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Coordinate-free characterization of homogeneous
polynomials with isolated singularities

IRENE CHEN, KE-PAO LIN, STEPHEN YAU AND HUAIQING ZUO

The Durfee conjecture, proposed in 1978, relates two important
invariants of isolated hypersurface singularities by a famous
inequality; however, the inequality in this conjecture is not sharp.
In 1995, Yau announced his conjecture which proposed a sharp
inequality. The Yau conjecture characterizes the conditions under
which an affine hypersurface with an isolated singularity at the
origin is a cone over a nonsingular projective hypersurface; in
other words, the conjecture gives a coordinate-free characteriza-
tion of when a convergent power series is a homogeneous polyno-
mial after a biholomorphic change of variables. In this paper, we
have proved that if p, > 0, then 5!p, < u — p(v), p(v) = (v — 1) —
v(v—1)...(v—4) and pg, n and v are, respectively, the geometric
genus, the Milnor number, and the multiplicity of the isolated sin-
gularity at the origin of a weighted homogeneous polynomial. As
a consequence, we prove that the Yau conjecture holds for n =5
if pg > 0. In the process, we have also defined yet another sharp
upper bound for the number of positive integral points within a
five-dimensional simplex.

1. Introduction

Let A, be an n-dimensional real right-angled simplex defined by the
inequality

where 1 > 0,...,2, >0 and a1 > ag > -+ > a, > 1. Define P, to be the
number of positive integral points in A,,, as shown below:

Tz T
Pn:#{(xl,xg,...,wn)EZ’}r]1+2+-~-+n§1}.
aiq as A,
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Define @), to be the number of nonnegative integral points in A,,, as shown
below:

Qn:#{(xl,xg,...,xn)€(Z+U{O})”|21+22+~'+xnSl}.
1 2

Gn

The problem of obtaining the numbers P,, and @, has occupied mathe-
maticians for decades, simply because a sharp upper estimate of the former
would benefit those in singularity theory and a sharp upper estimate of the
latter would benefit those in number theory. Granville [3] has stated that
an estimate of ,, would help with finding large gaps between primes, and
research done by Xu and Yau [19, 21] on the Durfee conjecture has shown
that an estimate of P, does aid mathematicians in singularity theory. These
two different numbers are tied together through the equation

P (a1,a2,...,an) = Qun(a1(1 —a),az(l —a),...,a,(1 —a)),

where a = a% 4+ 4 ai Thus, if one discovers a new estimate for P,, a new
estimate for @, will also be present.
In 1899, Pick [15] discovered a formula for Qa:

2

Q2 = area(A) + WAQW +1,

where 0A is the boundary of the simplex and |0A NZ"| is the number
of integral points on the boundary. In 1951, Mordell [13] discovered the
formula for Q)3 using Dedekind sums, but the real breakthrough occurred
when Ehrhart [2] proved a polynomial of degree n could calculate the number
of nonnegative lattice points in n-dimensional simplex. However, his formula
is only effective when the coefficients of every term are known. Starting in
1939, attempts were made to find lower and upper bounds for @, instead
of a precise formula. It was later discovered by Lehmer [5] that if a = a; =

()

From that formula, it is very natural to introduce the following definition
for a sharp estimate R,, of @, [18]. The estimate is sharp if

a+mn
Rn|a1:---:an:a€Z - ( > .

ag = -+ = Qp,

n
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In other words, any upper or lower bound is only considered to be a sharp
estimate if and only if the exact number of lattice points in n-dimensional
simplex is attained when a = a1 =as =--- = a, € Z.

Let (V,0) be an isolated hypersurface singularity defined by holomor-
phic function f: (C"*1,0) — (C,0). Let 7 : M — V be a resolution of the
singularity at 0. Define the geometric genus of the singularity (V,0) to be
pg = dim H""}(M,O). Let w be a holomorphic n forms on V — {0}. w is
said to be L? integrable if fW— (W AW <0 for sufficiently small relatively
compact neighborhood W of 0 in V. Let L2(V — {0}, Q") be the set of all L?
integral holomorphic n forms V' — {0}, which is a linear subspace of I'(V —
{0}, Q™). Then it was proved that p, = dimI'(V — {0}, Q")/L*(V — {0}, Q")
(see [23]). The Milnor number of the singularity (V,0) is defined as

w=dimC{zo, 21, ..., 2n}/([zos fors s [a)-

The multiplicity of the singularity is defined to be the order of the lowest
nonvanishing term in the power series Taylor expansion of f at 0. In singular-
ity theory, Durfee [1] formed his famous conjecture. The conjecture states
that for an isolated singularity (V,0) defined by a weighted homogeneous
polynomial f(zo,21,22,...,2n),

(n+ 1lpg < p,

where p, is the geometric genus of V', p is the Milnor number, and equality
holds if and only if = 0. A polynomial f(z,z1,22,...,2,) is a weighted

homogeneous polynomial of the type (wo,wi,ws,...,w,), where wg,ws,
wa, ..., w, are fixed positive rational numbers, if f can be expressed as
a linear combination of monomials z’2}' ...z for which j& + -4+

Z}—" = 1. Furthermore, the Milnor number x [12] can be expressed as (wg — 1)
(w; —1)...(w, — 1). As a consequence of the theorem of Merle—Teissier [14],
we know that in case of isolated singularity defined by a weighted homoge-
neous polynomial, computing the geometric genus is equivalent to counting
the number of positive integral points in a tetrahedron.

The next sharp estimate to be constructed was the GLY conjecture,
formulated by Lin et al. [9]. It has two different parts: the sharp estimate
and the rough estimate. However, before we state it, it is convenient to
introduce the Sterling numbers first:

Spt = > ivig.. i, ST =1,8"" =1.2.. (n—1),

1<d; <ip < <ip <n—1
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where i1, 19, ...,%; are integers. It has the following property:

z(z—1)(z—-2)...(x —n+1)

n—1
=" — (Z i1> 2"t 4 (—1)? DT i

=1 1<4y <in<n—1

e (=) > ivig ... ip | "R

i§i1 <i2<“‘<ik Sn—l

n—1
o (=)t (Hz) z
i=1
— " + (71)8?71xn—1 + (71)2551711,71—2
o (DRSET R L ()T

Let a1, as9,...,a, be positive real numbers. We shall denote

- 1
p () >
i=1 »

101 <ip<-<i<n V12
n
AT = "a;, Af = 1.
i=1
Observe that A7 _, is a polynomial in a1, as,...,a, of degree n — k.
Conjecture 1.1 (Granville-Lin—Yau (GLY) conjecture [9, 18]). Let

Py =#{(z1,20,...,2n) €24 T+ 2+ + 2 <1}, where a1 > az
> >an > 1 are real numbers. If n > 3, then

(1) Rough (general) upper estimate: For all a, > 1,
n
nPy < g = H(az - 1)7

i=1

where equality holds if and only if ay = ag = - -+ = a,, = integer.
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(2) Sharp upper estimate: For a,, sufficiently large, there exists an integer
B(n) that depends on n such that when a, > (3(n), then

n—1 n—1 n—1
nlP, < A" + (—1 )S A (1222 Aty (1S e
n—1 n—1
& ) (")
qn— 1 Sn—l

+...+(_1)k—1¢An S (_l)n—lni—lAn—l
n —

(")

and equality holds if and only if a1 = ao =+ =ay, € Z.

The GLY conjecture was proven by Xu and Yau for n =3 [20] and
n =4 [22], for n =5, see [4], [6] and [8], Wang and Yau for 3 <n <6 [18],
where 3(n) =n — 1 for 3 <n < 6. The rough GLY upper estimate for all n
was proven in [24].

In particular, the following theorems will be used frequently.

Theorem 1.1. Let a>b>c>d > 2, and Py be the number of positive
integral solutions of T + ¥ + 2+ % <1, d.e, Py =#{(z,y,2,w) € VAR 2+
$4+ 249 <1} If Py >0, then

24Py < fa(a,b,c,d) := abed — g(abc + abd + acd + bed)
+ %(ab—i—ac—i—bc) —2(a+b+c)
and equality is attained if and only if a = b = ¢ = d = integer.
Ifa>b>c>d>3o0ora>8,b>6,c>4,d>2, then Theorem 1.1 is
true without the condition Py > 0 and equality is attained if and only if

a = b= c=d = integer.

Theorem 1.2. Let a >b>

integral solutions of £ + ¥ +
Iyz4u <1y Deﬁneu:(

c>d>1, and Py be the number of positive
2+ <1, de, Pp=t{(z,y,2,w) € zZi: 24
a—1)(b—1)(c—1)(d—1), then
24Py < p = abed — (abe + abd + acd + bed)

+ (ab+ac+ad+bc+bd+cd)—(a+b+c+d)+1
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Theorem 1.3 (Lu—Ya—Zu [11]). Let a>b>c>d > 1, and Py be the
number of positive integral solutions of £ + ¥ + 2 4 % <1, d.e., Py = #{(z,y,
zow)€ZL 2+ Y424 % <1} Definep=(a—1)(b—1)(c—1)(d— 1), if
Py > 0, then

24Py < g4(a,b,c,d) :=(a—1)(b—1)(c—1)(d—1)
—(d—-1)*+d(d—-1)(d—-2)(d—3)

and equality is attained if and only if a = b = ¢ = d = integer.

The GLY conjecture was the first major step towards proving the fol-
lowing conjecture made by Yau in 1995 [24]:

Conjecture 1.2. Let f: (C",0) — (C,0) be a weighted homogeneous poly-
nomial with an isolated singularity at the origin. Let p, py and v be the
Milnor number, geometric genus and multiplicity of the singularity V =

{z: f(z) =0}, then
p—p(v) = nlpy,

where p(v) =(v—1)"—v(v—1)...(v—n+1), and equality holds if and
only if f is a homogeneous polynomial.

This conjecture is a sharp estimate that holds without the restriction of
the sharp GLY estimate, a,, > (3(n), and it also has some important appli-
cations in geometry.

The Yau conjecture was already proven for the cases n =3 [20] and
n =4 [10]. In this paper, we aim to prove the Yau conjecture for n =5,
which is stated below.

Theorem 1.4. Let f: (C5,0) — (C,0) be a weighted homogeneous polyno-
mial with an isolated singularity at the origin. Let u, py and v be the Milnor
number, geometric genus and multiplicty of the singularity V- = {z: f(z) =
0}. If pg > 0 then

p—p(v) = Slpg,
where p(v) = (v —1)% —v(v —1)... (v — 4), and equality holds if and only if

f is a homogeneous polynomial.

As a corollary of Theorem 1.4, we have the following coordinate-free
characterization of homogeneous polynomials with isolated singularities.
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Corollary. Let f: (C5,0) — (C,0) be a holomorphic function with an iso-
lated singularity at the origin. Let p, pg and v be the Milnor number, the
geometric genus and multiplicity of the singularity V = {z: f(z) = 0} at the
origin. Let T be the dimension of the semi-universal deformation space of
(V,0) which is dim C{z1,...,25}/(f, fzrs- -, [2). Assume that pg > 0, then,
after a biholomorphic change of coordinates, f is a homogeneous polynomial
if and only if p — (v —1)> +v(v — 1)(v —2)(v — 3)(v — 4) =5!Py and p = 7.

It was observed by Saeki [16] (also see [20]) that the multiplicity v is
inf{n € Zy: n} > inf{wp, w1, wa, w3, ws}, where w; is a weight of z; in f.
Therefore, proving our Main Theorem, Theorem 1.4 above, is akin to proving
the following theorem about the number of integral points within a five-
dimensional simplex, in view of the Theorem 2.5 in Section 2.5 of this paper.

Theorem 1.5. Leta>b>c>d> e > 1 be real numbers and let Ps be the
number of positive integral solutions of £+ {4+ 24542 <1, ie., Ps=
#(z,y,z0,w) €Z: L+ ¥+ 24+ 5+ 2 <1} Definep = (a—1)(b—1)(c
—1)(d—-1)(e—1). If Ps > 0, then

5!P5 < pu— (5vt — 250° + 400% — 190 — 1),

where v is the multiplicity calculated by v = e, if e is an integer, or by v =
le] +1=e—B+1, ifeis not an integer and (3 is either <, ¢, < or , where
[e] = e — B is the integral part of e. Equality holds if and only ifa =b=c=

d = e are all integers.

Although the idea of the proof of our theorem is very simple, our proof
is quite delicate. We try to estimate P, on hyperplanes parallel to the xyzv-
plane by using the upper bounds in the four-dimensional case provided by
Theorems 1.1 to 1.3 above and sum these estimates up to get Ps. In order to
avoid the negative amount difficulty in f4(a,b,c,d) and g4(a,b, c,d) which
may happen when d < 3, we need a careful analysis of the last two or three
hyperplanes. For this reason, Theorems 1.1 to 1.3 are needed to deal with
the problem. Our main theorem follows from a careful analysis of this sum.
All the computations in this paper are done by Maple V.

By level w = k, we shall mean the intersection of the tetrahedron in
Theorem 1.5 with the hyperplane w = k. In our tetrahedron, w = k points
are in following four-dimensional tetrahedron

x Y z v

a-Hr-nTa-ntaa-n="
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We can use Theorem 1.1 to bound the number of positive integral solutions
at level w = k if d(1 — %) >3ord(l— %) > 2 with the condition there exist
positive integral solutions at this level. We can use Theorem 1.2 to bound the
number of positive integral solutions at level w = k if d(1 — %) > 1 without
the condition there exist positive integral solutions at this level. We can use
Theorem 1.3 to bound the number of positive integral solutions at level w =
kif d(1 — S) > 1 with the condition there exist positive integral solutions
at this level. In order to do this, we will split up the proof into five main
cases, depending on the value of e, and utilize Theorems 1.1 to 1.3 carefully
in each case:

(I) e>5,e€Zy,
(D) e>4, e ¢ Zy,
(III) 4> e > 3,
(IV) 3>e> 2,
(V) 2>e>1.

We slice the five-dimensional simplex into the hyperplanes, w = 1,w =2, ...,
w=e—0B—1and w=e— (. It is obvious there are no positive integral
solutions at level w =¢e — §. At level w =¢e — § — 2, the defining inequal-
. . Yy d

ity of the simplex becomes %(5’;2) + (5+2) + g(ﬁz+2) + g(ﬁv+2) <L IFS(B+

2) > 3, then Theorem 1.1 can be used. If (8 + 2) < 3 with the condition
there are positive integral solutions at this level, then Theorem 1.3 can be
used. If g(ﬁ + 2) < 3 with the condition there are no positive integral solu-
tions at this level, then Theorem 1.2 can be used. At level w =e — [ — 1,
the defining inequality of the simplex becomes %(Bz+1) + g(ﬁyﬂ) + §(5Z+1) +
% < 1. In Case (II), we divide our proof into two cases depending on
whether the tetrahedron

x Y z v

TG+ kG A LG

at level w = e — 8 — 1 has positive integral solutions or not.

Case (A). ¢(1+ ) <4 or g(1+5) <3or {(1+p8)<2o0r g(l—i—ﬂ) <1.
In this case, there are no positive integral solutions on level w =

e—(3—1.

Case (B). ¢(1+B3)>4, 2(1+B) >3, £(1+8)>2 and 4(1+p)>1,

where 0 < 8 < 1.
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In this case, there may exist positive integral solutions on level w =

e— (3 —1.
2. Proof of the main Theorem 4
2.1. Case I

We will first analyze the case that occurs when e > 5 and e is an integer.

Proposition 2.1. Let a>b>c>d>e>5 be real numbers. Consider
L4y +24 54 %<1, Let Ps be the number of positive integral solutions
of the above inequality, i.e., Ps = #{(z,y,z,v,w) € Zi: Lry+2484
@ < 1}. Then,

120P5 < abede — 2(abed + abee + abde + acde + bede)

35 25
+ Z(abc + abd + acd + bed) — E(ab + ac+ ad + be + bd + cd)
+6(a+b+c+d).
The inequality above has been taken from the main theorem of [7].

Before we go any further, we should note the interesting properties of
P, that the lemma below points out.

Lemma 2.1. Leta>b>c>d>1 be real numbers and let Py = #{(z,vy,
z,0) €Z4: 24 ¥ 4 248 <1}, Then, the following statements hold:

(1) if b < 3, then Py =0,

(2) if ¢ <2, then Py = 0.

The theorem below is basically the Yau conjecture for n = 5 with the
property that e is an integer.

Theorem 2.1. Leta >b> c>d > e > 4 be real numbers with e an integer.
Consider § + % + 2+ 4+ % < 1. Let P5 be the number of positive integral
solutions of L+ ¥+ 2+ 5+% <1, de, Ps=#{(z,y,z,0,w) €Z5: £+
$4+24854+% <1}, Define p=(a—1)(b—1)(c—1)(d—1)(e—1). Then,
120P5 < p — (50t — 2503 + 4002 — 190 — 1) |y—
=(a—1)(b-1(c—1)(d—-1)(e—1) — (5e* — 25¢> + 40e% — 19¢ — 1)

with equality if and only if a = b= c = d = e = integer.
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Proof. Because Proposition 2.1 is a previously proven upper estimate for P,
we only need to show that the right-hand side (RHS) of Theorem 2.1 is larger
than the RHS of Proposition 2.1. Let A1 be the difference by subtracting
the RHS of Proposition 2.1 from the RHS of Theorem 2.1. We only need to
show A1 > 0.

1
A1 = abed + abee + abde + acde + bede — 3Z(abc + abd + acd + bed)

22
+ abe + ace + bee + ade + bde + cde + ?(ab+ac+bc

+ ad + bd + cd) — ae — be — ce —de —5(a+ b+ ¢+ d)
— 5e* + 25¢® — 40e? + 20e.

Let A=¢, B= g, C=<¢and D= g; we can now rewrite Aj.
Ay = (ABCD + ABC + ABD + ACD + BCD — 5)¢?
- Eei‘(ABc + ABD + ACD + BCD)
+e3(AB 4+ AC + BC + AD + BD + CD + 25)
22
- geQ(AB + AC + BC + AD + BD + CD)

—e2(A+B+C+D+40) —5e(A+B+C+ D —4).

Note that A is symmetric with respect to A, B, C and D. We can then
apply a method that we call the “partial differentiation test”: we calculate
the partial derivative with respect to all the variables first and then partial
differentiate with respect to one less variable for each consecutive step until
we have the expressions for the first-order partials, which are %Ah %Al,
%Al and %Al in this case. As long as we show that those first-order
partials are positive throughout the domain and that the function is posi-
tive at the minimum, we can conclude that the function, and therefore the
difference, is positive throughout the domain.

First,

0*A,
0AOBOCOD

for all e > 1. Then, it follows that 322% is an increasing function of D for
e>1,D >1, and at the minimum D =1,

31
= ¢ (26—) > 0,
D=1 4

:e4>0,

DA
0AOBOC
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for e > 3L so 8;19;%80 must be positive throughout the domain D > 1, e >

31 Because g A%B is symmetric with respect to C and D, % must also
be positive on the domain C > 1, e > 31 . Then, from knowing that both
a/?agéc and % are p081tlve, g A%é is increasing with respect to C' and

DforC’>D>1ande> . At the minimum C = D =1,

29 22

2 2

= 3e” — +

e(e 26 3>>0,

02N
0AOB

C=D=1

for e > 29Jr\/4?01"e>5 SO gA%le >0forC>1,D >1and e > 5. Because
%Al is symmetric with respect to B, C' and D, both g A%é and 8‘9 Agb must
also be positive on the respective domainsof B> 1, D > 1,e > 5and B > 1,
C>1,e>5 and %%41 is an increasing function of B, C and D for B > 1,

C>1,D>1ande>5. At the minimum of B=C=D =1,

o5,
0A

:6<463—8162+21€—5> >0,
B=C=D=1 4
for e > 5. Then, we know that A; is increasing with respect to A for B > 1,
C>1,D>1 and e > 5. Because A; is symmetric with respect to A, B,
C and D, A; must also be increasing with respect to B, C' and D for the
respective domains of A>1, C>1, D>1,e>5 A>1, B>1, D>1,
e>b;and A>1, B>1, C >1, e>5. Evaluated at the minimum of A =
B=C=D=1,

Ai|a=p=c=p=1 =0,
hence A; is nonnegative on the domain A>1, B>1, C>1, D>1 and
e > 5, and therefore the RHS of Theorem 2.1 is greater than or equal to the
RHS of Proposition 2.1. O

2.2. Case V

Theorem 2.2. Leta>b>c>d>e ande € (1,2] be real numbers. Con-
sider £ + ¥4 + 2+ 5+ 2 < 1. Let P5 be the number of positive integral solu-
tions of L4+ 44+ 2454+ 2 <1 e, P5=#{(z,y,2,0,w) €Z5: L+ ¥+
2424 % <1} Define p=(a—1)(b—1)(c—1)(d—1)(e—1). Then, if
P> 0,
120P5 < pu — (5v* — 250 + 4002 — 190 — 1) |y—s
=(a—1b-1(c-1)d-1)(e—1)—1

with equality if and only if a = b= c = d = e = integer.
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Proof. In this case, e € (1,2] and there are two levels to consider, k = 1 and
k =2. When k =2, the inequality £ 4+ ¥ + 2 + £ 4 % < 1 has no positive
solutions, and when k = 1, the set of positive solutions to the inequality
contains the point (1,1,1,1,1) if we assume P5 > 0. If é + % + % + é <1-
% £ o, then a € (0, %] since e € (1,2]. Let A =aa, B =ba, C = ca, and

D = da and the following restrictions hold:
A>4, B>3, C>2,D>1,

<Ll l4 L <] and

B
IN
o[
+
|~
+
Ql=
+

: 1 2 1 1
sllnce s <L&E<sg+p <1
o < 1. Then, we have

e
o
Ql=
ol

BIP(k = 1) < 5[(A—1)(B—1)(C - 1)(D —1) — (D — 1)
+D(D—1)(D —2)(D - 3)].

If we let Ay be the difference by subtracting the RHS of Theorem 2.2 from

the RHS of the above inequality; then substituting a = g, b= g, c= g,
d= %, e= ﬁ, v =2, into As, then all we have to do is apply the partial
differentiation test for the expression
1
a’(l — «

+0o?(AB+ AC + BC + AD + BD + CD)
—a3(1 —4A — 4B — 4C 4+ 5AB + 5AC + 5BC
—5ABC — 14D +5AD + 5BD — 5ABD + 5CD
—5ACD —5BCD + 5ABCD + 25D* — 10D?)
+a*(2—-5A4 5B+ 5AB — 5C + 5AC + 5BC
—~5ABC — 15D +5AD +5BD — 5ABD +5CD

—5ACD — 5BCD + 5ABCD + 25D* — 10D?))
1
= — A
Bl—a)?

on the domain A >4, B>3,C>2, D > 1, and «a € (0, %] We see that

0*A;

983 4 _ k.3 4
9ADBACID 1—-5a"+5a" >0
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for all a € (0,1). Then, 82&;% is an increasing function of D on D > 1,
a € (0,1) with a minimum at D = 1.

93
940BoC |, ~ 70

for all a € (0,1). It follows that 52788~ >0 for all D > 1, a € (0,1), and
0% A4

. . . 3
because §35% is symmetric with respect to C'and D, we also know % >

0 for all C' > 1, a € (0,1). Therefore, % is an increasing function with
respect to C, D for all C > 1, D > 1, a € (0,1), and its minimum occurs at
C=D-=1.

0% A3

0AOB | r_p_4

=1-2a+a’=(1-a)’>>0,

for all @ € (0,1). It follows that 255 > 0 for all C > 1, D > 1, a € (0, 1),
O0A3

and because %75* is symmetric with respect to B, C' and D, we also know

F5a > 0forall B>1,D>1,a€ (0,1)and 254 > 0forall B>1,0 > 1,

a € (0,1). Therefore, 88%43 is an increasing function with respect to B, C, D
foral B>1,C>1,D>1,a€ (0,1) with a minimum at B=C =D = 1.

0A3

—= =1-3a+3a%>+3a%> (1-0a)®>0,
A |p_c—p—1

for all @ € (0, 1), so %%43 >0forallB>1,>1,>1,a€ (0,1). By the prop-

erty that Az is symmetric with respect to A, B and C, we also have %%3 >0

forall A>1,C>1,D>1, a€(0,1) and 99 >0 for all A>1, B> 1,

D >1, a€(0,1), and therefore, As is an increasing function with respect
to A, B and C. Meanwhile,

PPA3
oD3

= 6003(1 — a) > 0,

for all a € (0,1), so ‘?DA;’ is an increasing function of D for all D > 1, a €

(0,1) with a minimum at D = 1.

0%As 3

—_— = 60a’(1 — 0
for all @ € (0,1), so %2523 > 0 on the domain of D > 1, a € (0, 1), and there-
fore, %%3 is an increasing function of D for all D > 1, a € (0,1). Further-

more, %ADS is an increasing function with respect to A, B, C' and D for
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A>B>C>D>1, ac(0,1), because %A[)?’ is symmetric with respect to
A, B and C. Then, the minimum of %5’ occurs at A=4, B=3, C =2,
D =

0A3

= 24 — 26 + 902 — 410 + 40a* > 0,
oD A=4,B=3,0=2,D=1

for all € (0,1), and therefore, %%3 >0for A>4, B>3,C>2 D>1,
€ (0,1), and Ags is an increasing function of A, B,C,D for A >4, B > 3,
C>2,D>1,a€(0,1). Thus, the minimum of Az occurs at A =4, B = 3,

C=2,D=1:

A3|a=4,B=3,0=2.p=1 = 24 — 50a + 350% — 11a® 4 2a* > 0

for all @ € (0,1). Then, it follows that A3 >0 for A>4, B>3, C >2,
D>1and ac€(0,3] O

2.3. Case IV

Theorem 2.3. Leta>b>c>d>e ande € (2,3] be real numbers. Con-
sider £ + 4 4+ 24+ 54+ % < 1. Let Ps be the number of positive integral solu-
tions of L4+ 4+ 2454+ %<1 e, Ps=#{(v,w,3,y,2) €Z5: L+ ¥+
2484 %<1} Define p=(a—1)(b—1)(c—1)(d—1)(e—1). Then, if
P> 0,

120P5 < pu — (5v* — 250 + 4002 — 190 — 1) |y—3
=(a—1)(b—1)(c—1)(d—1)(e—1) — 32

with equality if and only if a = b = ¢ = d = e = integer.

Proof. In this case, e € (2,3], and there are two levels to consider: k = 1,
and k = 2. Because of the criterion P5 > 0, we know the level k£ = 1 contains
positive integral solutions, but due to the fact that we cannot draw any
conclusions about the level & = 2, we have two different subcases to consider:

(a) Py(2) =0,
(b) Py(2) > 0.

For subcase (a), the proof is almost exactly the same as the proof
presented in Case V. Because P; > 0, the set of positive integral solu-
tions includes the point (1,1,1,1,1), and let 1 + +1 + <l—-2=aq,a€



Coordinate-free characterization of homogeneous polynomials 675

(3, 2], since e € (2,3]. Let A =aa, B=ba, C =ca and D = do; then, the
following restrictions apply:
o

A>4, B>3, C>2, D>
1—a’

because D = da > ea = 12, With a € (4, 2], 12 € (1,2], so we only need
to show that the dlfference by subtracting the estimate pr0v1ded in Case V by
[11] from the RHS of Theorem 2.3, which is equal to %&1)@ is positive
for A>4, B>3,C>2,D>:% and o € (3, 3]. Notice that in Case V,
we showed that all the first-order partial derivatives are positive for A > 4,
B>3,C>2,D>1and«a € (0,1); the only difference was the minimum of
Ags. Note that the constant terms in Theorems 2.2 and 2.3 differ, so we should
subtract 31a3(1 — «) from Az to make sure we are still proving Theorem 2.3
instead of Theorem 2.2. Then, we can substitute our new restrictions into
the calculation of the minimum value of Az — 31a3(1 — «):

Az — 31@3(1 - O‘)|A=4,B=3,C:2,D:ﬁ
a?(24 — 47a + 602 + 1403 + 13a*)

(a—1)y >0

for a € (3, 2]. Then, it follows that Ag — 31a®(1 — ) > 0 for A >4, B > 3,
C>2,D>:% and o € (3, 3]

For subcase (b), P4(2) > 0, which implies that (1, 1,1, 1, 2) is the smallest
positive integer solution to the level £ = 2. Then, we have % + % + % + é <
1— % 2 a1, 0 € (0, %}, since e € (2,3]. Let A = aay, B = bay, C = cay and
D = day, and then we know A >4, B> 3, C > 2, D > 1 for the same rea-
sons listed in Case V. If we utilize the estimate provided by Luo et al. [11],
we get the following;:

51P5 = 5I(Py(1) + Pa(2))
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« <D<12_a1+1>—3>+(A—1)(B—1)(C—1)(D—1)

aq

—(D-1)*4+D(D-1)(D-2)(D -3).

It is sufficient to show that the RHS of the inequality above is strictly less
than the RHS of Theorem 2.3. Let A4 be the difference between the latter,

St A yp_B ._C g_D ,_ _2 —
substltutlnga—al,b—al,C— ,d—al,.e_17a1,u—3andtheformer.

[e5}

Ay +(11ABCD — a1 (6ABC + 6ABD + 6ACD

- 16(1 — a)ag
+6BCD — ABCDay — 20D?)
— a?(4AB + 4AC + 4BC — 4ABC + 4AD + 4BD — 4ABD
+4CD — 4ACD — 4BCD + 10ABCD + 100D? — 40D?
+ a3(24A 4 24B — 4AB + 24C — 4AC — 4BC + 104D — 4AD
—4BD — 4CD + 10ABCD — 100D?)
+ af(—496 + 64A + 64B — 60AB + 64C — 60AC — 60BC + 60ABC
+ 224D — 60AD — 60BD + 60ABD — 60CD + 60ACD + 60BCD
— 65ABCD — 300D? + 120D?)
+ af (528 — 1204 — 120B + 100AB — 120C + 100AC + 100BC
—90ABC — 360D + 100AD + 100BD — 90ABD + 100CD — 90ACD

—90BCD + 85ABCD + 500D* — 180D3?)).
1
= —— A
16(1 — ay)af >

Now, we apply the partial differentiation test to As on the domain A > 4,
B>3,C>2,D>1anda € (0,3].

&' A5

—= =11 — 1002 + 1003 — 4 5
3A5B9CaD — L1 T o1 — 1007 +10aj — 65a; + 8507 > 0

for oy € (0,1), so af?;% is an increasing function of D on D >1 and
aq € (0,1) with its minimum at D = 1.

D3N

mDZl:11—5041—604%—1—1()0}{’_50/11_506?>0

S0 822% >0 for D > 1 and «; € (0,1). Because gg@g is symmetric with

respect to C' and D, 82;% >0 for C >1 and «a; € (0,1), and 88;%;”3 is
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an increasing function of C' and D for C' > D > 1 and oy € (0, 1) with its
minimum at C =D = 1.
02 A5
0AIB |_p_

= (a1 — 1)*(1 + a1)(11 +5a3) > 0

for a; € (0,1), s g,:g% > 0 on the interval C > 1, D > 1 and a3 € (0,1).
Because %%45 is symmetric with respect to B, C and D, <98A§(5J > 0 on the
interval B> 1, D > 1 and a; € (0,1), and gA?B > 0 on the interval B > 1,

C >1 and a3 € (0,1). Then, we know that %ﬁ; is an increasing function
of B, C and D for B>C >D >1 and ag € (0,1) with its minimum at
B=C=D=1.

0As

—(oq — 1)3(aq +1)(11 + 501) > 0
0A B=C=D=1

for a16(0 3), so 8A5 > 0 on the interval B>1, C>1, D>1 and o5 €
(0, ) Due to the fact that As is symmetric with respect to A, B and C,
we also have ‘Mf’ > 0 on the interval A>1,C >1, D >1, g € (0,2) and
8A5 > (0 on the 1nterval A>1,B>1,D>1,a; € (0,2). In the meantime,

B As
P37 = 120(1 — ay)aq (1 + 3a1)(1 + 3a2) > 0

for a7 € (0,1), so %2325 is an increasing function of D for D > 1 and a; €
(0,1) with its minimum at D = 1.

0? A5

507 = 4001 (1 — a1)(3 + 4oy — a2 +203) > 0

D=1

for ay € (0,1), which means % >0 for D> 1 and a3 € (0,1) hence %ADS

is an increasing function of A, B, C' and D, on the interval A > B > C >
D >1, a; € (0,1) with its minimum at A=B=C=D=1.

055

5D = 4(66 — 18 — 6303 + 273 — 13907 + 175a3) > 0

A=4,B=3,C=2,D=1

for a; € (0,1), and thus 8A5 >0for A>4,B>3,C>2 D>1and a; €
(0,1]. Hence, As is an 1ncreas1ng function of A,B,C,D for A >4, B > 3,
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C>2, D>1 and o € (0,1] with its minimum at A =4, B=3, C =2,
D=1.

AB‘A:4,B:3,C:2,D:1 = 8(@1 — 1)(—33 — o1+ 2904% — 1104? + 560/11) > 0

for ay € (O,%),Ag, >0forA>4,B>3,C>2,D>1lando; € (0,%),thus
ending this proof. O

2.4. Case II1

Theorem 2.4. Leta>b>c>d>e and e € (3,4] be real numbers. Con-
sider £ + ¥ 4+ 24+ 54 % < 1. Let Ps be the number of positive integral solu-
tions of L4+ 4+ 24+ 54+% <1, de, Ps=#{(z,y,2,0,w) € Z?,: 2444
2+ 0+% <1} Define p=(a—1)(b—1)(c—1)(d—-1)(e—1). Then, if
P> 0,

120Ps < pn — (5v* — 2503 + 4002 — 190 — 1)]y—y
=(a—1)(b-1)(c—1)(d—1)(e—1) — (243)

with equality if and only if a = b = ¢ = d = e = integer.

Proof. In this case, there are four levels that might contain positive integral
solutions: k=1, k=2, k=3 and k = 4. When k = 4, the defining inequal-
ity of the five-dimensional simplex becomes £ + ¥ + 2 + % + % <1, which
has no positive integral solutions. Because P5 > 0, we know k£ = 1 must have
points, but the nature of the levels k = 2 and k& = 3 are unknown, and there-
fore, we have to consider three different subcases:

(a) Pa(3) = P4(2) =0,

(b) P4(3) =0, P4(2) >0,

(c) Py(3) >0,Ps(2) > 0.
In subcase (a), we will apply the GLY conjecture for n = 4 on the level k = 1

to estimate Py(1). This estimate is given by the expression below, which is
also present as Theorem 2.1 of [8]:

3 11
4Py < abed — §(abc+ abd + acd + bed) + ?(alﬂ— ac+bc) —2(a+b+c),

aslongasa>b>c>d>2and P, > 0.
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Let a be defined by % %—i—%—i—é Sl—%éa,ae (%,%} since
€ (3,4], and let A = aa, B = ba, C = cav and D = dav. Then, the following

restrictions apply:

REEEY

A>4, B>3, C>D>
1l -«

We can apply the GLY conjecture to the above region because D > 12— €
(2, 3], satisfying the condition of Theorem 2.1 from [8] that the smallest
weight has to be greater than or equal to 2.

51P; < 5|ABCD — ;(ABC + ABD + ACD + BCD)

11
+ 5 (AB+AC + BC) — 2(A+ B +C)).

Let Ag now be defined as the difference by subtracting the RHS of the above
inequality from the RHS of Theorem 2.4.

1
Ag = ——=((1464 + 110AC + 110BC — 60A — 60B — 60C
6(1 —a)ad
—45ABC + 30ABCD — 45ABD — 45ACD — 45BCD + 110AB)a*
+ (—=110AC — 110BC — 110AB — 1458 + 45ABC + 54A + 54B
+45BCD +45ABD + 45ACD — 6D + 54C — 30ABCD)o?
+ (6BC 4+ 6AD + 6BD + 6CD + 6AC + 6AB)a?
+ (-6ABC —6ABD — 6ACD — 6BCD)a+ 6ABCD)
1
= ——— A7
6(1 — a)ad ’
Then, we only need to show that A7 > 0 by the partial differentiation
test.
0*A;
0AOBOCOD
for all o € (%, %] Then, 825% is an increasing function of D on D > 1,
a € (%, %] with a minimum at D = 2.

=6—30a>+30a* >0

P A P
AT 150t~ 150% — 6+ 12 > 0
9AdDBIC |, , O T e Theriss

2 3 93A 2 3 92A
for all @ € (3, 7], 50 ga5550 > 0 forall D > 2, a € (3, 1], and because 5455

is symmetric with respect to C' and D, we also know E)A?;% > (0 forall C >

2, a € (%,32]. (From symmetry, we also know that 82{;% > 0 for all B > 2,



680 Irene Chen et al.

o € (3,2], a fact that will come in handy later in the proof.) Therefore
g A%é is an increasing function with respect to C' and D for all C' > 2=,

D> 1% and a € (3, 3] with a minimum at C = D > 2 > 2.
2A
0 A = 500" —500% + 602 — 240 + 24 > 0
QAOB |o_p_s

for all o € (2, 3]. It follows that gA%]B >0forallC > 2. >2, D> 2. >2

and a € (3, i] and because 88%47 is symmetric with respect to B and C, we
also know 2 aAac >0forallB>—>2 D>—>2 a€(3,4] We now
need to show that -2 aA > 0forall B> 12, C > 1% «a € (2, 2]; we already

93 A,
know that it is an increasing functlon on the domaln because 515555 > 0

and &faw > ( for their respective domains so we only need to check the

value of (98,4@5 at its minimum of B =3, C = %, > 2.

02 A7

— 4504 4 4503 2
949D by s 5a™ + 45a” 4 6 30a+36 >0

for all a € (%,2], so 6‘9 A§7 > 0 on the domain. (By symmetry, we also know

5) B%B > 0 and gczng > (0 on their respective domains, which will help later

in the proof.) Therefore, %AA7 is an increasing function with respect to B, C,
Dforall B>3,C> 1%, D> 2 a,ozE(f 7] with a minimum at B = 3,

C=D=1%>2

0A7

= 130a* — 1360 + 4202 — 96 + 72 > 0
0A B=3,C=D=2

foralla € (2,3]s0 982 > 0for B>3,C> 2, D> % ac (33
property that A7 is symmetric with respect to A B, C, we also have

for A23,0 > 2 D>1a,ae(%,i]andaA7>OforA>3 B>

D>, ac ( } and therefore, A7 is an increasing function with respect

to A, B C Meanwhile, because we know gjg& > 0, 55’;%]5 > 0, gggjg > (0 on

|. By the
oo > 0

their respective domains, we know that 2 5 D7 is an 1ncreasmg function with
respect to A, B, C for A >3,B>3,0>:%,ac (3, 3] with its minimum

057

= —450a + 44403 + 540 — 156 + 144 > 0
OD | 4=y p=3.0=2
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forall a € (2, 3] so %AD7 >0for A>4,B>3,C> 1%, ac (2 2] It follows
that Az is an increasing function with respect to D, too. We separate the
proof over the region considered into the following cases.

Case (1). A>4,B>3,C > D >276. It’s easy to verify A; >0 in this

subcase.

Case (2). 2.76 > D > *~. Hence %+%+%§1—%§1—T176:‘6%.
%LA—F%LB—F%%S1.Hence%AZ3,%Bz2.We0btainA2%,BZ%.
It is easy to verify A7 >0 for A > %,B >C>341and 2.76 > D > 2.
Case (3).2.76 > D > 12—, and D < C < 3.41.

1 1 1 1 1 1 __ 8104 8104
Hencez-l-gSl—@—ﬁS1—m—ﬁ—m.Hence23529A22.We

obtain A > %.

It’s easy to verify A7 > 0 for A > %,B >5.59,276>D > ﬁ and D <
C <341.

Case (4). When 2.76 > D > -2 D < C < 3.41 and 5.59 > B > 5.

1 111 1 1 1 _ 2177236 13152711
2S1—5-C—5<1—55 —3i1 — 376 = Tsisor11- Hence A > 552520

It is easy to verify A7 > 0 for A > 11.5, % <B<559,27>D> & and
D <(C <341.

Case (5). We still need to consider 11.5 > A > 12311757222161, 5.59 > B > %,
276> D> % and D < (C < 3.41.

—o)
From %—i— %1—1—0%4—% < 1 we have the following:
DSl=d— 50 S1—15 55 54 = dssir Hence D > 155555,
<1 -4 -5 <1— i — 5 — 5k = 228 Hence B > 2529,
%S1—%—%—%Sl—ﬁ—ﬁ—f%:%.Hencecz%.

It is easy to verify A7 > 0 for 11.5 > A > SLZL 559 > B > 23529 3 47 >

C > 357 and 2.76 > D > 1389231 Then, it follows that A7 >0 for A >
4,B>3,C>D>:% and o€ (3,3

For subcase (b), the proof is similar to the proof in subcase IV(b).
Because Py(2) > 0, (1,1,1,1,2) is the smallest positive solution for the level
k =2, and so, let oy bedeﬁnedby%+%+%+éSl—%éal,al E(%,%],
since e € (3,4]. Let A =aaq, B =bay, C = ca; and D = day; then the fol-
lowing restrictions apply:

2
A>4, B>3 C>2 D> 21
1—0&1

since D = day > ea = % With a; € (1, 1], 2% € (1,2], so it is suffi-

3 5]’ 1—an
cient to show Ay — 211 = 16(1—71041%&4(A5 —211(16)af(1 — a1)) > 0, hence to

show that Az —211(16)af(1 —a1) >0 for A>4, B>3,C >2, D > $£%-

and aj € (3, 3]. Note that the term —211(16)af(1 — o) only affects the
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value of the function at the minimum, and therefore, the proof of this sub-
case is exactly the same as the one in subcase IV(b) except for the very last
calculation, the calculation of the value of the function’s minimum.

As = 211(16)aj(1 - al)’A:4,B:3,C:2,D: 2

_ 1601(24 — 3201 — 6af — 18304 + 56507 — 59707 + 389af)
(a1 — 1)

> 0,

for oy € (%, 3]. Then, it follows that As — 211(16)af(1 — ay) > 0 for A > 4,
B>3C>2 D> 20‘1 anda1€(3,2]

For subcase (c), P4(3) >0, s0 (1,1,1,1,3) is the smallest positive solu—
tion on the level k = 3. Let a9 be defined by é—k % + % —|— <1-2 2,
ag € (0, %], since e € (3,4], and let A = aag, B = bag, C' = cag and D = daw.
Also, notice that A >4, B> 3, C > 2, D > 1, for the same reasons listed
in Case V. Then, from the estimate provided in [11], we know that

5P = 5'(P4( ) + P4( ) + P4(3))
<5 A2+a2_1 2+a2_1 C2+a2
3as 3o 3a
2+ s 2+ as 4 2‘1‘042
D 1 —1
% < 3052 > < 30[2 > +< 3042 )
y D2+a2_1 2+a2_ D2+az
3o 3o Bl
+<A1+2a2_1>< 1+ 209 1) <Cl+2a2_1>
30&2
<

1+2 1+2
<D+a2_> D+a2_3>

+(A-1)(B-1)(C-1)(D -
+ D(D —-1)(D—-2)(D — 3)] .
It is sufficient to show that the RHS of the inequality above is strictly

less than the RHS of Theorem 2.4. Let Ag be the difference by subtracting
the RHS of the inequality above from the RHS of Theorem 2.4, substituting
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_A4y_B ,_C 4g_D ,_ 3
a—az,b— c-a2,d— €= g

o v = 4, and the former.

1
- 81(1 — a)a
4+ 27BCD + 34ABCD — 270D?) — a3(63AB + 63AC + 63BC

—54ABC + 63AD + 63BD — 54ABD + 63C'D — 54ACD
—54BCD +40ABCD + 1125D* — 270D?) + a3 (243A + 243B

— 54AB + 243C — 54AC — 54BC + 1053D — 54AD — 54BD

— 54C'D + 40ABCD — 675D?) 4 a3(324A — 19521 + 324B

— 270AB + 324C — 270AC — 270BC + 270ABC + 1134D

— 270AD — 270BD + 270ABD — 270CD + 270ACD

4+ 270BCD — 290ABCD — 1350D? + 540D%) + a5(19764

— 810A — 810B + 630AB — 810C + 630AC + 630BC — 540ABC
—2430D + 630AD + 630BD — 540ABD + 630CD — 540ACD

— 540BCD + 490ABCD + 3150D% — 1080D?)

1
= ——Ay.
81(1 — ag)ay K

As (TTABCD — a3(2TABC + 27TABD + 27TACD

Now, we apply the partial differentiation test on Ag for A > 4, B > 3,
CZQ,DZlandOQG(O,i].

0t Ag

S9BacaD = 11~ 3oz - 4003 + 4003 — 29003 + 49003

>0

for ag € (0, %) It follows that 822% is an increasing function of D for
D >1 and az € (0, 2), with a minimum at D = 1:

03N

9A0BC|, | 77— 61la + 1403 + 4003 — 2003 — 50053

>0

for az € (0, 2), so 82;%90 >0 for D >1 and as € (0, 2). Because gj@% is
symmetric with respect to C' and D, we also know that BA?S% > 0 for
C >1and a3 € (0, %), and thus, % is an increasing function of C' and D
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for C > D >1and as € (0, %) with a minimum at C = D = 1.

82 Ag

DADE |, " 77 — 88y 4+ 5ai — 14ai — 20a; + 4045

>0

for ap € (0, %), SO g;%% >0for C>D >1and ay € (0, %) Due to the fact
that %ﬁf is symmetric with respect to B, C and D, we also know that
J22 >0 for B>D > 1, az € (0,2) and 255 >0 for B>C>1, az €
(0, %) Thus, %75 is an increasing function of B, C'and D for B> C > D > 1

and ap € (0, 2) with a minimum at B=C =D = 1.

0Ag

== = (1 — a)®(77 + 1160 + 5003)
0A B=C=D=1

>0

for ay € (0, %), SO 88%49 >0for B>C>D>1and as € (0, %) Because Ag
is symmetric with respect to A, B and C, we also know that %%9 > 0 for
A>C>D>1, 0426(0,%) and %ACQ >0for A>B>D >1, 0426(0,%).

In the meantime, we also have

%—1620(1— )(a2)(1 4 202) (1 + 2a3)
8D3 = a9 )9 a9 (65
>0

for ag € (0, %), SO % is an increasing function of D for D > 1 and as €

(0, 2), with a minimum at D = 1.

0?Ag

5 =90(1 — az)(a2)(18 + 11lag — 4a3 + 2a3)
oD? | ,_,

>0

for ay € (0, %), SO %%9 is an increasing function of D for D > 1 and as €

(0, %)7 furthermore, because 6%9 is symmetric with respect to A, B,C and
D, it is also an increasing function of A, B and C for A > B>C>D > 1,
g € (O,%), with a minimm at A=B=C=D =1.

8

— = (1 — ) (77 + 77203 — 73503 — 115403 — 139003)
oD A=B=C=D=1

>0
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for ag € (0, %), so it follows that Ag is an increasing function of D for D > 1
and asg € (0, %) We also know that Ag is an increasing function of A, B and
Cfor A>B>C>1and as € (0, %), and therefore we only need to check
if Ag > 0 at the minimum A=4, B=3,C =2, D =1.

Ag|aza p=3.c=2.p=1 = 3(1 — a2)(616 — 16y — 45603 + 8903 — 630803)
>0

fOIOéQG(O,%],SOA9>Of01"AZ4,BZ3,CZQ,DZlaDdOZQG(O,%].
U

2.5. Case 11

We will now analyze the case that occurs when e > 4, e ¢ Z,. We must also
keep in mind the hypothesis that the non-integral portion of e, 3 has to be
either £, ¢, £, or 2, which is shown by Theorem 2.5 below.

Theorem 2.5. A polynomial f(z1,...,z,) is weighted homogeneous of type
(wi,...,wy) and has an isolated singularity at the origin. Suppose w;, >
wj, > - > w;, and w;, is not an integer, where {i1.i2,...,in} ={1,2,...,
n}. Let w;, = [w;, |+ B with 0 < 8 < 1. Then, there exists a j € {1,...,n —
1} such that = Z—]

Proof. Case 1: w;, = w;, = --- = w;,. This means f is homogeneous, which
implies that w;, =--- = w;, are integers, and that contradicts our initial
assumption that w;  is not an integer.

Case  2: wy, >wj, >+ >w;,_, >w,;,. Write f=3 aazf. . 2",
where wt(x;,) = w;; and 1 < j < n. Then, 5—11 +-+ 5”7‘11 + 3—“ = 1. Since
wj, is not an integer, z7" ¢ supp(f). Because f has an isolated singularity
at the origin and by the lemma in [17], there exists a j € {1,2,...,n — 1}
such that x;, - zi'" € supp(f). Therefore,

1 o’
— + =1
wij w,-n
wiﬂ,
= = w; — Qp
. n
wzj
%
é 6 — n 3
W; ;

J

Case 3: w;, > -+ > w;; > w;,,, =+ =w;,, where 1 > 5 >n — 2.
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Write f dYoaptag? . xlt, where wt(z;;) = w;; and 1 < j < n. Then,

(0% (0% . «
vttty s R ’“wA 1. Since w;, is not an integer, ;" a ..
iy in J+1 J+2

O‘" ¢ supp( f) and in particular, 27" ¢ supp(f). Because f has an isolated
smgularlty at the origin and by the lemma in [17], there exists a t such that
wi, x5 € supp(f), where 1 <t < j. Therefore,

— =1
w’Lt win
Wy,
= = wj, 07
wit
win
= f=—,
U)Z't
and therefore the theorem is proved. O

Theorem 2.6. Leta>b>c>d>e >4 be real numbers, where € is not
an integer. Consider £ 4+ ¥ 4+ 2 + %+ % < 1. Let P5 be the number of pos-
itive integral solutions of the above inequality; i.e., Ps = #{(x,y, z,v,w) €
Z5: 24 ¥ 4 2484w <1}, Suppose e is not an integer and e = [e] + 3
where (3 is either <, 7, £ or 5. Define p = (a —1)(b—1)(c—1)(d —1)(e —
1). Then,

2.1
| 12)0135 < p— (50 — 250% + 400 — 190 — 1)|y=c_pg11
= abcde — (abed 4 abee 4 abde 4 acde + bede)
+ (abc + abd + abe + acd + ace + ade + bed + bee + bde + cde)
— (ab+ ac+ ad + ae + bc + bd + be + c¢d + ce + de)
+(a+b+ct+d+e)—1—5et +5¢%+ 5% —6e — 1
+ B(20€® — 15¢* — 10e + 6) — 3%(30e* + 15¢ + 5)
+ 33(20e — 5) — 54% + 1.

Proof. By level w = k, we shall mean the intersection of the tetrahedron in
Theorem 2.6 with the hyperplane w = k. The points within this intersection
for level w = k are in following four-dimensional tetrahedron

+ <1,
d(1—%)y —

e

a(1=5)

e

b(1—E)

e

o(1-5)

e

we can use GLY sharp upper estimate to bound the number of positive
integral solutions at level w =k if d(1 — %) >3 or d(1— %) > 2 with the
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condition that there exist positive integral solutions at this level. By sum-
ming these upper bounds in various levels, this leads us to consider the
following function:

g(a7 b7 C? d? e? n)

—SZH: abed 1—E 4—§(abc+abd+acd—l—bcd) l—ﬁ 3
B P e 2 e

11 k)2 k
+(ab+bc+ac)<1—> —2(a+b+c)<1—>].
3 e e
Define S5 = abede, Sy = abed, Ss = abe + abd 4+ acd + bed, So = ab + ac +
bc and S; = a + b+ ¢. Then we have

g(a7b7c7d7e7n)
n\° 1 1 3
s (7) P R
> \e +[4<264 e3>+8
1 2 2 1 1 11 .59 3
+{54<3€4‘es+e2>+353<463‘ze2>+962]5”

-1 3 2 1 3 3
L7 (A I (T .
+{4<e3 2 e>+ 3<8€3 4e2+4e>

—1 1 2 3 -1 3 11 1 1 S1
(7 (LTI A I (kIR B LA (N Y
+|:4<3064+62 €>+43<62+6>+3 2<6e2 e>+e] "
15 55
+<5S4—253+352—1051)n.

For a fixed a, b, ¢, d and e. g(a,b,c,d,e,n) is a function of n and we
denote it by g(n).

We slice the five-dimensional simplex into the hyperplanes, w = 1,w =
2,...,w=¢e—F—1and w = e — (. It is obvious there are no positive inte-
gral solutions on level w=e— (3. At level w=e— 3 —2, the defining
inequality of the simplex becomes %(512) + Q(ﬁyﬁ) + §(6Z+2) + i(ﬁerz) <1l—

note that g(ﬁ +2) > 3if 8 = £, and hence we can use GLY sharp upper esti-
mate to bound the number of positive integral points at this level and for the
levels lower than this level. At level w = e — 3 — 1, the defining inequality of

the simplex becomes %(ﬁmﬂ) + g(ﬁyﬂ) + ﬁ(ﬂzﬂ) + g(ﬁvﬂ) < 1, We divide our
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proof in two cases depending on whether the level w = e — 3 — 1 tetrahedron

x Y z v

TG+ kG A LB

(2.2)

has positive integral solutions.
Case (A). 4(1+B) <4dor 2(1+B)<3or (1+pB)<2o0r ¢(1+3) <1
In thls case, there are no positive integral solutions at level w =

e—p—1.
Case (B). 2(1+ ) >4, 8(1+8) >3, (1 +3)) > 2, and ¢(1 + 8) > 1

In this case, (2.2) may have positive integral solutions.

Case (A).
Case (A1). B =%

B = 5 implies g(ﬁ + 2) > 3 — hence we can use the GLY sharp upper
estimate to bound the number of positive integral points at this level and
for the levels lower than this level. Without loss of generality, we can assume
there exist positive integral solutions at level w = e — 3 — 2 since the GLY
upper estimate is positive at this level. Let Ajg = RHS of (2.1) — g(e — 3 —
2), and A=% B = %,C =<, D= % and 8 = % and substitute into Aqg,
then we have A> B> C>D >1,and e > 4. Let A1 = 72D*A1o. Now all
we have to do is partial differentiate to ensure that Ay is positive throughout
the domain considered. If the level w = e — 3 — 2 has positive integral solu-
tions then g(2+ﬂ) > 4 b248)>3,£2+8)) >2and 42+ ) > 1. We
get A > 2D+1, B> 2D+1, C>1,and D > 1. We find that Aqq is an increas-
ing function with respect to A, B, C' and D for A > 2D+1, B> 2D+1, C’ > 1
and D > 1, and e > 4. Evaluated at the minimum A = 2D111’ B = 2D+1,
C=1and D=1, Ay; >0, so we can conclude that Ay > 0 for this sub-
case.

Ao = 755 (~180¢%af” — T2ade” + 588bce’ — 368ace”

+ 135abce® + 135abde® + 135acde® + 135bede®

— 360e3a — 360e3b — 360e®c — 220e3ab

— 220e3ac — 220e3be — 72e* + 360abed — 120abede® — 72bde*

+ 1320e?ab + 1320e2ac + 1320e%be — 540abee — 540abde

— 540acde — 540bede + 12abede — 540e3a3 — 180e3b3? — 540eb3
— 180€e3¢? — 540e3¢f — 198abce — 198abde* — 198acde?

— 198bcde? + 63abce® + 63abde® 4 63acde® + 63bede® + 1980e2ac3?
+ 2860e2acB + 1980e%beS? + 2860e%be + 440e%abB? + 1980eab3?



Coordinate-free characterization of homogeneous polynomials 689

+ 2860e2ab + T2ade® — 368bce’® — 368abe® — T2cde* — 1080e°3
—3608%* — 36083 + 1440€° 8% — 2160e° 52 + 144073

+ 72cde® 4 1080€° 5% 4 3603%e* — 720e° 5 — 72de®

+ 108ce® + 108be” 4 108ae” + 4326¢* + 72de* — 108¢e?

— 108be? — 360e® + 360e” + 360e8 — 360e® — 108ae* + 72bde®

+ 588ace* + 588abe* + 108abede* + 2160abed % + 1560abed 5>

+ 540abedB* + 1428abedB + T2abed3° — 810abce3® — 1755abce3?
— 1620abcef + 440e%ac3> + 440€%be 3> — 810abde3> — 1755abde 3
— 1620abdeS — 810acde3® — 1755acde3? — 1620acde — 810bede3?
— 1755bede3% — 1620bedeS — 135abeeS* — 135abde3*

— 135acdef3* — 135bcdes?),

A1 = —360 — 360D — 7242 D® — 108CeD* — 540C' D3 + 72Ce3D?
—180BD? — 72Ce?D® — 72Be?D® — 540BD? — 360C D* — 180C D?
+108A4e?D* — 360BD* — 360AD* — 540AD> — 108 BeD*
+108Ce*D* + 72A4e3D? + 108 Be? D* + 72Be3D? — 360D*e*

— 180AD? — 108 4eD* + 1440De + 135Be*>CD® — 63ABC
—300ACD* + 63Ae*BD® — 198 Ae* BD® — 368 Ae* BD*
+135A4e?BD® + 588A¢? BD* — 220 AeBD* — 540ABD®

— 300ABD* + 1105ABD? + 1170ABD? + 305ABD + 63Ae*C D?
—198A4e3C'D® — 368A4¢3C'D* + 135A4¢2C D + 588A4¢?C D*
—220AeCD* — 540ACD® + 1105ACD? + 1170ACD? + 305ACD
+ 1170BCD? + 11056BCD? + 305BC D

+ 588Be?C'D* — 220BeC' D* — 300BCD* — 540BC D>
—198Be3CD® 4 63Be*C D — 368 Be>C'D* + 360D*e3 — 72D%¢?
+ 360D%% + 1440D3e® — 720D3e — 360D*e + 1080D%e — 1080D3¢>
+ 432D + 360D — 72D* — 2160D%e? + 72D%¢ + 108 Ae* BC D®
+634e*BCD* — 120463 BCD® — 198 A3 BCD* + 13542 BCD*
+ 124eBCD® + 360ABCD® + 888ABCD* + 540ABC D?
—195ABCD? — 270ABCD.

Anlaz o po s ooy pa
1084 1378
:4460+Te—?e3—62+99e4 >0fore>4
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Therefore we have All > 0 on the region considered.

Case (A2). p=<.1f ¢ (ﬂ + 2) > 3, then the GLY sharp upper estimate or
GLY rough upper estlmate can be used; if 1 < e(ﬂ +2) < 3, we must use
GLY rough upper estimate. Let

Alg = RHS of (21) — g(e — ,3 — 3)
=5(A(F+2) - D(B(E+2) - )(C(E+2) - )(D(B+2) - 1).

We use GLY rough upper estimate at level w = e — § — 2, and without loss of
generality, we can assume there exist positive integral solutions at level w =
e — B — 2 since the GLY rough upper estimate is positive at this level. From
level w = 1tolevelw = e — 3 —3,d(1 — %) > 3 and so the GLY sharp upper
estimate is used. If the level w = e —  — 2 has positive integral solutions
then we have 2(2+3) >4, 2(2+8) >3, £(2+3) > 2 and 424 8) > 1.

HenceA>20+1,B>235_1,C>1andD>1 Let A= S,C—E

D=4%and 3= C and substitute into Aqs.

e
Let A3 = 72C*A5. We find that Aq3 is an increasing function with
respect to A, B, C' and D for A > 20+1, B> 2C+1’ C>1land D >1 and
C

e > 4. Evaluated at the minimum A = 2é‘+1’ = 22&17 C=1l,and D=1,

A1z > 0, so we can conclude that Ao > 0 for e > 4.194, and we consider
4 < e <4.194 in Case (A5).

1
72¢e*
+ 135bcde® — 360e* A3 B — 1440e* AB + 6600e2ab + 6600e2ac

+ 6600e2be + 12abede — 4860abce — 4860abde — 4860acde — 4860bcde
— 180€e3a8? + T2de* — 108ce* + T2bde® — 1080e8 3 + 1440€° 53

— 2160e°3? + 1440€” 3 + 1080€° 3% + 3605%e* — 720e°3 — 72de®

+ 108ce® + 108be” + 108ae® — 3608% e — 36033 + 4323¢*

— 108be* — 108ae* — 198abce* — 198abde* — 198acde* — 198bede*
+ 63abce® + 63abde® + 63acde® + 63bede® — 360e* BA2C

— 1440e*ABD — 1440e*BAC — 360e*B3*D — 360¢°

+360e” + 360e® — 360e® + 108abede? + 12948abed3 + 4440abed 33
+ 10800abcd? + 900abed* + 72abed3® 4 720e* D + 720e* A

+ 720e*B 4 720e*C — 1440e* ABB — 1440e* ABC — 360e* AB%D

+ 2880e* ACD — 1440¢* B3D + 2880e* ABD — 360¢*C3*D

— 1440e¢*CBD + 2880e* BC'D + 2880e* ABC — 360e*A3>*C

A = (6120abed — 120abede® + 135abee® + 135abde® + 135acde®
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+360e* A2 BC + 2160e* AB? BC + 4320e* ABBC + 360e* AB*BD
+360e*AB3C'D + 360e* BA3C' D + 2160e* A% BD + 4320e* ABBD

+ 2160e* AB2C'D + 4320e* ABC'D — 5760e* ABC'D + 2160e* B52C' D
+ 4320e*BACD — 360e* AB*BCD — 2880e* AB*BC D

— 8640e*AB3?BCD — 11520e* ABBC D — 1350abce3® — 4995abce3?

— 8100abcef + 3300e2abB? + 8140eabB — 1350abde 3> — 4995abde 3>
— 8100abde3 — 1350acde3® — 4995acde 3% — 8100acde3 — 1350bcde 3
— 4995bcde 3 — 8100bede3 — 135abee3* — 135abde3* — 135acdeS*

— 135bede3* + 3300e%ac3? + 8140e2ach + 3300e%be5% + 8140e%bc3
+ 440e%abB? + 440e2acB? + 440e®beS? + 588bcet — 220e3ab

— 220e3ac — 220e3be — 180e®b3? + 588abe* — 1080e®a — 1080e3h
—1080e3c — 900e3¢ — 432¢* — 368ace® — 368bce® — 72bde* — T2cde?
+ 72¢de® — 368abe® — 1440e* BC' — 1440e*AD — 1440e*BD

— 1440e*C'D + 360e* AS + 360e* B3 + 360¢*C S8 + 360e* D3 — 72ade?
— 180e3¢f% + T2ade® — 900e®aB — 900e3b5 + 588ace” — 1440e* AC),

= —360 + 72DeC* + 588 A4e%C° + 5160AC° + 72C%e* D

—3684€3C° — 720DC* 4 5160BC®° — 108 BeC* + 6340BC*
—1080e2C? — 360C — 450ABCD + 1440Ce — 220e AC®
—5220AC*D + 1380ABC* — 5220BDC* — 1980AC° D
—1980BC°D — 1980ABC® — 4275ADC? — 1350 BDC?

+ 3865ABC? — 1350ADC? — 4275BDC? + 1950ABC?
+135A4e2BC® — 198 A¢*BC® + 63A4e* BC® + 360e2C* — 360e*C*
+360e3C* — 108C%¢ + 108C%e? — 2160e2C? + 1440e3C> — 360eC*
+ 1080eC? — 720eC? + 252C3 + 360C* — 360C° — 972C*
—552ABDC* + 360ABC°D — 1275ABDC? — 1620ABDC?

— 220e ABC* 4 588A4¢*BC* — 368 4¢3 BC*

+ 7243 DC* 4+ 135A4e*C°D — 198 4¢3C°D + 63A4¢*C°D

— 724e2DC* 4 135Be2C5D + 72Be3DC* — 198Be3C°D

+ 63Be*C°D — 72Be’*DC* — 120Ae3BC5D + 135A¢?BDC*
+124eBC°D — 198A¢’ BDC* + 63Ae* BDC* + 108Ae* BC° D
— 368Be3C® 4 2400AC3 + 260AC? + 108 Ae*C* — 135ACD

— 63ABD — 108A4eC* + 260BC? + 108 Be*C* + 588 BeC°
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—72C%e®D — 72De*C* + 2400BC? — 135BC'D — 1440C° D
+ 6340AC* + 305ABC — 220e BCS,

A13‘A: ¢ B=_3¢_C=1,D=1

2C+1" 2C+17

1084 1
_ 1760+ 2082, 1378

3 3 —e24+99¢* >0 fore>4.194

Therefore, we have Ao > 0 for e > 4.194.
Case (A3). 3= %. Similar to Case(A2). Substitute = § into Ajz. Let
Ay = 72B*A5. We find that Ay, is an increasing function with respect

toA,B,CandeorAz%,Bz1,CZlandDZlande>4.Eval—

uated at the minimum A = %, B=1,C=1and D=1, A1y >0 for

e > 4.194, so we can conclude that Ao > 0 for e > 4.194, and we consider
4 < e <4.194 in Case (AD).

A1y = —360 4+ 72DeB* 4 6340CB* 4 5160B°C + 260AB* — 108 Ae B*
— 1440B°D — 220e AB® 4 260C B? — 368 A¢®B% + 2400AB?
+ 6340AB* — 450 ABCD + 1440Be — 368 B°¢3C + 108Ce> B*
—220eB°C + 108A4e?B* — 5220ADB* — 5220C DB*
+ 1380ACB* — 1980AB°D — 1980B°C' D — 1980AB°C
+ 3865ACB? — 1350ADB? — 1350C DB? — 4275C DB?
+1950ACB? — 4275AB3D + 135A4e?B°C — 198 Ae* B°C
+ 63A4e*B°C — 220e ACB* — 368A¢*C B* + 588 A¢*C' B*
—198B%e3C'D + 72Ce*DB* + 135A4e? B°D + 63Ae*B°D
— T24e°DB* + 72Ae*DB* + 135B%¢?CD + 63B°¢*CD
+ 360e?B* — 1080¢% B> — 360eB* — 720e B3 + 360 B? + 1440¢> B?
— 2160e?B? + 1080eB? + 108B%¢% + 360¢*B* — 360B° — 972B*
+252B% — 1275ACDB? — 1620ACDB? — 72Ce*DB*
—198A4e¢3B°D — 120A4e¢3B°CD + 135A4¢>CDB* + 124e B°C D
— 198A4e3CDB* + 63Ae*CDB* + 1084¢*B°CD — 63ACD
— 72De*B* — 720DB* — 135ABD — 108CeB* + 2400C B?
+ 360AB°CD — 360e*B* + 72B%¢3D + 588B%¢*C — 135BC D
— 72B%*D + 5160AB° + 588 A¢?B® — 3608 + 305ABC
— 108B%¢ — 552ACDB*,
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A14|A: 2413 B=1,C=1,D=1

B+1’
1084 1
038 e — %7863762+99e4 >0 fore>4.194

= 1760 +

Therefore, we have A1s > 0 for e > 4.194.
Case (A4). B = <. Similar to Case (A2). Substitute 8= ¢ into Ajp. Let
A5 = T2A4%A15. We find that A5 is an increasing function with respect

to A, B,CandeorAZl.S,BZ%,C’zland D>1 and e > 4.

Evaluated at the minimum A = 1.5, B = %‘il, C=1land D=1, A5 >0,
for e > 4.896, so we can conclude that A1 > 0 for e > 4.896, and we consider
4 < e < 4.896 at Case (A5).

A5 = —360 — 108BeA* — 220e A’ B — 450ABCD + 1440 Ae + 1080e A2
+5160A4°B — 1440A4°D + 5160A°C + 588A°¢%B + 260B A?
—368A4%¢3B — 108CeA* + 108Ce%A* — 220e A°C + 260C A?

— 368A4%¢3C + 588A%e2C + T2DeA* — 72De? A* — 72A%¢%D

+ 72453 D + 2400A3C + 63A4%e*BC — 972A4% — 1080¢% 43
—2160e2 A2 — 360e* A* + 360e? A* + 360e3 4% — 360eA*

+108A4%% — 108 A% — 720e A3 + 25243 + 36042 — 360A5°

+ 1440e® A + 1950 BC A? + 1380BC A* — 5220BD A* — 5220C D A*
—1980A4°C'D — 1980A°BD — 1980A° BC + 3865 BC A3 — 552BC D A*
+360A°BCD — 4275BDA? — 1350C D A? — 4275C DA% — 1350A> BD
+135A4%?BC — 198 A% BC + 588Be?C' A* — 220e BC A*
—368Be3CA* + 72Be>DA* — 198 A%¢*BD + 63A%¢*BD
—T2Be?DA* +135A4%?BD — 1984°¢3C'D + 63A4%¢*CD — 72Ce? D A*
+72Ce3DA* +135A4%2CD — 1275BCDA? — 162043 BC D
—120A4%¢>BCD + 135Be?CDA* + 124%°eBCD — 198Be*CDA*

+ 63Be*CDA* +108A4%*BCD — 720DA* — 135ACD — 135ABD

+ 6340C' A* — 3604 + 6340BA* — 63BCD + 108 Be? A* + 305ABC
+ 24004°B,

Ass| oy s, B4 01 Dot = —7069.781e® — 5980.5¢ + 23593.5
+10551.516€% + 1013.766¢* > 0 for e > 4.896.
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Case (A5). e € (4,4.9). For e € (4,4.9), consider the following two subcases:

(a) The level w=e— [ —2=2 has no positive integral solutions:

Py(2) = 0.
(b) The level w = e — 3 — 2 = 2 has positive integral solutions: P;(2) > 0.
In Case (A5) the RHS of (2.1) becomes

(2.3) 1 — (50 — 2503 + 400% — 190 — 1)|y—s
=(a—1)(b—1)(c—1)(d—1)(e —1) — 904.

For subcase (a), the proof is almost exactly the same as the proof
presented in Case IV. Because Ps; > 0, the set of positive integral solu-
tions includes the point (1,1,1,1, 1), and let é + % + % + é <l-12pac

g =
339 "since e € (4,4.9). Let A =aa, B =ba, C = ca and D = do; then,
(1> %9

the following restrictions apply:

A24,Bz3,022,D21a :

—

because D = da > ea = 2. With o € (2,39), 12 € (3,3.9).

1-a”

(2.4) 51P5 < 5[(A—1)(B—-1)(C—1)(D-1)
—(D-1)*+D(D —1)(D - 2)(D - 3)].

[

Let A1g = RHS of (2.3) — RHS of (2.4), and substitute A = ¢, B= 2, C =

g and D = g into Alﬁ

A = —905+5A + 5B+ 5C + 15D + e + Ae3BC + Ae>BD + AeCD
+ Be3CD — Ae*BC — Ae*BD — Ae*CD — Be*CD — 5ABCD
+ Ae + Be + Ce + De — Ae®> — Be? — Ce? — De? — 5AB — 5AC
—5BC —5AD — 5BD — 5CD — 25D? — Ae?B — Ae®*C — Be*C
— Ae’D — Be’D — Ce?D + Ae’B + Ae3C + AeD + Be3C + Be*D
+Ce*D + 5ABC +5ABD + 5ACD + 5BCD — Ae*BCD
+ Ae®BCD + 10D3,

Al a=4,B=3.0=3.p=3 = —945 + 1de — 76 + 198> — 243¢* + 108¢°
>0 fore>4.

For subcase (b), P4(2) > 0, which implies that (1, 1,1, 1, 2) is the smallest
positive integer solution to the level w = 2. Then, we have % + % + % +1<
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1—%éa,a€(%,%), since e € (4,4.9). Let A = aa, B = ba, C' = ca and
D =da, and then we know A>4, B>3, C>2, D>1, D=da>ea=

22 With o € (3, 8), 22 € (2,2.9), we obtain the following:

[0 ) (550) )

(e(52 ) (52 )
(o) ) o5
() ) o) )
(s

+(4 = 1)( -1 - (-1

DD 1)(D - 2D - 3)}

Let Ay7 = RHS of (2.3) — RHS of (2.5) and by substituting a = g, b=
B ,c= C d — 2

, e = 7= into Ay,

160 A7 = a*(=500D? — 16 Be? — 85ABCD + 16Be*D — 16C¢>
—16De? — 16A4e*B — 164e2C — 16Be*C — 16Ae*D — 16 Be*D
—16Ce®D + 16A4e3B + 16Ae3C 4+ 16 Ae>D + 16Be>C — 100AC
+16Ce3D + 90ABC + 90ABD + 90ACD + 90BCD
+ 1204 4 120B + 120C + 360D + 180D° — 16 Ae*BC'D
+16Ae’ BCD + 16Ae>BD — 100AD — 100BC + 16Ae3BC
+ 16Be + 16e — 14480 + 16 Ae — 100AB + 16Ce + 16 De — 16 Ae?
—100BD — 100CD — 16Ae*BD + 16 Ae*C'D + 16 Be3CD
—16Ae*BC — 16A¢*CD — 16Be*CD)
+ a*(=40CD + 40B + 60D* + 30BCD + 40A — 40BD + 40C
—20ABCD + 30ABC — 200D?* — 40AC + 30ABD — 40AD
—40BC + 120D + 30ACD — 40AB)
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+ a?(30BCD — 20AB — 20AC — 20BD + 60D> — 20AD
+30ABC + 30ACD — 100D? — 20C'D — 30ABCD
—20BC + 30ABD) + a(10BCD + 20D* + 10ABC
+10ABD + 10ACD — 20ABCD) — 5ABCD,
160 A17] A4, B=3,0=2,D=2
= —240 + 192ea* — 880e%a* — 40 4 4002 + 768¢°
— 14880a* — 1984¢*a* + 1920e3a* — 16003

129
>0 fora€<2,49> e > 4.

Case (B). ¢(1+P)>4, 2(1+8) >3, €(1+p8)>2 and 4(1+p8)>1
where 0 < 3 < 1.
Case (B1). 3 = §. If there are no positive lattice points on level w = e —
(B — 1, the proof is the same as Case (A1), and so we can assume there exist
positive integral solutions at level w = e — 3 — 1. 3 = § implies g(ﬁ +1) >
2; hence we can use GLY sharp upper estimate to bound the number of
positive integral points at this level and for the levels lower than this level.
Let Ajg = RHS of (2.1) — g(e — 3 — 1). It suffices to prove that Ag > 0. Let
A=2¢,B= g, C=:,D= g and 0 = % — then substitute into A1g. Now all
we have to do is partial differentiate to ensure that Aqg is positive throughout
the domain considered. From A1+ pB) >4, B(l +05)>3,C(1+ ﬂ) > 2 and
(1+ﬁ)>1andﬂ WeobtalnA>D+1,B>D+1,C>D+1andD>
1. Let A9 = 72D* Alg We find that Ajg is an increasing function with
respect to A, B, C and D for A > E)lfl, B> gfl, C > DQEI and D > 1, and
e > 4. Evaluated at the minimum A = 51+1’ B = gfl, C=1and D=1,

A19 > 0, so we can conclude that Aqg > 0 for this subcase.

721 =5 (— 72cde + 135abce® + 135abde® + 135acde? + 135bede’

— 180e%b3? — 180e3¢ — 180e3¢% — 72e* — 220e3ac — 220e3be

+ T2ade® — 198abde* — 198acde* — 198bcde* + 63abee® + 63abde®
+ 63acde® + 63bede® + 440e?acB? + 440e%be3? + 220e2abs

+ 220€2ac + 220e2be3 + 588bcet 4+ 588abe* — T2bde?

+ 108be® + 108ae® — 3603*e* — 1080e° 3 + 1440¢° 53

— 2160e°3? + 14407 3 + 1080 32 + 36052%¢*

Ag =
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— 720€° 8 — 72de® — 3603%e* 4+ 108ce® + 4320

— 108be* — 108ae* + 72de* — 108ce* — 360e® + 360e” + 360¢°
— 360e® 4 108abede? — 368abe® — 368ace” + T2bde® — 180e3a
+ 120abcd3? + 180abedB* + 72abed3° + 660e2abs?

+ 660e2ac? + 660ebeS? + 440e?abB® — 135abee*

— 135abce5? — 135abde3* — 135abde3* — 135acde3*

— 135acde3? — 135bede3* — 135bede 3% — 180e3b5

— 270abce3? — 270abde3* — 270acde 3> — 270bcde 3

— 12abcdB + 12abede — T2ade + 588ace?),

A9 = —360 — 360D — 108CeD* — 180BD? — 180C' D? — 180AD?
+ 72Ae3D° + 360e2D* — 120Ae3BCD® — 72D%* — 72Be?D?
—72D* + 432D3 + 305ACD + 305BCD + 390ABD? 4+ 85ABD?
— 220e ABD* + 360e®>D* + 360D? + 72D% — 360eD* + 1440¢3 D3
— 2160e2D? — 720eD? + 1080eD? — 12ABCD* — 198 Ae3C' D?
+ 588¢2ACD* + 63A4e*CD® — 3684¢3C'D* + 135A4¢2CD°
—220eACD* +85ACD? + 390ACD? + 85BCD?
—90ABCD + 12AeBCD® — 15ABCD? — 198 A¢*BC D*
+ 108A4e*BCD® 4 63Ae* BCD* + 135A¢>BCD* + 1440De
—1080e2D? — 360¢e* D* — 198 Be>C' D® + 588¢> BCD* + 63Be*C D?
— 368Be*CD* + 135Be*CD® — 220e BCD* + 390BCD? — 63ABC
+ 305ABD — 198A¢*BD? + 588¢2ABD* + 63Ae* BD?
—368A4¢>BD* + 1354¢>BD® — 180C'D? + 108 A4¢*D* — 72Ce*D®
— 724e%*D° — 1084eD* + 72Ce*D® — 180AD? — 108 Be D*
+108Ce?D* — 180BD? + 72Be3D® + 108 B D?,

Arglg= s p_sp. C=1,D=1

D+1? D+1?

4629 1125
:wm—%&—%wé+7ré+7r&zommz4

Therefore, we have A1g > 0 on the region considered.

Case (B2). 8 = £. If there are no positive lattice points at level w = e — 3 —
1, then the proof is the same as Case (A2), and so we can assume there exist
positive integral solutions at level w =e — (§ — 1. g(ﬂ +2) > 2 — hence we
can use the GLY sharp upper estimate to bound the number of positive
integral points at level w =e — 3 — 2 and for the levels lower than level
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w = e — 3 — 2. We use Theorem 1.3 to bound the number of positive integral
points at level w =e — 3 — 1. Let

Ay =RHS of (2.1) —gle— 3 —2)

BT (g

(D ) (D Y (4 )

(&

(e ()

Let A=2, B= 2, C=¢, D= g and B = % and substitute into Agg. Let
Aoy = T20*Agg. From A(1 + 3) > 4, B(1 +3) > 3,C(1 + 3) > 2and D(1 +
B) > 1, andﬁ:%, weobtainAZé—fl, B>5’—%,C>1 and D > 1. We
find that As; is an increasing function with respect to A, B, C and D for

A>AC B> g’—fl, C > 1and D > 1. Evaluated at the minimum A = A€

C+1» C+1»
B = g—fl, C=1and D=1, Ay >0, so we can conclude that Asg > 0 for

this subcase.

Aoy = %(—BOeabc — 180eabd — 180eacd — 180ebed + 12abede + 1080de®
— 72cde* + 63e’abe + 63e’abd + 63e’acd + 63e’bed
— 198abce* — 198abde* — 198acde* — 198bede
+ 1620a3%be? + 2140a8be* + 1620a3%e*c 4+ 2140a8e’c
— 360a6%ed + 1620e%b5%¢ + 2140e2b5c — 360e2b5%d
— 360e?c3?d — 720a8e’d — 720e%bBd + 720d%e — 1800d%e?
—1080e%3 — 36083%e* — 36033 4 1440e° 33
— 2160e°3? + 1440€7 3 + 1080€° 52 + 3605%¢*
— 720€° 8 — 72de® + 108ce® + 108be® + 108ae’ + 4323¢*
+ 72de* — 108ce* — 108be* — 108ae* — 180e3af — 135eabe?
— 135eabdB* — 135ebed3* — 135eacdB* — 72¢* — 360e%bd — 72ade*
— 180e3¢3? 4 720d3 33 — 180e3b3? — 180eb3
+ 135abce® + 135abde® + 135acde® + 135bede® — 220e3ab — 220e3ac
— 220e3be — 120abede® — 180e3¢3 — 72bde* — 360ae’d — 360e®
— 360e® + 360e” + 3605 — 368ace® — 368abe® — 368bce® + T2bde®
+ 72ade® + 588abe? + 588ace* + 588bce* 4 T2cde® — 180e®a 3
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+ 2160d35%e — 1800d? 3%€? + 2160d° Be — 3600d° 3e® + 1080d[e®

+ 108abede® + 120abed3® — 12abed + 180abedB* + 72abed3°

— 360cde? + 960ebe 4+ 960e®ac + 960e2ab — 450a33bed — 450a3ecd
— 450eb33ed — 450a83bce — 675a5%bce — 675a5%bed — 540a3bce

— 540afbed — 675a3%ecd — 540aBecd — 675eb3?cd — 540ebBed

— 720e2¢fd 4 440€?abB? + 440e%acB® + 440e%beFet),

Agy = —360 — 1080C3e? + 960BC° — 135BC' D — 810BC?D — 1395BC3D
— 900BC*D + 135Be*C°D — 72Be*C*D + 63Be*C°D
—198Be3C°D 4+ 72Be*C*D — 900AC*D + 108A¢*BC°D
+63A4e*BC*D — 1204e>BC°D — 198 4> BC*D + 135A¢*BC*D
+124eBC°D — 192ABC*D — 540ABC®D — 555ABC?D
— 270ABCD — 198Ae3BC® + 588A4e*BC* — 2204e BC* + 420ABC*
+1465ABC? + 1170ABC? + 305ABC — 180ABC® + 135A¢*BC?

— 368A4¢*BC* — 63ABD + 634¢*C°D — 198A4¢C°D + 72A*C*D
+135A4e%2C°D — 72A4e*C*D — 180AC®D — 180BC°D — 1395AC3D
— 810AC?D — 135ACD + 720C3D — 360C*e* + 1080C%¢ 4 108C°¢?
— 108C%e — 360C%e + 1440C3e3 — 720C3e + 360C? + 252C° — 252C4
+360C%e® — 2160C2%€® + 63Ae* BC® — 1800C?D? + 2160C2D?
—360C°D + 2160C3D? — 3600C3D? + 720C* D? 4 588 Be*C®

+ 2140BC* + 1440BC? 4 108A4e2C* + 72C%¢*D + 108 Be*C*
—72C*e®D — 108 BeC* — 368A4¢3C® — 220BeC® + 260BC?
—368Be3C% + 72C%eD — 108 4eC* + 7200 D? + 2140AC* — 72C°e*D
+ 360C*D + 260AC? + 1440AC? — 1800C*D? — 220AeC®

+ 360C*e? 4 1440Ce + 588 4e2C® + 960AC° — 360C,

A21’A 4C B=3C¢ C=1,D=1

Cc¥1’ c+1
1125 4629
= 8430 — 368¢ + ———¢* — 2509¢° + ?62 >0 fore> 4.
Case (BS’) f = ¢. Similar to Case (B2). Let A = = 2, C=¢%¢,D

and 8 = and substitute into Ago Let Agy = 72B4A20 From 2(1 + 3) >
ba+p) >3 £(1+3)2 and 4(1+3) > 1. We get A > é‘fy B>2, C>
3251 and D > 1. We find that A21 is an increasing function with respect to
A, B, CandeorA>§fl, B> 2, C’>Bzf1 > 1 and D > 1. Evaluated

at the minimum A = g‘fl, B=2 C=1and D=1, Ay >0, so we can
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conclude that Asy > 0 for this subcase.

A9y = —360 — 720eB? + 108Ce? B* + 1440AB? — 108¢AB* + 260C B?
— 2160e?B% — 1080¢% B3 + 360¢%B* 4 360¢% B* — 360¢* B*
+ 108B%¢% — 360e B* — 108 B%¢ + 1440¢*B? + 1080e B — 252B*
+ 252B% + 360B% + 260AB2 + 108A4¢?B* + 588¢2B°C
— 220eAB® + 720D3B* — 63ACD + 305ABC — 368B°¢3C
+960AB° + 588¢2AB® — 198 B°e3C'D — 1395C DB?
— 810CDB? + 135B%*C'D — 900CDB* — 72Ce*DB*
+72Ce3DB* — 198A4¢*B°D + 63A4¢*B°C — 180AB°C
+ 1170ACB? + 1465ACB? + 420ACB* + 1354 B°C
— 220eACB* 4 588¢2ACB* — 198A4e> B°C — 368 Ae>C B*
+1084¢*B°CD — 198A4¢3CDB* + 63Ae*CDB*
—1204e3B°C'D + 1354¢*CDB* — 192ACDB*
+124eB°CD — 555ACDB? — 540ACDB? + 1440Be — 220eB°C
+72B%¢3D + 960B°C — 72B%¢*D — 135BCD — 135ABD
+ 1440CB? + 2140C B* 4 2140AB* — 368 Ae3B® + 63Ae*B°D
— 810ADB? — 180AB®D — 1395ADB? — 900ADB* — 72A¢*DB*
+135A4e%2B°D + 72Ae3DB* — 180B°CD + 63B°e*C'D + 72DeB*
— 72De?B* 4+ 360DB* — 1800D%B* — 3600D% B>
— 1800D?B? 4 2160D*B? + 2160D3B? + 720D>B + 720D B3
—360B°D — 108¢eC'B* — 2710ABC'D — 3608,

Aol a=i2 pos o=1,p=1

= 149634 — 47136 + 117792¢? — 93888¢> + 18912¢* > 0 for e > 4.

Case (B4). 3 = <. Similar to Case (B2). Let A= %, B = g, C=¢D= g
and 8 = % and substitute into Agg. Let Agsz = 7244 Ayg. From 2(1+p3) >4,
b1+p)>3, ¢(1+B) >2 and 4(1+B) > 1, we obtain 4 >3, B> j—fl,

Cc> j—fl and D > 1. We find that A is an increasing function with respect

to A, B, C and D for A > 3, sz—fl, CZAQ—fl and D > 1, and e > 4.
Evaluated at the minimum A =3, B = X’fl, C= j—fr‘l and D =1, Agz > 0,

so we can conclude that Agg > 0 for this subcase.

Agsz = —360 — 2160e> A% — 220 A°C + 108 Be? A* + 12A4%°¢ BC D
+360e2 A% + 260C A% + 1440BA% — 108¢ BA* + 260BA% — 368 A4°¢3C
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+ 2140BA* + 108Ce? A* + 2140C A* + 1440Ae + 135Be?C D A*
—192BCDA* — 1204%e3BCD — 555BCDA? — 540 BC D A®

+ 63Be*CDA* +108A4%°*BCD — 198 Be3CDA* — 180A°BD
—900BDA* — 810BDA? — 72Be?DA* — 1395BD A? — 220e BC A*
— 198A4%¢3BC — 368Be3C A* + 420BC A* + 135A%* BC — 180A4° BC
+ 1465BC A% + 117T0BC A? + 588¢>BCA* + 63A%¢*BC + 63A%¢*BD
+135A4%¢2BD — 220e A’ B + 588¢2A°C — 63BCD — 135ABD
—135ACD + 305ABC + 960A° B — 2710ABCD + 588¢? A B
+63A4%*CD — 1984%¢3C'D — 180A°C'D — 810C DA% — 72Ce*D A*
+135A4%e2C'D — 900C D A* — 1395C D A + 72Ce3 D A*
—198A4%¢3BD + 72Be®DA* — 1080e2 A3 + 14403 A3

— 720e A + 360e3 A* — 360eA* — 360e* A* — 108A4%¢ + 25243

+ 36042 4+ 1080e A% + 960A°C + 1440C A3 + 720D A3 + 720D3 A

+ 72A4%¢3D + 360D A* — 1800D?A* + 2160D3 A% — 1800D? A2
+2160D3 A% + 72DeA* — 72De? A* — 72452 D

—360A4°D — 3600D%A43 + 720D3A* + 108 A%¢% — 108eC A*

— 368A4%3B — 3604 — 252A%,

Agg\A:&B: 24 =24 D=1
742851
et + 918072 +

384644762 1647783 &3

= —338553¢e + 5

>0 fore>4.
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