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An immersed soap film of genus one

Robert Huff

In this paper we prove the existence of a set homotopic to a punc-
tured torus and a map from this set into three-space such that each
point in the image has an intrinsic soap film neighborhood.

1. Introduction

The central cone is the only soap film known to span a regular tetrahedron.
Lawlor and Morgan [5] have shown it has least area among all soap films
which separate the solid tetrahedron into four regions. If the separation
restriction is removed, however, it is not known whether or not the cone is
a least area soap film. In fact, it is not known if another soap film spanning
a regular tetrahedron even exists. A plausible sketch of a competitor soap
film was produced in the mid-1990s by Hardt (see figure 1). The proposed
soap film separates the solid tetrahedron into two regions. It consists of
two planar disks glued to a punctured torus along Y -singularities, which
are curves along which three (minimal) surfaces meet in such a way that
the angle between any two is 120◦. Unlike the cone, this set has no T -
singularities — points at which four Y -singularities meet in such a way
that the angle between any two is arccos (−1/3) ≈ 109.47◦. As observed by
Plateau and proven by Taylor [6], these are the only singularities allowed in
a soap film.

In addition to being a competitor to the cone, the object in figure 1 is
important because it would be the first example of a soap film with sin-
gularities that also has a handle. Specifically, the object in the sketch is
homotopic to a punctured torus. While such a soap film seems to fit well
with a tetrahedral boundary, all research — both experimental and theoret-
ical — has pointed to non-existence. Thus, in order to prove the existence
of a genus one soap film, it may be necessary to modify the boundary. Such
a modification is done here (see figure 2), and the result is the following
theorem.

Theorem 1.1. There exists a set X homotopic to a punctured torus and a
map Φ : X → R

3 such that each point in X has a neighborhood U such that
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Figure 1: A plausible competitor soap film spanning a regular tetrahedron.

Figure 2: An computer generated sketch of a soap film from Theorem 1.1
spanning a modified tetrahedral boundary.

X (U) is either a minimal surface or three minimal surfaces meeting along a
curve at 120◦.

The tetrahedron in figure 1 is oriented in such a way that its top and
bottom edges are horizontal. Each of these two edges is contained in the
boundary of a planar disk, and the four remaining non-horizontal edges
form the boundary of the punctured torus. As a whole, the object in fig-
ure 1 has two reflectional symmetries through the planes of the disks. It
also has two less obvious symmetries: 180◦ rotation around each of the lines
through the midpoints of a non-horizontal edge and its adjoint. In the proof
of Theorem 1.1, we will assume these same symmetries. We will also keep
the two horizontal edges in the boundary, but the four non-horizontal edges
will be modified by inserting two “zig-zags” into each. A zig-zag consists of
two parallel, horizontal line segments connected by a third, non-horizontal
line segment (see figure 3).

2. Proof of Theorem 1.1

To prove Theorem 1.1, we take the take viewpoint of Weber and Wolf in
[7], where the technique of flat structures is used to prove the existence of
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Figure 3: Left: The front, left non-horizontal edge of figure 1. Right: An
inserted zig-zag.

complete, properly embedded minimal surfaces of arbitrarily high genus. In
that paper, the authors looked for a conformally equivalent pair of domains
within a moduli space of pairs which already satisfy conditions guaranteeing
the existence of handles. Here, we start with a moduli space of conformally
equivalent pairs, and we look for a pair which guarantees a torus.

2.1. Using the Gauss map to find a parameter domain

Because of the symmetries described above, the punctured torus in figure 1
consists of eight congruent pieces. Each piece is a disk bounded by four
curves (see figure 4):

1. e1, which is a curve of mirror symmetry and traverses one-half of a
torus-handle.

2. e2, which is one-half of a Y -singularity.

3. e3, which is one-half of a non-horizontal tetrahedral edge.

4. e4, which one-half of a rotation axis.

We will choose a piece Ŝ which can be oriented in xyx3-space so that
the Y -singularity e2 lies above the negative y-axis in the yx3-plane and the
torus-handle curve e1 lies above the positive x3-axis in the xx3-plane. This
implies the rotation axis e4 is horizontal and is parallel to the line y = −x. It

Figure 4: The fundamental piece Ŝ.
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also implies the tetrahedral edge e3 is in the direction 〈−1/2,−1/2, 1/
√

2〉.
In figure 1, the piece we are taking is the upper, front, left eighth of the
punctured torus.

The surface Ŝ is a fundamental piece for the punctured torus, and it is
also a fundamental piece for the entire soap film. This is because the remain-
ing part of the soap film consists of two planar disks. Thus, the existence of
the soap film is implied by the existence of Ŝ. To prove the existence of Ŝ,
we will derive a parametrization on its image under the (outward pointing)
Gauss map N . Based on the properties of Ŝ discussed so far, we have:

1. Since e1 ⊂ xx3-plane is a curve of mirror symmetry, it follows that the
Gauss map along e1 is also contained in the xx3-plane.

2. Since e2 ⊂ yx3-plane is a Y -singular curve, it follows that Ŝ meets the
yx3-plane at a constant angle of π/3.

3. The Gauss map along e3 is perpendicular to e3.

4. The Gauss map along e4 is perpendicular to e4.

When followed by stereographic projection σ, the image of ∂Ŝ in the
xy-plane has the following properties:

1. σ ◦ N(e1) is contained in the x-axis.

2. σ ◦ N(e2) is contained in the circle C2 = ∂D(2,
√

3).

3. σ ◦ N(e3) is contained in the circle C3 = ∂D(eiπ/4,
√

2).

4. σ ◦ N(e4) is contained in the line y = x.

Interestingly, these properties are not enough to determine a domain
which could reasonably be the Gauss image. This is because the two circles
C2, C3 and the line y = x have a common intersection point. To get around
this issue, we can assume the Gauss map on the soap film oscillates along
e3. This introduces a branch point somewhere inside the edge and allows
us to determine a domain Ω, shown in figure 5, which we may reasonably
assume is the image of the Gauss map under stereographic projection. In
particular, the domain Ω consists of all points in the upper half plane that
lie below the line y = x and to the left of the rightmost arc of C2 connecting
the line y = x with the x-axis, minus points on some arc of C3 emanating
from the line y = x with a downward trajectory. This arc of C3 has two
important properties. First, it should be thought of as having two sides el

3

and eu
3 . As z ∈ Ω approaches the arc from the inside of C3, the image under
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Figure 5: The domain Ω.

the yet-to-be-derived parametrization approaches the bottom of the edge
e3 on Ŝ. Similarly, as z approaches the arc from outside of C3 the image
under the parametrization approaches the upper portion of e3. Secondly,
the length of this arc is undetermined since there is no reason to specify the
extent of the assumed oscillation of the Gauss map along e3. However, this
is actually helpful since we will use this freedom to solve what is called a
“period problem” on the curve e1.

2.2. Determining the developed image of the square root
of the second fundamental form

We wish to prove the existence of Ŝ by deriving a parametrization for such
a surface on the domain Ω. Since Ŝ is to be minimal, it will be useful to
apply the following application of the Weierstrass Representation Theorem
for minimal surfaces.

Theorem 2.1. Let Ω ⊂ C be simply connected. If g is a meromorphic func-
tion and dh is a holomorphic one-form on Ω which are compatible in the
sense that g has a zero or pole of order n at p ∈ Ω if and only if dh has a
zero of order n at p ∈ Ω, then the map X = (X1, X2, X3) : Ω → R

3 given by

(2.1) X(z) = Re
∫ z

.

(
1
2
(g−1 − g),

i
2
(g−1 + g), 1

)
dh,

is a conformal, minimal immersion. Moreover, the function g is stereo-
graphic projection of the Gauss map on the surface.

In our case, we have assumed the domain Ω is the image of the desired
surface under stereographic projection of the Gauss map. Thus, we may
assume g(z) = z. The second piece of data is the one form dh, which is a
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holomorphic extension of dX3 and is called the complexified height differen-
tial. To derive this, we will use a formula that relates the second fundamental
form II on a minimal surface to the Weierstrass data g and dh. In particular,
for vectors v and w in the tangent plane to the surface at a point, we have

(2.2)
dg(v)dh(w)

g
= II(v,w) − iII(v, iw).

From (2.2) it follows that:

(2.3) c is a principal curve ⇔ dg(ċ)dh(ċ)
g

∈ R

and

(2.4) c is an asymptotic curve ⇔ dg(ċ)dh(ċ)
g

∈ iR.

A nice proof of formula (2.2) as well as the statements of properties (2.3)
and (2.4) can be found in [4].

We see from (2.3) and (2.4) that the function ζ given by

(2.5) ζ(z) =
∫ z

.

√
dgdh

g

maps principal curves into vertical or horizontal lines in C and asymptotic
curves into lines in one of the directions e±iπ/4. The map ζ is called the devel-
oping map of the one form

√
dgdh

g . It is a local isometry between the minimal

surface equipped with the conformal cone metric
∣∣∣dgdh

g

∣∣∣ and C equipped with
the Euclidean metric.

On the surface Ŝ, the line segments e3 and e4 are clearly asymptotic
curves. For each of the curves e1 and e2, we have from the properties listed
above that the surface meets the plane of the curve at a constant angle.
Thus, from Joachimstahl’s theorem (see [2]) it follows these two curves are
principal. Finally, we must deal with the introduction of a branch point
inside e3. The effect of this on Ω was to produce a five sided curvilinear
domain with two edges el

3 and eu
3 comprising the Gauss image of e3 on Ŝ.

Since the angle between el
3 and eu

3 is 2π and the angle between their images
under the parametrization into R

3 should be π, it follows that the angle
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Figure 6: The image of Ω under ζ.

between their images under ζ should be 3π/2. Thus, we conclude the image

P = ζ(Ω)

should be a Euclidean pentagon as shown in figure 6. In particular, this
polygon should be such that

1. ζ(e1) is parallel to the x-axis.

2. ζ(e2) is parallel to the y-axis.

3. ζ(eu
3) and ζ(e4) are parallel to the line y = x.

4. ζ(el
3) is parallel to the line y = −x.

Furthermore, we can normalize P so that the vertex v14 = e1 ∩ e4 is the
origin and the edge e1 has unit length.

We have thus derived a minimal immersion

X = (X1, X2, X3) : Ω → R
3,

with the formula for X given by Equation (2.1). Here, we have

(2.6) g(z) = z and dh =
g(dζ)2

dg
,

and we assume the base point of integration is the origin so that

X(v14) = (0, 0, 0).

However, we have yet to prove that such a map ζ exists.
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2.3. Existence of the map ζ

The map ζ is an edge preserving conformal map between the domains Ω and
P . The existence of a conformal map between the domains is guaranteed by
the Riemann mapping theorem, but the edge preserving property is not.
For this, we need the conformal invariant extremal length. We will restrict
our attention to curvilinear polygons, although in general extremal length
is defined on arbitrary domains.

Given a curvilinear polygon Δ, a Borel measurable function ρ > 0 on Δ
defines a conformal metric ρ(dx2 + dy2). The length of a curve γ ⊂ Δ with
respect to ρ is denoted �ρ(γ) (with |γ| denoting Euclidean length), and the
ρ-area of Δ is denoted by Aρ. With this notation, we define the extremal
length between edges A and B by

ExtΔ(A, B) = sup
ρ

infγ �2
ρ(γ)

Aρ
,

where the infimum is taken over all curves γ : [0, 1] → Δ such that γ(0) ∈ A,
γ(1) ∈ B, and γ(t) ∈ interior(Δ) for t ∈ (0, 1). Extremal length is invariant
under biholomorphisms and has the following properties, which we record
here (for more details, see [1]).

Proposition 2.1. (i) Extremal length depends continuously on Δ, A
and B.

(ii) If A and B are adjacent edges, then ExtΔ(A, B) = 0

(iii) If B is degenerate (i.e., B is a point) and dist(A, B) > 0, then
ExtΔ(A, B) = ∞

(iv) If Δ1 ⊂ Δ2 are such that edges Ak, Bk ⊂ Δk, k = 1, 2, satisfy A1 ⊂ A2

and B1 ⊂ B2, then

ExtΔ2(A2, B2) ≤ ExtΔ1(A1, B1),

where the inequality is strict if dist(A2, B2) > 0 and either A1 �= A2 or
B1 �= B2.

We are now ready to prove the following proposition.

Proposition 2.2. There exists an edge-preserving conformal map ζ from
Ω onto some Euclidean pentagon P with edges oriented and labeled as in
figure 6.
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Proof. Consider a Euclidean pentagon P with edges oriented and labeled as
in figure 6 and normalized so that v14 = 0 and |e1| = 1. Any such pentagon
is determined by the lengths � = |e2| and m = |eu

3 |, where the set of possible
(�, m) pairs is

P = {(�, m)|0 < � < 1 and 0 < m < �
√

2}.

So, we can write P = P�m.
If we fix � while allowing m to vary, it follows from parts (i), (ii) and

(iii) of Proposition 2.1 that:

ExtP�m
(e1, e

u
3) → 0 as m → �

√
2

and
ExtP�m

(e1, e
u
3) → ∞ as m → 0.

Therefore, by continuity there exists some intermediate m̂ = f1(�) such that

(2.7) ExtΩ(e1, e
u
3) = ExtP�m̂

(e1, e
u
3).

The value f1(�) must be bounded away from zero as � approaches 1 (see
figure 7), since otherwise we would have

(2.8) ExtP�m̂
(e1, e

u
3) → ∞ as � → 1.

Also, we have that f1(�) must be bounded away from
√

2 as � approaches 1,
since otherwise it would follow that

(2.9) ExtP�m̂
(e1, e

u
3) → 0 as � → 1.

Figure 7: The graphs of f1 and f2 in the �m-plane must intersect.
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Next, fix m and let � vary. Arguing as before, it follows that:

ExtP�m
(e1, e

l
3) → 0 as � → m√

2

and

ExtP�m
(e1, e

l
3) → ∞ as � → 1.

Thus, there is an intermediate �̂ = f2(m) such that

(2.10) ExtΩ(e1, e
l
3) = ExtP�̂m

(e1, e
l
3).

We have as before that f2(m) must be bounded away from zero as m
approaches zero, since otherwise we would have

(2.11) ExtP�̂m
(e1, e

l
3) → 0 as m → 0.

Furthermore, it must be true that f2(m) is bounded away from 1 as m
approaches zero, since otherwise it would follow that

(2.12) ExtP�̂m
(e1, e

l
3) → ∞ as m → 0.

It follows from (2.8), (2.9), (2.11) and (2.12) that the two graphs inter-
sect, and so there is some pentagon P̂ = P�̂m̂ such that (2.7) and (2.10) are
both satisfied. We now show this is the desired P of the proposition.

By the Riemann mapping theorem, there exists a conformal map ζ from
Ω onto P̂ , and we can normalize so that

(2.13) ζ(v12) = v12, ζ(v14) = v14 and ζ(v34) = v34,

where
v12 = e1 ∩ e2 and v34 = el

3 ∩ e4.

Moreover, since (2.10) holds, it follows from statement (iv) of Proposition
2.1 that

(2.14) ζ(v3) = v3,

where
v3 = el

3 ∩ eu
3 .

Similarly, given (2.14), it follows from (2.7) that

(2.15) ζ(v23) = v23,
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where

v23 = e2 ∩ eu
3 .

Therefore, from (2.13), (2.14) and (2.15) we have that ζ is the desired con-
formal, edge-preserving map of the proposition. �

2.4. Verification of the parametrization

To show that the image X(Ω) is indeed a surface as in figure 4, we first need
to make sure its closure is compact. To accomplish this, we note from the
descriptions of Ω and P = ζ(Ω) that

1. At v14 on ∂Ω, the map ζ takes an angle of π/4 to an angle of π/4 on
P .

2. At v12 on ∂Ω, the map ζ takes an angle of π/2 to an angle of π/2 on
P .

3. At v23 on ∂Ω, the map ζ takes the angle φ23 = arccos(1/
√

3) ≈ 54.7◦

to an angle of π/4 on P .

4. At v3 on ∂Ω, the map ζ takes an angle of 2π to an angle of 3π/2 on
P .

5. At v34 on ∂Ω, the map ζ takes an angle of π/2 to an angle of π/2 on
P .

The above properties imply

dh =
g(dζ)2

dg
= zζ ′(z)2 dz

is integrable on Ω-neighborhoods of the vertices, which implies

(2.16) X(Ω) is compact.

Next, we analyze X on ∂Ω to ensure the boundary of the image in R
3

has the geometric properties we expect. Beginning with e1, we parameterize
from v14 = 0 to v12 = 2 +

√
3 by

z1(w) = w, 0 < w < 2 +
√

3.
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Here, we have dz(ż1) ≡ 1 and dζ(ż1)2 > 0. Computing, we have

dX1(ż1) = Re
(

1
2

(
(1 − z2

1)
dζ(ż1)2

dz(ż1)

))
(2.17)

=
dζ(ż1)2

2
(1 − w2).

Continuing, we have

dX2(ż1) = Re
(

1
2

(
i(1 + z2

1)
dζ(ż1)2

dz(ż1)

))
(2.18)

=
dζ(ż1)2

2
Re(i(1 + w2)) = 0.

For the x3 component, we have

dX3(ż1) = Re
(

z1dζ(ż1)2

dz(ż1)

)
(2.19)

= dζ(ż1)2w > 0.

The Gauss map along e1 as well as Equations (2.17) to (2.19) imply
X(e1) is a curve of mirror symmetry in the xx3-plane which is the graph
of some function h1 over the x3-axis, where X1 = h1(X3). Furthermore, we
can compute

h′
1(X3) =

(X1)′

(X3)′
=

1 − w2

2w
,

and so

(2.20) h′′
1(X3) =

((X3)′/(X1)′)′

(X3)′
= −2(1 + w2)

4w2(X3)′
< 0.

Therefore, we have shown

(2.21) The graph of h1 is concave downward.

We next parameterize e2 in the counterclockwise direction from v12 to
v23 by z2(w) = 2 +

√
3eiw, 0 < w < arccos((1 −

√
2)/

√
6) ≈ 99.7◦. Here, we
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have dz(ż2) = i
√

3eiw and dζ(ż2)2 < 0. Calculating, we have

dX1(ż2) = Re
1
2

(
(1 − z2

2)
dζ(ż2)2

dz(ż2)

)
(2.22)

= −dζ(ż2)2

2
√

3
Re(ie−iw(−3 − 4

√
3eiw − 3ei2w)) = 0.

Continuing, we have

dX2(ż2) = Re
1
2

(
i(1 + z2

2)
dζ(ż2)2

dz(ż2)

)
(2.23)

=
dζ(ż2)2

2
√

3
Re(e−iw(5 + 4

√
3eiw + 3ei2w))

=
2dζ(ż2)2√

3
(2 cos w +

√
3) < 0.

The reason the inequality is true is because 2 cos w +
√

3 is positive for
−5π/6 < w < 5π/6. For the x3 component, we have

dX3(ż2) = Re
(

z2dζ(ż2)2

dz(ż2)

)
(2.24)

= −dζ(ż2)2√
3

Re(ie−iw(2 +
√

3eiw)) = −2dζ(ż2)2√
3

(sin w) > 0.

Equations (2.22) to (2.24) imply X(e2) is the graph of some decreas-
ing function h2 in a plane parallel to the yx3-plane, where X3 = h2(X2).
Furthermore, we can compute

h′
2(X2) =

(X3)′

(X2)′
= − sinw

2 cos w +
√

3
,

and so

(2.25) h′′
2(X2) =

((X3)′/(X2)′)′

(X2)′
= − 2 +

√
3 cos w

(2 cos w +
√

3)2(X2)′
> 0.

Therefore, we have shown

X(e2) is the graph of a decreasing,

(2.26) concave upward function in a plane parallel to the yx3 − plane.
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Additionally, we have that the outward pointing Gauss map at each point
of X(e2) has positive x3 component. Thus, if we consider at each point
the tangent vector with positive x-component which is perpendicular to the
curve X(e2), then the angle between this tangent vector and its image under
reflection through the yx3-plane is 120◦. This property implies X(e2) will
be a Y -singularity if we can extend the surface X(Ω) to a soap film.

Next, we parameterize eu
3 in the counterclockwise direction from v3 to

v23 by

(2.27) z3(w) = eiπ/4 +
√

2eiw, θ < w < π/4,

where θ corresponds to v3 and is bounded below by −π/6. Here, we have
ż3(w) = i

√
2eiw and dζ(ż3)2 = i|dζ(ż3)|2. Computing, we have

dX1(ż3) =
|dζ(ż3)|2

2
√

2
Re(e−iw(1 − i − 2

√
2ei(π/4+w) − 2ei2w))(2.28)

= −|dζ(ż3)|2

2
√

2
(2 + cos w + sinw) < 0.

Continuing, we have

dX2(ż3) =
|dζ(ż3)|2

2
√

2
Re(ie−iw(1 + i + 2

√
2ei(π/4+w) + 2ei2w))(2.29)

= −|dζ(ż3)|2

2
√

2
(2 + cos w + sinw) < 0.

For the x3 component, we have

dX3(ż3) =
|dζ(ż3)|2√

2
Re(e−iw(eiπ/4 +

√
2eiw))(2.30)

=
|dζ(ż3)|2

2
(2 + cos w + sinw) > 0.

From Equations (2.28) to (2.30) we have that the vector dX is given by

〈dX1(ż3), dX2(ż3), dX3(ż3)〉 =
|dζ(ż3)|2√

2
(2 + cos w + sinw)

〈−1/2,−1/2, 1/
√

2〉.

If we parameterize el
3 in the counterclockwise direction, then the

parametrization is the same as for eu
3 but we have dζ2 = −i|dζ|2. So, the
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calculations in this case will give

dX = −|dζ|2√
2

(2 + cos w + sinw)〈−1/2,−1/2, 1/
√

2〉.

Thus, together with the findings for eu
3 we have that X maps el

3 ∪ eu
3 mono-

tonically onto a line segment in the desired direction 〈−1/2,−1/2, 1/
√

2〉.
Finally, we parameterize e4 from v14 = 0 to v34 by z4(w) = weiπ/4, 0 <

w < 1 +
√

2. Here, we have ż4(w) = eiπ/4 and dζ(ż4)2 = i|dζ(ż4)|2. Comput-
ing, we obtain

dX1(ż4) =
|dζ(ż4)|2

2
Re(ie−iπ/4(1 − iw2))(2.31)

=
|dζ(ż4)|2

2
√

2
(1 + w2) > 0.

Continuing, we have

dX2(ż4) = −|dζ(ż4)|2
2

Re(e−iπ/4(1 + iw2))(2.32)

= −|dζ(ż4)|2

2
√

2
(1 + w2) < 0.

For the x3 component, we have

(2.33) dX3(ż4) = |dζ(ż4)|2Re(iw) = 0.

From Equations (2.31) to (2.33) we have that the vector dX is given by

〈dX1(ż4), dX2(ż4), dX3(ż4)〉 =
|dζ(ż4)|2

2
√

2
(1 + w2)〈1,−1, 0〉.

Thus, we have shown that X maps e4 monotonically onto a line segment in
the desired direction 〈1,−1, 0〉.

2.5. The period condition

In the preceding subsection, we verified that the boundary of X(Ω) con-
sists of the curves expected from figure 4. One thing that was not verified,
however, was that the curve X(e1) satisfies a certain “period condition”
which ensures we actually get a torus handle when we extend the surface
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by applying the reflectional and rotational symmetries described above. In
particular, since X1(v14) = 0, we must also have that

X1(v12) = 0.

In general this condition will not be satisfied, but we will show there are
cases where it is. To do this, it is helpful to notice that

Ω = Ωθ,

where θ is the parameter introduced in Equation (2.27). As shown above,
this parameter can assume any value strictly between −π/6 and π/4. Thus,
we actually have a family of parameterizations

Xθ = (Xθ
1 , Xθ

2 , Xθ
3 )

given by Weierstrass data

g(z) = z and dh =
gdζ2

θ

dg
,

where ζθ is a conformal, edge preserving map from Ωθ onto a Euclidean
pentagon Pθ with edges oriented and labeled as in figure 6. Notice that ζθ

exists for each value of θ since the proof of Proposition 2.2 does not depend
on θ. The period condition can now be written as

Xθ
1 (v12) = 0.

As an integral, this takes the form

(2.34) Π(θ) = Xθ
1 (v12) =

1
2

∫ 2+
√

3

0
(1 − w2)ζ ′θ(w)2dw,

and the period condition is satisfied if

Π(θ) = 0.

Here, we note that Π is continuous since ζ ′θ varies continuously with θ on
the edge e1.

2.5.1. Negative period We will first consider the case where θ → −π/6,
which means v3 approaches the x-axis. Specifically, we will prove Proposition
2.3 below. To do this we will need the following version of the Carathéodory
Kernel Convergence Theorem (see [3]).
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Theorem 2.2. Suppose Ω is a domain in C bounded by a Jordan curve and
p is a point in the interior of Ω. If {fn} is a sequence of univalent functions
such that fn(p) = fn+1(p) for all n and f ′(p) > 0, then {fn} converges locally
uniformly on Ω if and only if the domains fn(Ω) converge to a domain F .
In the case of convergence, the limit function of {fn} maps Ω onto F .

Proposition 2.3. There is a value −π/6 < θ̂ < π/4 such that Π(θ̂) < 0.

Proof. First of all, note that

ExtΩθ
(eu

3 , e1) → 0 as θ → −π/6,

and so the corresponding behavior in Pθ must be that the vertex ζθ(v3)
approaches the edge e1. Thus, because of compactness there is a sequence
θn → −π/6 and a point 0 ≤ p ≤ 1 such that

ζθn
(v3) → p as n → ∞.

Let P−π/6 be the (degenerate) Euclidean polygon with edges oriented
and labeled as in figure 6 that is determined by the normalizations e1 ∩ e4 =
0, |e1| = 1 and the point p. From figure 8, we see P−π/6 consists of two
triangles

P 1
−π/6 and P 2

−π/6,

where P−π/6 = P 1
−π/6 if p = 1 and P−π/6 = P 2

−π/6 if p = 0. To apply Theorem
2.2, we separate Ωθ, −π/6 < θ < π/4 into two (fixed) regions Ω1 and Ω2 via
the arc Aθ of C3 connecting v3 to the point V−π/6 = 1+

√
3√

2
on e1 (see figure 9).

The domain Ω1 can be extended via reflection around the origin to a domain
Ω̂1 bounded by a Jordan curve. The corresponding reflections around the

Figure 8: A possible limit polygon P−π/6.
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Figure 9: Restriction of ζθ to Ω1
θ.

origin for ζ1
θn

(Ω1), where ζj
θn

denotes the restriction of ζθn
to Ωj , extend

each map ζ1
θn

via the Schwarz Reflection Principle to a univalent function
ζ̂1
θn

on Ω̂1. Furthermore, the origin in Ω̂1 is an interior point such that
ζ̂1
θn

(0) = 0 and (ζ̂1
θn

)′(0) > 0 for all n. The statement about the derivative
follows since ζ1

θn
maps points on the real axis to points on the real axis.

Similarly, by reflecting around the point 2 +
√

3 we can obtain a sequence
of univalent functions ζ̂2

θn
on an extended domain Ω̂2 with ζ̂2

θn
(2 +

√
3) = 1

and (ζ̂2
θn

)′(2 +
√

3) > 0 for all n.
Now, the regions ζθn

(Ωj) converge to P j
−π/6, j = 1, 2. This is because

ExtΩθn
(e4, Aθn

), ExtΩθn
(e2, Aθn

) → ∞ as n → ∞,

so that the curve ζθn
(Aθn

) must converge to the point p (see figure 9). There-
fore, we have from Theorem 2.2 that ζj

θn
converges to a limiting map ζj

−π/6

between the triangles Ωj and P j
−π/6, j = 1, 2. Moreover, the convergence is

uniform on compact subsets of the closure of Ωj minus the edge el
3 (or eu

3)
and the arc Aθ.

To finish the proof, note that Π(θ) is given by

Π(θ) = I1(θ) + I2(θ),

where the real integrals Ik(θ) are given by

I1(θ) =
∫ 1

0
(1 − w2)ζ ′θ(w)2 dw > 0

and

I2(θ) =
∫ 2+

√
3

1
(1 − w2)ζ ′θ(w)2 dw < 0.
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In particular, it is crucial here that

V−π/6 > 1.

There are two cases to consider, and we begin with the case p > 0. Here,
we have that the angle between e1 and el

3 on Ω1 (for θ = −π/6) is 120◦, and
this angle is mapped by ζ1

−π/6 to an angle of 45◦ on P 1
−π/6. So, it follows

that (ζ1
−π/6)

′(w)2 is not integrable at V−π/6. Thus, we have

∫ V−π/6

1
(1 − w2)(ζ1

−π/6)
′(w)2 dw = −∞,

and so we can choose 1 < u0 < V−π/6 such that

I1(−π/6) +
∫ u0

1
(1 − w2)(ζ1

−π/6)
′(w)2 dw < 0.

Because of the uniform convergence, we have that

I1(θn) +
∫ u0

1
(1 − w2)(ζ1

θn
)′(w)2 dw → I1(−π/6)

+
∫ u0

1
(1 − w2)(ζ1

−π/6)
′(w)2 dw

as θn → −π/6. Therefore, we may choose a positive integer N1 such that

I1(θn) +
∫ u0

1
(1 − w2)(ζ1

θn
)′(w)2 dw < 0

for any n > N1. Finally, since

I1(θn) + I2(θn) ≤ I1(θn) +
∫ u0

1
(1 − w2)(ζ1

θn
)′(w)2 dw

we have

Π(θn) < 0, for n > N1.

If p = 0, then

ζ1
−π/6 ≡ 0

and ∫ 2+
√

3

V−π/6

(1 − w2)(ζ2
−π/6)

′(w)2 dw < 0.
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Thus, we can find points

1 < u1 < V−π/6 and V−π/6 < w1 < 2 +
√

3

such that

∫ u1

0
(1 − w2)(ζ1

−π/6)
′(w)2 dw +

∫ 2+
√

3

w1

(1 − w2)(ζ2
−π/6)

′(w)2 dw < 0.

Therefore, because of the uniform convergence there exists a positive integer
N2 such that

∫ u1

0
(1 − w2)(ζ1

θn
)′(w)2 dw +

∫ 2+
√

3

w1

(1 − w2)(ζ2
θn

)′(w)2 dw < 0

for any n > N2. Since

I1(θn) + I2(θn) ≤
∫ u1

0
(1 − w2)(ζ1

θn
)′(w)2 dw

+
∫ 2+

√
3

w1

(1 − w2)(ζ2
θn

)′(w)2 dw,

it follows that

Π(θn) < 0, n > N2.

Therefore, in either case we may choose n̂ such that θ̂ = θn̂ satisfies

Π(θ̂) < 0. �

2.5.2. Adding a zig-zag At this point, the most obvious way to proceed
would be to show the period is positive near the endpoint θ = π/4. Then, we
could use the Intermediate value theorem to show there is some value of θ for
which the period is zero. Such an argument would prove the existence of a
soap film as in figure 1 spanning a tetrahedron. However, all calculations have
indicated Π(θ) is also negative for values of θ near π/4. Thus, to show the
period is positive we must modify the boundary spanned by our soap film.
We do this by introducing a zig-zag into the tetrahedral edge e3, where a zig-
zag consists of two horizontal, parallel line segments H l and Hu connected
by a non-horizontal line segment e5 (see figure 10).

On the Gauss image, the introduction of a zig-zag has the following
effect. First of all, by Proposition 2.3 we may choose Ωθ̂ so that Π(θ̂) < 0.
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Figure 10: A fundamental piece Ŝ with an inserted zig-zag.

Next, we choose a horizontal segment H l whose Gauss image in contained
in the line Λ through the origin and the vertex

v3 = eiπ/4 +
√

2eiθ̂.

After moving some distance along Λ toward the origin, the segment e5 is
then chosen so that its Gauss image is contained in some circle Ct

5, where

Ct
5 = ∂D

(
t + it√
1 − 2t2

,
1√

1 − 2t2

)
, −1/

√
2 < t < 0.

We will assume t is fixed. Then, as with e3 we introduce a branch point
into the Gauss map along e5, which separates e5 on the Gauss image into
two edges el

5 and eu
5 . Finally, we return to v3 along Λ, which introduces the

second horizontal edge Hu (see figure 11). We thus have a new one-parameter
family of Gauss image domains

{Ωs
θ̂
}, 0 < s < Smax

Figure 11: A Gauss image with an inserted zig-zag.
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Figure 12: A developed image with an inserted zig-zag.

where s is the distance from v3 along H l ∪ el
5. If s = 0, then

Ω0
θ̂

= Ωθ̂

and the period function

Π(θ̂, 0) < 0.

As s moves away from zero toward Smax, the horizontal segment H l appears.
After some positive distance, the non-horizontal segment el

5 ∪ eu
5 along with

the second horizontal segment Hu are introduced into the boundary. Finally,
the value Smax corresponds to the value of s for which v5 lies on the x-axis.

The effect of the zig-zag on the developed image Pθ̂ is shown in figure 12.
In particular, we have that the developing map ζs

θ̂
should take H l and el

5 into
lines parallel to y = −x and it should take Hu and eu

5 into lines parallel to y =
x. The proof of the existence of this conformal, edge preserving map ζs

θ̂
is the

same as in Proposition 2.2: The edges el
3 and eu

3 are simply replaced by el
3 ∪

H l ∪ el
5 and eu

3 ∪ Hu ∪ eu
5 , respectively. Thus, we obtain a parametrization

X : Ωs
θ̂
→ R

3

for each s. Furthermore, the zig-zag does not introduce any non-integrable
singularities into (dζs

θ̂
)2, and so we have that the image

X(Ωs
θ̂
) is compact.

Before analyzing the period Π(θ̂, s) for these maps, we need to check the
parameterizations along the new edges H l, Hu, el

5 and eu
5 .
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Beginning with H l, we parameterize Λ on Ωs
θ̂

from

vl
H = H l ∩ el

5 to vl
3 = el

3 ∩ H l

by zH(w) = weiφ, where w > 0 and φ is the angle Λ makes with the x-
axis. Here, we have żH(w) = eiφ and dζ(żH)2 = −i|dζ(żH)|2. Computing,
we obtain

dX1(żH) = −|dζ(żH)|2
2

Re(ie−iφ(1 − w2ei2φ))(2.35)

= −|dζ(żH)|2
2

(1 + w2) sin φ < 0.

Continuing, we have

dX2(żH) =
|dζ(żH)|2

2
Re(e−iφ(1 + w2ei2φ))(2.36)

=
|dζ(żH)|2

2
(1 + w2) cos φ > 0.

For the x3 component, we have

(2.37) dX3(żH) = −|dζ(żH)|2Re(iw) = 0.

From Equations (2.35) to (2.37) we have that the vector dX is given by

〈dX1(żH), dX2(żH), dX3(żH)〉 =
|dζ(żH)|2

2
(1 + w2)〈− sin φ, cos φ, 0〉.

Thus, we have shown that X maps H l monotonically onto a horizontal line
segment which makes an angle of π/2 − φ with the x-axis. Furthermore, we
have that X2 is increasing as the parameter moves along H l from vl

H to vl
3.

If we parameterize Hu in the same direction as H l, then the parametriza-
tion is the same but we have dζ2 = i|dζ|2. So, the calculations in this case
will give

dX =
|dζ|2

2
(1 + w2)〈sin φ,− cos φ, 0〉.

Thus, we have that X also maps Hu monotonically onto a line segment
which makes an angle of π/2 − φ with the x-axis. Furthermore, we have
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that X2 is decreasing as the parameter moves from

vu
H = Hu ∩ eu

5 to vu
3 = eu

3 ∩ Hu.

Next, we parameterize el
5 in the counterclockwise direction from v5 to

vl
H by z5(w) = (t + it)/

√
1 − 2t2 + eiw/

√
1 − 2t2 (recall that t < 0). Here, we

have ż5(w) = ieiw/
√

1 − 2t2, and dζ(ż5)2 = −i|dζ(ż5)|2. Computing, we have

dX1(ż5) = − |dζ(ż5)|2

2
√

1 − 2t2
Re(e−iw(1 − 2t2 − ei2w − i2t2 − 2teiw − i2teiw))

(2.38)

=
t|dζ(ż5)|2√

1 − 2t2
(1 + t cos w + t sinw) < 0.

Continuing, we have

dX2(ż5) = − |dζ(ż5)|2

2
√

1 − 2t2
Re(ie−iw(1 − 2t2 + ei2w + i2t2 + 2teiw + i2teiw))

(2.39)

=
t|dζ(ż5)|2√

1 − 2t2
(1 + t cos w + t sinw) < 0.

For the x3 component, we have

dX3(ż5) = −|dζ(ż5)|2Re(e−iw(t + it + eiw))(2.40)

= −|dζ(ż5)|2(1 + t cos w + t sinw) < 0.

From Equations (2.38) to (2.40) we have

〈dX1(ż5), dX2(ż5), dX3(ż5)〉 =
|dζ(ż5)|2√

1 − 2t2
(1 + t cos w + t sinw)

〈t, t,−
√

1 − 2t2〉.

Thus, we have that X maps el
5 monotonically onto a Euclidean line segment

in the direction 〈t, t,−
√

1 − 2t2〉. Furthermore, we have that X3 is decreasing
as the parameter moves from v5 to vl

H . This verifies that Hu lies above H l.
If we parameterize eu

5 in the counterclockwise direction, then the
parametrization is the same as for el

5 but we have dζ2 = i|dζ|2. So, the
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calculations in this case will give

dX =
|dζ|2√
1 − 2t2

(1 + t cos w + t sinw)〈−t,−t,
√

1 − 2t2〉.

Together with the findings for el
5, we have that X maps el

5 ∪ eu
5 monotonically

onto a line segment in the direction 〈t, t,
√

1 − 2t2〉. We have now verified
that we obtain the desired zig-zag on the image X(Ωs

θ̂
).

2.5.3. Positive period We now consider the case where s → Smax and
prove the following proposition. The proof is similar to that of Proposi-
tion 2.3.

Proposition 2.4. There is a value 0 < ŝ < Smax such that Π(θ̂, ŝ) > 0.

Proof. First of all, note that

Exts
Ωθ̂

(eu
5 , e1) → 0 as s → Smax,

and so the corresponding behavior in P s
θ̂

must be that the vertex ζs
θ̂
(v5)

approaches the edge e1. Thus, because of compactness there is a sequence
sn → Smax and a point 0 ≤ p ≤ 1 such that

ζsn

θ̂
(v5) → p as n → ∞.

Let PSmax

θ̂
be a (degenerate) Euclidean polygon with edges oriented and

labeled as in figure 12 that is determined by the normalizations e1 ∩ e4 = 0,
|e1| = 1 and the point p. Such a degenerate polygon consists of two triangles

PSmax,1

θ̂
and PSmax,2

θ̂
,

where PSmax

θ̂
= PSmax,1

θ̂
if p = 1 and PSmax

θ̂
= PSmax,2

θ̂
if p = 0. To apply Theo-

rem 2.2, we separate Ωs
θ̂

for s near Smax into two regions ΩSmax,1

θ̂
and ΩSmax,2

θ̂
via the arc As of Ct

5 connecting v5 to the positive x-axis. The point of Ct
5

that lies on the positive x-axis is

VSmax =
t +

√
1 − t2√

1 − 2t2
.

What is important to note here is that

VSmax < 1,

which follows from the fact that −1/
√

2 < t < 0.
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With this separation, the regions ζs
θ̂
(ΩSmax,j

θ̂
) converge to PSmax,j

θ̂
, j =

1, 2. Arguing as in Proposition 2.3, it follows from Theorem 2.2 that ζs,j

θ̂
,

which denotes the restriction of ζs
θ̂

to ΩSmax,j

θ̂
, converges to a map ζSmax,j

θ̂

between the regions ΩSmax,j

θ̂
and PSmax,j

θ̂
, j = 1, 2. Moreover, the convergence

is uniform on compact subsets of the closure of ΩSmax,j

θ̂
minus the edge el

3 ∪
H l ∪ el

5 ∪ As (or eu
3 ∪ Hu ∪ eu

5 ∪ As).
To finish the proof, recall that Π(θ̂, s) is given by

Π(θ̂, s) = I1(θ̂, s) + I2(θ̂, s),

where the real integrals Ik(θ̂, s) are given by

I1(θ̂, s) =
∫ 1

0
(1 − w2)(ζs

θ̂
)′(w)2 dw > 0

and

I2(θ̂) =
∫ 2+

√
3

1
(1 − w2)(ζs

θ̂
)′(w)2 dw < 0.

It is crucial here that

VSmax < 1.

There are two cases to consider, and we begin with the case p < 1. Here,
we have that the angle between e1 and eu

5 on ΩSmax,2

θ̂
is

arccos(t) > π/2,

and this angle is mapped by ζSmax,2

θ̂
to an angle of π/4 on PSmax,2

θ̂
. So, it

follows that (ζSmax,2

θ̂
)′(w)2 is not integrable at VSmax . Thus, we have

∫ 1

VSmax

(1 − w2)(ζSmax,2

θ̂
)′(w)2 dw = ∞,

and so we can choose VSmax < u0 < 1 such that

∫ 1

u0

(1 − w2)(ζSmax,2

θ̂
)′(w)2 dw + I2(θ̂, Smax) > 0.
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Because of the uniform convergence, we have that

∫ 1

u0

(1 − w2)(ζsn,2

θ̂
)′(w)2 dw + I2(θ̂, sn)

−→
∫ 1

u0

(1 − w2)(ζSmax,2

θ̂
)′(w)2 dw + I2(θ̂, Smax)

as n → ∞. Therefore, we may choose a positive integer N1 such that

∫ 1

u0

(1 − w2)(ζsn,2

θ̂
)′(w)2 dw + I2(θ̂, sn) > 0

for any n > N1. Finally, since

I1(θ̂, sn) + I2(θ̂, sn) ≥
∫ 1

u0

(1 − w2)(ζsn,2

θ̂
)′(w)2 dw + I2(θ̂, sn)

we have

Π(θ̂, sn) > 0, for n > N1.

If p = 1, then

ζSmax,2

θ̂
≡ 0

and ∫ VSmax

0
(1 − w2)(ζSmax,1

θ̂
)′(w)2 dw > 0.

Thus, we can find points

0 < w1 < VSmax and VSmax < u1 < 1

such that

∫ w1

0
(1 − w2)(ζSmax,1

θ̂
)′(w)2 dw +

∫ 2+
√

3

u1

(1 − w2)(ζSmax,2

θ̂
)′(w)2 dw > 0.

Therefore, because of the uniform convergence there exists a positive integer
N2 such that

∫ w1

0
(1 − w2)(ζsn,1

θ̂
)′(w)2 dw +

∫ 2+
√

3

u1

(1 − w2)(ζsn,2

θ̂
)′(w)2 dw > 0
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for any n > N2. Since

I1(θ̂, sn) + I2(θ̂, sn) ≥
∫ w1

0
(1 − w2)(ζsn,1

θ̂
)′(w)2 dw

+
∫ 2+

√
3

u1

(1 − w2)(ζsn,2

θ̂
)′(w)2 dw,

it follows that
Π(θ̂, sn) > 0, n > N2.

Therefore, in either case we may choose n̂ such that ŝ = sn̂ satisfies

Π(θ̂, ŝ) > 0. �
From Propositions 2.3, 2.4 and the Intermediate value theorem it follows

that there is some value 0 < s0 < ŝ such that

Π(θ̂, s0) = 0.

Moreover, this holds for each −1/
√

2 < t < 0.

2.6. Extension to an immersed soap film

The parametrization X on Ωs0

θ̂
is a conformal, minimal immersion which has

the desired boundary and satisfies the period condition. If we reflect Ωs0

θ̂
and

P s0

θ̂
around the origin (see figure 13), we obtain two conformal disks Ω̂s0

θ̂
and

P̂ s0

θ̂
, and by the Schwarz Reflection Principle we also extend the map ζs0

θ̂
to

a map
ζ̂s0

θ̂
: Ω̂s0

θ̂
→ P̂ s0

θ̂
.

This extends the immersion X to a map

Φ = (Φ1, Φ2, Φ3) : Ω̂s0

θ̂
→ R

3

given by Weierstrass data

g(z) = z and dh =
g(dζ̂s0

θ̂
)2

dg
.

The image of X generates the image of Φ as follows:

1. Reflecting Ωs0

θ̂
through the edge e1 reflects X(Ωs0

θ̂
) through the edge

X(e1).
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Figure 13: The punctured torus is obtained by identifying opposite edges
of Ω̂s0

θ̂
.

2. Reflecting Ωs0

θ̂
through the edge e4 rotates X(Ωs0

θ̂
) 180◦ around the

edge X(e4).

Thus, since the period condition is satisfied, the map Φ is well defined
on the punctured torus T obtained by identifying the interiors of the left
and right edges eu

2 via the identification z → −z̄ as well as the interiors of
the top and bottom edges el

2 via the identification z → z̄ (see figure 13).
We next attach two disks to the punctured torus as follows. The first disk

D1 we choose to be bounded by the right edge eu
2 of Ω̂s0

θ̂
and the vertical

line segment between v23 and v̄23. We then attach D1 to the torus T by
identifying the edges eu

2 via the identification z → z. The map Φ can then
be extended to D1 by mapping a point z in D1 to the point in the yx3-plane
such that

Φ2(z) = Φ2(ξ0)

and
Φ3(z) − Φ3(ξ0)

Φ3(v23) − Φ3(ξ0)
=

ξ0 − z

ξ0 − ξ1
,
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where ξ0 ∈ eu
2 is such that Im ξ0 = Im z and ξ1 is such that Re ξ1 = Re v23

and Im ξ1 = Im z. Similarly, we can extend Φ on the disk D2 chosen to be
bounded by the top edge el

2 of Ω̂s0

θ̂
and the horizontal line segment between

v34 and −v̄34.
We have thus constructed a set X which is the union of the punctured

torus T and the disks D1 and D2 modulo the identifications mentioned
above, where for D1 we include the interior of eu

2 but not the vertical segment
between v23 and v̄23 and for D2 we include the interior of el

2 but not the
horizontal segment between v34 and −v̄34. We have also constructed a map

Φ : X → R
3.

Except for the origin, it follows immediately that Φ is a minimal immersion
on the interior of Ω̂s0

θ̂
∪ D1 ∪ D2. At the origin, the Gauss map g(z) = z

has a zero of order 1. Since (ζs0

θ̂
)′(0) > 0, we have that dh = z(ζs0

θ̂
)′(z)2 also

has a zero of order 1 at the origin. Thus, by the Weierstrass Representation
Theorem the map Φ is a minimal immersion at the origin. If z is a point in the
interior of eu

2 , then we can find a neighborhood U which is the intersection
of an open disk with the closure of Ω̂s0

θ̂
such that U contains only points in

the interior of Ω̂s0

θ̂
or the interior of eu

2 . Furthermore, we can choose such a
neighborhood U so that Φ restricted to this neighborhood can be extended
via the Schwarz Reflection Principle to an immersion on a C-neighborhood of
z. Then, taking U to be the union modulo identifications of U , Ũ = U ⊂ D1,
and −Ū � −z̄, we have that Φ(U) consists of three minimal surfaces meeting
along a curve at 120◦. Similarly, for each point in the interior of el

2 we can
find a neighborhood U such that Φ(U) consists of three minimal surfaces
meeting along a curve at 120◦.
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