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Pseudo-Anosov braids with small entropy and

the magic 3-manifold

Eiko Kin and Mitsuhiko Takasawa

We consider a surface bundle over the circle, the so-called magic
manifold M . We determine homology classes whose minimal rep-
resentatives are genus 0 fiber surfaces for M , and describe their
monodromies by braids. Among those classes whose representa-
tives have n punctures for each n, we decide which one realizes
the minimal entropy. We show that for each n ≥ 9 (resp. n =
3, 4, 5, 7, 8), there exists a pseudo-Anosov homeomorphism Φn :
Dn → Dn with the smallest known entropy (resp. the smallest
entropy) which occurs as the monodromy on an n-punctured disk
fiber for the Dehn filling of M . A pseudo-Anosov homeomorphism
Φ6 : D6 → D6 with the smallest entropy occurs as the monodromy
on a 6-punctured disk fiber for M .

1. Introduction

Let M(Σ) be the mapping class group of an orientable surface Σ = Σg,p of
genus g with p punctures. Assuming that 3g − 3 + p ≥ 1, elements ofM(Σ)
are classified into three types: periodic, pseudo-Anosov and reducible [28].
There exist two numerical invariants of pseudo-Anosov mapping classes φ.
One is the entropy ent(φ) which is the logarithm of the dilatation λ(φ). The
other is the volume vol(φ) which comes from the hyperbolization theorem
by Thurston [29]. His theorem asserts that φ is pseudo-Anosov if and only
if its mapping torus

T(φ) = Σ× [0, 1]/ ∼,

where ∼ identifies (x, 1) with (f(x), 0) for any representative f ∈ φ, is hyper-
bolic. We denote the volume of T(φ) by vol(φ).

Let MpA(Σ) be the set of pseudo-Anosov elements of M(Σ). Fixing
Σ, the dilatation λ(φ) for φ ∈MpA(Σ) is known to be an algebraic integer
with a bounded degree depending only on Σ. The set of dilatations λ(φ)
for φ ∈MpA(Σ) bounded by each constant from above is finite, see [12]. In
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particular, the set

Dil(Σ) = {λ(φ) > 1 | φ ∈MpA(Σ)}

achieves its infimum λ(Σ).
We turn to volume. The set

{v | v is the volume of a hyperbolic 3-manifold}

is a well-ordered closed subset of R of order type ωω [26]. In particular any
subset achieves its infimum. Let vol(Σ) = min{vol(φ) | φ ∈MpA(Σ)}. It is of
interest to compute λ(Σ) (resp. vol(Σ)) and to determine the mapping class
realizing the minimum. Another problem related to the minimal dilatation
(resp. minimal volume) are as follows. For a non-negative integer c, we set

λ(Σ; c) = min{λ(φ) | φ ∈MpA(Σ), T(φ) has c cusps},
vol(Σ; c) = min{vol(φ) | φ ∈MpA(Σ), T(φ) has c cusps}.

A problem is to compute λ(Σ; c) (resp. vol(Σ; c)) and to find a mapping class
realizing the minimum.

In [14], the authors and Kojima obtain experimental results concerning
the entropy and volume. In the case the mapping class groupM(Dn) of an
n-punctured disk Dn, they observe that for many pairs (n, c), there exists a
mapping class simultaneously reaching both λ(Dn; c) and vol(Dn; c). Exper-
iments tell us that in case c = 3, the mapping tori reaching both minima
are homeomorphic to the magic manifold Mmagic which is the exterior of the
3 chain link C3 illustrated in figure 1. Moreover when c = 2, it is observed
that there exists a mapping class φ realizing both λ(Dn; 2) and vol(Dn; 2)
and its mapping torus T(φ) is homeomorphic to a Dehn filling of Mmagic

along one cusp. This study motivates the present paper which concerns the
fibrations in Mmagic. The magic manifold has the smallest known volume
among orientable hyperbolic 3-manifolds having three cusps. Many mani-
folds having at most two cusps with small volume are obtained from Mmagic

by Dehn fillings, see [20]. Also, some important examples for the study of the
exceptional Dehn fillings can be obtained from the Dehn fillings of Mmagic,
see [8].

Let M be a hyperbolic 3-manifold with boundary which fibers over
the circle. We assume that M admits infinitely many different fibrations.
Thurston introduced the norm function XT : H2(M,∂M ; R)→ R, and
showed that the unit ball U with respect to XT is a compact, convex
polyhedron [27]. He described the relation between the function XT and
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Figure 1: 3 chain link C3.

fibrations of M as follows. For each fiber F of M , the homology class
[F ] ∈ H2(M,∂M ; R) lies in the open cone int(CΔ) with the origin over a
top dimensional face Δ of ∂U . Conversely for any integral class a ∈ int(CΔ),
there exists a fiber F of M representing a. Using this description of the
fibers, the entropy function ent(·) : int(CΔ)→ R can be defined as follows.
For each primitive integral class a ∈ int(CΔ), the monodromy Φa : Fa → Fa

on a connected surface Fa representing a is pseudo-Anosov, and one defines
the entropy of a by ent(a) = log(λ(Φa)). Fried proves that this function
defined on primitive integral classes admits a unique continuous extension
to a homogeneous function on int(CΔ) [5].

One sees thatM(Dn) is isomorphic to the subgroup ofM(Σ0,n+1) con-
sisting of the elements which fix a puncture of Σ0,n+1. By using the natural
surjective homomorphism Γ : Bn →M(Dn) from the n-braid group Bn to
M(Dn), one represents each element ofM(Dn) by an n-braid. A braid b is
called pseudo-Anosov if Γ(b) is a pseudo-Anosov mapping class. If this is the
case, the dilatation λ(b) of b is defined by the dilatation of Γ(b). Let Tm,p

be the following m-braid for m ≥ 3 and p ≥ 1 which is a main example in
this paper.

Tm,p = (σ2
1σ2σ3 · · ·σm−1)pσ−2

m−1.

For example, T6,2 = (σ2
1σ2σ3σ4σ5)2σ−2

5 = σ2
1σ2σ3σ4σ5σ

2
1σ2σ3σ4σ

−1
5 (figure 8

(left)). The braid Tm,p is a horseshoe braid if gcd(p,m− 1) = 1 and 1 <
p ≤ m−1

2 (Proposition 4.4). If gcd(m− 1, p) = 1, then the mapping torus
T(Γ(Tm,p)) is homeomorphic to Mmagic (Corollary 3.2). Otherwise Γ(Tm,p)
is reducible. We set

Mn
magic = {φ ∈M(Σ0,n) | T(φ) is homeomorphic to Mmagic}.

Let us define an integral polynomial

f(x,y,z)(t) = tx+y−z − tx − ty − tx−z − ty−z + 1.
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The following, our main theorem, states that for all n but 6 and 8, the
minimum among the dilatations of φ ∈Mn

magic is realized by Γ(Tn−1,p) for
some p = p(n) and it is computed as the largest real root of one of the
polynomials f(x,y,z)(t).

Theorem 1.1. For each n ≥ 4, the minimum among the dilatations of φ ∈
Mn

magic is realized by:

(1): Γ(T2k,2) in case n = 2k + 1 for k ≥ 2. The dilatation λ(T2k,2) equals
the largest real root of

f(k−1,k,0)(t) = t2k−1 − 2(tk−1 + tk) + 1.

(2-i): Γ(σ1σ
2
2σ3σ4) in case n = 6. The dilatation λ(σ1σ

2
2σ3σ4) ≈ 2.08102

equals the largest real root of

f(3,2,1)(t) = t4 − t3 − 2t3 − t+ 1.

(2-ii): Γ(T4k+1,2k−1) in case n = 4k + 2 for k ≥ 2. The dilatation
λ(T4k+1,2k−1) equals the largest real root of

f(2k+1,2k−1,0)(t) = t4k − 2(t2k−1 + t2k+1) + 1.

(3a-i): Γ(T3,1) in case n = 4. The dilatation λ(T3,1) ≈ 3.73205 equals the
largest real root of

f(1,1,0)(t) = t2 − 4t+ 1.

(3a-ii): Γ(T8k+3,2k+1) in case n = 8k + 4 for k ≥ 1. The dilatation
λ(T8k+3,2k+1) equals the largest real root of

f(4k−1,4k+3,0)(t) = t8k+2 − 2(t4k−1 + t4k+3) + 1.

(3b-i): Γ(b) in case n = 8, where

b = σ−1
1 σ−1

2 σ−1
3 σ−1

4 σ−1
5 σ−1

6 σ−1
1 σ−1

2 σ−1
3 σ−1

4 σ−1
1 σ−1

2 σ−1
3 ∈ B7.

The dilatation λ(b) ≈ 1.72208 equals the largest real root of

f(5,3,2)(t) = t6 − t5 − 2t3 − t+ 1.
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(3b-ii): Γ(T8k+7,2k+1) in case n = 8(k + 1) for k ≥ 1. The dilatation
λ(T8k+7,2k+1) equals the largest real root of

f(4k+5,4k+1,0)(t) = t8k+6 − 2(t4k+1 + t4k+5) + 1.

Moreover the above mapping class realizing the minimal dilatation among
elements of Mn

magic is unique up to conjugacy.

Forgetting the first strand of Tm,p, one obtains the (m− 1)-braid, call it
T ′

m,p. For example, T ′
6,2 = σ1σ2σ3σ4σ1σ2σ3σ

−1
4 . The families of braids {T ′

m,p}
and {Tm,p} contain examples of � strands (� = 3, 4, . . . , 8) with the small-
est dilatation (see Section 4.1). Hironaka-Kin (resp. Venzke) found candi-
dates with the smallest dilatation λ(Dn) for n odd (resp. n even), see [11]
(resp. [30]). All the braids in Theorem 1.1(1), (2-ii), (3a-ii), (3b-ii) relate
to those examples. The braid T ′

2k,2 (with odd strands) is conjugate to the
braid σ(k) with the smallest known dilatation found by Hironaka-Kin (see
Theorem 1.1(1)). For the braid T ′

m,p (with even strands) obtained from Tm,p

in (2-ii), (3a-ii) or (3b-ii) of Theorem 1.1, the mapping class Γ(T ′
m,p) is con-

jugate to the one given by Venzke (see Section 4.1).
The work of Farb–Leininger–Margalit [3] together with a result in [11]

implies that there exists a complete, non-compact, finite volume, hyperbolic
3-manifold M ′ with the following property: there exist Dehn fillings of M ′

giving an infinite sequence of fiberings over S1, with fibers Dni
having ni

punctures with ni →∞, and with the monodromy Φi : Dni
→ Dni

so that
λ(Dni

) = λ(Φi). The magic manifold is a potential example which could
satisfy this property.

In [1, 10, 16], one can find pseudo-Anosovs on closed surfaces Σg of
genus g with small dilatation which occur as monodromies on fibers for
Dehn fillings of Mmagic. Using those pseudo-Anosovs, Hironaka [10], Aaber-
Dunfield [1] and the authors [16] independently proved that

lim
g→∞ sup g log λ(Σg) ≤ log(3+

√
5

2 ).

This paper is organized as follows. Section 2 reviews basic facts. Sec-
tion 3 contains the proof of Theorem 1.1. For the proof, we first compute
the Teichmüler polynomial, introduced by McMullen [23], which determines
the entropy function for Mmagic (Theorem 3.1). Then we find all the homol-
ogy classes whose representatives are genus 0 fiber surfaces (Corollary 3.1).
We study the asymptotic behaviors of the normalized entropy function
ent(·) = XT (·)ent(·) (Theorem 3.3). This tells us which class realizes the
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minimal dilatation among homology classes whose representatives are genus
0 fiber surfaces with n punctures (Proposition 3.2). We finally describe the
monodromies for these fiber surfaces by using braids (Propositions 3.5 and
3.6). In Section 4, we discuss pseudo-Anosov braids with small dilatation.
We also find a relation between the horseshoe map and the braids Tm,p

(Proposition 4.4).

2. Notation and basic facts

2.1. Mapping class group

The mapping class groupM(Σ) is the group of isotopy classes of orientation
preserving homeomorphisms of Σ, where the group operation is induced by
composition of homeomorphisms. An element of the mapping class group is
called a mapping class.

A homeomorphism Φ : Σ→ Σ is pseudo-Anosov if there exists a constant
λ = λ(Φ) > 1 called the dilatation of Φ and there exists a pair of transverse
measured foliations Fs and Fu such that

Φ(Fs) = 1
λF

s and Φ(Fu) = λFu.

In this case the mapping class φ = [Φ] is called pseudo-Anosov. We define
the dilatation of φ, denoted by λ(φ), to be the dilatation of Φ.

The (topological) entropy ent(f) is a measure of the complexity of a
continuous self-map f on a compact manifold, see [31]. For a pseudo-Anosov
homeomorphism Φ : Σ→ Σ, the equality

ent(Φ) = log(λ(Φ))

holds and ent(Φ) attains the minimal entropy among all homeomorphisms
which are isotopic to Φ, see [4, Exposé 10]. We denote by ent(φ) this charac-
teristic number. Using the Euler characteristic χ(Σ), we define the normal-
ized dilatation λ(φ) and normalized entropy ent(φ) of φ by λ(φ) = λ(φ)|χ(Σ)|

and ent(φ) = log λ(φ) = |χ(Σ)|ent(φ).
We recall the surjective homomorphism

Γ : Bn →M(Dn)

which sends the Artin generator σi for i ∈ {1, . . . , n− 1} (see figure 2 (left))
to t̂i, where t̂i is the mapping class which represents the positive half twist
about the arc from the ith puncture to the (i+ 1)st puncture. The kernel of
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Figure 2: (left) Generator σi. (right) Braid b→ braided link b.

Γ is the center of Bn which is generated by the full twist (σ1σ2 · · ·σn−1)n.
By replacing the boundary of Dn with the (n+ 1)st puncture, the injective
homomorphism from M(Dn) to M(Σ0,n+1) is induced. In the rest of the
paper we regard an element ofM(Dn) as an element of M(Σ0,n+1).

We say that a braid b ∈ Bn is pseudo-Anosov if Γ(b) ∈M(Dn) is pseudo-
Anosov. In this case, vol(Γ(b)) equals the hyperbolic volume of the exterior
of the link b in S3, where b is a union of the closed braid of b and the braid
axis. Our convention of the orientation of b is given by figure 2 (right).

2.2. Roots of polynomials

Let f(t) be an integral polynomial of degree d. The reciprocal of f(t) is
f∗(t) = tdf(1/t). We denote by λ(f), the maximal absolute value of the
roots of f(t).

Let R(t) be a monic integral polynomial and let S(t) be an integral
polynomial. We set

Qn,±(t) = tnR(t)± S(t)

for each integer n ≥ 1. In case S(t) = R∗(t), we callQn,±(t) = tnR(t)±R∗(t)
the Salem–Boyd polynomial associated to R(t).

Lemma 2.1. Let Qn,±(t) = tnR(t)± S(t). Suppose that R(t) has a root
outside the unit circle. Then, the roots of Qn,±(t) outside the unit circle
converge to those of R(t) counting multiplicity as n goes to∞. In particular,

λ(R) = lim
n→∞λ(Qn,±).

The proof of Lemma 2.1 can be found in [15, Lemma 2.5].
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2.3. Hyperbolic surface bundle over the circle

Let M be an irreducible, atoroidal and oriented 3-manifold with bound-
ary ∂M (possibly ∂M = ∅). Thurston discovered a norm function XT :
H2(M,∂M ; R)→ R (see [27]). In case M is a surface bundle over the circle,
he described a relation between XT and fibrations of M which we record as
Theorem 2.1 below.

2.3.1. Thurston norm The norm function XT : H2(M,∂M ; R)→ R has
the property that for any integral class a ∈ H2(M,∂M ; R),

XT (a) = min
F
{−χ(F )},

where the minimum is taken over all oriented surface F embedded in M ,
satisfying a = [F ], with no components of non-negative Euler characteristic.
The surface F which realizes this minimum is called a minimal representative
of a. For a rational class a ∈ H2(M,∂M ; R), take a rational number r so that
ra is an integral class. Then XT (a) is defined to be

XT (a) = 1
|r|XT (ra).

The function XT defined on rational classes admits a unique continuous
extension to H2(M,∂M ; R), which is linear on the ray though the origin.
The unit ball U = {a ∈ H2(M,∂M ; R) | XT (a) ≤ 1} is a compact, convex
polyhedron [27].

The following notations are needed to describe how fibrations of M are
related to the Thurston norm.

• A top dimensional face in the boundary ∂U of the unit ball U is
denoted by Δ, and its open face is denoted by int(Δ).

• The open cone with the origin over Δ is denoted by int(CΔ).

• The set of integral classes of int(CΔ) is denoted by int(CΔ(Z)), and
the set of rational classes of int(CΔ) is denoted by int(CΔ(Q)).

Theorem 2.1 [27]. Suppose that M is a surface bundle over the circle and
let F be a fiber. Then there exists a top dimensional face Δ satisfying the
following.

(1) [F ] ∈ int(CΔ(Z)).

(2) For any a ∈ int(CΔ(Z)), a minimal representative E of a is a fiber of
fibrations of M .
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The face Δ in Theorem 2.1 is called the fiber face. For the fiber face Δ,
it follows that a ∈ int(CΔ(Z)) is a primitive integral class if and only if a
minimal representative E of a is connected.

It is known that if a0 ∈ H2(M,∂M ; Z) has a representative F which is
a fiber of the fibration of M , then any incompressible surface which repre-
sents a0 is isotopic to the fiber F , see [27]. In particular, F is a minimal
representative of a0. Thus a minimal representative of a0 is unique up to
isotopy.

2.3.2. Entropy function Suppose that M is a hyperbolic surface bundle
over the circle. We fix a fiber face Δ for M . The entropy function ent(·) :
int(CΔ(Q))→ R introduced by Fried in [5] is defined as follows. The minimal
representative Fa for a ∈ int(CΔ(Z)) is a fiber of fibrations of M . Let Φa :
Fa → Fa be the monodromy. Since M is a hyperbolic manifold, the mapping
class φa = [Φa] must be pseudo-Anosov. The entropy ent(a) and dilatation
λ(a) are defined as the entropy and dilatation of φa, respectively. For a
rational number r and an integral class a, the entropy ent(ra) is defined
by 1

|r|ent(a). Notice that XT (·)ent(·) : int(CΔ(Q))→ R is constant on each
ray through the origin. We call XT (a)ent(a) and XT (a)λ(a) the normalized
entropy and normalized dilatation of a.

We recall an important property of the entropy function proved by Mat-
sumoto and independently McMullen.

Theorem 2.2 [21, 23]. The function 1
ent(·) : int(CΔ(Q))→ R is strictly con-

cave.

By Theorem 2.2, the function ent(·) on int(CΔ(Q)) admits a unique contin-
uous extension to ent(·) : int(CΔ)→ R.

Since ent(a) goes to∞ as a goes to a point on the boundary ∂Δ (see [5]),
Theorem 2.2 implies the normalized entropy function

ent(·) = XT (·)ent(·) : int(CΔ)→ R

has the minimum at a unique ray through the origin. In other words ent(·)
has the minimum at a unique point of int(Δ). The following question was
posed by McMullen [23, p. 542].

Problem 2.1. On which ray in int(CΔ) does ent(·) attain the minimum?
Is the minimum attained on a rational class of int(Δ)?

We solve this problem for the magic manifold in Section 3.2.
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Figure 3: Axis L for periodic map.

3. Magic manifold

3.1. Fiber face

Let L be one of the four lines in S3 depicted in figure 3(1),(2),(3) and (4). For
each L, there exist an integer n and a periodic map f : (S3, C3)→ (S3, C3)
such that f is a 2π/n rotation with respect to L. Such symmetry of C3 is
reflected in the shape of the Thurston unit ball. Let Kα, Kβ and Kγ be
the components of C3 such that Kα (resp. Kβ , Kγ) bounds the oriented
twice-punctured disk Fα (resp. Fβ , Fγ) in Mmagic whose normal direction is
indicated as in figure 4 (right). Those oriented surfaces induce the orientation
of C3. Let α = [Fα], β = [Fβ ] and γ = [Fγ ]. In [27], Thurston computes the
unit ball U which is the the parallelepiped with vertices ±α = (±1, 0, 0),
±β = (0,±1, 0), ±γ = (0, 0,±1), ±(α+ β + γ), see figure 4 (left). The set
{α, β, γ} is a basis of H2(Mmagic, ∂Mmagic; Z).

The magic manifold is a surface bundle over the circle as we will see
later. The symmetry of C3 tells us that every top dimensional face is a fiber
face. We (arbitrarily) pick the shaded fiber face Δ as in figure 5 (left) with

Figure 4: (left) Thurston unit ball. (right) Fα, Fβ , Fγ . (arrows indicate the
normal direction of oriented surfaces).
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Figure 5: (left) Fiber face Δ. (center) Δ1 ⊂ Δ. (right) CΔ1 ⊂ int(CΔ).

vertices α = (1, 0, 0), α+ β + γ = (1, 1, 1), β = (0, 1, 0) and −γ = (0, 0,−1).
The open face int(Δ) is written by

(3.1)
int(Δ) = {xα+ yβ + zγ | x+ y − z = 1, x > 0, y > 0, x > z, y > z}.

For xα+ yβ + zγ ∈ int(CΔ),

XT (xα+ yβ + zγ) = x+ y − z.

Let N (L) be the regular neighborhood of a link L in S3. We denote
the tori ∂N (Kα), ∂N (Kβ), ∂N (Kγ) by Tα, Tβ , Tγ , respectively. Let xα+
yβ + zγ be a primitive integral class in int(CΔ). We denote by Fxα+yβ+zγ

or F(x,y,z), the minimal representative of xα+ yβ + zγ. Let us set

∂αF(x,y,z) = ∂F(x,y,z) ∩ Tα

which consists of the parallel simple closed curves on Tα. We define the
subsets ∂βF(x,y,z), ∂γF(x,y,z) ⊂ ∂F(x,y,z) in the same manner. We denote by
Φ(x,y,z) : F(x,y,z) → F(x,y,z), the monodromy on a fiber F(x,y,z). It is clear
that Φ(x,y,z) permutes elements of each of the sets ∂αF(x,y,z), ∂βF(x,y,z) and
∂γF(x,y,z) cyclically. Let F(x,y,z) be the stable foliation for the pseudo-Anosov
Φ(x,y,z).

Lemma 3.1. Let xα+ yβ + zγ ∈ int(CΔ) be a primitive integral class. The
number of the boundary components 
(∂F(x,y,z)) is equal to the sum of the
three greatest common divisors

gcd(x, y + z) + gcd(y, z + x) + gcd(z, x+ y),

where gcd(0, w) is defined by |w|. More precisely
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(1) 
(∂αF(x,y,z)) = gcd(x, y + z),

(2) 
(∂βF(x,y,z)) = gcd(y, z + x),

(3) 
(∂γF(x,y,z)) = gcd(z, x+ y).

Proof. We prove (1). The proof of (2), (3) is similar. We have the meridian
and longitude basis {mα, �α} for Tα. Similarly, we have the bases {mβ , �β} for
Tβ and {mγ , �γ} for Tγ . We consider the long exact sequence of the homology
groups of the pair (Mmagic, ∂Mmagic). The boundary map is given by

∂∗ : H2(Mmagic, ∂Mmagic; R)→ H1(∂Mmagic; R),
α �→ �α −mβ −mγ ,

β �→ �β −mγ −mα,

γ �→ �γ −mα −mβ .

Hence

(3.2)
∂∗(xα+ yβ + zγ) = x�α − (y+ z)mα + y�β − (z+x)mβ + z�γ − (x+ y)mγ .

Since F(x,y,z) is the minimal representative, the set ∂αF(x,y,z) is a union
of oriented parallel simple closed curves on Tα whose homology class equals
x�α − (y + z)mα ∈ H1(Tα; R), see (3.2). Thus the number of the components
of ∂αF(x,y,z) equals gcd(x, y + z). �

In Section 4.1, we will use the following to see λ(T ′
m,p) is equal to λ(Tm,p).

Lemma 3.2 [16]. Let xα+ yβ + zγ be as in Lemma 3.1. The stable folia-
tion F(x,y,z) has

(1) x
gcd(x,y+z) prongs at each element of ∂αF(x,y,z),

(2) y
gcd(y,x+z) prongs at each element of ∂βF(x,y,z),

(3) x+y−2z
gcd(z,x+y) prongs at each element of ∂γF(x,y,z), and

(4) no singularities in the interior of F(x,y,z).

3.2. Teichmüler polynomial

The Teichmüler polynomial, defined in [23], can be used to computer the
entropy function. We compute the Teichmüler polynomial P = PΔ with
respect to Δ.
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Remark 3.1. Oertel obtained similar polynomial with respect to each fiber
face as the Teichmüler polynomial, see [24].

A fiber F = F(1,1,0) is homeomorphic to a sphere with four boundary
components. We now see that the monodromy Φ = Φ(1,1,0) on F is repre-
sented by the 3-braid b = σ2σ

−1
1 σ2. A homeomorphism H : S3 \ N (C3)→

S3 \ N (b) is given as follows. The link illustrated in figure 6 (left) is isotopic
to C3. We consider the exterior S3 \ C3 and we open the twice-punctured
disk Fα bounded by Kα. Let F ′

α and F ′′
α be the resulting twice-punctured

disks obtained from Fα. Reglue F ′
α and F ′′

α by twisting one of the disks by
360◦ in the clockwise direction. Then we obtain the braided link b whose
exterior S3 \ b is homeomorphic to S3 \ C3, see figure 6.

Let u be the meridian of the component of b which is the braid axis. Let
t2 (resp. t1) be the meridian of the component of b which is the closure of
the second strand of b (resp. which is the closure of the rest of the strand of
b). By using the argument in [23, Section 11], one sees that the Teichmüler
polynomial P (t1, t2, u) is given by

P (t1, t2, u) = det(uI − σ−1
2 (t2)σ1(t1)σ−1

2 (t1)),

where σ1(t) =
(

t t
0 1

)
and σ−1

2 (t) =
(

1 0
t−1 t−1

)
. (Note that our con-

vention of the sign of braids is different from the one in [23].) Hence

P (t1, t2, u) = 1
t2
− u− t1u− u

t2
− u

t1t2
+ u2.

Now we transform this to the polynomial using our basis. Let {α∗, β∗, γ∗}
be the dual basis for H1(Mmagic; Z). We set s1 = α∗, s2 = β∗, s3 = γ∗. By
the construction of the homeomorphism H, one observes that t1 = s3, t2 =
s1s

−1
2 s−1

3 and u = s2. We obtain

P (s1, s2, s3) = −s1 − s2 + s3 + s1s2 − s1s3 − s2s3.

Figure 6: (left) C3. (right) b. (this figure explains how to obtain H).
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Theorem 3.1. The dilatation of xα+ yβ + zγ ∈ int(CΔ(Z)) is the largest
real root of

P (tx, ty, tz) = −tx − ty + tz + tx+y − tx+z − ty+z.

In particular, the dilatation of xα+ yβ ∈ int(CΔ(Z)) is the largest real root
of tx+y − 2(tx + ty) + 1.

Proof. We identify H2(Mmagic, ∂Mmagic) with H1(Mmagic, ∂Mmagic). By [23,
Section 1], the dilatation of a = xα+ yβ + zγ is equal to the largest real
root of

P (ta(α∗), ta(β∗), ta(γ∗)) = P (tx, ty, tz) = −tx − ty + tz + tx+y − tx+z − ty+z.

This completes the proof. �

Since

P (tx, ty, tz) = tz(tx+y−z − tx − ty − tx−z − ty−z + 1),

the dilatation of xα+ yβ + zγ is the largest real root of

f(x,y,z)(t) = tx+y−z − tx − ty − tx−z − ty−z + 1.

Lemma 3.3. For x ≥ y > 0 and z > 0,

λ(xα+ yβ − zγ) = λ((x+ z)α+ (y + z)β + zγ).

Proof. f(x,y,−z)(t) = f(x+z,y+z,z)(t) = tx+y+z − tx+z − ty+z − tx − ty + 1. �

Theorem 3.2. The homology class α+ β realizes the minimal normalized
entropy with respect to Δ, i.e., the ray through α+ β attains the minimum
of ent(·) = XT (·)ent(·) : int(CΔ)→ R.

Proof. Clearly xα+ yβ + zγ is in int(CΔ) if and only if yα+ xβ + zγ is in
int(CΔ). The equality ent(xα+ yβ + zγ) = ent(yα+ xβ + zγ) holds, since
these classes have the same entropy and the same Thurston norm. Thus if
the minimum of ent is realized by the ray though xα+ yβ + zγ, then x must
equal y.

On the other hand, xα+ xβ + γ and (x− 1)α+ (x− 1)β − γ have the
same Thurston norm 2x− 1 if x > 1. By Lemma 3.3, they have the same
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entropy. Thus,

ent(xα+ xβ + γ) = ent((x− 1)α+ (x− 1)β − γ).

Since ent is constant on each ray, we have

ent(xα+ xβ + γ) = ent(α+ β + x−1γ),

ent((x− 1)α+ (x− 1)β − γ) = ent(α+ β − (x− 1)−1γ).

The minimal ray does not pass through both α+ β + x−1γ and α+ β −
(x− 1)−1γ, because the minimum is realized by a unique ray. Since x(> 1)
is arbitrary, the desired ray must pass through α+ β. �

3.3. Fiber surface of genus 0

Let xα+ yβ + zγ ∈ int(CΔ) be an integral homology class. Recall that
F(x,y,z) is connected if and only if xα+ yβ + zγ is primitive. Since {α, β, γ}
is a basis of H2(Mmagic, ∂Mmagic; Z), we see that xα+ yβ + zγ is primitive if
and only if gcd(x, y, z) = 1, where gcd(x, y, 0) is defined to be gcd(x, y). The
topological type of F(x,y,z) can be determined from the Thurston norm and
Lemma 3.1. In this section, we find all the homology classes whose minimal
representatives are connected and of genus 0.

By (3.1), if x ≥ y, then xα+ yβ + zγ is in int(CΔ) if and only if x ≥
y > 0 and y > z. In this section, we consider those classes for simplicity.

Lemma 3.4. Let x, y, z ∈Z. Suppose that x≥ y > 0, y > z and gcd(x, y, z) =
1. Then

(3.3) gcd(x, y + z) + gcd(y, z + x) + gcd(z, x+ y)− x− y + z − 2 ≤ 0.

If (x, y, z) satisfies the equality in (3.3), then z ≥ 0.

Proof. Note that

−χ(F(x,y,z)) = −(2− 2g − 
(∂F(x,y,z))) = x+ y − z,

where g denotes the genus of F(x,y,z). Hence

(3.4) g = x+y−z+2−�(∂F(x,y,z))
2 ≥ 0.

By substituting 
(∂F(x,y,z)) = gcd(x, y + z) + gcd(y, x+ z) + gcd(z, x+ y)
for (3.4), we have the desired inequality. Suppose that x ≥ y > 0 > z = −z′
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(z′ > 0). Then

gcd(x, y − z′) + gcd(y,−z′ + x) + gcd(−z′, x+ y)− x− y − z′ − 2
≤ x+ y + z′ − x− y − z′ − 2
= −2.

This completes the proof. �

Proposition 3.1. Let x, y, z ∈ Z. Suppose that x ≥ y > z ≥ 0 and
gcd(x, y, z) = 1. Then the equality of (3.3) holds for (x, y, z) if and only
if (x, y, z) is either

(1) z = 0 and gcd(x, y) = 1,

(2) (x, y, z) = (n+ 1, n, n− 1) for n 
≡ 0 (mod 3) and n ≥ 2, or

(3) (x, y, z) = (2n+ 1, n+ 1, n) for n ≥ 1.

The following proof was shown to the authors by Shigeki Akiyama.

Proof. The equality of (3.3) holds for (x, y, 0) if and only if gcd(x, y) = 1,
and hence we may suppose that x ≥ y > z > 0 by Lemma 3.4. It is easy
to see that if (x, y, z) is of either type (2) or type (3), then it satisfies the
equality of (3.3). To prove the “only if” part, we first show:

Claim 3.1. Let x, y, z ∈ N. Suppose that gcd(x, y, z) = 1. Then

{gcd(N, x), gcd(N, y), gcd(N, z)}

is pairwise coprime, where N = x+ y + z.

Proof of Claim 3.1. We set gcd(gcd(N, x), gcd(N, y)) = k. Then k is a divi-
sor of three integers N, x and y. It is also a divisor of z(= N − x− y).
Since gcd(x, y, z) = 1, the integer k must be 1. This completes the proof
the claim.

Notice that the inequality of (3.3) is equivalent to the inequality

(3.5) N − gcd(N, x)− gcd(N, y)− gcd(N, z) ≥ 2z − 2.

For all N ≤ 79, one can check that the statement of Proposition 3.1 is valid.
We may suppose that N ≥ 80. Since x > N

3 and z < N
3 , we have x ≥ N+1

3
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and z ≤ N−1
3 . Hence x ≥ 27. Let p, q and r be natural numbers so that

p > q > r and

{p, q, r} = {gcd(N, x), gcd(N, y), gcd(N, z)}.

By Claim 3.1, {p, q, r} is pairwise coprime, and p, q and r are divisors of N .
Therefore pqr ≤ N . This shows that

(3.6) N−p−q−r
N ≥ pqr−p−q−r

pqr = 1− 1
qr −

1
p(1

q + 1
r ).

If r ≥ 2, then q ≥ 3 and p ≥ 5. Hence

N − p− q − r ≥ N(1− 1
qr −

1
p(1

q + 1
r )) = 5

6N(1− 1
p) ≥ 2

3N > 2z.

Thus, no (x, y, z) satisfies the equality of (3.5) in this case.
We may suppose that r = 1. If q ≥ 4, then

N−p−q−r
N ≥ 3

4 −
5
4p

by (3.6). Since z ≤ N−1
3 , we obtain

N − p− q − r − 2z + 2 ≥ N(3
4 −

5
4p)− 2N−8

3 = 8
3 + N(p−15)

12p .

If p > 15, then 8
3 + N(p−15)

12p > 0, which implies that no (x, y, z) satisfies the
equality of (3.5) in this case. If p ≤ 14, then q ≤ 13. We have N − 2z =
x+ y − z > x > 26 = −1 + 14 + 13. Thus

N − p− q − 1 ≥ N − 14− 13− 1 > 2z − 2,

which implies that no (x, y, z) satisfies the equality of (3.5) in this case.
We may suppose that q ≤ 3. It is enough to consider the equality of

(3.5) in case (q, r) = (3, 1), (2, 1) and (1, 1). Take w ∈ {x, y, z} so that p =
gcd(N,w).

(1) Case (q, r) = (2, 1) or (3, 1).
Then N − gcd(N,w)− 2− 1 = 2z − 2 or N − gcd(N,w)− 3− 1 =
2z − 2. We set gcd(N,w) = N

k (k > 1). Then N(1− 1
k ) ≤ 2(N−1)

3 + 2.
Since we assume that N ≥ 80 > 16, k must be 2 or 3.
(i) Case k = 2.

Then x = N
2 . If (q, r) = (2, 1), then (x, y, z) = (N

2 ,
N+2

4 , N−2
4 ). We

set n = N−2
4 . We obtain (x, y, z) = (2n+ 1, n+ 1, n), and such
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(x, y, z) satisfies the equality (3.5). If (q, r) = (3, 1), then (x, y, z) =
(N

2 ,
N+4

4 , N−4
4 ). In this case, gcd(N, N±4

4 ) = gcd(4, N±4
4 ), which is

a divisor of 4. This does not occur since (q, r) = (3, 1).
(ii) Case k = 3.

If (q, r) = (2, 1), then z = N
3 −

1
2 , which cannot be an integer. Let

(q, r) = (3, 1). Then z = N
3 − 1. Since gcd(N,w) = N

3 , we see that
w = N

3 or 2N
3 . If w = 2N

3 , then (x, y, z) = (2N
3 , 1,

N
3 − 1). This is

a contradiction since y > z. If w = N
3 , then (x, y, z) = (N

3 + 1, N
3 ,

N
3 − 1). We set n = N

3 . Then (x, y, z) = (n+ 1, n, n− 1). If n ≡ 0
(mod 3), then gcd(3n, n± 1) = 1, which is a contradiction since
(q, r) = (3, 1). Otherwise, such (x, y, z) satisfies the equality of (3.5).

(2) Case (q, r) = (1, 1).
Then N − gcd(N,w)− 1− 1 = 2z − 2. We have N − gcd(N,w) =

2z < 2N
3 . This implies that gcd(N,w) = N

2 . Thus, (x, y, z) = (N
2 ,

N
4 ,

N
4 ),

which does not occur since y > z.

This completes the proof of Proposition 3.1. �
By Proposition 3.1 and Lemma 3.1, we immediately obtain the following
which characterizes integral homology classes in int(CΔ) whose minimal rep-
resentatives are spheres with punctures.

Corollary 3.1. Let xα+ yβ + zγ ∈ int(CΔ) be an integral homology class.
Suppose that x ≥ y and gcd(x, y, z) = 1. Then the genus of F(x,y,z) is 0 if
and only if (x, y, z) satisfies either

(1) z = 0 and gcd(x, y) = 1,

(2) (x, y, z) = (n+ 1, n, n− 1) for n 
≡ 0 (mod 3) and n ≥ 2, or

(3) (x, y, z) = (2n+ 1, n+ 1, n) for n ≥ 1.

In case (1),


(∂αF(x,y,z)) = 
(∂βF(x,y,z)) = 1 and 
(∂γF(x,y,z)) = x+ y.

In case (2),

{
(∂αF(x,y,z)), 
(∂γF(x,y,z))} = {1, 3} and 
(∂βF(x,y,z)) = n.

In case (3),


(∂αF(x,y,z)) = 2n+ 1 and {
(∂βF(x,y,z)), 
(∂γF(x,y,z))} = {1, 2}.
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Corollary 3.1 implies that each mapping class φ(x,y,z) = [Φ(x,y,z)] can be
described by a braid since Φ(x,y,z) fixes one boundary component of F(x,y,z).

Theorem 3.3.

(1) lim
n,m→∞ ent(nα+mβ) = 2 log(2 +

√
3) if lim

n,m→∞
n
m = 1.

(2) lim
n→∞ ent((n+ 1)α+ nβ + (n− 1)γ) =∞.

(3) lim
n→∞ ent((2n+ 1)α+ (n+ 1)β + nγ) =∞.

Proof. (1) We see that ent(nα+mβ) goes to ent(α+ β) as m,n go
to ∞ with the condition lim

n,m→∞
n
m = 1. By Theorem 3.1, ent(α+ β) =

2 log(2 +
√

3).
(2) We see that

lim
n→∞ ent( (n+1)α+nβ+(n−1)γ

n ) = ent(α+ β + γ) =∞

since α+ β + γ ∈ ∂Δ. The proof of (3) is similar to the proof of (2). �

3.4. Proposition 3.2

Let Hn be the set of homology classes xα+ yβ + zγ ∈ int(CΔ(Z)), x ≥ y
such that their minimal representatives are n-punctured spheres. By Corol-
lary 3.1, one can determine elements of Hn. This section is devoted to prove:

Proposition 3.2. The homology class which achieves the minimal dilata-
tion among elements of Hn is as follows.

(1) kα+ (k − 1)β in case n = 2k + 1 for k ≥ 2.

(2) 3α+ 2β + γ in case n = 6 and (2k + 1)α+ (2k − 1)β in case n = 4k +
2 for k ≥ 2.

(3a) α+ β in case n = 4 and (4k + 3)α+ (4k − 1)β in case n = 8k + 4 for
k ≥ 1.

(3b) 5α+ 3β + 2γ in case n = 8 and (4k + 5)α+ (4k + 1)β in case n =
8k + 8 for k ≥ 1.

Lemma 3.5. Let m > n > 0.

(1) ent((m+ 1)α+mβ + (m− 1)γ) > ent((n+ 1)α+ nβ + (n− 1)γ).

(2) ent((2m+ 1)α+ (m+ 1)β +mγ) > ent((2n+ 1)α+ (n+ 1)β + nγ).
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Proof. Let us consider homology classes xα+ yβ + zγ with (x, y, z) = (n+1
n+2 ,

n
n+2 ,

n−1
n+2) for each n > 0. These classes are in the open face int(Δ) and pass

through the line x = 1
3 t+ 1, y = 2

3 t+ 1, z = t+ 1. Note that

ent((n+ 1)α+ nβ + (n− 1)γ) = ent((n+1
n+2)α+ ( n

n+2)β + (n−1
n+2)γ),

and it goes to ∞ as n goes to ∞ by Proposition 3.3(2). We have

1
3ent(2α+β+0γ) ≈

1
2.887 >

1
4ent(3α+2β+γ) ≈

1
2.931 .

Since 1
ent(·) : int(CΔ(Q))→ R is a strictly concave function, we have for all

m > n ≥ 3,

1
4ent(3α+2β+γ) >

1
(n+2)ent((n+1)α+nβ+(n−1)γ) >

1
(m+2)ent((m+1)α+mβ+(m−1)γ) .

This implies (1). The proof of (2) is similar. �
We set

• Δ1 = {xα+ yβ | x+ y = 1, x > 0, y > 0} ⊂ int(Δ) (see figure 5 (cen-
ter)).

• CΔ1 = {xα+ yβ | x > 0, y > 0} (see figure 5 (right)).

• CΔ1(Z) = {a | a ∈ CΔ1 is an integral class}.
• CΔ1(Q) = {a | a ∈ CΔ1 is a rational class}.

Lemma 3.6.

(1) For x, y ∈ N such that gcd(x, y) = 1, the monodromy for xα+ yβ is
conjugate to the inverse of the monodromy for yα+ xβ.

(2) For x, y > 0, we have ent(xα+ yβ) = ent(yα+ xβ).

Proof. The existence of a π rotation f : (S3, C3)→ (S3, C3) with respect to
the line L of figure 3(2) implies that the monodromy for xα+ yβ is conjugate
to the one for −yα− xβ. This implies (1). The claim (2) is immediate from
the expression for f(x,y,z)(t). �

Fixing n ∈ N, we set

• Δn = {xα+ yβ | x > 0, y > 0, x+ y = n} ⊂ CΔ1 .

• Δn(N) = {xα+ yβ ∈ Δn | x, y ∈ N, gcd(x, y) = 1}.

Lemma 3.7. ent
(nα+nβ

2

)
= min{ent(a) | a ∈ Δn} for each n ∈ N.
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Proof. Recall that the restriction of 1
ent(·) on Δn is strictly concave. Note

that ent(a)→∞ as a→ nα or nβ. Thus ent(·)|Δn
: Δn → R has the unique

minimum. By Lemma 3.6(2), nα+nβ
2 attains the minimum. �

Lemma 3.8. For m ≥ 3, min{ent(a) | a ∈ Δm−1(N)} is realized by

(1) (k − 1)α+ kβ and kα+ (k − 1)β in case m = 2k.

(2) (2k − 1)α+ (2k + 1)β and (2k + 1)α+ (2k − 1)β in case m = 4k + 1.

(3a) α+ β in case m = 3, and (4k − 1)α+ (4k + 3)β and (4k + 3)α+
(4k − 1)β in case m = 8k + 3 for k ≥ 1.

(3b) (4k + 1)α+ (4k + 5)β and (4k + 5)α+ (4k + 1)β in case m = 8k + 7.

Proof. The concavity of 1
ent(·) |Δn

: Δn → R and Lemma 3.7 tell us that if
|x− y| < |x′ − y′| for xα+ yβ, x′α+ y′β ∈ Δn, then

(3.7) ent(xα+ yβ) < ent(x′α+ y′β).

This implies that the minimal entropy among elements of Δm−1(N) is real-
ized by (k − 1)α+ kβ or kα+ (k − 1)β if m = 2k (see figure 7). The proof
for other cases can be shown in a similar way. �

Lemma 3.9. For k′ > k > 0, we have the following:

(1) ent(kα+ (k + c)β) > ent(k′α+ (k′ + c)β).

Figure 7: The first quadrant of αβ plane. Homology classes in (1) (resp. (2),

(3a, 3b) of Proposition 3.5) lie on the lines
(1)−−−→ (resp.

(2)−−−→ and
(3−ab)−−−−−→).
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(2) ent(kα+ (k + c)β) > ent(k′α+ (k′ + c)β).

Proof. For any k > 0, we have

ent(kα+(k+c)β
2k+c ) = ent(kα+(k+c)β

2k+c ) = (2k + c)ent(kα+ (k + c)β).

If 0 < k < k′, then c
2k+c >

c
2k′+c . By (3.7), we see that

ent(kα+(k+c)β
2k+c ) > ent(k′α+(k′+c)β

2k′+c ).

This implies (1). By (1),

ent(kα+(k+c)β
2k+c ) = (2k + c)ent(kα+ (k + c)β)

> ent(k′α+(k′+c)β
2k′+c ) = (2k′ + c)ent(k′α+ (k′ + c)β)

> (2k + c)ent(k′α+ (k′ + c)β).

Thus, ent(kα+ (k + c)β) > ent(k′α+ (k′ + c)β). This completes the proof
of (2). �

Proof of Proposition 3.2. (1) We consider the case n = 2k + 1. For k = 2,
we see that H5 = {2α+ β}. If k 
= 2 and 2k ≡ 0 (mod 3), H2k+1 is the set
of homology classes of type (1) of Corollary 3.1, that is

H2k+1 = {xα+ yβ | xα+ yβ ∈ Δ2k−1(N), x ≥ y}.

In this case, kα+ (k − 1)β reaches the minimal entropy among elements
of H2k+1 by Lemma 3.8(1). Otherwise (i.e., 2k 
≡ 0 (mod 3)), H2k+1 is the
union of homology classes of type (1) and (2) of Corollary 3.1:

{(2k − 2)α+ (2k − 3)β + (2k − 4)γ}
∪ {xα+ yβ | xα+ yβ ∈ Δ2k−1(N), x ≥ y}.

One needs to compare the entropy for (2k − 2)α+ (2k − 3)β + (2k − 4)γ
with the one for kα+ (k − 1)β. In case k = 4,

λ(4α+ 3β) ≈ 1.46557 < λ(6α+ 5β + 4γ) ≈ 1.72208.
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By Lemmas 3.9 and 3.5, for k > 4, we have

(2k − 1)ent(kα+ (k − 1)β)
≤ 7ent(4α+ 3β)
< 7ent(6α+ 5β + 4γ)
< (2k − 1)ent((2k − 2)α+ (2k − 3)β + (2k − 4)γ).

Thus, ent(kα+ (k − 1)β) < ent((2k − 2)α+ (2k − 3)β + (2k − 4)γ). This
completes the proof.
(2) Let us consider the case n = 4k + 2. For k = 1, H6 = {3α+ β, 3α+ 2β +
γ}. We have

λ(3α+ 2β + γ) ≈ 2.08102 < λ(3α+ β) ≈ 2.29663.

For k = 2, H10 = {7α+ 4β + 3γ, 5α+ 3β, 7α+ β}. We have inequalities

λ(5α+ 3β) ≈ 1.41345 < λ(7α+ 4β + 3γ)
≈ 1.55603 and λ(5α+ 3β) < λ(7α+ β).

For k = 3, H14 = {11α+ 6β + 5γ, 7α+ 5β, 11α+ β, 11α+ 10β + 9γ}. We
have λ(7α+ 5β) < λ(11α+ β) by Lemma 3.8(2) and

λ(7α+ 5β) ≈ 1.25141 < λ(11α+ 6β + 5γ) ≈ 1.39241
< λ(11α+ 10β + 9γ) ≈ 1.62913.

By using the same arguments as in the case n = 2k + 1, we have for all
k > 3, (4k)ent((2k + 1)α+ (2k − 1)β) < 12ent(7α+ 5β) and

12ent(11α+ 6β + 5γ) < (4k)ent((4k − 1)α+ 2kβ + (2k − 1)γ),
12ent(11α+ 10β + 9γ) < (4k)ent((4k − 1)α+ (4k − 2)β + (4k − 3)γ).

Thus, for all k ≥ 2, (2k + 1)α+ (2k − 1)β, which realizes the minimal
entropy among elements of Δ4k(N), reaches the minimal entropy among
elements of H4k+2.
(3a) The proof for the case n = 8k + 4 is shown in a similar way.
(3b) Let us consider the case n = 8(k + 1). For k = 0, we see that H8 =
{5α+ 3β + 2γ, 5α+ β, 5α+ 4β + 3γ}, and

λ(5α+ 3β + 2γ) ≈ 1.72208 < λ(5α+ 4β + 3γ)
≈ 1.78164 < λ(5α+ β) ≈ 2.08102.
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Figure 8: (left) Braid T6,2. (right) Braid T5,2.

For k ≥ 1, one can show that (4k + 5)α+ (4k + 1)β reaches the minimal
dilatation among elements of H8k+4. �

3.5. Monodromy

The braid Θ = Θm = (σ2
1σ2σ3 · · ·σm−1)m−1 = (σ1σ2 · · ·σm−1)m ∈ Bm is the

full twist. Hence we have:

Lemma 3.10. If p ≡ p′(modm− 1), then there exists an integer k such
that Tm,p = Tm,p′Θk and Γ(Tm,p) = Γ(Tm,p′) ∈M(Dm).

Let us consider the braid Tm,p in case gcd(m− 1, p) 
= 1. For example,
T5,2 is a reducible braid, since a disjoint union of two simple closed curves
in D5 is invariant under Γ(T5,2), see figure 8 (right). It is not hard to see the
following.

Lemma 3.11. If gcd(m− 1, p) 
= 1, then Tm,p is a reducible braid.

Theorem 3.4. Suppose that xα+ yβ ∈ Δm−1(N) for m ≥ 3. Then there
exists p = p(x, y) such that the braid Tm,p is the monodromy on a fiber which
is the minimal representative of xα+ yβ.

The rest of the section is devoted to proving Theorem 3.4 and explaining
how to compute p = p(x, y).

3.5.1. Fiber surface The aim of this section is to find fibers Fm(q),p(q)

for the magic manifold associated to sequences of natural numbers q whose
homology class [Fm(q),p(q)] is in CΔ1(Z).

Let L be a link in S3. Let E1 be an oriented disk with punctures which is
embedded in the exterior E(L) = S3 \ N (L) of L and let E2 be any embed-
ded, oriented surface in E(L) as in figure 9(1). The oriented surface E1 + E2,
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Figure 9: (1) E1, E2 ↪→ E(L). (2) E′
1, E

′
2 ↪→ E(L′) (in case N = 2 in

Lemma 3.12). (3) and (4) E1 + E2 ↪→ E(L).

which depends on the orientation of E1 and E2, is either of type (3) or type
(4) in figure 9. The front (resp. back) of E1 + E2 is dark-colored (resp. light-
colored) in the figure.

Suppose that E1 + E2 is of type (3) (resp. (4)). Now, open E(L) along
E1, and let E′ and E′′ be the resulting punctured disks obtained from E1.
Reglue E′ and E′′ by twisting one of the disks by 360×N degrees in the
clockwise (resp. counterclockwise) direction for some N ∈ N. Then we obtain
a new link, call it L′ such that E(L′) � E(L) (i.e., E(L′) is homeomorphic to
E(L)). Let (E′

1, E
′
2) be the ordered pair of the embedded, oriented surfaces

in E(L) which are obtained from the ordered pair (E1, E2) (see figure 9(2)).
The orientations of E′

1 and E′
2, are induced from E1 and E2, respectively.

Lemma 3.12. Let L,L′ be the links, Ei, E
′
i (i = 1, 2) be the surfaces as

above and let N ∈ N as above. There exists an orientation preserving home-
omorphism f : E(L)→ E(L′) such that

(1) f(yE1 + xE2) = rE′
1 + xE′

2 and

(2) f(E1) = E′
1,

where y = xN + r for x, y ∈ N and 0 ≤ r < x. In particular,

(1′) f(NE1 + E2) = E′
2.
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Figure 10: Fm,p, F̂m,p ↪→ E(Tm,p) in case (m, p) = (5, 1) (one sees that F̂5,1

is a twice-punctured disk).

Proof. The construction of L′ implies the existence of a homeomorphism
f : E(L)→ E(L′) with the properties (1) and (2). (By using figure 9(3)
and (4), one easily sees that f(E1 + E2) = E′

2 and f(E1) = E′
1. One can

generalize the first equality to the claim (1).) �

Note that by Lemma 3.12, ([E′
1], [E

′
2]) = ([E1], [NE1 + E2]).

Let us consider the exterior of the braided link E(Tm,p). Now, we shall
define two oriented surfaces F̂m,p, Fm,p ↪→ E(Tm,p) whose orientations are
induced by the oriented link Tm,p. (Recall that the orientation of Tm,p is
given as in figure 2 (right).) The oriented surface Fm,p is an m-punctured
disk which is bounded by the braid axis of Tm,p, see figure 10 (left). Clearly,
Fm,p is a fiber for E(Tm,p) with the monodromy Tm,p. The oriented surface
F̂m,p is a (p+ 1)-punctured disk which is bounded by Km,p, where Km,p is
the knot which is the closing of the first strand of Tm,p, see figure 10 (right).

Given m, p ∈ N and (k, �) ∈ N× N, the following construction enables us
to see another fiber Fm′,p′ ↪→ E(Tm,p) with the monodromy Tm′,p′ .

(Construction of fibers.)
Step 1. Apply Lemma 3.12 for the link Tm,p, the ordered pair (E1, E2) =

(Fm,p, F̂m,p) and N = k. (Note that Fm,p is a disk with punctures and hence
one can apply Lemma 3.12.) Then we obtain the ordered pair of embedded
surfaces in E(Tm,p);

(Fm,k(m−1)+p, F̂m,k(m−1)+p) = (Fm,p, kFm,p + F̂m,p).

(Notice that Θk = (σ2
1σ2σ3 · · ·σm−1)k(m−1).)

Step 2. Apply Lemma 3.12 for the link Tm,k(m−1)+p, the ordered pair
(E1, E2) = (F̂m,k(m−1)+p, Fm,k(m−1)+p) and N = �. (Note that F̂m,k(m−1)+p

is a disk with punctures and hence one can apply the lemma.) Then it turns
out that the new link L′ = L′(Tm,k(m−1)+p) is isotopic to Tm′,p′ , and we
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obtain the ordered pair of embedded surfaces in E(Tm,p);

(3.8) (F̂m′,p′ , Fm′,p′) = (F̂m,k(m−1)+p, �F̂m,k(m−1)+p + Fm,k(m−1)+p),

where

m′ = �(k(m− 1) + p) +m,

p′ = k(m− 1) + p.

Thus we have another fiber Fm′,p′ for E(Tm,p) with the monodromy Tm′p′ .
(End of the construction.)

We sometimes denote m′ and p′ by m′(m, p, k, �) and p′(m, p, k, �).
For example, in case Tm,p = T5,1 and (k, �) = (1, 2), we have Tm′,p′ =

T15,5, see figure 13(2), (3), (4). ((3) explains Step 1 and (4) explains Step 2.)
By using Lemma 3.12, it is easy to see the following.

Proposition 3.3. Let x, y ∈ N. Suppose that 0 < x < y and y 
≡ 0 (mod x).
Take k, �, r1, r2 such that

y = xk + r1 (0 < r1 < x, k ∈ N),
x = r1�+ r2 (0 ≤ r2 < r1, � ∈ N).

We apply the construction of a fiber for a given m, p ∈ N and such a pair
(k, �). Then there exists an orientation preserving homeomorphism
f : E(Tm,p)→ E(Tm′,p′) such that

f(xF̂m,p + yFm,p) = r2F̂m′,p′ + r1Fm′,p′ .

Let q = (q1, q2, · · · , qt) be a sequence of natural numbers. The num-
ber t in the sequence, denoted by |q|, is called the length of q. For q =
(k1, �1, · · · , kj , �j) with even length, let q|i = (k1, �1, · · · , ki, �i) for i ≤ j. For
q = (�0, k1, �1, · · · , kj , �j) with odd length, let q|i = (�0, k1, �1, · · · , ki, �i) for
i ≤ j. Note that q = q|j .

We will define a fiber Fm(q),p(q) for E(C3) with the monodromy Tm(q),p(q)

associated to q such that its homology class [Fm(q),p(q)] is in CΔ1(Z). To do
so, we define a fiber Fm(q|i),p(q|i) for E(C3) with the monodromy Tm(q|i),p(q|i)
inductively as follows. Another oriented diagram of C3 is given in figure 11
(left). The oriented twice-punctured disk Eα (resp. Eβ) bounded by Kα

(Kβ), whose orientation is induced by C3 is a representative of α (resp. β),
see figure 11 (center, right). We first consider a sequence q with even length.
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Figure 11: (left) C3. (center), (right) Eα, Eβ ↪→ E(C3).

Case 1 (even). Suppose that q = (k1, �1). First, apply Lemma 3.12 for
L = C3, the ordered pair (E1, E2) = (Eβ , Eα) and N = k1. Let (Eβ , k1Eβ +
Eα) be the ordered pair of embedded surface in E(C3) � E(L′) induced
from (Eβ , Eα). Second, apply Lemma 3.12 for L′, the ordered pair (k1Eβ +
Eα, Eβ) and N = �1. Then we have the ordered pair of embedded surfaces

(3.9) (k1Eβ + Eα, �1(k1Eβ + Eα) + Eβ)

in E(C3) � E(L′′), where L′′ = (L′)′. We see that L′′ is a braided link of
Tm(q),p(q) = T(k1+1)
1+2,k1+1, and

(3.10) (F̂m(q),p(q), Fm(q),p(q)) = (k1Eβ + Eα, �1(k1Eβ + Eα) + Eβ)

by (3.9). Therefore Fm(q),p(q) is a fiber for E(C3) with the monodromy
Tm(q),p(q), and by (3.10),

[
Fm(q),p(q)

]
= �1α+ (�1k1 + 1)β ∈ CΔ1(Z)

since α = [Eα] and β = [Eβ]. For example in case q = (1, 1), we have
Tm(q),p(q) = T4,2, see figure 12.

Suppose that q = (k1, �1, . . . , kj , �j), j > 1. For i = 1, we have defined a
fiber Fm(q|1),p(q|1) for E(C3) with the monodromy Tm(q|1),p(q|1) as above. Sup-
pose that we have a fiber Fm(q|i),p(q|i) for E(C3) � E(Tm(q|i),p(q|i)) with the
monodromy Tm(q|i),p(q|i). Apply the construction of a fiber for Tm(q|i),p(q|i)
and the pair (ki+1, �i+1). Then we have the ordered pair of embedded surfaces
(F̂m(q|i+1),p(q|i+1), Fm(q|i+1),p(q|i+1)) in E(C3) (given in Step 2 in the construc-
tion) which is defined by

(F̂m(q|i+1),p(q|i+1), Fm(q|i+1),p(q|i+1)) = (F̂m′,p′ , Fm′,p′),

where m′ = m′(m(q|i), p(q|i), ki+1, �i+1), p′ = p′(m(q|i), p(q|i), ki+1, �i+1),
see (3.8). The surface Fm(q|i+1),p(q|i+1) is a fiber for E(C3) with the mon-
odromy Tm(q|i+1),p(q|i+1). By induction, it is shown that

[
Fm(q|i+1),p(q|i+1)

]
∈

CΔ1(Z).
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Figure 12: Fiber F4,2 with monodromy T4,2 associated to (1, 1). (2) and (3)
Describe the first and second part of Case 1 (even), respectively.

Next, let us consider a sequence q with odd length.

Case 2 (odd). Suppose that q = (�0). Applying Lemma 3.12 for L = C3,
the ordered pair (E1, E2) = (Eα, Eβ) (not (E1, E2) = (Eβ , Eα) as in Case
1 (even)) and N = �0, we obtain the ordered pair of embedded surfaces
(Eα, �0Eα + Eβ) in E(C3) � E(L′). We see that L′ is a braided link of
Tm(q),p(q) = T
0+2,1. We have

(F̂m(q),p(q), Fm(q),p(q)) = (Eα, �0Eα + Eβ).

Therefore Fm(q),p(q) is a fiber for E(C3) with the monodromy Tm(q),p(q), and

[
Fm(q),p(q)

]
= �0α+ β ∈ CΔ1(Z).

In case �0 = 3, see figure 13(2).
Suppose that q = (�0, k1, �1, . . . , kj , �j), 2j + 1 > 1. For i = 0, we have

defined a fiber Fm(q|0),p(q|0) for E(C3) � E(Tm(0),p(0)) with the monodromy
Tm(q|0),p(q|0) as above. For i ≥ 1, in the same manner as Case 1 (even), a fiber
Fm(q|i),p(q|i) for E(C3) with the monodromy Tm(q|i),p(q|i) is given inductively,
and we see that

[
Fm(q),p(q)

]
∈ CΔ1(Z). In case q = (3, 1, 2), see figure 13.

3.5.2. Continued fraction Let us consider a continued fraction with
length j

w1 +
1
w2 +

1
w3 + · · ·+

1
wj−1 +

1
wj

:= w1 +
1

w2 +
1

w3 + · · ·
1

wj−1 +
1
wj
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Figure 13: Construction of fiber F15,5 associated to (3, 1, 2). (1) C3. (2) T 5,1.
(fiber F5,1 associated to q = (3).) (3) T 5,5. (4) T 15,5.

for wi ∈ N. We define [w1, w2, . . . , wj ] ∈ N inductively as follows.

[w1] = w1,

[w1, w2] = w1w2 + 1,
[w1, w2, . . . , wi] = [w1, w2, . . . , wi−1]wi + [w1, w2, . . . , wi−2] .

The following is elementary and well known.

Lemma 3.13.

(1) w1 + 1
w2 +

1
w3 +···+

1
wj−1 +

1
wj

= [w1,w2,...,wj ]
[w2,w3,...,wj ]

.

(2) [w1, w2, . . . , wj ] = [wj , wj−1, . . . , w1].

Definition 3.1. Suppose that gcd(u, v) = 1 for u, v ∈ N. We define two
sequences of non-negative integers r = (r0, r1, . . . , rj+1) and q = (q1, q2, . . . ,
qj) associated to {u, v} (according to the Euclidean algorithm). We set r0 =
max{u, v} and r1 = min{u, v}. Write r0 = r1q1 + r2 (0 ≤ r2 < r1).
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• If r2 = 0, then r1 must be 1 since gcd(u, v) = 1. We set

r = (r0, r1 = 1, r2 = 0) and q = (q1).

• Suppose that r2 
= 0. We define q2, q3, . . . and r3, r4, . . . inductively
as follows. Let qi > 0 and ri+1 ≥ 0 such that ri−1 = riqi + ri+1 (0 ≤
ri+1 < ri). Since r0 > · · · > ri > ri+1 ≥ 0, there exists j such that
rj+1 = 0. (Then rj must be 1 since gcd(u, v) = 1.) We set

r = (r0, r1, . . . , rj = 1, rj+1 = 0) and q = (q0, . . . , qj).

By using the sequence q, the fraction max{u,v}
min{u,v} can be expressed by the

following two kinds of continued fractions:

max{u, v}
min{u, v} = q1 +

1
q2 +

1
q3 + · · ·+

1
qj−1 +

1
qj
,(3.11)

max{u, v}
min{u, v} = q1 +

1
q2 +

1
q3 + · · ·+

1
qj−1 +

1
(qj − 1) +

1
1

(3.12)

with length j and j + 1, respectively. We can choose the one with odd/even
length among those continued fractions.

Proof of Theorem 3.4. Let xα+ yβ ∈ Δm−1(N). (By the definition of
Δm−1(N), x and y are relatively prime.) From the continued fractions of
max{x,y}
min{x,y} of the forms in (3.11) and (3.12) (constructed by one of the sequence
(q1, q2, . . .) = (w1, w2, . . .) in Definition 3.1 associated to {x, y}), we choose
the one with odd length if x > y (resp. even length if x < y):

(3.13)
max{x, y}
min{x, y} = w1 +

1
w2 +

1
w3 + · · ·+

1
wj−1 +

1
wj

.

Now, we take s = (s0, s1, . . . , sj+1) which is defined by

s0 = max{x, y},
s1 = min{x, y},

si+1 = si−1 − siwi for i ≥ 1.

Notice that sj = 1 and sj+1 = 0. (If the continued fraction in (3.13) is of
type (3.11), then s equals r in Definition 3.1.)

Suppose that x < y. (In this case, the continued fraction of (3.13) has
even length.) Let us write q = (w1, w2, . . . , wj) = (k1, �1, . . . , kj/2, �j/2). It is
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enough to show that a fiber Fm(q),p(q) for E(C3) associated to q is a represen-
tative of xα+ yβ. (If this is the case, Fm(q),p(q) is the minimal representative
of xα+ yβ since Fm(q),p(q) is a fiber.) By using Proposition 3.3 repeatedly,
we have

xα+ yβ = [xEα + yEβ ] (= [s1Eα + s0Eβ ])

=
[
s3F̂m(q|1),p(q|1) + s2Fm(q|1),p(q|1)

]
...

=
[
sj+1F̂m(q|j/2),p(q|j/2) + sjFm(q|j/2),p(q|j/2)

]

=
[
0F̂m(q|j/2),p(q|j/2) + 1Fm(q|j/2),p(q|j/2)

]
=

[
Fm(q),p(q)

]
.

Since the minimal representative of xα+ yβ is an (x+ y + 2)-punctured
sphere, m(q) equals x+ y + 1(= m).

The proof for the case x > y is similar. �

3.5.3. Computation of p = p(x, y) in Theorem 3.4 In this section we
give a recipe to compute p in Theorem 3.4. In Example 3.1, we explain how
the number p is related to the pair (x, y).

Recall that Km,p is the knot obtained by the closing the first strand of
Tm,p. Let K♦

m,p be the knot obtained by the closing the rest of strands, i.e.,
K♦

m,p equals the closed braid of Tm,p with Km,p removed. For the braided
link Tm,p, we have a pair of natural numbers

(i(F̂m,p,K
♦
m,p), i(Fm,p,K

♦
m,p)) = (p,m− 1),

where i(S,K) is the intersection number between the surface S and the knot
K. For C3, we have

(i(Eα,Kγ), i(Eβ ,Kγ)) = (1, 1),

see figure 11.

Example 3.1. By the proof of Theorem 3.4 (see also the argument in
Case 2 (odd) in Section 3.5.1 and figure 13), T15,5 is the monodromy
on a fiber which is the minimal representative for 11α+ 3β. We explain
why p = 5 is derived from q = (q1, q2, q3) = (3, 1, 2) and r = (r0, r1, r2,
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r3, r4) = (11, 3, 2, 1, 0) of Definition 3.1 associated to {3, 11}. We have

[11Eα + 3Eβ ] =
[
2F̂5,1 + 3F5,1

]
=

[
2F̂5,5 + 1F5,5

]
=

[
0F̂15,5 + 1F15,5

]
.

The following is a simple description of these equalities.

(3.14)
(r0, r1) (r2, r1) (r2, r3) (r4, r3)
‖ ‖ ‖ ‖

(11, 3) −−−−→
q1=3

(2, 3) −−−−→
q2=1

(2, 1) −−−−→
q3=2

(0, 1)

In the process to find the fiber associated to q = (3, 1, 2), we can find a
sequence of pairs of intersection numbers (1, 1), (1, 4), (5, 4), (5, 14) obtained
from C3, T 5,1, T 5,5, T 15,5, respectively, which is described from left to right
as follows.

(3.15) (1, 1) ←−−−−
q1=3

(1, 4) ←−−−−
q2=1

(5, 4) ←−−−−
q3=2

(5, 14)

Hence we can compute the number p = 5 from the sequence q = (3, 1, 2). To
describe the number p explicitly, we extend the sequence of (3.14) to the left
according to the Euclidean algorithm:

(r0, r0 + r1) (r0, r1) (r2, r1) (r2, r3) (r4, r3)
‖ ‖ ‖ ‖ ‖

(11, 14) −−−→
q0=1

(11, 3) −−−→
q1=3

(2, 3) −−−→
q2=1

(2, 1) −−−→
q3=2

(0, 1)

In the same way, we extend the sequence of (3.15) to the left:

(0, 1) ←−−−−
q0=1

(1, 1) ←−−−−
q1=3

(1, 4) ←−−−−
q2=1

(5, 4) ←−−−−
q3=2

(5, 14)

These show that

14
11

= 1 +
1
3 +

1
1 +

1
2

=
[1, 3, 1, 2]
[3, 1, 2]

=
[q0, q1, q2, q3]
[q1, q2, q3]

,

14
5

= 2 +
1
1 +

1
3 +

1
1

=
[2, 1, 3, 1]
[1, 3, 1]

=
[q3, q2, q1, q0]
[q2, q1, q0]

.

Thus the number p(= 5) in the question equals [q2, q1, q0].

Proposition 3.4. Let Tm,p(x,y) be the braid as in Theorem 3.4.
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(1) Let max{x,y}
min{x,y} = w1 + 1

w2 +
1

w3 +···+
1

wj−1 +
1

wj
be the continued fraction

chosen in (3.13). Then

p = p(x, y) = [wj−1, wj−2, . . . , w1, w0 = 1].

(2) p = p(x, y) satisfies

p×max{x, y} ≡ (−1)j (mod x+ y),

where j is the length of the continued fraction of max{x,y}
min{x,y} in (1).

Proof. (1) We have

x+ y

max{x, y} = w0 +
1
w1 +

1
w2 + · · ·+

1
wj−1 +

1
wj

,

where w0 = 1. It is not hard to show (1) by using the argument in Exam-
ple 3.1.

(2) By induction, one can show that
(
w0 1
1 0

)(
w1 1
1 0

)
· · ·

(
wj 1
1 0

)

=
(

[w0, w1, . . . , wj ] [w0, w1, . . . , wj−1]
[w1, w2, . . . , wj ] [w1, w2, . . . , wj−1]

)
.

Taking the determinant, one has

(−1)j+1 ≡ − [w0, w1, . . . , wj−1] [w1, w2, . . . , wj ] (mod [w0, w1, . . . , wj ])
≡ − [wj−1, wj−2, . . . , w0] [w1, w2, . . . , wj ] (mod [w0, w1, . . . , wj ]).

Note that x+ y = [w0, w1, . . . , wj ], p = [wj−1, wj−2, . . . , w0], and
max{x, y} = [w1, w2, . . . , wj ]. Thus,

(−1)j+1 ≡ −p×max{x, y} (mod x+ y).

This implies (2). �
We show the converse of Theorem 3.4.

Theorem 3.5. Suppose that gcd(p,m− 1) = 1 for p ≥ 1 and m ≥ 3. Then
there exist x, y ∈ N such that Tm,p is the monodromy on a fiber which is the
minimal representative of xα+ yβ ∈ Δm−1(N).
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Proof. Let ϕ : N→ N be the Euler function. The number of braids Tm,p

satisfying 1 ≤ p ≤ m− 1 and gcd(p,m− 1) = 1 equals ϕ(m− 1). Also, the
number of elements xα+ yβ ∈ Δm−1(N) equals ϕ(m− 1). Let xα+ yβ and
x′α+ y′β be distinct elements of Δm−1(N). By Theorem 3.4, it is enough to
show that p(x, y) 
= p(x′, y′) since we may assume that 1 ≤ p(x, y), p(x′, y′) ≤
m− 1 (see Lemma 3.10).

Suppose that (x, y) 
= (y′, x′). The concavity of ent(·)|Δm−1 : Δm−1 →
R and Lemma 3.6 imply that ent(xα+ yβ) 
= ent(x′α+ y′β), and hence
Tm,p(x,y) 
= Tm,p(x′,y′) which implies that p(x, y) 
= p(x′, y′).

Suppose that (x, y) = (y′, x′). (In this case, ent(xα+ yβ) = ent(x′α+
y′β).) By Proposition 3.4(2), we see that

p(x, y)×max{x, y}+ p(y, x)×max{x, y}(3.16)
= (p(x, y) + p(y, x))×max{x, y} ≡ 0 (mod x+ y).

Since gcd(max{x, y}, x+ y) = 1, we have p(x, y) + p(y, x) ≡ 0 (mod x+ y).
Thus, p(x, y) 
≡ p(y, x) (mod x+ y) which implies that p(x, y) 
= p(y,
x)(= p(x′, y′)). This completes the proof. �

Theorem 3.5 immediately gives:

Corollary 3.2. Suppose that gcd(p,m− 1) = 1 for p ≥ 1 and m ≥ 3. Then
S3 \ Tm,p is homeomorphic to S3 \ C3.

Proposition 3.5. Let m ≥ 3. The following shows homology classes real-
izing min{ent(a) | a ∈ Δm−1(N)} and their monodromies.

(1) If m = 2k, then (k − 1)α+ kβ and kα+ (k − 1)β realize the minimum
and their monodromies are given by T2k,2 and T2k,2k−3, respectively.

(2) If m = 4k + 1, then (2k − 1)α+ (2k + 1)β and (2k + 1)α+ (2k − 1)β
realize the minimum and their monodromies are given by T4k+1,2k+1

and T4k+1,2k−1, respectively.

(3a) If m = 3, then α+ β realize the minimum and its monodromy is given
by T3,1. If m = 8k + 3 (k ≥ 1), then (4k − 1)α+ (4k + 3)β and (4k +
3)α+ (4k − 1)β realize the minimum and their monodromies are given
by T8k+3,2k+1 and T8k+3,6k+1, respectively.

(3b) If m = 8k + 7, then (4k + 1)α+ (4k + 5)β and (4k + 5)α+ (4k + 1)β
realize the minimum and their monodromies are given by T8k+7,6k+5

and T8k+7,2k+1, respectively.
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Proof. We show the claim in case m = 2k. Other cases can be shown in a
similar way. By Lemma 3.8, the homology classes a = (k − 1)α+ kβ and
a′ = kα+ (k − 1)β realize the minimum. Let us consider the monodromies
Tm,p(k−1,k) and Tm,p(k,k−1). Let (x, y) = (k − 1, k). Since x < y, the continued
fraction which is chosen in (3.13) is y

x = w1 + 1
w2

, where w1 = 1 and w2 =
k − 1. By Proposition 3.4(1), p(k − 1, k) = [w1, w0] = [1, 1] = 2. By (3.16),

p(k − 1, k) + p(k, k − 1) ≡ 0 (mod 2k − 1).

Hence p(k, k − 1) = 2k − 3. By Lemma 3.6(1), T2k,2 or T2k,2k−3 gives the
monodromy for a and a′. �

3.6. Proof of Theorem 1.1

In Propositions 3.2 and 3.5, we have proved Theorem 1.1 except n = 6, 8. To
complete the proof, we shall describe monodromies for two homology classes
3α+ 2β + γ and 5α+ 3β + 2γ in Proposition 3.6.

Lemma 3.14.

(1) The 5-braided link σ1σ2
2σ3σ4 and the 4-braided link T 4,2 are isotopic to

the (−2, 4, 6)-pretzel link.

(2) The braided link b for the 7-braid b as in Theorem 1.1(3b-i) is isotopic
to the 5-braided link σ1σ2

2σ3σ4Θ−1
5 .

Proof. (1) This is an easy exercise and we leave the proof for the readers.
(Note: T4,2 is conjugate to the 4-braid σ2

1σ2σ3σ
2
1, and it might be easier to

see σ2
1σ2σ3σ2

1 is isotopic to the (−2, 4, 6)-pretzel link.)
(2) Let β be an n-braid. By deforming the axis of β, the braided link β

can be represented by the closed braid β̂′ of β′ ∈ Bn+2, where β′ =
σε1

n+1βσ
ε2
n σ

ε2
n−1 · · ·σε2

1 σ
ε2
1 σ

ε2
2 · · ·σε2

n (ε1, ε2 ∈ {−1, 1}), see figure 14. By using
this method, σ1σ2

2σ3σ4Θ−1
5 is represented by the closed 7-braid â′, where

a′ = σ−1
6 (σ1σ

2
2σ3σ4Θ−1

5 )σ−1
5 σ−1

4 σ−1
3 σ−1

2 σ−1
1 σ−1

1 σ−1
2 σ−1

3 σ−1
4 σ−1

5 .

On the other hand, the braided link b (figure 15 (left)) can be represented
by a closed 6-braid as in figure 15 (center) whose link type equals a closed
7-braid as in figure 15 (right). Namely, b is isotopic to the closure of the
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Figure 14: (left) Braided link β. (right) Closed braid representing β.

Figure 15: (left) Braided link b. (center) Closed 6-braid representing b.
(right) Closed 7-braid b̂′ representing b.

7-braid b′:

b′ = 6 1 2 3 4 1 2 3 1 2 54 4 3 5 4 3 2 1 1 2 3 4 5,

where i stands for σ−1
i . We see that a′ is conjugate to b′, since the

super summit set for a′ is equal to the one for b′. (The super summit
set is a complete conjugacy invariant, see [2].) In fact, the super summit
set consists of four elements Θ−1

7 1234321543654321, Θ−1
7 1213432543654321,

Θ−1
7 1232145432654321 and Θ−1

7 1232143254654321, where i stands for σi.
(One can use the computer program “Braiding” by González-Meneses for
a computation of the super summit set [7].) Thus, the link types of b and
σ1σ2

2σ3σ4Θ−1
5 are the same. This completes the proof. �

Lemma 3.14 together with Corollary 3.2 implies:

Corollary 3.3.

(1) S3 \ σ1σ2
2σ3σ4 is homeomorphic to S3 \ C3.

(2) S3 \ b is homeomorphic to S3 \ C3.
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Proposition 3.6.

(1) Γ(σ1σ
2
2σ3σ4) is the monodromy on a fiber which represents 3α+ 2β +

γ.

(2) Γ(b) is the monodromy on a fiber which represents 5α+ 3β + 2γ.

Proof. (1) We see that H6 = {3α+ 2β + γ, 3α+ β}, see the proof of Propo-
sition 3.2. By Corollary 3.1, the monodromy for 3α+ β permutes four punc-
tures cyclically and fixes two one punctures. On the other hand, the
monodromy for 3α+ 2β + γ permutes three punctures cyclically, and the
mapping class Γ(σ1σ

2
2σ3σ4) permutes three punctures cyclically. By

Corollary 3.3(1), we complete the proof.
(2) We see that H8 = {5α+ β, 5α+ 3β + 2γ, 5α+ 4β + 3γ}. The map-

ping class Γ(b) permutes five punctures cyclically, two punctures cyclically
and fixes the other one puncture. Among elements of H8, 5α+ 3β + 2γ
is the only class whose monodromy permutes two punctures cyclically. By
Corollary 3.3(2), we complete the proof. �

4. Further discussion

4.1. Pseudo-Anosov braids with small dilatation

We consider the braids T ′
m,p defined in the Introduction. The braid T ′

m,p may
not be pseudo-Anosov, even though Tm,p is so if gcd(p,m− 1) = 1 (Corol-
lary 3.2). The inequality λ(T ′

m,p) ≤ λ(Tm,p) holds in case T ′
m,p is pseudo-

Anosov. The following, which is clear by the definition of pseudo-Anosovs,
says when the equality holds.

Lemma 4.1. Suppose that gcd(p,m− 1) = 1. Let Φm,p be the pseudo-
Anosov homeomorphism which represents Γ(Tm,p) ∈M(Dm). Correspond-
ing to the first strand of Tm,p, there exists a puncture, say am,p, which is
fixed by Φm,p. Suppose that the invariant foliation associated to Φm,p has no
1-pronged singularity at am,p. Then T ′

m,p is pseudo-Anosov such that

λ(T ′
m,p) = λ(Tm,p).

The families of braids {T ′
m,p} and {Tm,p} contain examples with minimal

dilatation. The following braids realize the minimal dilatation.

• T ′
4,1 = σ1σ

−1
2 ∈ B3, see Matsuoka [22].

• T ′
5,1 = σ1σ2σ

−1
3 ∈ B4, see Ko–Los–Song [17] and Ham–Song [9].
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• T ′
6,2 ∼ σ1σ2σ3σ4σ1σ2 ∈ B5, see Ham-Song [9].

• T6,3 ∼ (σ2σ1σ2σ1(σ1σ2σ3σ4σ5)2)−1Θ ∈ B6, see Lanneau–Thiffeault
[18].

• T ′
8,2 ∼ σ−2

4 (σ1σ2σ3σ4σ5σ6)2 ∈ B7, see Lanneau–Thiffeault [18].

• T ′
9,5 ∼ σ−1

2 σ−1
1 (σ1σ2σ3σ4σ5σ6σ7)5 ∈ B8, see Lanneau–Thiffeault [18].

Here b ∼ b′ means that b is conjugate to b′.
All the braids in Proposition 3.5 have been studied from the viewpoint

of their dilatations. Hironaka–Kin studied a family of braids

σ(k) = σ1σ2 · · ·σ2k−2σ1σ2 · · ·σ2k−4 ∈ B2k−1 (k ≥ 3)

with odd strands [11]. It is easy to see that σ(k) ∼ T ′
2k,2 (cf. Proposition

3.5(1)). Each braid σ(k) ∈ B2k−1 has the smallest known dilatation. Venzke
found a family of braids {ψn} with small dilatation [30].

ψn = L2
nσ

−1
1 σ−1

2 if n = 2k − 1 (k ≥ 3),
ψn = L2k+1

n σ−1
1 σ−1

2 if n = 4k (k ≥ 2),
ψn = L2k+1

n σ−1
1 σ−1

2 if n = 8k + 2 (k ≥ 1),
ψn = L6k+5

n σ−1
1 σ−1

2 if n = 8k + 6 (k ≥ 1),
ψ6 = σ5σ4σ3σ2σ1σ5σ4σ3σ5σ4,

where Ln = σn−1σn−2 · · ·σ1 ∈ Bn. It is not hard to see that ψ2k−1 ∼ T ′
2k,2,

ψ4k ∼ T ′
4k+1,2k+1, ψ8k+2 ∼ T ′

8k+3,2k+1, ψ8k+6 ∼ T ′
8k+7,6k+5 and ψ6 ∼ T6,2 (cf.

Proposition 3.5(2)(3a)(3b)). By using Lemma 3.2 and Proposition 3.5
together with Lemma 4.1, we verify that

λ(ψ2k−1) = λ(T ′
2k,2) = λ(T2k,2),

λ(ψ4k) = λ(T ′
4k+1,2k+1) = λ(T4k+1,2k+1),

λ(ψ8k+2) = λ(T ′
8k+3,2k+1) = λ(T8k+3,2k+1),

λ(ψ8k+6) = λ(T ′
8k+7,6k+5) = λ(T8k+7,6k+5).

Let T(m) ∈ Bm be either of the two braids realizing the minimum in
Proposition 3.5. For example, T(2k) = T2k,2 or T2k,2k−3. Let T ′

(m) ∈ Bm−1

be the braid obtained from T(m) by forgetting the first strand of T(m). By
using Lemmas 4.1, 3.2 and Proposition 3.5, one has λ(T(m)) = λ(T ′

(m)). By
Theorem 3.1 and Proposition 3.5, we have the following.
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Corollary 4.1.

(1) λ(T ′
(2k)) equals the largest real root of

f(k−1,k,0)(t) = t2k−1 − 2(tk−1 + tk) + 1.

(2) λ(T ′
(4k+1)) equals the largest real root of

f(2k−1,2k+1,0)(t) = t4k − 2(t2k−1 + t2k+1) + 1.

(3a) λ(T ′
(8k+3)) equals the largest real root of

f(4k−1,4k+3,0)(t) = t8k+2 − 2(t4k−1 + t4k+3) + 1.

(3b) λ(T ′
(8k+7)) equals the largest real root of

f(4k+1,4k+5,0)(t) = t8k+6 − 2(t4k+1 + t4k+5) + 1.

We now discuss the monotonicity of the dilatation of braids T(m). The
following proposition is a corollary of Lemma 3.9 and Proposition 3.5.

Proposition 4.1.

(1) λ(T(2k)) > λ(T(2(k+1))).

(2) λ(T(4k+1)) > λ(T(4(k+1)+1)).

(3a) λ(T(8k+3)) > λ(T(8(k+1)+3)).

(3b) λ(T(8k+7)) > λ(T(8(k+1)+7)).

One can prove the following by using the argument in the proof of Lemma 3.9.

Lemma 4.2. λ(T(2k−1)) > λ(T(2k)).

In contrast to Lemma 4.2, it is not true that λ(T(2k)) > λ(T(2k+1)) for all k.
For example,

λ(T(6)) < λ(T(7)),

λ(T(10)) < λ(T(11)).

See the computation of λ(T(m)) and ent(T(m)) in the following table. We
shall show λ(T(2k)) > λ(T(2k+1)) is true for other cases in the next.
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m T(m) λ(T(m)) ent(T(m))
3 T3,1 3.73205 1.31696
4 T4,2 or T4,1 2.61803 0.962424
5 T5,3 or T5,1 2.29663 0.831443
6 T6,2 or T6,3 1.72208 0.543535
7 T7,1 or T7,5 2.08102 0.732858
8 T8,2 or T8,5 1.46557 0.382245
9 T9,5 or T9,3 1.41345 0.346031
10 T10,2 or T10,7 1.34372 0.295442
11 T11,3 or T11,7 1.35293 0.302271
12 T12,2 or T12,9 1.27248 0.240965
13 T13,7 or T13,5 1.25141 0.224273
14 T14,2 or T14,11 1.22572 0.203526
15 T15,3 or T15,11 1.22257 0.200958
16 T16,2 or T16,13 1.19267 0.176191
17 T17,9 or T17,7 1.18129 0.166609
18 T18,2 or T18,15 1.16806 0.155345
19 T19,5 or T19,13 1.16432 0.152136
20 T20,2 or T20,17 1.14903 0.13892
21 T21,11 or T21,9 1.14192 0.132708
22 T22,2 or T22,19 1.13388 0.125641
23 T23,5 or T23,17 1.13071 0.122845
24 T24,2 or T24,21 1.12152 0.114683
25 T25,13 or T25,11 1.11665 0.11033
26 T26,2 or T26,23 1.11125 0.105485
27 T27,7 or T27,19 1.10869 0.103176
28 T28,2 or T28,25 1.10258 0.0976543
29 T29,15 or T29,13 1.09904 0.0944354
30 T30,2 or T30,27 1.09517 0.0909069
31 T31,7 or T31,23 1.09309 0.0890074
32 T32,2 or T32,29 1.08875 0.0850323
33 T33,17 or T33,15 1.08606 0.0825554
34 T34,2 or T34,31 1.08315 0.0798714
35 T35,9 or T35,25 1.08144 0.0782958
36 T36,2 or T36,33 1.07821 0.0753015
37 T37,19 or T37,17 1.07609 0.0733366
38 T38,2 or T38,35 1.07382 0.0712265
39 T39,9 or T39,29 1.07241 0.0699047
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Lemma 4.3. λ(T(2k)) > λ(T(2k+1)) for all k ≥ 2 but k = 3, 5.

The following is used for the proof of Lemma 4.3.

Lemma 4.4. Let x′ > x > 1 and let y′ be the positive number such that

XT (x′α+ y′β)(= x′ + y′) = XT (xα+ (x− 1)β) + 1(= 2x).

If λ(x′α+ y′β) < λ(xα+ (x− 1)β), then

λ((x′ + 1
2)α+ (y′ + 1

2)β) < λ((x+ 1
2)α+ (x− 1

2)β).

Proof. One can show the claim by using the same argument as in [16, Propo-
sition 4.17]. �

Proof of Lemma 4.3. One has λ(3α+ β) < λ(2α+ β). This together with
Lemma 4.4 implies that

λ((2k + 1)α+ (2k − 1)β) < λ(2kα+ (2k − 1)β) for all k ≥ 1.

One has another inequality λ(9α+ 5β) < λ(7α+ 6β). Hence by Lemma 4.4,
for all k ≥ 2, one has

λ((4k + 3)α+ (4k − 1)β) < λ((4k + 1)α+ 4kβ),
λ((4k + 5)α+ (4k + 1)β) < λ((4k + 3)α+ (4k + 2)β).

This together with Proposition 3.5 completes the proof. �

As a corollary of Lemmas 4.2 and 4.3 together with the equality
λ(T(m)) = λ(T ′

(m)), one has:

Proposition 4.2.

(1) λ(T(2k−1)) > λ(T ′
(2k)) for all k ≥ 2.

(2) λ(T(6)) < λ(T ′
(7) ) and λ(T(10)) < λ(T ′

(11)). For all k ≥ 2 but k = 3, 5,

λ(T(2k)) > λ(T ′
(2k+1)).

In particular, T(10) ∈ B10 has smaller dilatation than the Venzke’s conjec-
tural minimum λ(ψ10)(= λ(T ′

(11))).
We turn to the asymptotic behavior of the normalized entropy of the

braid T(m). By Theorem 3.3(1) and Proposition 3.5, we obtain the following.
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Corollary 4.2. The normalized entropy of T(m) goes to the minimal nor-
malized entropy with respect to Δ as m goes to ∞, i.e.,

lim
m→∞ ent(T(m)) = ent(α+ β) = 2 log(2 +

√
3).

Finally, we propose a conjecture on the minimal dilatation of braids of
� strands for � ≥ 9.

Conjecture 4.1.

(1) The braid T ′
(2k) realizes the minimal dilatation among (2k − 1)-braids

for all k ≥ 5.

(2) The braid T(10) realizes the minimal dilatation among 10-braids. The
braid T ′

(2k+1) realizes the minimal dilatation among 2k-braids for all
k ≥ 6.

4.2. Asymptotic behavior of entropy function

We consider asymptotic behaviors of the entropy function for a family of
homology classes in Proposition 3.1.

Theorem 4.1. Let xα+ yβ ∈ CΔ1.

(1) lim
x,y→∞ ent(xα+ yβ) = 0.

(2) lim
y→∞ ent(xα+ yβ) = log 2

x .

Of course, lim
x→∞ ent(xα+ yβ) = log 2

y by symmetry.

Proof. (1) We may suppose that x ≤ y. By [19, Theorem 3.5], we have an
inequality

ent(a+ b) ≤ min{ent(a), ent(b)}

for a, b ∈ int(CΔ). Hence for all ε > 0 so that x− ε > 0 and for all δ > 0,

ent(xα+ (x+ δ)β) ≤ min{ent((x− ε)α+ xβ), ent(εα+ δβ)}.

Notice that ent(εα+ δβ) goes to ∞ as ε goes to 0. If one takes ε > 0 suffi-
ciently small, then one may assume that

ent(xα+ (x+ δ)β) ≤ ent((x− ε)α+ xβ).
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Since ent(·) is continuous, we have ent(xα+ (x+ δ)β) ≤ ent(xα+ xβ).
Thus,

lim
x→∞ ent(xα+ (x+ δ)β) ≤ lim

x→∞ ent(xα+ xβ) = lim
x→∞

1
xent(α+ β) = 0.

Since δ > 0 is arbitrary, the proof is completed.
(2) By Theorem 3.1, the dilatation of xα+ yβ + 0γ ∈ CΔ1(Z) is the

largest real root of

P (tx, ty, t0) = P (tx, ty, 1) = tyRx(t) + (Rx)∗(t),

where Rx(t) = tx − 2. By Lemma 2.1, the largest real root of P (tx, ty, 1)
converges to 21/x, which is the unique real root of Rx(t), as y →∞. This
claim can be extended to homology classes of CΔ1(Q), that is the dilatation
of xα+ yβ ∈ CΔ1(Q) converges to 21/x as y →∞. Since the entropy function
on CΔ1(Q) can be extended to CΔ1 uniquely, the proof is completed. �

Proposition 4.3. The entropy of (n+ 1)α+ nβ + (n− 1)γ ∈ int(CΔ) con-
verges to the logarithm of the golden mean 1+

√
5

2 as n goes to ∞.

Proof. We have

P (tn+1, tn, tn−1) = tn−1
(
tn(t2 − t− 1) + (t2 − t− 1)∗

)
.

If (n+ 1)α+ nβ + (n− 1)γ is an integral class, then its dilatation λn is the
largest real root of tn(t2 − t− 1) + (t2 − t− 1)∗. The polynomial t2 − t− 1
has the real root 1+

√
5

2 > 1. By Lemma 2.1, λn converges to 1+
√

5
2 as n ∈ N

goes to∞. Since ent(·) is continuous on int(CΔ), the proof is completed. �

4.3. Relation between horseshoe braid and braid Tm,p

The horseshoe map was discovered by Smale around 1960. This map is
well known to be a simple factor possessing chaotic dynamics ([25, Sec-
tion 8.4.2] for example). For ε > 0, any C1+ε surface diffeomorphism with
positive topological entropy “contains a horseshoe” in some iterate, see [13]
for more details. This tells us that the features of the horseshoe map is uni-
versal for chaotic dynamical systems. In this section, we relate monodromies
for homology classes in CΔ1(Z) to the horseshoe map.

The horseshoe map H : D → D is an orientation preserving diffeomor-
phism of the disk D defined as follows. The action of H on the rectangle R
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Figure 16: (1) R, S0, S1 ⊂ D. (2) Horseshoe map H (a∗ is the image of a
under H, for example).

and two half disks S0, S1 is given as in figure 16. More precisely, the restric-
tion H|Ri

for i ∈ {0, 1} is an affine map such that H contracts Ri vertically
and stretches horizontally, and H|S0∪S1 : S0 ∪ S1 → S0 ∪ S1 is a contraction
map. Then H can be extended over the rest of D without producing any
new periodic points.

The set Ω =
⋂

j∈Z
Hj(R) is invariant under H. The map H|Ω : Ω→

Ω can be described by using the symbolic dynamics as follows. We set
S = {0, 1}Z, that is S is the the set of all two sided infinite sequences
s = (· · · s−1s0|s1 · · · ) of 0 and 1, where we put the symbol | between the
zeroth element and the first element. We introduce the metric on S as
follows.

d(s, t) =
∑
i∈Z

|si−ti|
2|i| ,

where s = (· · · s−1s0|s1s2 · · · ) and t = (· · · t−1t0|t1t2 · · · ).

Theorem 4.2 (Smale). Let s : S → S be the shift map, i.e., s is a home-
omorphism such that

s(· · · s0|s1s2 · · · ) = (· · · s0s1|s2 · · · ).

The restriction H|Ω : Ω→ Ω is conjugate to the shift map s : S → S. The
conjugacy K : Ω→ S is given by

K(x) = (· · · K−1(x)K0(x)|K1(x) · · · ),

where

Kj(x) =

{
1 if Hj(x) ∈ R1,

0 if Hj(x) ∈ R0.

If x is a periodic point with the least period k for H, then K(x) is a
periodic sequence. The word K0(x)K1(x) · · · Kk−1(x) is called the code for
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x. Such word (modulo cyclic permutation) is said to be the code for the
periodic orbit OH(x) = {x,H(x), . . . , Hk−1(x)}.

Remark 4.1.

(1) Theorem 4.2 asserts that there exists a one to one correspondence
between the set of periodic points for H|Ω and the set of periodic
sequences in S.

(2) By using Theorem 4.2, one can show that the set of periodic points of
H|Ω is dense on Ω.

Let Q be a set of n points consisting of periodic orbits of H|Ω. We take
an isotopy {Ht}t∈I=[0,1] such that H0 = identity map on D and H1 = H.
Then

b(Q; {Ht}t∈I) =
⋃
t∈I

Ht(Q)× {t} ⊂ D × I

is an n-braid. This depends on the choice of the isotopy, but it is determined
uniquely up to a power of the full twist Θ = (σ1 · · ·σn−1)n. Consider the
suspension flow on the mapping torus by using a “natural” isotopy {Ht},
see figure 17 (left). For this isotopy, we denote the braid b(Q; {Ht}t∈I) by bQ.
By the definition of H, one can collapse the image of the vertical lines of R0

and R1 under the isotopy to build the horseshoe template T as in figure 17
(center). (For the template theory, see [6].) In this case the template is
equipped with the semiflow induced by the suspension flow. It is easy to see
that there exists a one to one correspondence between the set of periodic
orbits of H|Ω and the set of periodic orbits of the semiflow on T . Each braid
bQ can be embedded in T so that the closed braid of bQ becomes a finite
union of periodic orbits of the semiflow on T . Simply, we write bQ for the
image of bQ ↪→ T when there exists no confusion.

Figure 17: (left) Suspension of horseshoe map. (center) Horseshoe template
T . (right) Non-horseshoe 4-braid embedded in T . (In this case, two strings
of the braid are parallel.)
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Now, we define horseshoe mapping classes and horseshoe braids. Let An

be a set of n points which lie on the horizontal line through the origin in
the round disk D. We set an n-punctured disk Dn = D \An. We say that
φ ∈M(Dn) is a horseshoe mapping class if there exists a set of n points Q
consisting of periodic orbits ofH|Ω and there exists an orientation preserving
homeomorphism g : D \Q→ Dn such that φ is conjugate to the mapping
class [g ◦H|D\Q ◦ g−1] ∈M(Dn). A braid β ∈ Bn is a horseshoe braid if the
mapping class Γ(β) ∈M(Dn) is a horseshoe mapping class. In other words,
β is a horseshoe braid if there exists an integer k and there exists a set of n
points consisting of a finite union of periodic orbits of H|Ω, denoted by Q,
such that βΘk is conjugate to the braid bQ. In this case, there exists a braid
γ ∈ Bn such that γβγ−1Θk can be embedded in T . However, the converse
is not true. For example, the 4-braid of figure 17 (right) is not a horseshoe
braid since there exists exactly one periodic orbit with the least period 2
for H|Ω whose code is 01. By Remark 4.1(1), one can show that a braid β
embedded in T (ignoring the semiflow) is a horseshoe braid if and only if no
strings of the braid are parallel (see figure 17 (right)).

Proposition 4.4. Suppose that gcd(p,m− 1) = 1. If 1 < p ≤ m−1
2 , then

Tm,p ∈ Bm is a horseshoe braid.

Obviously, if the braid b is written by b = cb′, then b is conjugate to b′c. This
is used for the proof of Proposition 4.4. Before proving the proposition, we
first see that T12,4 is a horseshoe braid by using figure 18.

Example 4.1. The first braid of figure 18 is a representative of T12,4. We
slide the last crossing in the small circle to the top, see the second braid.
Then it is conjugate to the third braid of figure 18. We repeat to slide the
last crossing in the small circle of the third braid to the top. We see that
it is conjugate to the fourth braid. The crossings in the large circle of the
fourth braid can slide to the top, and then we see that the fourth braid is
conjugate to the fifth braid which is isotopic to the sixth braid. Finally, it is
easy to see that the sixth braid is conjugate to the seventh braid which can
be embedded in T . (In fact, the braid σ1σ2σ3σ4 is a conjugacy.) Since no
strings of the latter braid are parallel, one concludes that T12,4 is a horseshoe
braid.

Proof of Proposition 4.4. We consider a representative of Tm,p as in the first
braid of figure 19 (see also figure 8 (left)). By using the slide technique in
Example 4.1, we see that Tm,p is conjugate to the second braid or the third
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Figure 18: Conjugate braid of T12,4. (1) T12,4. (7) Braid embedded in T .

Figure 19: (1) Tm,p. (Tm,p is conjugate to either the braid drawn in (2) or
the one drawn in (3)).

of figure 19. (For example, T12,4 is conjugate to the second type and T12,5 is
conjugate to the third type.)

First, we show that the second braid is a horseshoe braid by using
figure 20. This braid is conjugate to the first braid of figure 20 which is
equal to the second braid of figure 20 (see the fifth and sixth braid of fig-
ure 18). The second braid of figure 20 is conjugate to the third braid in
figure 20 which can be embedded in T .

Second, we show the third braid of figure 19 is a horseshoe braid by
using figure 21. This braid is conjugate to the first braid of figure 21. (For
example, T12,5 is conjugate to the third braid of figure 21.) It is easy to see
that the first braid of figure 21 is conjugate to the second braid of figure 21
which can be embedded in T . �
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Figure 20: Conjugate braid of Tm,p.

Figure 21: (1,2) Conjugate braid of Tm,p. (3) Conjugate braid of T12,5.

4.4. Alternative proof of Theorem 4.1(2)

In this section, we give an alternative proof of Theorem 4.1(2).

Proof of Theorem 4.1(2). By Proposition 3.4, we have seen that Tm,1 repre-
sents the monodromy of (m− 2)α+ β ∈ CΔ1(Z). For the proof, it is enough
to show that

(4.1) lim
m(∈N)→∞

ent((m− 2)α+ β) = log 2.

The reason is as follows. The equality in (4.1) implies that

lim
x→∞ ent(xα+ β) = log 2

by the continuity of ent(·). Therefore,

ent(xα+ yβ) = 1
y ent(x

yα+ β)→ log 2
y as x→∞.
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Figure 22: (left) β(m1,m2,··· ,mk+1). (center) β(1,4). (right) β̂(1,m−3).

Now we show (4.1). Let β(m1,m2,...,mk+1) be a family of braids depicted in
figure 22 for each integer k ≥ 1 and each integer mi ≥ 1. By [15, Theo-
rem 1.2], these braids are all pseudo-Anosov and the dilatation of
β(m1,...,mk+1) is the largest real root of the Salem–Boyd polynomial

tmk+1R(m1,...,mk)(t) + (−1)k+1R(m1,...,mk)∗(t),

where R(m1,...,mi)(t) is given inductively as follows: For 2 ≤ i ≤ k,

R(m1)(t) = tm1+1(t− 1)− 2t,

R(m1,...,mi)(t) = tmi(t− 1)R(m1,...,mi−1)(t) + (−1)i2tR(m1,...,mi−1)∗(t).

In particular, the dilatation of β(1,m−3) = σ−1
1 σ2σ3 · · ·σm−2 ∈ Bm−1 is the

largest root of

(4.2) tm−2R(1)(t) + (R(1))∗(t),

where R(1)(t) = t(t+ 1)(t− 2). By Lemma 2.1, the dilatation of β(1,m−3)

converges to 2 as m→∞. The polynomial (4.2) comes from the graph map

Figure 23: (left) Transition of peripheral edge. (center) Graph map. (right)
train track.
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shown in figure 23 (center). This is the induced graph map for β(1,m−3) ∈
Bm−1. The polynomial (4.2) is the characteristic polynomial of the transition
matrix for the graph map. The smoothing of the graph gives rise to the
train track associated to β(1,m−3) (figure 23 (right)). Since the train track
contains an (m− 2)-gon, a pseudo-Anosov homeomorphism Φβ(1,m−3) which
represents the mapping class β(1,m−3) has an (m− 2)-pronged singularity,
say p, in the interior of the punctured disk. By puncturing the point p, one
obtains a pseudo-Anosov homeomorphism Φ̂β(1,m−3) . It is easy to see that
the mapping class [Φ̂β(1,m−3) ] is given by

β̂(1,m−3) = σ−1
1 σ2σ3 · · ·σm−2σ

2
m−1 ∈ Bm

with the same dilatation as β(1,m−3). Since β̂(1,m−3) is conjugate to the braid
Tm,1, the dilatation λ(Tm,1) converges to 2 as m goes to ∞. This completes
the proof. �
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