, if there exists a constant C < ∞
such that the curvature satisfies

|Rm| ≤ C

T − t
.

Otherwise it is a Type II maximal solution of the Ricci flow.

In this paper, we study the blow-up behavior of different components of
the curvature tensor under the Ricci flow, and their consequences in dilation
limits.

For simplicity, we also use the following convention: the constants ci

only depend on the dimension n, but not on the initial metric g(0); while
the constants Ci depend not only on the dimension n, but also on the initial
metric g(0). We also restrict ourselves to the case of positive scalar curvature,
even though that most estimates in this paper can be carried to the general
case.

The rest of this paper organized as follows. In Section 2, we briefly review
the orthogonal decomposition of Riemannian curvature and evolution of
curvatures under the Ricci flow. In Section 3, we derive a pinching estimate
on the traceless Ricci curvature tensor, which generalizes a previous result of
Knopf [15]. As one application, we obtain some information about curvature
blow up at finite-time; the second application is on manifolds with positive
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isotropic curvature. In Section 4, we discuss singularity models and apply
the pinching estimate in Section 3 to study the dilation limit.

2. Decomposition and evolution of curvature tensors

In this section, we will first give a brief introduction of curvature decompo-
sition of the Riemannian manifold (Mn, g) and some relations of geometric
conditions. Then we will recall some evolution formulae for various curva-
ture tensors, for more details, please see [8]. We use gij to denote the local
components of metric g and its inverse by gij . In this paper, we use Rm to
denote the (4, 0) Riemannian curvature tensor instead of the (3, 1) Rieman-
nian curvature tensor, we denote its local components by Rijkl. Let Rc be the
Ricci curvature with local components Rik = gjlRijkl, and let R = gikRik be
the scalar curvature. We first recall the Kulkarni–Nomizu product for two
symmetric two-tensors h, k is defined as

h ◦ k(v1, v2, v3, v4) = h(v1, v3)k(v2, v4) + h(v2, v4)k(v1, v3)
− h(v1, v4)k(v2, v3) − h(v2, v3)k(v1, v4).

The Einstein tensor or traceless Ricci tensor E is defined as

Eij = Rij − R

n
gij .

When n ≥ 4, we can decompose the (4, 0) Riemannian curvature tensor Rm
in the following way:

Rm =
R

2n(n − 1)
g ◦ g +

1
n − 2

E ◦ g + W,

where W is the Weyl curvature tensor. And the above decompositions are
orthogonal.

In local coordinates, we can write

Wijkl = Rijkl − 1
n − 2

(gikRjl + gjlRik − gilRjk − gjkRil)

+
1

(n − 1)(n − 2)
R(gikgjl − gilgjk).

It is well known that under conformal change of the metric g
′
= eu · g for

some function u, then W
′
= eu · W . If we view the Weyl tensor as a (3, 1)

tensor, then W
′
= W , i.e., the (3, 1) Weyl tensor is a conformal invariant.
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Under the Ricci flow, the Ricci curvature is evolving by

∂

∂t
Rc = �Rc + 2Rm(Rc, ·) − 2Rc2,

where Rc2
ij = RikRkj and the scalar curvature evolves by

(2.1)
∂

∂t
R = �R + 2|Rc|2.

As a direct consequence of (2.1), in all dimensions, the positivity (or any
lower bound) of the scalar curvature is preserved by the Ricci flow. In dimen-
sion 3, the positivity of Ricci curvature is preserved (see [8]). In dimension
at least 4, positivity of curvature operator is preserved [9, 11].

In [17], Micallef and Moore introduced a new curvature condition, posi-
tive isotropic curvature. A Riemannian manifold of dimension at least 4 is
said to have positive isotropic curvature, if for every orthonormal four-frame
{e1, e2, e3, e4}, we have

R1313 + R1414 + R2323 + R2424 − 2R1234 > 0.

Using minimal surface technique, they proved that any compact, simply con-
nected manifold with positive isotropic curvature is homeomorphic to Sn.
In the same paper, they observed that the positivity of isotropic curvature
is implied by several other commonly used curvature conditions, such as
positive curvature operator and pointwise 1

4 -pinched condition. In dimen-
sion 4, Hamilton [12] proved that the positivity of isotropic curvature is
preserved by the Ricci flow. This result has been extended to higher dimen-
sions by Brendle and Schoen [2] and also by Nguyen [19] independently.
Brendle and Schoen further proved the differentiable sphere theorem, which
has been a long-time conjecture since the (topological) 1

4 -pinched sphere
theorem proved by Berger [1] and Klingenberg [14] around 1960. More pre-
cisely, Brendle and Schoen showed that any compact Riemannian manifold
with pointwise 1

4 -pinched sectional curvature is diffeomorphic to a spherical
space form [2].

Another interesting geometric operator in Riemannian geometry, the
Weitzenböck operator P , is defined as

P = Rc ◦ g − 2Rm =
(n − 2)R
n(n − 1)

g ◦ g +
n − 4
n − 2

E ◦ g − W,
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or in local coordinates,

Pijkl = (gikRjl + gjlRik − gilRjk − gjkRil) − 2Rijkl.

It is known that in dimension 4, positive isotropic curvature is equivalent
to positive Weitzenböck operator (see for example, [17, 18, 20, 21]). For an
even dimensional Riemannian manifold of n > 4, positive isotropic curvature
implies positive Weitzenböck operator [24, Proposition 1.1].

3. Curvature pinching estimate

The general evolution formulae of curvature tensors suggests that the
orthogonal parts of Riemannian curvature tensor is not evolving totally inde-
pendently to each other, one part might depend on the other part(s). An
interesting question in the study of the Ricci flow is which orthogonal part(s)
needs to blow up at a finite-time T when singularity occurs. In other words,
if these parts are uniformly bounded up to time T , then the Ricci flow can
be smoothly extended past T .

Our main theorem in this section is the following estimate, which says
that the traceless Ricci part |E| can be controlled by the scalar curvature R
and Weyl tensor |W |. This improves an earlier result of Knopf [15].

Theorem 3.1. Let (Mn, g(t)), t ∈ [0, T ), be a solution to the Ricci flow on
a closed Riemannian manifold of dimension n ≥ 3, then there exist constants
C1(n, g0) > 0, c2(n) ≥ 0 and c(n, g0) ≥ 0, such that for all t ≥ 0, one has
R + c > 0 and

(3.1)
|E|

R + c
≤ C1 + c2 max

M×[0,t]

√
|W |

R + c
.

Furthermore, if R > 0 at t = 0, then we have

(3.2)
|E|
R

≤ C1 + c2 max
M×[0,t]

√
|W |
R

.

Remark 3.1. In [15], Knopf first proved a rather surprising result. Namely
he showed that under the Ricci flow, there exist constants c(g0) ≥ 0, C1(n,
g0) > 0 and c2(n) > 0 such that for all t ≥ 0, one has R + c > 0 and

(3.3)
|E|

R + c
≤ C1 + c2 max

s∈[0,t]

√
|W |max(s)
Rmin(s) + c

.
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In other words, the traceless Ricci part |E| can be controlled by the maximum
and minimum of the scalar curvature R and the maximum of the Weyl ten-
sor |W |. Notice that |W |max and Rmin may actually be achieved at different
space-time points in (3.3). In estimates (3.1) and (3.2), the values of |W |
and R are taken at the same point, this allows us to study dilation limits of
singularities. In some cases, it will also allow us to study the blowup rate of
singularities.

Remark 3.2. We state the theorem both for the general case and for the
positive scalar curvature case. But for simplicity, we will only prove (3.2)
here, and the proof of (3.1) is similar.

Remark 3.3. The estimate (3.2) is scaling invariant, so it still holds for
normalized Ricci flow and also for Ricci flow solutions exist for all time
[0,∞). In the special case of Kähler–Ricci flow on a compact Kähler manifold
X with c1(X) > 0, it is shown by Cao [3] that the solution exists for all time.
It is also known that the scalar curvature is uniformly bounded along the
flow (a detailed proof is given by Sesum and Tian [26] following Perelman’s
idea), hence the whole curvature tensor blows up if and only if the Weyl
tensor W blows up (also see [16]).

For our purpose, we perform a rather general calculation here. For any
positive number γ, define

f =
|E|2
Rγ

=
|Rc|2
Rγ

− 1
n

R2−γ ,

then f satisfies the following evolution equation.

Lemma 3.1. Under the Ricci flow, we have

∂

∂t
f = �f +

2(γ − 1)
R

∇f · ∇R − 2
R2+γ

|R∇iRjk −∇iRRjk|2
(3.4)

− (2 − γ)(γ − 1)
R2

|∇R|2f − 2(2 − γ)
n

R1−γ |Rc|2

+
4

Rγ
Rm(Rc, Rc) − 2γ

R1+γ
|Rc|4 − (2 − γ)(γ − 1)

nRγ

= �f +
2(γ − 1)

R
∇f · ∇R − 2

R2+γ
|R∇iRjk −∇iRRjk|2
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− (2 − γ)(γ − 1)
R2

|∇R|2f +
2

R1+γ
[(2 − γ)|Rc|2

(
|Rc|2 − 1

n
R2

)

− 2(|Rc|4 − R · Rm(Rc, Rc)] − (2 − γ)(γ − 1)
nRγ

.

Proof. We have

∂

∂t
|Rc|2 = �|Rc|2 − 2|∇Rc|2 + 4Rm(Rc, Rc),

where
Rm(Rc, Rc) = RabcdRacRbd.

We can further express the term as

Rm(Rc, Rc) = RabcdRacRbd =
1

n − 2

(
2n − 1
n − 1

|Rc|2R − 2Rc3 − R3

n − 1

)

+ W (Rc, Rc),

hence we arrive at,

∂

∂t
|Rc|2 = �|Rc|2 − 2|∇Rc|2 +

4
n − 2

(
2n − 1
n − 1

|Rc|2R − 2Rc3 − R3

n − 1

)

+ W (Rc, Rc).

Using this together with the evolution equation of the scalar curvature

∂

∂t
R = �R + 2|Rc|2,

we have the following two equations:

∂

∂t

( |Rc|2
Rγ

)
= �

( |Rc|2
Rγ

)
+

2(γ − 1)
R

∇
( |Rc|2

Rγ

)
· ∇R

− 2
R2+γ

|R∇iRjk −∇iRRjk|2 − (2 − γ)(γ − 1)
R2+γ

|Rc|2|∇R|2

+
4

Rγ
Rm(Rc, Rc) − 2γ

R1+γ
|Rc|4,

and

∂

∂t
R2−γ = �R2−γ +

2(γ − 1)
R

∇R2−γ · ∇R + 2(2 − γ)R1−γ |Rc|2.

The lemma then follows. �
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We can also rewrite the above lemma in the following way.

Lemma 3.2. Under the Ricci flow, we have

∂

∂t
f = �f +

2(γ − 1)
R

∇f · ∇R − 2
R2+γ

|R∇iRjk −∇iRRjk|2

− (2 − γ)(γ − 1)
R2

|∇R|2f +
2

R1+γ
[(2 − γ)|Rc|2|E|2

− 2Q + 2RW (Rc, Rc)] − (2 − γ)(γ − 1)
nRγ

= �f +
2(γ − 1)

R
∇f · ∇R − 2

R2+γ
|R∇iRjk −∇iRRjk|2

− (2 − γ)(γ − 1)
R2

|∇R|2f +
2

R1+γ

×
[
−γ|E|4 +

(
2(n − 2)
n(n − 1)

− γ

n

)
|R|2|E|2 − 4

n − 2
RE3 + 2RW (E, E)

]

− (2 − γ)(γ − 1)
nRγ

,

where Q = |Rc|4 − R
n−2(2n−1

n−1 R|Rc|2 − 2Rc3 − R3

n−1), and E3 = EijEjkEki.

Consider the special case that γ = 2, i.e.,

f =
|E|2
R2

=
|Rc|2
R2

− 1
n

,

we have

Lemma 3.3. Under the Ricci flow, we have

∂

∂t
f = �f +

2
R
∇f · ∇R − 2

R4
|R∇iRjk −∇iRRjk|2

+
2

R3

[
−2|E|4 − 2

n(n − 1)
|R|2|E|2 − 4

n − 2
RE3 + 2RW (E, E)

]

= �f +
2
R
∇f · ∇R − 2

R4
|R∇iRjk −∇iRRjk|2

+ 4R

[
−f2 − 1

n(n − 1)
f − 2

n − 2
E3

R3
+

1
R3

W (E, E)
]

.
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To estimate the right-hand side of the above equation, we claim that
there exist positive constants c1, c2 depending only on n ≥ 3, such that

∣∣∣∣ 2
n − 2

E3

∣∣∣∣ ≤ c1|E|3,

and

|W (E, E)| ≤ c2|W ||E|2.

Remark 3.4. In the above estimates, c1 ∼ 2
n(n−2) and c2 ∼ n(n − 1)

(n − 2)(n − 3).

Plugging these two inequalities into Lemma 3.3, we derive that

Lemma 3.4. Under the Ricci flow, we have

∂

∂t
f ≤ �f +

2
R
∇f · ∇R + 4R

[
−f2 − 1

n(n − 1)
f + c1f

3/2 + c2
|W |
R

f

]

= �f +
2
R
∇f · ∇R − 4Rf

[
f − c1f

1/2 +
1

n(n − 1)
− c2

|W |
R

]
.

Combining the above inequality and using maximum principle, this leads
to the following

Lemma 3.5. Under the Ricci flow, there exists C1 = C1(c1, g(0)) ≥ c1 > 0,
such that 4f(0) ≤ C2

1 . Moreover, we have

f1/2 ≤ 1
2
C1 +

√
1
4
C2

1 −
(

1
n(n − 1)

− c2 max
M×[0,t]

|W |
R

)
.

Proof. Let us denote the right side as Φ(t), i.e.,

Φ(t) =
1
2
C1 +

√
1
4
C2

1 −
(

1
n(n − 1)

− c2 max
M×[0,t]

|W |
R

)
,

so Φ(t) is nondecreasing, by our choice of C1, f
1
2 (0) ≤ C1

2 ≤ Φ(0). And f
satisfies

∂

∂t
f ≤ �f +

2
R
∇f · ∇R − 4Rf

[
f − C1f

1/2 +
1

n(n − 1)
− c2

|W |
R

]
.
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Notice that
√

f(0) ≤ C1
2 ≤ Φ(0), then it follows from the maximum principle

that f
1
2 (t) ≤ Φ(t). Since if max f

1
2 (t) > Φ(t), then we have

d

dt

+

max f(t) ≤ 0. �

Proof. (Theorem 3.1) The inequality (3.2) now follows from standard
inequalities. �

As a direct consequence of Theorem 3.1, we have the following claim:

Corollary 3.1. Let (M, g(t)), t ∈ [0, T ), be an maximal solution to the
Ricci flow, where T < ∞. Then we have

(1) either lim sup[0,T ) R = ∞,

(2) or lim sup[0,T ) R < ∞ but lim sup[0,T )
|W |
R → ∞.

Proof. For any finite time singularity, the whole Riemannian curvature (or
Ricci curvature) blows up at T . The Riemannian curvature tensor is decom-
posed into the scalar curvature part R, the traceless Ricci tensor E and the
Weyl tensor W . Following from Theorem 3.1, E can not blow up if R and
|W |
R are both bounded, hence the statement follows. �

Another interesting application of (3.2) is the case when the Weyl tensor
|W | is controlled by the scalar curvature R.

Corollary 3.2. (positive isotropic curvature) Let (Mn, g(t)), t ∈ [0, T ), be
an maximal solution to the Ricci flow, n ≥ 4. Assuming that g(0) has positive
isotropic curvature, then we have lim sup[0,T ) R = ∞.

Proof. Since positive isotropic curvature is preserved by the Ricci flow. If
dimension is larger than 4, positivity of isotropic curvature implies that the
Ricci curvature is bounded by

|Rc| < cR

for some constant c only depends on the dimension n (in fact, the whole
Riemannian curvature tensor |Rm| is bounded by R). It then follows from
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Sesum’s result that

lim sup
[0,T )

R = ∞.

In dimension 4, this implies positive Weitzenböck operator. So we have

P = Rc ◦ g − 2Rm =
R

6
g ◦ g − W > 0,

and W is traceless, this implies that

|W |
R

< c3.

Substituting this into (3.2), it follows from elementary inequalities that:

|E|
R

≤ C.

Since positive isotropic curvature implies scalar curvature R > 0, the maxi-
mal existence time T < ∞, so

lim sup
[0,T )

R = ∞. �

4. Finite-time singularities, dilation limits and
singularity models

In this section, we will use the pinching estimate in Section 3 to study
the dilation limit of Ricci flow solutions. We first need to introduce some
notations. In [11, Section 16], Hamilton introduced the notion of singularity
model. Roughly speaking, these are dilation limits of the Ricci flow. We
briefly describe the strategy here, to find out exact details about how to
dilate singularities based on rate of blowup of the curvature, see [11, Section
16] or [5, Chapter 8]. If we dilate the solution to the Ricci flow about a
sequence of points and times (xi, ti), where xi ∈ M and ti → T , we may
choose the sequence of points and time so that |Rm|(xi, ti) is comparable
to the global maximum over the space M and sufficiently large previous
time intervals. We now can define a sequence of pointed dilation solutions
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(M, gi(t), xi) by:

gi(t) = |Rm|(xi, ti) · g
(

ti +
t

|Rm|(xi, ti)

)
,

for time interval

−ti|Rm|(xi, ti) ≤ t < (T − ti)|Rm|(xi, ti),

such that the curvature |Rm|gi
(xi, 0) = 1 and the maximum of the

(Riemannian) curvature of gi becomes uniformly bounded for t ≤ 0, hence
we have a sequence of solutions to the Ricci flow. For finite time singularities
on closed manifolds, Perelman’s No Local Collapsing Theorem [22] provides
the injectivity radius estimate, which is necessary to obtain a noncollapsed
limit. Then we can apply Hamilton’s Cheeger–Gromov type compactness
theorem [10] to extract a limit solution of the Ricci flow. This is a complete
solution to the Ricci flow with bounded curvature. If the solution is Type
I, it is an ancient solution; if the solution is Type II, then it is an eter-
nal solution. It is worth mentioning that in dimension 3, all dilation limits
have nonnegative sectional curvature due to the pinching estimate of Hamil-
ton [11] and Ivey [13].

Our main result in this section is the following:

Theorem 4.1. Let (M, g(t)), t ∈ [0, T ), be an maximal solution to the Ricci
flow with positive scalar curvature. Then we have one of the following:

(1) either lim sup[0,T ) R = ∞,

(2) or if lim sup[0,T ) R < ∞, then lim sup[0,T ) |W | > C
(T−t)2−δ for any con-

stant C > 0 and δ > 0. Furthermore, this must be a Type II maximal
solution, and the dilation limit is a complete Ricci-flat solution with
max |W | = 1.

Remark 4.1. Most recently, B. Wang improves this result in [28], his proof
uses a different method.

We first consider Type I solutions, which has been studied extensively
recently by Enders et al. [7], also by Zhang and the author [4].

Corollary 4.1. If the solution of the Ricci flow is a Type I solution, then
we have |W |

R is bounded, hence R → ∞.
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Proof. This corollary essentially follows from [7, Theorem 1.8] that all Type
I singularity notions are equivalent. The second part of the claim is also a
direct consequence of Theorem 4.1. �

Remark 4.2. From [7] and [4], such type I dilation limit must be a non-
trivial gradient Ricci solitons. Notice that the dilation limit cannot be Ricci
flat, otherwise this contradicts a theorem [23, Theorem 3] of Pigola et al.

We now finish our proof of Theorem 4.1.

Proof. (Theorem 4.1). We assume that lim sup[0,T ) R < ∞, since this is a
finite time singularity, the whole Riemannian curvature tensor |Rm| blows
up. So lim sup[0,T ) |W | = ∞. Now if lim sup[0,T ) |W | < C

(T−t)2−δ for some con-
stant C > 0 and δ > 0, then by (3.2), the (traceless and hence) Ricci tensor
is also bounded by

|Rc| <
C

(T − t)1−δ/2
.

This implies that ∫ T

0
|Rc|ds ≤ C

and a uniform bound on the distance change. Since the scalar curvature is
also uniformly bounded on [0, T ), a similar proof as in [25] yields that the
solution of the Ricci flow can be extended past T . This contradicts the fact
that it is a finite-time maximal solution.

The rest of the theorem follows from standard blow-up analysis. Since R
is bounded and lim sup[0,T ) |W | = ∞. So the dilation limit will have R̃ = 0
and |W̃ | = 1 at the origin and time 0. The evolution equation of scalar
curvature implies that it is in fact Ricci-flat. �
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