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On convergence of the Kähler–Ricci flow

Ovidiu Munteanu and Gábor Székelyhidi

We study the convergence of the Kähler–Ricci flow on a Fano man-
ifold under some stability conditions. More precisely we assume
that the first eingenvalue of the ∂̄-operator acting on vector fields
is uniformly bounded along the flow, and in addition the Mabuchi
energy decays at most logarithmically. We then give different sit-
uations in which the condition on the Mabuchi energy holds.

1. Introduction

Let X be a compact Kähler manifold of dimension n with c1 (X) > 0 and
let us consider the Ricci flow introduced by Hamilton [9] defined by

∂

∂t
gij̄ = −(

Rij̄ − gij̄

)
,

gij̄ (0) ∈ c1(X).

Cao [3] showed that this flow exists for all time. When c1(X) = 0 or c1(X) <
0, then Cao also showed, using Yau’s estimates [23], that the analogous
normalized flow converges to a Kähler–Einstein metric on X. When c1(X) >
0, i.e. the manifold is Fano, then it is still an open problem to determine
whether X admits a Kähler–Einstein metric. The central problem in the
field is the following conjecture.

Conjecture 1.1 Yau–Tian–Donaldson Conjecture. A Fano manifold
X admits a Kähler–Einstein metric if and only if it is K-polystable.

For more details see [7, 20] and also [13] for a survey and many more ref-
erences. If we try to use the Kähler–Ricci flow to find a Kähler–Einstein met-
ric then in light of this conjecture the key problem is to relate K -polystability
of X to convergence of the flow. This still seems out of reach at present, but
many partial results have been obtained. One possibility is to assume that
the Riemann curvature tensor remains uniformly bounded along the flow,
for results in this direction see [4, 11, 14, 17, 21].

887



888 Ovidiu Munteanu & Gábor Székelyhidi

In this paper, we study a different kind of assumption, which was intro-
duced by Phong–Song–Sturm–Weinkove in [12]. The main assumption is
that along the flow g(t) there is a uniform lower bound λt � λ > 0 on the
lowest positive eigenvalue λt of the ∂̄-operator acting on vector fields. The
main result in [12] is that if in addition we assume that the Mabuchi energy
is bounded from below, then the flow converges to a Kähler–Einstein metric.
Our main result is a weakening of the hypothesis on the Mabuchi energy.

Theorem 1.1. Suppose that along the Kähler–Ricci flow we have a uniform
lower bound λt � λ > 0 on the first eingenvalue, and in addition the Mabuchi
energy satisfies

(1.1) M(g(t)) > −C log(1 + t) − D,

for some constants C, D > 0. Then the metrics g(t) converge exponentially
fast in C∞ to a Kähler–Einstein metric.

In fact the proof of the theorem shows that instead of (1.1) it is enough to
assume

(1.2) inf
t>0

Y (t) = 0,

where

Y (t) = − d

dt
M(g(t)).

Since the Mabuchi energy is monotonically decreasing under the Kähler–
Ricci flow, the assumption of the theorem clearly implies this weaker state-
ment. We will prove this theorem in Section 3. A first step is to show that
the Futaki invariant of the manifold vanishes, which we prove in Lemma 3.1.
The main novelty is the estimate in Lemma 3.2.

The advantage of replacing the lower bound on M by these weaker
statements is that there are some other natural conditions under which they
can be shown to hold. We give two such conditions.

In Section 4, we show directly that on a K -semistable toric variety the
condition (1.1) of Theorem 1.1 holds.

Theorem 1.2. Suppose that the Fano toric variety X is K-semistable. If
g(t) are torus invariant metrics satisfying the Kähler–Ricci flow then

M(g(t)) > −C log(1 + t) − D

for some constants C, D > 0.



On convergence of the Kähler–Ricci flow 889

While it is already known that K -semistable toric varieties admit Kähler–
Einstein metrics (see [22]) and hence the Mabuchi energy is bounded below,
this direct argument could be of independent interest.

In Section 5, we show that if we define

R(X) := sup{t | there exists ω ∈ c1(X) such that Ric(ω) > tω},

then the condition R(X) = 1 implies that (1.2) holds.

Theorem 1.3. Suppose that X is a Fano manifold which satisfies R(X) =
1. Then along the Kähler–Ricci flow g(t) on X, we have

inf
t>0

Y (g(t)) = 0.

As a corollary we note

Corollary 1.1. If X is a Fano manifold with R(X) = 1 then X is
K-semistable.

This is a strengthening of a result in [16], where the second author conjec-
tured that the condition R(X) = 1 is equivalent to K -semistability.

Finally we note that if X is a degree n + 1 hypersurface in Pn+1 and
n + 1 � 3, then the α-invariant of X, defined by Tian [19], satisfies (see [5])

α(X) � n

n + 1
.

This implies that R(X) = 1, since given any Kähler metric ω0 and 0 < t < 1,
we can find ω that satisfies

Ric(ω) = tω + (1 − t)ω0,

so in particular Ric(ω) > tω (see [19]). By the above results X is
K -semistable and also the condition (1.2) holds. Note that it is not known
whether the Mabuchi energy is bounded from below for such hypersurfaces.

2. Background

In this section, we recall some basic notation and results that we use. We
consider the normalized Kähler–Ricci flow

∂

∂t
gij̄ = −(Rij̄ − gij̄) = ∂i∂j̄u,

gij̄(0) ∈ c1(X).
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Here Rij̄ is the Ricci curvature and u(t) is the Ricci potential of the metric
g(t), which we normalize so that

1
V

∫

X
e−uωn = 1.

Here

V =
∫

X
ωn.

A fundamental result of Perelman [10] (see [15] for a detailed exposition) is
that there exists a constant C0 depending only on g(0) such that

(2.1) ‖u‖C0 + ‖∇u‖C0 + ‖Δu‖C0 � C0

along the flow. We also need to recall the following lemma from [12].

Lemma 2.1. We have the following two results along the Kähler–Ricci
flow.

• There exist δ, K > 0 depending on the dimension n with the following
property. For any ε with 0 < ε � δ and any t0 � 0, if

‖u(t0)‖C0 � ε,

then
‖∇u(t0 + 2)‖C0 + ‖R(t0 + 2) − n‖C0 � Kε.

• There exists C > 0 depending on g(0) such that

‖u‖n+1
C0 � C‖∇u‖L2‖∇u‖n

C0 .

Proof. The first part is Lemma 1 from [12]. The second part also follows
directly from Lemma 3 in [12]. There it is shown that

‖u − b‖n+1
C0 � C‖∇u‖L2‖∇u‖n

C0 ,

where b is the average

b =
1
V

∫

X
ue−u ωn,

and also |b| � ‖u − b‖C0 . But then

‖u‖C0 � ‖u − b‖C0 + |b| � 2‖u − b‖C0 ,

so our statement follows. �
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We define the Mabuchi functional M so that M(g(0)) = 0 and

(2.2)
d

dt
M(g(t)) = −

∫

X
u(R − n) ωn = −

∫

X
|∇u|2 ωn,

where R is the scalar curvature of the metric g(t). In particular M is mono-
tonically decreasing under the flow. We define

Y (t) =
∫

X
|∇u|2 ωn.

The key to proving convergence of the Kähler–Ricci flow is showing expo-
nential decay of Y (t) (see [12]). For this the basic inequality proved in [14]
is

d

dt
Y (t) � −2λtY (t) − 2λtFut

(
πt

(∇ju
)) −

∫

X
|∇u|2 (R − n) ωn(2.3)

−
∫

X
∇ju∇k̄u

(
Rjk̄ − gjk̄

)
ωn,

where Fut
(
πt

(∇ju
))

is the Futaki invariant, applied to the orthogonal pro-
jection πt

(∇ju
)

of the vector field ∇ju on the space of holomorphic vector
fields.

3. The main argument

Our goal is to prove the following result.

Theorem 3.1. Assume that the lowest positive eigenvalue of the Laplacian
−gjk̄∇j∇k̄ acting on T 1,0 vector fields has a positive lower bound and that
the Mabuchi energy along the Kähler–Ricci flow satisfies

M(g(t)) > −C log(1 + t) − D,

for some constants C, D > 0. Then the metrics gij̄ converge exponentially
fast in C∞ to a Kähler–Einstein metric.

Before proving the theorem we need two Lemmas.

Lemma 3.1. If inft�0 Y (t) = 0, then the Futaki invariant of X vanishes.
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Proof. Using the second part of Lemma 2.1, we have

‖u‖n+1
C0 (t) � C‖∇u‖L2 (t) ‖∇u‖n

C0 (t) � C1Y (t)1/2,

where we have also used Perelman’s estimate (2.1). It follows that
inft�0 ‖u‖C0 = 0. Then the first part of Lemma 2.1 implies that

inf
t�0

‖R − n‖C0 = 0.

Thus the manifold has to be K -semistable by Donaldson’s lower bound [8].
In particular, the Futaki invariant of X vanishes. �

Lemma 3.2. On any Kähler manifold X such that

Rij̄ − gij̄ = −uij̄

we have the following estimate
∣
∣
∣
∣

∫

X
ujk̄∇ju∇k̄u

∣
∣
∣
∣ � 5

(‖∇u‖2
C0 + ‖Δu‖C0

) ∫

X
|∇u|2 .

Proof. We have
∣
∣
∣
∣

∫

X
ujk̄∇ju∇k̄u

∣
∣
∣
∣ �

∫

X

∣
∣ujk̄

∣
∣ |∇u|2(3.1)

�
(∫

X

∣
∣ujk̄

∣
∣2 |∇u|2

)1/2 (∫

X
|∇u|2

)1/2

.

We now denote

I =
∫

X

∣
∣ujk̄

∣
∣2 |∇u|2 .

Integration by parts yields:

I =
∫

X
ujk̄ukj̄ |∇u|2(3.2)

= −
∫

X
ujk̄j̄uk |∇u|2 −

∫

X
ujk̄uk

(
|∇u|2

)

j̄

�
∣
∣
∣
∣

∫

X
ujk̄j̄uk |∇u|2

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

X
ujk̄uk

(
|∇u|2

)

j̄

∣
∣
∣
∣ .
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The first term above is, using the Ricci identities,
∣
∣
∣
∣

∫

X
ujk̄j̄uk |∇u|2

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

X
(Δu)k̄ uk |∇u|2

∣
∣
∣
∣

�
∫

X
(Δu)2 |∇u|2 +

∣
∣
∣
∣

∫

X
(Δu)uk

(
|∇u|2

)

k̄

∣
∣
∣
∣

� ‖Δu‖2
C0

∫

X
|∇u|2 +

∫

X
|Δu| |∇u|

∣
∣
∣∇

(
|∇u|2

)∣
∣
∣

� ‖Δu‖2
C0

∫

X
|∇u|2 +

1
2

∫

X
(Δu)2 |∇u|2 +

1
2

∫

X

∣
∣
∣∇

(
|∇u|2

)∣
∣
∣
2

� 3
2
‖Δu‖2

C0

∫

X
|∇u|2 +

1
2

∫

X

∣
∣
∣∇

(
|∇u|2

)∣
∣
∣
2
.

The second term can be estimated as follows:
∣
∣
∣
∣

∫

X
ujk̄uk

(
|∇u|2

)

j̄

∣
∣
∣
∣ �

∫

X

∣
∣ujk̄

∣
∣ |∇u|

∣
∣
∣∇

(
|∇u|2

)∣
∣
∣

� 1
2

∫

X

∣
∣ujk̄

∣
∣2 |∇u|2 +

1
2

∫

X

∣
∣
∣∇

(
|∇u|2

)∣
∣
∣
2

=
1
2
I +

1
2

∫

X

∣
∣
∣∇

(
|∇u|2

)∣
∣
∣
2
.

Using these estimates in (3.2) it follows that

(3.3) I � 3‖Δu‖2
C0

∫

X
|∇u|2 + 2

∫

X

∣
∣
∣∇

(
|∇u|2

)∣
∣
∣
2
.

We now denote

J =
∫

X

∣
∣
∣∇

(
|∇u|2

)∣
∣
∣
2

= −
∫

X
|∇u|2 Δ |∇u|2.

According to the Bochner formula,

Δ |∇u|2 = 2〈∇u,∇ (Δu)〉 + Rij̄uı̄uj +
∣
∣uij̄

∣
∣2 + |uij |2 .

Note that
Rij̄uı̄uj =

(
gij̄ − uij̄

)
uı̄uj

� −uij̄uı̄uj

� − ∣
∣uij̄

∣
∣2 − 1

4 |∇u|4 ,
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where the last inequality follows from
∣
∣uij̄uı̄uj

∣
∣ �

∣
∣uij̄

∣
∣ |∇u|2

�
∣
∣uij̄

∣
∣2 + 1

4 |∇u|4 .

This proves that

Δ |∇u|2 � 2〈∇u,∇ (Δu)〉 − 1
4 |∇u|4 .

We use this to estimate J from above:

J = −
∫

X
|∇u|2 Δ |∇u|2(3.4)

� −2
∫

X
〈∇u,∇ (Δu)〉 |∇u|2 +

1
4

∫

X
|∇u|4 |∇u|2 .

Let us study the first term in (3.4). We have

− 2
∫

X
〈∇u,∇ (Δu)〉 |∇u|2

= 2
∫

X
(Δu)2 |∇u|2 + 2

∫

X
(Δu)

〈
∇u,∇

(
|∇u|2

)〉

� 2‖Δu‖2
C0

∫

X
|∇u|2 + 2

∫

X
|Δu| |∇u|

∣
∣
∣∇

(
|∇u|2

)∣
∣
∣

� 2‖Δu‖2
C0

∫

X
|∇u|2 + 2

∫

X
|Δu|2 |∇u|2 +

1
2

∫

X

∣
∣
∣∇

(
|∇u|2

)∣
∣
∣
2

� 4‖Δu‖2
C0

∫

X
|∇u|2 +

1
2
J.

Plugging this into (3.4) we get

J � 8‖Δu‖2
C0

∫

X
|∇u|2 +

1
2
‖∇u‖4

C0

∫

X
|∇u|2 .

We plug this into (3.3) and obtain

I �
(
19‖Δu‖2

C0 + ‖∇u‖4
C0

) ∫

X
|∇u|2 .

Using this in (3.1) we obtain the result. �

We can now prove the theorem.
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Proof of Theorem 3.1. Note first of all that our hypothesis implies that

(3.5) inf
t�0

Y (t) = 0.

For if Y (t) > ε > 0 for all t then by Equation (2.2)

M(g(t)) < −εt,

which contradicts our assumption.
Our goal is to prove that Y (t) has exponential decay, since then the

exponential convergence of the Kähler–Ricci flow follows like in [12]. In the
inequality (2.3), we use our hypothesis that λt � λ > 0 and that the Futaki
invariant vanishes by Lemma 3.1. We obtain

(3.6)
d

dt
Y (t) � −2λY (t) −

∫

X
|∇u|2 (R − n) ωn −

∫

X
∇ju∇k̄u

(
Rjk̄ − gjk̄

)
ωn.

Now using Lemma 3.2 and the fact that R − n = −Δu we get

(3.7)
d

dt
Y (t) � −2λY (t) + 6

(‖Δu‖C0 (t) + ‖∇u‖2
C0 (t)

)
Y (t) .

We remark that formula (3.7) can be used as a substitute for the differential-
difference inequality (5.5) in [12].

We are now ready to finish the proof of the theorem. Fix ε0 > 0 small
to be determined later. There must exist a point t0 > 0 such that

Y (t0) � ε0

because of (3.5). It follows from (3.7) and Perelman’s estimates on ∇u and
Δu that

d

dt
Y (t) � CY (t)

for some constant C > 0. Hence, Y has at most exponential growth and it
follows that

Y (t0 + 2) � Y (t0) e2C � ε0e2C .

Consequently, if we set
ε1 = 2ε0e2C ,

then for t ∈ [t0, t0 + 2] we have

(3.8) Y (t) � 1
2ε1.
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Assume that there exists a time t0 < t < ∞ for which Y (t) > ε1. Then
let

t1 = inf{t | t > t0, and Y (t) = ε1}
be the first time after t0 such that Y (t1) = ε1. By (3.8) we have t1 > t0 + 2
and so by the definition of t1 we have Y (t1 − 2) < ε1. By the second part of
Lemma 2.1

‖u‖C0 (t1 − 2) � Cε
1/2(n+1)
1 .

Moreover if ε1 is sufficiently small, the first part of Lemma 2.1 gives that

‖Δu‖C0 (t1) + ‖∇u‖2
C0 (t1) � C ′ε1/2(n+1)

1 .

Denote

ε = 6C ′ε1/2(n+1)
1 ,

then (3.7) implies that

(
d

dt
Y

)
(t1) � −2λY (t1) + εY (t1) .

Choose ε0 small enough so that ε < λ. Then we have

(
d

dt
Y

)
(t1) � −λY (t1) = −λε1 < 0,

which shows that Y is decreasing in a neighborhood of t1, and contradicts
the choice of t1. The contradiction came from our assumption that there
exists finite t such that Y (t) > ε1. Therefore, for all t > t0 we must have

Y (t) � ε1.

Then as above for any t � t0 + 2 we have

(
d

dt
Y

)
(t) � −λY (t).

This shows that Y (t) is exponentially decreasing and therefore by the argu-
ment in [12] we get the exponential convergence of the Kähler–Ricci flow to
a Kähler–Einstein metric. �
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4. The case of toric varieties

In this section, we prove the following.

Theorem 4.1. Suppose that the Fano toric variety X is K-semistable. If
g(t) are torus invariant metrics satisfying the Kähler–Ricci flow then

M(g(t)) > −C log(1 + t) − D

for some constants C, D > 0.

In fact, if X is K -semistable, then its Futaki invariant must vanish, so
by Wang and Zhu [22] X admits a Kähler–Einstein metric. Then Bando–
Mabuchi [2] implies that the Mabuchi energy is bounded below. So a stronger
result follows easily from known results, but the interest lies in our more
direct proof which uses K -semistability explicitly. The proof follows the
argument in [18] for the Calabi flow where also more details can be found.

Proof. Suppose that the torus invariant metrics g(t) satisfy the Kähler–
Ricci flow. On the dense complex torus (C∗)n ⊂ X, we have g(t) = i∂∂̄φ(t)
for some torus invariant functions φ(t). We can therefore think of them as
functions on Euclidean space:

φ(t) : Rn → R.

These Kähler potentials φ(t) satisfy

∂

∂t
φ(t) = u(t) = log det(φij) + φ,

where u is the Ricci potential as before. For each t the symplectic potential
f(t) is the Legendre transform of φ(t). Then f(t) is a convex function on a
polytope P , satisfying the Guillemin boundary conditions (for more details
see [7]). We have

∂

∂t
f = −L(f) = log det(fij) + f − x · ∇f,

where x is the Euclidean coordinate on the polytope P and the function
L(f) is just the Ricci potential expressed in the x coordinates. Let g be a
fixed symplectic potential, and define the functional

F(f) = −
∫

P
log det(gikfkj) dμ +

∫

P
gijfij dμ.
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Then

d

dt
F(f) =

∫

P
f ijL(f)ij dμ −

∫

P
gijL(f)ij dμ =

∫

P
(f ij − gij)L(f)ij dμ.

When integrating by parts the boundary terms vanish, so

d

dt
F(f) =

∫

P

[
(f ij),ij − (gij),ij

]
L(f) dμ =

∫

P
(R(g) − R(f))L(f) dμ,

where R(f), R(g) are the scalar curvatures of the metrics determined by f, g.
By Perelman’s estimates R(f) and the Ricci potential L(f) (normalized by
adding a constant) are uniformly bounded along the flow, so we obtain

d

dt
F(f(t)) < C1,

i.e.

(4.1) F(f(t)) < C1t + C2

for some constants C1, C2.
Applying the inequality log x < x/2 to each eigenvalue, we obtain

log det(M) � 1
2Tr(M) for any positive definite matrix M . Applying this to

the defining formula of F , we get

(4.2) F(f) � 1
2

∫

P
gijfij dμ.

The AM–GM inequality implies that

−log det(gikfkj) � −n log(gijfij)

so using the convexity of − log we get

−
∫

P
log det(gikfkj) dμ � −n

∫

P
log(gijfij) dμ(4.3)

� −C3 log
∫

P
gijfij dμ − C4,

� −C5 log(1 + t) − C6,

where in the last line we have used (4.1) and (4.2).
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In terms of symplectic potentials the Mabuchi energy is given by

M(f) = −
∫

P
log det(fij) dμ +

∫

∂P
f dσ − n

∫

P
f dμ,

moreover if the manifold is K -semistable then
∫

∂P
f dσ − n

∫

P
f dμ � 0

for all convex functions f (see Donaldson [7]). Therefore, we have

M(f) � −
∫

P
log det(gikfkj) dμ −

∫

P
log det(gij) dμ � −C log(1 + t) − D

using (4.3). This completes the proof. �

5. The case when R(X) = 1.

For a Fano manifold X we define

R(X) = sup{t | there exists a metric ω ∈ c1(X) such that Ric(ω) > tω}.

We show the following.

Theorem 5.1. Suppose that X is a Fano manifold which satisfies
R(X) = 1. Then along the Kähler–Ricci flow g(t) on X, we have

inf
t>0

Y (g(t)) = 0.

Proof. We argue by contradiction. Suppose that

inf
t>0

Y (g(t)) = ε > 0.

Since d
dtM(g(t)) = −Y (g(t)), we then have

(5.1) M(g(t)) < −εt + C

for some constant C. Fix a base metric ω0 ∈ c1(X), and define the J func-
tional by J (ω0) = 0 and

d

ds
J (ωs) =

∫

X
φ̇s(Λωs

ω0 − n) ωn
s ,
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where ωs = ω0 + i∂∂̄φs is a path of metrics, and Λωs
ω0 is the trace of the

metric ω0 with respect to ωs. Using the path ωs = ω0 + si∂∂̄φ we get

J (ω0 + i∂∂̄φ)

=
∫ 1

0

∫

X
φ(Λωs

ω0 − n) ωn
s ds

= n

∫ 1

0

∫

X
φ(ω0 − ωs) ∧ ωn−1

s ds

= n

∫ 1

0

∫

X
φ(−si∂∂̄φ) ∧ (sω1 + (1 − s)ω0)n−1 ds

= n

∫ 1

0

∫

X
φ(−i∂∂̄φ) ∧

n−1∑

k=0

(
n − 1

k

)
sk+1(1 − s)n−1−kωk

1 ∧ ωn−1−k
0 ds

= n

∫

X
φ(−i∂∂̄φ) ∧

n−1∑

k=0

(
n − 1

k

)
1

n + 1

(
n

k + 1

)−1

ωk
1 ∧ ωn−1−k

0

=
∫

X
φ(−i∂∂̄φ) ∧

n−1∑

k=0

n

n + 1
· k + 1

n
· ωk

1 ∧ ωn−1−k
0

� n

n + 1

∫

X
φ(ω0 − ω1) ∧

n−1∑

k=0

ωk
1 ∧ ωn−1−k

0

=
n

n + 1

∫

X
φ(ωn

0 − ωn
1 ).

This is the well-known inequality I − J � n
n+1I in the literature in terms of

Aubin’s I, J functionals (see [1]).
The point is that along the Kähler–Ricci flow g(t) we have |φ̇| < C1 for

some constant C1 by Perelman’s estimates, so it follows that

|φ(t)| < C1t + C2.

It follows that

J (g(t)) < C1t + C2

for some different constants C1, C2. But then using (5.1)

M(g(t)) +
ε

2C1
J (g(t)) < − ε

2
t + C ′,
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and in particular the functional M + ε
2C1

J is not bounded from below on
c1(X). It follows then using the work of Chen–Tian [6] (see [16]) that

R(X) � 1 − ε

2C1
,

which is a contradiction. �

Finally, we note

Corollary 5.1. If X is a Fano manifold with R(X) = 1 then X is
K-semistable.

Proof. This follows from the previous theorem and the proof of Lemma 3.1.
�
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