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On Type-I singularities in Ricci flow

Joerg Enders, Reto Müller and Peter M. Topping

We define several notions of singular set for Type-I Ricci flows
and show that they all coincide. In order to do this, we prove
that blow-ups around singular points converge to nontrivial gra-
dient shrinking solitons, thus extending work of Naber [15]. As a
by-product we conclude that the volume of a finite-volume singular
set vanishes at the singular time.

We also define a notion of density for Type-I Ricci flows and
use it to prove a regularity theorem reminiscent of White’s partial
regularity result for mean curvature flow [22].

1. Introduction

A family (Mn, g(t)) of smooth complete Riemannian n-manifolds satisfying
Hamilton’s Ricci flow [10],

(1.1)
∂

∂t
g = −2Ricg(t),

on a finite-time interval [0, T ), T < ∞, is called a Type-I Ricci flow if there
exists a constant C > 0 such that for all t ∈ [0, T )

(1.2) sup
M

|Rmg(t)|g(t) ≤
C

T − t
.

Such a solution is said to develop a Type-I singularity at time T (and T is
called a Type-I singular time) if it cannot be smoothly extended past time
T . It is well known that this is the case if and only if

(1.3) lim sup
t↗T

sup
M

|Rmg(t)|g(t) = ∞,

see [10] for compact and [20] for complete flows. Here Rmg(t) denotes the
Riemannian curvature tensor of the metric g(t). The main examples of
Ricci flow singularities are of Type-I, in particular the important neck-
pinch singularity modelled on a shrinking n-dimensional cylinder (cf.[1, 2])
and singularities modelled on flows starting at a positive Einstein metric
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or more general at a gradient shrinking soliton with bounded curvature (see
Section 2). Only very few rigorous examples of finite-time singularities, which
are not of Type-I (i.e., Type-II) are known (cf. [6, 9]).

Since the manifolds (M, g(t)) have bounded curvatures in the Type-I
case (1.2), the parabolic maximum principle applied to the evolution equa-
tion satisfied by |Rm|2 shows that (1.3) is equivalent to

(1.4) sup
M

|Rmg(t)|g(t) ≥
1

8(T − t)
, for all t ∈ [0, T ).

This motivates the following definitions.

Definition 1.1. A quantity A(t) is said to blow up at the Type-I rate as
t → T if there exist constants C ≥ c > 0 such that c

T−t ≤ A(t) ≤ C
T−t for all

t ∈ [T − c, T ).

Definition 1.2. A space–time sequence (pi, ti) with pi ∈ M and ti ↗ T in
a Ricci flow is called an essential blow-up sequence if there exists a constant
c > 0 such that

|Rmg(ti)|g(ti)(pi) ≥ c

T − ti
.

A point p ∈ M in a Type-I Ricci flow is called a (general) Type-I singular
point if there exists an essential blow-up sequence with pi → p on M. We
denote the set of all Type-I singular points by ΣI .

Remark 1.1. If a solution to (1.1) develops a Type-I singularity at time
T , the existence of an essential blow-up sequence follows from (1.4). If in
addition M is compact, Type-I singular points always exist. In the non-
compact case the Type-I singular set ΣI may be empty if the singularity
forms at spatial infinity. An example where this happens could be a cylin-
der Sn−1 × R with radius larger than 1 in the center and tapering down to
1 at the ends. Flowing this under Ricci flow would lead to a first blow-up at
spatial infinity.

A conjecture, normally attributed to Hamilton, is that a suitable blow-up
sequence for a Type-I singularity converges to a nontrivial gradient shrinking
soliton [11]. In the case where the blow-up limit is compact, this conjecture
was confirmed by Sesum [19]. In the general case, blow-up to a gradient
shrinking soliton was proved by Naber [15]. However, it remained an open
question whether the limit soliton Naber constructed is nontrivial, as men-
tioned for example in [3, Section 3.2]. In particular, one might think that the
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limit could be flat if all essential blow-up sequences converged “slowly” to
p so that the curvature disappears at infinity after parabolically rescaling.
One of the goals of this article is to rule out this possibility. More precisely,
we prove the following theorem.

Theorem 1.1. Let (Mn, g(t)) be a Type-I Ricci flow on [0, T ) and sup-
pose p ∈ ΣI is a Type-I singular point as in Definition 1.2. Then for every
sequence λj → ∞, the rescaled Ricci flows (M, gj(t), p) defined on [−λjT, 0)
by gj(t) := λjg(T + t

λj
) subconverge to a normalized nontrivial gradient

shrinking soliton in canonical form.

We now turn to the relationship between the set ΣI of Type-I singular
points and other notions of singular sets, starting with the set of special
Type-I singular points Σs defined as follows.

Definition 1.3. A point p ∈ M in a Type-I Ricci flow is called a special
Type-I singular point if there exists an essential blow-up sequence (pi, ti)
with pi = p for all i ∈ N. The set of all such points is denoted by Σs. More-
over, we denote by ΣRm ⊆ Σs the set of points p ∈ M for which
|Rmg(t)|g(t)(p) blows up at the Type-I rate as t → T .

For mean curvature flow, Le and Sesum [13] proved that the mean cur-
vature (rather than the second fundamental form) must be unbounded at
a Type-I singular time. It is not surprising and known to some Ricci flow
experts that a similar result is true for the Ricci flow: if T is a Type-I singu-
lar time, then the scalar curvature Rg(t) is unbounded as t → T . We make
the following definition.

Definition 1.4. The set ΣR is defined to be the set of points p ∈ M for
which Rg(t)(p) blows up at the Type-I rate as t → T.

Instead of defining more restrictive singular sets, one can also think of a
priori larger sets of singular points, for example the set consisting of points
p ∈ M, where |Rmg(t)|g(t)(p) is unbounded as t → T but possibly blows up
at a rate smaller than the Type-I rate, e.g., like 1

(T−t)α for some α < 1. A
priori it is not clear whether (in the presence of a Type-I singularity) such
slowly forming singularities may exist in another part of the manifold, in
particular since they cannot be observed by a blow-up argument analogous
to Theorem 1.1. The following is the most general, natural definition of the
singular set.
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Definition 1.5. We call p ∈ M a singular point if there does not exist any
neighborhood Up 	 p on which |Rmg(t)|g(t) stays bounded as t → T . The set
of all singular points in this sense is denoted by Σ.

From the above definitions it is clear that

(1.5) ΣR ⊆ ΣRm ⊆ Σs ⊆ ΣI ⊆ Σ.

For mean curvature flow with H > 0, Stone [21] showed that the (corre-
sponding) notions of singular sets Σs, ΣI and Σ agree. The same is true
for the Ricci flow; in fact, we show the slightly stronger result that all the
singular sets defined above are identical.

Theorem 1.2. Let (Mn, g(t)) be a Type-I Ricci flow on [0, T ) with singular
time T . Then Σ ⊆ ΣR, i.e., all the different notions of nested singular sets
in (1.5) agree.

In particular, this shows that for a Type-I Ricci flow there cannot exist
singular points where Rg(t) stays bounded or blows up at a rate smaller than
the Type-I rate as t → T . As a corollary, we conclude that the singular set
Σ has asymptotically vanishing volume if its volume is bounded initially.

Theorem 1.3. Let (Mn, g(t)) be a Type-I Ricci flow on [0, T ) with singular
time T and singular set Σ as in Definition 1.5. If Volg(0)(Σ) < ∞ then

Volg(t)(Σ) t→T−−−→ 0.

Remark 1.2. A shrinking cylinder S
m × R

n−m, n > m ≥ 2, shows that the
condition Volg(0)(Σ) < ∞ is necessary.

The paper is organized as follows. In Section 2, we prove Theorem 1.1.
The methods we are using strongly rely on Perelman’s results [17]. First, we
recall Naber’s result [15] that for any point p ∈ M the rescaled flows gj(t)
as defined in Theorem 1.1 converge to a gradient shrinking soliton (Theorem
2.1). This is based on a version of Perelman’s reduced length and volume
based at the singular time, developed independently by the first author [7]
and Naber [15]. For completeness, we sketch the main arguments of the
proof. We then use Perelman’s pseudolocality theorem [17] to show that the
limit soliton must be nontrivial if p ∈ ΣI is a Type-I singular point. This
completes the proof of Theorem 1.1. In Section 3, we prove Theorem 1.2.
The argument is based again on Perelman’s pseudolocality result as well as
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a strong rigidity result for gradient shrinking solitons, which can be found in
Pigola–Rimoldi–Setti [18]. As a corollary, we obtain a proof of Theorem 1.3.
Finally, in the last section we define a density function θp,T for Type-I Ricci
flows, related to the central density for gradient shrinking solitons defined by
Cao–Hamilton–Ilmanen [4], and prove a regularity type theorem (Theorem
4.1) resembling White’s regularity result for mean curvature flow [22] and
Ni’s regularity theorem for Ricci flow [16]. The proof of this result uses a
gap theorem of Yokota [23].

Le and Sesum [14] have also been studying properties of the scalar cur-
vature at a Ricci flow singularity. In the current version of their paper, they
observe how the arguments from our paper in fact exclude Type-I singu-
larity formation for compact manifolds under the assumption of an integral
(rather than pointwise) scalar curvature bound.

2. Blow-up to nontrivial gradient shrinking solitons

Before we start proving Theorem 1.1, let us briefly recall some basic defi-
nitions and facts about gradient shrinking solitons as well as the essential
definitions and results from the first author [7] and Naber [15].

Definition 2.1. A triple (Mn, g, f), where (M, g) is a complete
n-dimensional Riemannian manifold and f : M → R a smooth function, is
called gradient shrinking soliton if

Ricg + ∇g∇f = 1
2g.

It is well known, that we can normalize f on a gradient shrinking soliton by
setting

(2.1) Rg + |∇f |2g − f = 0.

It follows from (2.1) and the fact that R ≥ 0 (cf. e.g. [24]), that ∇f is a
complete vector field. Letting T > 0 and considering the diffeomorphisms φt

of M generated by 1
T−t∇f with φT−1 = id, we obtain from the definition

of gradient shrinking soliton above a corresponding Ricci flow g(t) = (T −
t)φ∗

t g on (−∞, T ) with (M, g(T − 1)) = (M, g). Canonically defining time-
dependent functions by f(t) := φ∗

t f, the flow satisfies

(2.2) Ricg(t) + ∇g(t)∇f(t) =
1

2(T − t)
g(t) and

∂

∂t
f(t) = |∇f(t)|2g(t).
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We call a Ricci flow (M, g(t), f(t)) on (−∞, T ) with smooth functions f(t) :
M → R satisfying (2.2) a gradient shrinking soliton in canonical form.

Let (Mn, g(t)) be a (connected) Type-I Ricci flow on [0, T ) as defined
in Section 1. For fixed (p, t0) ∈ M× [0, T ) and all (q, t̄) ∈ M× [0, t0], Perel-
man’s reduced distance (in forward time notation) is defined by

lp,t0(q, t̄) := inf
γ

{
1

2
√

t0 − t̄

∫ t0

t̄

√
t0 − t

(|γ̇(t)|2 + Rg(t)(γ(t))
)
dt

}
,

where the infimum is taken over all curves γ : [t̄, t0] → M with γ(t0) = p,
γ(t̄) = q. The corresponding reduced volume is

Ṽp,t0(t̄) :=
∫
M

vp,t0(q, t̄) dvolg(t̄)(q),

where
vp,t0(q, t̄) :=

(
4π(t0 − t̄)

)−n/2 e−lp,t0 (q,t̄).

We will use the following two results from [7] (restricted here to the Type-I
case):

Lemma 2.1 (Enders [7], Theorem 3.3.1). Let (Mn, g(t)) be a (con-
nected) Type-I Ricci flow on [0, T ), p ∈ M and tk ↗ T. Then there exists a
locally Lipschitz function

lp,T : M× (0, T ) → R,

which is a subsequential limit

lp,tk

C0
loc(M×(0,T ))−−−−−−−−−→ lp,T

and which for all (q, t̄) ∈ M× (0, T ) satisfies

− ∂

∂t̄
lp,T (q, t̄) − Δg(t̄)lp,T (q, t̄) + |∇lp,T (q, t̄)|2g(t̄) − Rg(t̄)(q) +

n

2(T − t̄)
≥ 0

in the sense of distributions. Equivalently,

�∗
g(t̄)vp,T (q, t̄) ≤ 0,

where

�∗
g(t) := − ∂

∂t
− Δg(t) + Rg(t)
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denotes the formal adjoint of the heat operator under the Ricci flow, and

vp,T (q, t̄) :=
(
4π(T − t̄)

)−n/2 e−lp,T (q,t̄).

Definition 2.2. We define lp,T as in Lemma 2.1 to be a reduced distance
based at the singular time (p, T ). Moreover, the corresponding

Ṽp,T (t̄) :=
∫
M

vp,T (q, t̄)dvolg(t̄)(q)

is denoted a reduced volume based at the singular time (p, T ) with vp,T being
a reduced volume density based at the singular time (p, T ).

The next result states that similarly to Perelman’s reduced volume, any
reduced volume based at singular time is also a monotone quantity.

Lemma 2.2 (Enders [7], Theorem 3.4.3). Under the assumptions as
in Definition 2.2 we have

(i) d
dt̄ Ṽp,T (t̄) ≥ 0,

(ii) limt̄↗T Ṽp,T (t̄) ≤ 1,

(iii) If Ṽp,T (t̄1) = Ṽp,T (t̄2) for 0 < t̄1 < t̄2 < T, then (M, g(t), lp,T ( · , t)) is
a normalized gradient shrinking soliton in canonical form.

Similar results to Lemmas 2.1 and 2.2 have been independently obtained
in [15]. We restate the estimates derived there in the following adapted form.

Lemma 2.3 (Naber [15], Proposition 3.6). Let (Mn, g(t)) be a (con-
nected) Type-I Ricci flow on [0, T ), and let (p, t0) ∈ M× [0, T ). Then there
exists K > 0 (only dependent on n and the Type-I constant C) such that for
all (q, t̄) ∈ M× (0, T )

(i) 1
K

(
1 + dt̄(p,q)√

t0−t̄

)2 − K ≤ lp,t0(q, t̄) ≤ K
(
1 + dt̄(p,q)√

t0−t̄

)2
,

(ii) |∇lp,t0(q, t̄)|g(t̄)(q) ≤ K√
t0−t̄

(
1 + dt̄(p,q)√

t0−t̄

)
,

(iii) | ∂
∂t̄ lp,t0(q, t̄)|g(t̄)(q) ≤ K

t0−t̄

(
1 + dt̄(p,q)√

t0−t̄

)2
.

We now show that parabolic rescaling limits in a Type-I Ricci flow
(around any point p ∈ M at the singular time T ) have a gradient shrinking
soliton structure. For completeness, we reprove this result which was first
obtained in [15].
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Theorem 2.1 (cf. Naber [15], Theorem 1.5). Let (Mn, g(t), p), t ∈
[0, T ), p ∈ M be a pointed Type-I Ricci flow, and λj ↗ ∞. Then any pointed
Cheeger–Gromov–Hamilton limit flow (Mn∞, g∞(t), p∞), t ∈ (−∞, 0), of the
parabolically rescaled Ricci flows gj(t) := λjg(T + t

λj
) is a normalized gradi-

ent shrinking soliton in canonical form.

Proof. Because of the Type-I curvature bound, we have at any x ∈ M that

|Rmgj(t)|gj(t)(x) =
1
λj

|Rmg(T+ t

λj
)|g(T+ t

λj
)(x)(2.3)

≤ C

λj

(
T −

(
T + t

λj

)) =
C

−t
.

This gives a uniform curvature bound on compact subsets of (−∞, 0).
Together with Perelman’s no local collapsing theorem (which also holds for
complete M because of the uniform lower bound on the reduced volume as
described below), we can use the Cheeger–Gromov–Hamilton Compactness
Theorem [12] to extract from the sequence (M, gj(t), p) a complete pointed
subsequential limit Ricci flow (M∞, g∞(t), p∞) on (−∞, 0), which is still
Type-I.

Now, let lp,T be any reduced distance based at the singular time (p, T )
for the Ricci flow (M, g(t)) on [0, T ) as defined above. For each (q, t̄) ∈
M× (−∞, 0), consider for large enough j

(2.4) ljp,0(q, t̄) := lp,T

(
q, T + t̄

λj

)
,

which is a reduced distance based at the singular time (p, 0) for the rescaled
Ricci flow (M, gj(t)) on [−λjT, 0) because of the scaling properties of the
reduced distance. The corresponding reduced volumes are then related by

Ṽ j
p,0(t̄) = Ṽp,T (T + t̄

λj
),

and we can conclude, using also Lemma 2.2, that

Ṽ j
p,0

j→∞−−−→ lim
t↗T

Ṽp,T (t) ∈ (0, 1]

uniformly on compact subsets of (−∞, 0).
The uniform estimates in Lemma 2.3 hold for lp,T by construction, and

hence by (2.4) for each ljp,0. Note that by (2.3) they have the same Type-I
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bound C. Hence we can conclude that there exists a locally Lipschitz function
l∞p∞,0 on the limit manifold M∞ × (−∞, 0), such that

ljp,0

C0
loc−−→ l∞p∞,0.

Since its corresponding formal reduced volume V ∞
p∞,0 is constant, we can

conclude as in the proof of Lemma 2.2 (iii) that (M∞, g∞(t), l∞p∞,0( · , t)) is
a normalized gradient shrinking soliton in canonical form. �
To obtain a complete proof of Theorem 1.1, it remains to show that for
Type-I singular points p ∈ ΣI the rescaling limit flow (M∞, g∞(t)) in
Theorem 2.1 is nontrivial and hence a suitable singularity model.

Our proof is based on Perelman’s pseudolocality theorem, which states
the following.

Proposition 2.1 (Perelman [17], Theorem 10.3). There exist ε, δ >
0 depending on n with the following property. Suppose g(t) is a complete
Ricci flow with bounded curvature on an n-dimensional manifold Mn for
t ∈ [0, (εr0)2). Moreover, suppose that r0 > 0, p ∈ M and assume that at
t = 0 we have |Rmg(0)| ≤ r−2

0 in Bg(0)(p, r0) and Volg(0)

(
Bg(0)(p, r0)

) ≥ (1 −
δ)ωnrn

0 , where ωn is the volume of the unit ball in R
n. Then there holds the

following estimate

(2.5) |Rmg(t)|(x) ≤ (εr0)−2, for 0 ≤ t < (εr0)2, x ∈ Bg(t)(p, εr0).

Remark 2.1. Note that by choosing a smaller ε, estimate (2.5) holds for
x ∈ Bg(0)(p, εr0). This follows directly from the following lemma, variants of
which can be found elsewhere, for example [11].

Lemma 2.4. Suppose that g(t) is a Ricci flow on a manifold Mn for t ∈
[0, T ]. Suppose further that for some p ∈ M and r > 0, we have Bg(t)(p, r)
⊂⊂ M, and |Ric| ≤ M on Bg(t)(p, r) for each t ∈ [0, T ]. Then

Bg(0)(p, e−Mtr) ⊂ Bg(t)(p, r),

for all t ∈ [0, T ].

Proof. Let σ ∈ (0, 1) be arbitrary. It suffices to show that

Bg(0)(p, e−Mtσr) ⊂ Bg(t)(p, r),

for each t ∈ [0, T ]. Clearly this is true for t = 0; suppose it fails for some
larger t = t0 ∈ (0, T ]. Without loss of generality, t0 is the least such time.
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Pick a minimizing geodesic γ, with respect to g(0), from p to a point
y ∈ M with dg(0)(p, y) = e−Mt0σr and dg(t0)(p, y) = r.

Then for all t ∈ [0, t0), γ lies within Bg(0)(p, e−Mtσr) ⊂ Bg(t)(p, r), and
hence (by hypothesis) |Ric| ≤ M on γ over this range of times.

But then Lengthg(t)(γ) ≤ eMtLengthg(0)(γ) for all t ∈ [0, t0), and hence

Lengthg(t0)(γ) ≤ eMt0e−Mt0σr = σr < r,

and this implies dg(t0)(p, y) < r, a contradiction. �

We are now ready to prove that the blow-up limit is nontrivial.

Proof of Theorem 1.1. Assume that g∞(t) is flat for all t < 0. In particular,
g∞(t) is independent of time, and we denote it by ĝ.

Take r0 > 0 smaller than the injectivity radius of ĝ at p∞ to ensure that
Bĝ(p∞, r0) is a Euclidean ball. By the Cheeger–Gromov–Hamilton conver-
gence, taking j large enough, Bgj(−(εr0)2)(p, r0) is as close as we want to a
Euclidean ball, where ε is chosen as in Proposition 2.1. In particular, we may
fix j sufficiently large such that Bgj(−(εr0)2)(p, r0) satisfies the conditions of
Proposition 2.1 and hence, using also Remark 2.1,

|Rmgj(t)|gj(t)(x) ≤ (εr0)−2, for −(εr0)2 ≤ t < 0, x ∈ Bgj(−(εr0)2)(p, εr0).
(2.6)

On the other hand, since p ∈ ΣI , there exists an essential blow-up sequence
(pi, ti) with pi → p such that for a constant c > 0 as in Definition 1.2

|Rmgj(λj(ti−T ))|gj(λj(ti−T ))(pi) ≥ c

λj(T − ti)
.

For i large enough, this contradicts (2.6). Thus g∞(t) cannot be flat. �

Nontrivial gradient shrinking solitons also arise as blow-down limits of cer-
tain ancient Ricci flow solutions (which are singularity models) as shown by
Perelman [17] in 3 dimensions, and recently by Cao and Zhang [5] for higher
dimensions in the Type-I case.

3. Singular sets

A crucial ingredient for the theorems proved in this and the next section
is the following rigidity result for gradient shrinking solitons as for example
shown in [18].
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Lemma 3.1 (Pigola–Rimoldi–Setti [18], Theorem 3). Let (Mn, g, f)
be a complete gradient shrinking soliton. Then the scalar curvature Rg is
nonnegative, and if there exists a point p ∈ M where Rg(p) = 0, then
(M, g, f) is the Gaussian soliton, i.e., isometric to flat Euclidean space
(Rn, gRn).

We use this lemma to prove Theorem 1.2, i.e., that Σ ⊆ ΣR. As a first
step, we show that the Type-I singular set ΣI is characterized by the blow-up
of the scalar curvature at the Type-I rate, i.e., ΣI = ΣR.

Theorem 3.1. Let (Mn, g(t)) be a Type-I Ricci flow on [0, T ) with singular
time T , Type-I singular set ΣI as in Definition 1.2 and ΣR as in Definition
1.4. Then ΣI = ΣR.

Proof. By definition, we know that ΣR ⊆ ΣI . For the converse inclusion,
assume that p ∈ M \ ΣR. Hence, there are cj ↘ 0 and tj ∈ [T − cj , T ), such
that Rg(tj)(p) < cj

T−tj
. Let λj = (T − tj)−1 → ∞ and rescale as in Theo-

rem 2.1, i.e., let gj(t) := λjg(T + t
λj

) on M× [−λjT, 0). By Theorem 2.1,
(M, gj(t), p) converge to a gradient shrinking soliton in canonical form
(M∞, g∞(t), p∞) on (−∞, 0) with

Rg∞(−1)(p∞) = lim
j→∞

λ−1
j Rg(tj)(p) ≤ lim

j→∞
cj = 0.

By Lemma 3.1, (M∞, g∞(−1)) = (M∞, g∞(t)) must be flat. But by Theo-
rem 1.1, the limit soliton is nonflat for points in the Type-I singular set, so
p ∈ M \ ΣI . �

To show that Σ = ΣI , we prove the following regularity type result.

Theorem 3.2. If (Mn, g(t)) is a Type-I Ricci flow on [0, T ) with singular
time T and p ∈ M \ ΣI , then there exists a neighborhood Up 	 p such that
the curvature is bounded uniformly on Up × [0, T ). In particular, p ∈ M \ Σ.

Proof. Since p ∈ M \ ΣI , for any given λj → ∞ the rescaled metrics gj(t) =
λjg(T + t

λj
) converge to flat Euclidean space. As in the proof of Theorem

1.1, for large enough j ≥ j0 the conditions of the pseudolocality theorem,
Proposition 2.1 and Lemma 2.4 with r0 = 1 are satisfied. Let K := λj0 and
take ε > 0 to be as in the pseudolocality theorem and Remark 2.1 following
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it. Then we conclude for j = j0 as before

|Rmgj0 (t)|gj0(t)(x) ≤ ε−2, for −ε2 ≤ t < 0, x ∈ Bgj0 (−ε2)(p, ε),

which is equivalent to

|Rmg(t)|g(t) ≤
K

ε2
, for all t ∈ [T − ε2

K , T )

on the neighborhood Up := B
g(T− ε2

K
)
(p, ε√

K
) of p. The bound for times

t < T − ε2

K follows trivially from the Type-I condition (1.2). �

Combining Theorems 3.1 and 3.2, we have proved Theorem 1.2. As a corol-
lary, we obtain Theorem 1.3, i.e., that the singular set Σ has asymptotically
vanishing volume if Volg(0)(Σ) < ∞.

Proof of Theorem 1.3. By the bounded curvature assumption (1.2) together
with the parabolic maximum principle applied to the evolution of Rg(t), there
exists C̃ > 0 such that infM Rg(t) ≥ −C̃, ∀t ∈ [0, T ). Let ΣR,k be defined by

ΣR,k := {p ∈ M|Rg(t)(p) ≥ 1/k
T−t , ∀t ∈ (T − 1

k , T )} ⊆ ΣR = Σ

for k ∈ N and ΣR,0 := ∅. We claim that on ΣR,k, we have for all t ∈ [0, T )

∫ t

0
Rg(s)ds ≥ −C̃T + log

(
1/k
T−t

)1/k
.

For t ≤ T − 1
k , this follows from

∫ t
0 Rds ≥ −C̃t ≥ −C̃T and the fact that

the log term is nonpositive in this case. For t ∈ (T − 1
k , T ), we obtain by

definition of ΣR,k

∫ t

0
Rg(s) ds =

∫ T−1/k

0
Rg(s) ds +

∫ t

T−1/k
Rg(s) ds

≥ −C̃(T − 1
k ) +

∫ t

T−1/k

1/k
T−s ds

≥ −C̃T + log
(

1/k
T−t

)1/k
.
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Using k1/k ≤ 2 for all k ∈ N, we can now bound volumes of subsets of ΣR,k

at time t in terms of their volumes at time 0 by computing

Volg(t)(ΣR,k \ ΣR,k−1) =
∫

ΣR,k\ΣR,k−1

e−(
∫ t

0 Rg(s)ds)dvolg(0)

≤ 2 eC̃T (T − t)1/k Volg(0)(ΣR,k \ ΣR,k−1).

We use this last estimate to conclude

lim sup
t→T

Volg(t)(Σ) = lim sup
t→T

∑
k∈N

Volg(t)(ΣR,k \ ΣR,k−1)

≤ 2 eC̃T lim
t→T

∑
k∈N

(T − t)1/k Volg(0)(ΣR,k \ ΣR,k−1)

= 0,

where the last line follows easily from the fact that
∑
k∈N

Volg(0)(ΣR,k \ ΣR,k−1) = Volg(0)(ΣR) < ∞.

�

4. Density and regularity theorem

In this section, we use the reduced volume based at the singular time as
reviewed in Section 2 to define a density function on the closure of space–
time of Type-I Ricci flows and prove a regularity theorem. We first overcome
the nonuniqueness issue of the reduced distance based at the singular time.
The functions lp,T used in Section 2 were subsequential limits and depended
on the choice of {tk} and a subsequence {tkl

}. We now denote such a choice of
reduced distance based at the singular time by lp,T,{tkl

} to make the following
definition.

Definition 4.1. Under the assumptions of Lemma 2.1, we define the
reduced distance based at the singular time by

lp,T := inf
{tkl

}
lp,T,{tkl

},

where the infimum is taken over all possible subsequences of all possible
sequences tk ↗ T used to construct a reduced distance. As in Definition
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2.2, we correspondingly denote the reduced volume density and the reduced
volume based at the singular time by vp,T and Ṽp,T , respectively.

Note that Lemma 2.3 implies that lp,T is well-defined and locally Lip-
schitz because lp,T,{tkl

} are uniformly locally Lipschitz. The monotonicity in
Lemma 2.2 for the redefined Ṽp,T as above holds once we show the following
lemma.

Lemma 4.1. Under the assumptions as in Lemma 2.1, we have for vp,T in
Definition 4.1 that

�∗
g(t̄)vp,T (q, t̄) ≤ 0

holds in the weak sense or sense of distributions.

Proof. We argue by contradiction: Assume there exists a (small) parabolic
cylinder P = U × [t2, t1) ⊂ M× (0, T ), U open, such that for all 0 ≤ φ ∈
C2

cpt(M× (0, T )) with support in P

∫∫
P

vp,T (q, t)�g(t)φ(q, t) dvolg(t)(q)dt > 0.

Inverting time (τ := T − t) implies that −vp,T is strictly subparabolic in
the weak sense of Friedman [8], and we will apply his (strong) maximum
principle several times to derive a contradiction.

By Definition 4.1, vp,T := sup{tkl
} vp,T,{tkl

}. Let {tkl
} be any such subse-

quence, then vp,T,{tkl
} ≤ vp,T , and we know from Lemma 2.1 that

�∗vp,T,{tkl
} ≤ 0

in the weak sense. Now let Γ := P̄\P and w{tkl
} be a weak solution to

{
�∗w{tkl

} = 0 in P,

w{tkl
}|Γ = vp,T,{tkl

}|Γ.

Hence,

�∗(vp,T,{tkl
} − w{tkl

}) ≤ 0,

and the maximum principle implies

(4.1) vp,T,{tkl
} ≤ w{tkl

} in P̄ .
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Similarly, let w be a weak solution to
{

�∗w = 0 in P,

w|Γ = vp,T |Γ.

Since

�∗(w{tkl
} − w) = 0

and w{tkl
}|Γ = vp,T,{tkl

}|Γ ≤ vp,T |Γ = w|Γ, the maximum principle implies
that

(4.2) w{tkl
} ≤ w in P̄ .

As {tkl
} was arbitrary, we conclude from (4.1) and (4.2) that

vp,T ≤ w in P̄ .

Using vp,T |Γ = w|Γ and the maximum principle again, this contradicts that
by assumption

�∗(vp,T − w) > 0

in the weak sense in P. �

We now consider points in the closure of space–time, i.e., in M× [0, T ], to
include the singular time.

Definition 4.2. Let (M, g(t)) be a Type-I Ricci flow on [0, T ). For any
(p, t0) ∈ M× [0, T ], we define the density at (p, t0) in the Ricci flow
(M, g(t)) by

θp,t0 := lim
t̄↗t0

Ṽp,t0(t̄) ∈ (0, 1].

Note that for the special case of gradient shrinking solitons, Cao–
Hamilton–Ilmanen [4] suggest a “central density of a shrinker” defined
similarly.

If T is the Type-I singular time and t0 < T it follows from the prop-
erties of Perelman’s reduced volume that θp,t0 = 1 for any p ∈ M (in fact,
without the Type-I assumption). At the singular time t0 = T, the density
carries information regarding the structure of the singularity, namely the
corresponding gradient shrinking solitons one may obtain by taking a blow-
up limit. We prove the following regularity type result similar to White’s
local regularity result for mean curvature flow [22], where instead of using
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the Gaussian density for the mean curvature flow we use the density for
Type-I Ricci flows as defined above. A related result is proved by Ni [16]
using a localized quantity.

Theorem 4.1. Let (Mn, g(t)) be a Type-I Ricci flow on [0, T ) with singular
time T and singular set Σ as in Definition 1.5. Then θp,T = 1 if and only
if p ∈ M \ Σ. In fact, there exists η > 0 (only depending on n) such that
if θp,T > 1 − η for a Ricci flow as above, then p ∈ M \ Σ. Equivalently, if
θp,T > 1 − η, then there exists a neighborhood Up 	 p such that the curvature
is bounded uniformly on Up × [0, T ).

Proof. It follows from the discussion in Section 3 that any rescaling limit
(M∞, g∞(t)) as in Theorem 2.1 around p ∈ M \ Σ is flat, i.e., (M∞, g∞(t))
is isometric to the Gaussian soliton (Rn, gRn). Hence one easily computes
θp,T = 1.

Conversely, let θp,T be the density of p ∈ M and let (M∞, g∞(t), l∞(t))
be the rescaling limit flow around (p, T ). It is a normalized gradient shrinking
soliton in canonical form with constant formal reduced volume

θp,T =
∫
M∞

(4π(T − t))−n/2 e−l∞(t) dvolg∞(t)

for any t. Note that in the proof of Theorem 2.1 we can use lp,T instead
of lp,T,{tkl

} as it only requires the estimates from Lemma 2.3 as well as the
formal equalities on a constant reduced volume. Now we can employ [23,
Corollary 1.1 (3)] to conclude that there exists η > 0 (only depending on
n) such that if θp,T > 1 − η, then the limit flow is the Gaussian soliton. In
particular, θp,T > 1 − η implies p ∈ M \ Σ by Theorems 1.1 and 1.2. �
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