
communications in
analysis and geometry
Volume 19, Number 4, 759–771, 2011

Local gradient estimate for p-harmonic functions

on Riemannian manifolds

Xiaodong Wang and Lei Zhang

For positive p-harmonic functions on Riemannian manifolds, we
derive a gradient estimate and Harnack inequality with constants
depending only on the lower bound of the Ricci curvature, the
dimension n, p and the radius of the ball on which the func-
tion is defined. Our approach is based on a careful application of
the Moser iteration technique and is different from Cheng–Yau’s
method [2] employed by Kostchwar and Ni [5], in which a gradi-
ent estimate for positive p-harmonic functions is derived under the
assumption that the sectional curvature is bounded from below.

1. Introduction

The study of harmonic functions on Riemannian manifolds has been one of
the central subjects in geometric analysis. In their classical work, Cheng–Yau
[15] derived the following gradient estimate for positive harmonic functions
on Riemannian manifolds:

Theorem A (Cheng–Yau). Let M be an n-dimensional complete Rieman-
nian manifold with Ric ≥ −(n− 1)κ , where κ ≥ 0 is a constant. Suppose
that u is a positive harmonic function on a geodesic ball B (o,R). Then

(1.1) sup
B(o,R/2)

|∇u|
u

≤ Cn
1 +R

√
κ

R
,

where Cn is a constant depending only on n.

An important feature of Cheng–Yau’s estimate is that the RHS (which
stands for the right-hand side) of (1.1) depends only on n, k and R, it
does not depend on the lower bound of the injectivity radius or a global
coordinate system. From partial differential equations (PDE) viewpoints,
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deriving a Harnack inequality requires some bounds on the coefficients in
some fixed coordinate system, thus not suitable for many problems defined
on manifolds. We also observe that the RHS of (1.1) is optimal in the sense
that even for κ > 0, the bound stays bounded when R→ ∞.

There are two major ingredients in the proof of Theorem A. First a
Bochner formula is used to derive a lower bound of the Laplacian of |∇u|2
for a harmonic function u in terms of the lower bound of the Ricci tensor. The
second major ingredient is a clever application of the maximum principle.
The trick is to multiply |∇u|2 by a cut-off function, derive a new differential
inequality for the product and then apply the maximum principle. The cut-
off function is constructed using the distance function. As a result, the new
differential inequality involves the Laplacian of the distance function. As is
well known, the Riemannian distance function is uniformly Lipschitz and
its Laplacian has an upper bound depending on the lower bound of the
Ricci tensor.

Cheng–Yau’s approach turned out to be very useful and some important
results for other problems are deeply influenced by Theorem A. For example,
Li [8] obtained the sharp lower bound for the first eigenvalue of a manifold,
which was later generalized by Li–Yau [9]. Similar results were also obtained
by Li–Yau [10] for heat equations. Cheng [1] and Choi [3] obtained gradient
estimates for harmonic mappings, etc. We refer to [14, 15] and the more
recent survey [7] for an overview of the subject.

p-harmonic functions are natural extensions of harmonic functions from
a variational point of view. It has been extensively studied because of its
various interesting features and applications. Compared with the theory for
harmonic functions the study of p-harmonic functions is generally harder
because the equation, even though elliptic, is degenerate and the regular-
ity results are far weaker (see, for example [16]). Recently, there has been
renewed interest in p-harmonic functions. In particular, Moser [11] estab-
lished a nice connection between p-harmonic functions and the inverse mean
curvature flow. In a recent paper [5] Kotschwar and Ni derived, among other
things, a local gradient estimate for p-harmonic functions under the assump-
tion that the sectional curvature is bounded from below. It is remarkable
that the constant in their estimate does not blowup when p→ 1, which leads
to interesting results on the inverse mean curvature flow problems. Their
proof follows the same strategy introduced by Cheng–Yau [2] for harmonic
functions (i.e., p = 2). However, for general p-harmonic functions, the com-
putation involves the full Hessian of the distance function when the cut-off
function is introduced. As a result, a lower bound on the sectional curvature
has to be assumed in [5].
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Kotschwar and Ni speculated that their estimate may hold if only a lower
bound on the Ricci tensor is assumed. The main result of this paper is to
establish the following theorem:

Theorem 1.1. Let (Mn, g) be a complete Riemannian manifold with
Ric ≥ −(n− 1)κ. Assume that v is a positive p-harmonic function on the
ball B(o,R) ⊂M . Then

|∇v|
v

≤ Cp,n

(
1 +

√
κR

)
/R on B(o,R/2).

where Cp,n depends only on p and n.

The proof of Theorem 1.1 will be presented in Section 2. As far as the
second major ingredient of Cheng–Yau’s proof is concerned, our approach
follows a different strategy by carefully using the Moser iteration technique.
This approach only involves differentiating the distance function once and
hence bypasses the difficulty of handling the full Hessian of the distance func-
tion. In the special case p = 2, when p-harmonic function are just harmonic
functions, Theorem 1.1 is exactly Cheng–Yau’s theorem. An immediate con-
sequence of Theorem 1.1 is the following Harnack inequality.

Theorem 1.2. Let (Mn, g) be a complete Riemannian manifold with
Ric ≥ − (n− 1)κ. Assume that v is a positive p-harmonic function on the
ball B(o,R) ⊂M . Then there exists a constant Cp,n such that for any
x, y ∈ B(o,R/2),

v (x) /v (y) ≤ eCp,n(1+
√

κR).

It follows that if Ric ≥ 0, then we have a uniform constant cp,n (inde-
pendent of R) s.t.

(1.2) sup
B(o,R/2)

v ≤ cp,n inf
B(o,R/2)

v.

This was already proved by Rigol et al. [12]. In fact, they proved the stronger
result that (1.2) holds provided that the volume is doubling and a weak
Poincare inequality holds. See also [4].

Another standard application of Theorem 1.1 is the following Liouville
theorem, which was also deduced from the Harnack inequality in [12].

Let u be a p-harmonic function bounded from above or below on a
complete Riemannian manifold with non-negative Ricci tensor, then u is
constant.
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Finally, we point out that our constant Cp,n in Theorem 1.1 becomes
unbounded as p→ 1, while in Kotschwar–Ni’s result, all the constants stay
bounded when p→ 1. We do not know if the method can be tweaked to
remove this defect.

2. The gradient estimate for the p-harmonic functions

p-harmonic functions arise naturally as critical points of the Lp (p > 1) norm
of the gradient. Let (Mn, g) be a complete Riemannian manifold and Ω ⊂M
an open set. A function v ∈W 1,p

loc (Ω) is p-harmonic if

div
(
|∇v|p−2 ∇v

)
= 0

in the weak sense, i.e.,
∫

U
|∇v|p−2 〈∇v,∇ξ〉 = 0,

for all ξ ∈W 1,p
0 (Ω). By Tolksdorf [16], for example, v must be C1,α. More-

over, v ∈W 2,2
loc if p ≥ 2; v ∈W 2,p

loc if 1 < p < 2. Away from {∇v = 0}, v is in
fact smooth.

Suppose that v is positive. Set u = − (p− 1) log v. Then u satisfies

(2.1) div
(
|∇u|p−2 ∇u

)
= |∇u|p .

Let f = |∇u|2. We define

L (ψ) = div
(
fp/2−1A (∇ψ)

)
− pfp/2−1 〈∇u,∇ψ〉 ,

where

A = id+ (p− 2)
∇u⊗∇u
|∇u|2 .

We need the following lemma from [5] and the proof is by direct calcu-
lation.

Lemma 2.1.

L (f) = 2fp/2−1
(∣
∣D2u

∣
∣2 + Ric(∇u,∇u)

)
+

(p
2
− 1

)
|∇f |2 fp/2−2.
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Remark 2.1. Lemma 2.1 holds point-wisely in {x : f(x) > 0}. From the
gradient estimate of [16] we know that f = |∇u|2 ∈ Cα for some α > 0 and
f ∈W 1,β

loc for some β > 1.

We choose a local orthonormal frame {ei} with e1 = ∇u/ |∇u|. Then
(2.1) takes the following form:

(p− 1)u11 +
n∑

i=2

uii = f.

Therefore,

∣
∣D2u

∣
∣2 ≥ u2

11 + 2
n∑

i=2

u2
1i +

n∑

i=2

u2
ii

≥ u2
11 + 2

n∑

i=2

u2
1i +

1
n− 1

(
n∑

i=2

uii

)2

= u2
11 + 2

n∑

i=2

u2
1i +

1
n− 1

(f − (p− 1)u11)
2

=
1

n− 1
f2 − 2 (p− 1)

n− 1
fu11 +

(

1 +
(p− 1)2

n− 1

)

u2
11 + 2

n∑

i=2

u2
1i

≥ 1
n− 1

f2 − 2 (p− 1)
n− 1

fu11 + a0

n∑

i=1

u2
1i,

where a0 = 1 + min
(

(p−1)2

n−1 , 1
)
> 1. Using the identities

2fu11 = 〈∇u,∇f〉 ,
n∑

i=1

u2
1i =

1
4
|∇f |2
f

,

we end up with

∣
∣D2u

∣
∣2 ≥ 1

n− 1
f2 − (p− 1)

n− 1
〈∇u,∇f〉 +

a0

4
|∇f |2
f

.
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Assume that Ric ≥ −(n− 1)κ. Therefore,

L (f) ≥ −2 (n− 1)κfp/2 +
(
p+ a0

2
− 1

)
|∇f |2 fp/2−2(2.2)

+
2

n− 1
fp/2+1 − 2 (p− 1)

n− 1
fp/2−1 〈∇u,∇f〉

≥ −2 (n− 1) kfp/2 +
2

n− 1
fp/2+1 − 2 (p− 1)

n− 1
fp/2−1 〈∇u,∇f〉

Equation (2.2) holds wherever f is strictly positive. Let K = {x ∈ Ω :
f(x) = 0}. Then for any non-negative function ψ with compact support in
Ω \K, we have

∫

Ω

〈
fp/2−1∇f + (p− 2)fp/2−2 〈∇u,∇f〉∇u,∇ψ

〉
(2.3)

+ p

∫

Ω
fp/2−1 〈∇u,∇f〉ψ +

2
n− 1

∫

Ω
fp/2+1ψ

≤ 2(n− 1)k
∫

Ω
fp/2ψ +

2(p− 1)
n− 1

∫

Ω
fp/2−1 〈∇u,∇f〉ψ.

In particular, let ε > 0 and ψ = f b
ε η

2 where fε = (f − ε)+, η ∈ C∞
0 (BR) is

non-negative, b > 1 is to be determined later. Then direct computation yields

∇ψ = bf b−1
ε ∇fη2 + 2f b

ε η∇η.

Using the above in (2.3) we obtain

b

∫

BR

(
fp/2−1f b−1

ε |∇f |2 + (p− 2)fp/2−2 〈∇u,∇f〉2 f b−1
ε

)
η2(2.4)

+ 2(p− 2)
∫

BR

fp/2−2 〈∇u,∇f〉 f b
ε η(∇u,∇η)

+ 2
∫

Ω
fp/2−1f b

ε η 〈∇f,∇η〉

+ p

∫

Ω
fp/2−1 〈∇u,∇f〉 f b

ε η
2 +

2
n− 1

∫

Ω
fp/2+1f b

ε η
2

≤ 2(n− 1)κ
∫

Ω
fp/2f b

ε η
2 +

2(p− 1)
n− 1

∫

Ω
fp/2−1 〈∇u,∇f〉 f b

ε η
2.
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Since u ∈ C1,α, f ∈ Cα and ∇f ∈ Lβ(Ω) for some α > 0 and β > 1, we see
that except for the first term, all the other terms converge to the corre-
sponding form without ε. For the first term, observe that

fp/2−1f b−1
ε |∇f |2 + (p− 2)fp/2−2 〈∇u,∇f〉2 f b−1

ε ≥ a1f
p/2−1f b−1

ε |∇f |2,

where a1 = 1 if p ≥ 2 and a1 = (p− 1) if p ∈ (1, 2). Thus by passing ε to 0
we have

ba1

∫

Ω
fp/2+b−2|∇f |2η2

(2.5)

+ 2(p− 2)
∫

Ω
f

p−4
2

+b 〈∇u,∇f〉 η 〈∇u,∇η〉 + 2
∫

Ω
f

p−2
2

+bη 〈∇f,∇η〉

+ p

∫

Ω
f

p−2
2

+b 〈∇u,∇f〉 η2 +
2

n− 1

∫

Ω
f

p+2
2

+bη2

≤ 2(n− 1)k
∫

Ω
f

p

2
+bη2 +

2(p− 1)
n− 1

∫

Ω
f

p−2
2

+b 〈∇u,∇f〉 η2.

From now on we use a1, a2, . . ., etc. to denote constants depending only
on p and n. Combining terms in (2.5) using the definition of f we have

a1b

∫

Ω
fp/2+b−2|∇f |2η2 +

2
n− 1

∫

Ω
fp/2+1+bη2(2.6)

≤ 2(n− 1)κ
∫

Ω
fp/2+bη2 + a2

∫

Ω
f

p−1
2

+b|∇f |η2

+ a3

∫

Ω
fp/2+b−1|∇f ||∇η|η.

For R3 (the third term on the RHS, L1, L2, R1 etc. are understood similarly)
in (2.6) we have

|R3| ≤ a1b

4

∫

Ω
f b+p/2−2|∇f |2η2 +

a4

b

∫

Ω
|∇η|2f b+p/2.

Also by Cauchy’s inequality R2 of (2.6) can be estimated as

|R2| ≤ a1b

4

∫

Ω
fp/2+b−2|∇f |2η2 +

a5

b

∫

Ω
f b+p/2+1η2.
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With these two inequalities we obtain

a1b

2

∫

Ω
fp/2+b−2|∇f |2η2 +

2
n− 1

∫

Ω
fp/2+1+bη2(2.7)

≤
∫

Ω

(
2(n− 1)κη2 +

a4

b
|∇η|2

)
fp/2+b +

a5

b

∫

Ω
f b+p/2+1η2.

By requiring

(2.8)
a5

b
<

1
n− 1

,

we see that the last term in on the RHS of (2.7) is majorized by the last
term on the LHS. Therefore, we have

a1b

2

∫

Ω
fp/2+b−2|∇f |2η2 +

1
n− 1

∫

Ω
fp/2+1+bη2

≤ 2(n− 1)κ
∫

Ω
fp/2+bη2 +

a4

b

∫

Ω
|∇η|2fp/2+b.

For the first term on the LHS we use

|∇(fp/4+b/2η)|2 ≤ 1
2
(
p

2
+ b)2fp/2+b−2|∇f |2η2 + 2fp/2+b|∇η|2.

From the above we obtain

∫

Ω
|∇(fp/4+b/2η)|2 + d1

∫

Ω
fp/2+1+bη2(2.9)

≤ κd2

∫

Ω
fp/2+bη2 + a7

∫

Ω
|∇η|2f b+p/2,

where d1 ∼ b, d2 ∼ b (recall b > 1, d1 ∼ b means d1 is comparable to b, d2 ∼ b
is understood the same way).

The following Sobolev embedding theorem of Saloff–Coste plays an
important role in our approach:

Theorem B (Theorem 3.1 of [13]). Let (Mn, g) be a complete
Riemannian manifold with Ric ≥ −(n− 1)κ. For n > 2, there exists C,
depending only on n, such that for all B ⊂M of radius R and volume V we
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have for f ∈ C∞
0 (B)

(∫
|f |2q

)1/q

≤ eC(1+√
κR)V −2/nR2

(∫
|∇f |2 +R−2f2

)
,

where q = n/(n− 2). For n = 2, the above inequality holds with n replaced
by any fixed n′ > 2.

From now on, we assume Ω = B (o,R). Theorem B gives

(∫

Ω
f

n(p/2+b)
n−2 η

2n

n−2

)(n−2)/n

(2.10)

≤ ec0(1+
√

κR)V − 2
n

(
R2

∫

Ω
|∇(fp/4+b/2η)|2 +

∫

Ω
fp/2+bη2

)
.

where c0(n, p) > 0 depends only on n, p. Let b0 = c1(n, p)(1 +
√
κR) with

c1(n, p) large enough to make b0 satisfy (2.8), then (2.9) and (2.10) combined
gives

(∫

Ω
f

n(p/2+b)
n−2 η

2n

n−2

)(n−2)/n

+ a8bR
2ec2b0V −2/n

∫

Ω
fp/2+1+bη2

(2.11)

≤ a9b
2
0be

c2b0V −2/n

∫

Ω
fp/2+bη2 + a10e

c2b0V −2/nR2

∫

Ω
|∇η|2fp/2+b.

Lemma 2.2. Let b1 = (b0 + p
2) n

n−2 . Then there exists c3(n, p) > 0 such that

(2.12) ‖f‖Lb1 (B3R/4) ≤ c3
b20
R2

V 1/b1 .

Proof of Lemma 2.2. Let b = b0 in (2.11), then by comparing L2 and R1 of
(2.11) we observe that

a9b
3
0f

p/2+b0 <
1
2
a8b0R

2fp/2+1+b0 ,

if f > a11b
2
0R

−2. Thus in the evaluation of R1 we decompose Ω into two
subregions, one over the places where f ≤ a11b

2
0R

−2 and the second region
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is the complement of the first region. With this decomposition we have

R1 ≤ ab0
12b

3
0

(
b0
R

)p+2b0

ec2b0V 1−2/n +
L2

2
.

Now (2.11) with b = b0 can be written as

(∫

Ω
f

n(p/2+b0)
n−2 η

2n

n−2

)(n−2)/n

+
a8

2
b0R

2ec2b0V −2/n

∫

Ω
fp/2+1+b0η2

(2.13)

≤ ab0
12b

3
0

(
b0
R

)p+2b0

ec2b0V 1−2/n + a10e
c2b0V −2/nR2

∫

Ω
|∇η|2fp/2+b0

Now we choose η to make R2 in (2.13) dominated by the LHS. Let
η1 ∈ C∞

0 (BR) satisfy

0 ≤ η1 ≤ 1, η1 ≡ 1 in B3R/4, |∇η1| ≤ C(n)/R.

Let η = ηm
1 where m = b0 + p

2 + 1. Direct computation shows

(2.14) R2|∇η|2 ≤ a13b
2
0 η

2b0+p

b0+p/2+1 .

By (2.14) and Young’s inequality, the R2 of (2.13) can be written as

a10R
2

∫
|∇η|2f b0+p/2

≤ a14 b
2
0

∫

Ω
f b0+p/2η

2b0+p

b0+p/2+1

≤ a14 b
2
0

(∫

Ω
f b0+p/2+1η2

) b0+p/2
b0+p/2+1

V
1

b0+p/2+1

≤ a8b0
2

R2

∫

Ω
f b0+p/2+1η2 + a

b0+p/2
15

b
b0+p/2+2
0

R2b0+p
V.

With the estimates on R1, R2 we arrive at

(2.15)
( ∫

B3R/4

f (b0+p/2)n/(n−2)

)(n−2)/n

≤ ab0
16e

c2b0V 1−2/nb30

(
b0
R

)p+2b0

.

Recall b1 = (b0 + p
2) n

n−2 . Taking the 1/(b0 + p) root on both sides of
(2.15) we have

‖f‖Lb1 (B3R/4) ≤ a17V
1

b1 b20/R
2.
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Lemma 2.2 is established. �
Now we go back to (2.11), by ignoring L2 we have

(∫

Ω
f

n(p/2+b)
n−2 η

2n

n−2

)(n−2)/n

(2.16)

≤ a17
ec2b0

V 2/n

∫

Ω

(
(b20bη

2 +R2|∇η|2
)
f b+p/2.

To apply the Moser iteration we set

bl+1 = bl
n

n− 2
, Ωl = B(o,

R

2
+
R

4l
), l = 1, 2, . . . ,

and choose ηl ∈ C∞
0 (Ω) s.t.

ηl ≡ 1 in Ωl+1, ηl ≡ 0 in Ω \ Ωl, |∇ηl| ≤ C4l

R
, 0 ≤ ηl ≤ 1.

Then in (2.16), by letting b+ p
2 = bl, η = ηl we have

(∫

Ωl+1

f bl+1

) 1
bl+1 ≤

(
a17

ec2b0

V
2
n

) 1
bl

(∫

Ωl

(
b20bl +R2|∇ηl|2

)
f bl

) 1
bl

.

By the estimate of |∇ηl|

(2.17) ‖f‖Lbl+1 (Ωl+1)
≤

(
a17

ec2b0

V 2/n

)1/bl (
b20bl + 16l

)1/bl ‖f‖Lbl (Ωl).

Notice that
∑∞

l=1
1
bl

= n
2b1

, then (2.17) leads to

‖f‖L∞(BR/2)(2.18)

≤
(
a18

ec2b0

V 2/n

)∑∞
l=1 1/bl ∞∏

l=1

(

b30

(
n

n− 2

)l

+ 16l

)1/bl

‖f‖Lb1 (B3R/4)

≤ a19
e

nc2b0
2b1

V 1/b1
b

3n

2b1
0 ‖f‖Lb1 (B3R/4).

Using Lemma 2.2 in (2.18) we obtain

(2.19) ‖f‖L∞(BR/2) ≤ a20b
2
0/R

2.

Thus Theorem 1.1 is established. �
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