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Local Palais–Smale sequences for the

Willmore functional

Yann Bernard and Tristan Rivière

Using the reformulation in divergence form of the Euler–Lagrange
equation for the Willmore functional as it was developed in the
second author’s paper [24], we study the limit of a local Palais–
Smale sequence of weak Willmore immersions with locally square-
integrable second fundamental form. We show that the limit
immersion is smooth and that it satisfies the conformal Willmore
equation: it is a critical point of the Willmore functional restricted
to infinitesimal conformal variations.

1. Introduction

Let Σ be a closed oriented surface without boundary immersed in R
m≥3

through the action of a smooth positive immersion �Φ. Its Willmore energy
is the functional

(1.1) W (�Φ(Σ)) :=
∫

Σ
| �H|2 dμg,

where �H ∈ R
m is the mean curvature vector, and dμg is the area form of the

metric g induced on �Φ(Σ) via the canonical metric on R
m.

The critical points of (1.1) for perturbations of the form �Φ + t �ξ , where
�ξ is an arbitrary compactly supported smooth map on Σ into R

m are known
as Willmore surfaces. Examples of Willmore surfaces include, among many
others, minimal surfaces (which are absolute minimizers), and round spheres.
Further examples may be found in [20, 36], and the references therein.

The Willmore functional naturally arises in various areas of science [11,
13, 15, 16, 21]. Its importance is largely due to its invariance under con-
formal transformations [9, 34]. As the second author of the present paper
showed in [23], the Euler–Lagrange equation arising from a two-dimensional
conformally invariant Lagrangian with quadratic growth can be written in
divergence form. These “conservation laws” fostered within variational prob-
lems involving conformally invariant Lagrangians offer a significant analyti-
cal help. The general ideas introduced in [23] are led to fruition in [24], where
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conservation laws relative to the Willmore functional are developed and suc-
cessfully applied to produce a variety of interesting results. Our present work
stems from this alternative formulation of the Willmore equation.

Owing to the Gauß–Bonnet theorem, we note that the Willmore energy
(1.1) may be equivalently expressed as

W (�Φ(Σ)) =
∫

Σ
|�I|2g dμg + πχ(Σ),

where�I is the second fundamental form, and χ(Σ) is the Euler characteristic
of Σ. Since the latter is a topological invariant, from the variational point
of view, Willmore surfaces are the critical points of the energy

∫
Σ |�I|2g dμg.

It thus appears natural to restrict our attention on a weak1 immersion
�Φ : Σ → R

m whose second fundamental forms are locally square-integrable.
Such immersions were characterized in [30, 31], and in [19]. Frédéric Hélein
(see Theorem 5.1.1 in [14]) showed that, locally about every point on Σ,
there exist an open disk D and a homeomorphism ζ of D such that �Φ ◦ ζ is
a conformal bilipschitz immersion. In this parametrization, the induced met-
ric g on D2 is continuous; and the Gauß map �n lies in W 1,2(D2, Grm−2(Rm)),
relative to the induced metric g. Slightly abusing notation, we continue to
denote �Φ ◦ ζ by �Φ. Owing to the invariance of the Willmore energy under
reparametrization, we shall henceforth assume that �Φ is a conformal weak
immersion of the unit disc D2 = {x = (x1, x2) ∈ R

2; x2
1 + x2

2 < 1}:

|∂x1
�Φ| = eλ = |∂x2

�Φ| and ∂x1
�Φ · ∂x2

�Φ = 0,

where λ is the conformal parameter. An elementary computation shows that

dμg = e2λ dx and |∇�n|2 dx = e2λ|�I|2g dx = |�I|2g dμg.

Hence, by hypothesis, we see that �n ∈ W 1,2(D2). Rescaling if necessary, we
shall always assume that

∫
D2

|∇�n|2 dx ≤ ε,

where the adjustable parameter ε is chosen to fit our various needs (we will
need it to be “small enough” in Theorem 2.2).

1cf. [24] for details.
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We set

�ej := e−λ∂xj
�Φ for j ∈ {1, 2}.

As �Φ is conformal, {�e1(x), �e2(x)} forms an orthonormal basis of the tangent
space T�Φ(x)

�Φ(D2). Owing to the topology of D2, there exists for almost every
x ∈ D2 a positively oriented orthonormal basis {�n1, . . . , �nm−2} of the normal
space N�Φ(x)

�Φ(D2), such that {�e1, �e2, �n1, . . . , �nm−2} forms a basis of T�Φ(x)R
m.

From the Plücker embedding, realizing the Grassmannian Grm−2(Rm) as a
submanifold of the projective space of the (m − 2)th exterior power
P(

∧m−2
R

m), we can represent the Gauß map as the (m − 2)-vector �n =∧m−2
α=1 �nα. Via the Hodge operator 
, we identify vectors and (m − 1)-vectors

in R
m, namely:


 (�n ∧ �e1) = �e2, 
 (�n ∧ �e2) = −�e1, 
 (�e1 ∧ �e2) = �n.

In this notation, the second fundamental form is expressed as

�I =
∑
α,i,j

hα
ij �nα(�ei)∗ ⊗ (�ej)∗, where hα

ij := −e−λ �ei · ∂xj
�nα.

The mean curvature vector is

�H =
m−2∑
α=1

Hα �nα =
1
2

m−2∑
α=1

(hα
11 + hα

22)�nα.

The Willmore equation satisfied by Willmore surfaces [32] becomes

(1.2) Δ⊥ �H +
∑

α,β,i,j

hα
ij hβ

ij Hβ �nα − 2 | �H|2 �H = 0,

with

Δ⊥ �H := e−2λ π�n div(π�n(∇ �H)),

and π�n is the projection onto the normal space spanned by {�nα}m−2
α=1 .

The Willmore equation (1.2) is a fourth-order nonlinear equation (in
the coefficients of the induced metric, which depends on �Φ). With respect
to the coefficients Hα of the mean curvature vector, it is actually a strongly
coupled system whose study is particularly challenging. In codimension 1,
there is one equation for the scalar curvature; in higher codimension, the sit-
uation becomes significantly more complicated, and one must seek different
techniques to approach (1.2). Fortunately, in a conformal parametrization,
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the second authors showed that it is possible2 to recast the system (1.2) in
an equivalent, but analytically more suitable form [24]. Namely, there holds

(1.3) div(∇ �H − 3π�n(∇ �H) + 
 (∇⊥�n ∧ �H)) = 0,

where ∇⊥ = (−∂x2 , ∂x1). This reformulation in divergence form of the Will-
more equation is the starting point of our analysis of local Palais–Smale
sequences.

2. Main results

2.1. Local Palais–Smale sequences

Tom Willmore conjectured [35] that the Clifford torus minimizes, up to
Möbius transformations, the Willmore energy in the class of smooth
immersed tori in R

3. A satisfactory demonstration of this assertion has yet
to be found. Amid the works aimed at solving this problem, one funda-
mental property of the Willmore functional was brought into light by Leon
Simon [26]: for each m ≥ 3, there exists a compact embedded real analytic
torus in R

m which minimizes the Willmore energy in the class of compact,
genus 1, embedded surfaces without boundary. Unfortunately, it remains
unknown whether this minimizer is the Willmore torus. Simon’s proof is vari-
ational and devises a minimizing sequence for the Willmore functional. This
is one instance in which studying and understanding minimizing sequences
of the Willmore functional are essential. Yet more generally, it is interesting
to investigate Palais–Smale sequences.

We open our considerations with an “empirical” observation which will
hopefully convince the reader that the results derived in [24] offer a suitable
framework to acquire information on Palais–Smale sequences of Willmore
surfaces. Let us consider a conformal weak Willmore immersion �Φ from the
flat disk D2 into R

m with square-integrable second fundamental form. The
“divergence-free” form given in (1.3) implies that, up to an additive constant,
it is possible to define a map �L satisfying

(2.1) ∇⊥�L := ∇ �H − 3 π�n(∇ �H) + 
 (∇⊥�n ∧ �H).

2this procedure requires to choose the normal frame {�nα} astutely. See [24] for
details.
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In [24], it is shown that the following system holds:3

(2.2)

{
∇�Φ · ∇⊥�L = 0,

∇�Φ ∧∇⊥�L = 2 (−1)m ∇(
(�n �H)) ∇⊥�Φ.

The Hodge operator 
 and the contraction operator commute with all
differential operators. Accordingly, the terms appearing in the system (2.2)
enjoy a peculiar property: more than mere “products of derivatives,” they
can be written in divergence form. This structural feature has the ana-
lytical advantage of being robust under weak limiting process. Hence it is
legitimate to hope that a local Palais–Smale sequence of conformal weak
Willmore immersions with, say, uniformly bounded square-integrable sec-
ond fundamental forms, converges to an element �Φ satisfying the system
(2.2) for some function �L (which may or may not be related to �Φ via (2.1)).

This is essentially the result that we shall establish. Prior to stating it
precisely, it is necessary to specifically define the notion of local Palais–Smale
sequence for the Willmore functional.

Definition 2.1. Let (�Φk) be a sequence of conformal immersions from the
unit disc D2 into R

m such that

(2.3) ‖�Φk‖W 2,2∩W 1,∞ + | log |∇�Φk|| ≤ C

holds uniformly in k for some positive constant C. Denoting, respectively,
by �nk and �Hk the Gauß map and the mean curvature vector associated with
the immersion �Φk, we set

Qk := ∇ �Hk − 3 π�nk
(∇ �Hk) + 
 (∇⊥�nk ∧ �Hk).

The sequence (�Φk) is locally Palais–Smale if, in addition to (2.3), it satisfies

(2.4) div Qk −→ 0 strongly in (W 2,2 ∩ W 1,∞)′(D2).

Remark 2.1. The first summand in (2.3) guarantees that the sequence
(�Φk) is uniformly bounded in the appropriate space. Recall that the confor-
mal parameter satisfies

λk =
1
2

log
(

1
2
|∇�Φk|2

)
.

3refer to the Introduction or Appendix A for the notation.
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Accordingly, the second summand in (2.3) insures that (λk) remains uni-
formly bounded, so that the sequence of immersions does not degenerate
and collapse. This condition is added here only for technical simplicity.
As explained in [25], it is satisfied away from finitely many points, as one
considers sequences of conformal immersions with uniformly bounded Will-
more energy modulo some composition with elements from the Möbius
group in R

m.

The following result provides a first description of the limit of a Palais–
Smale sequence of the Willmore functional.

Theorem 2.1. Let (�Φk) be a local Palais–Smale sequence of conformal
immersions from the unit disc D2 into R

m. There exist a conformal weak
immersion �Φ ∈ (W 2,2 ∩ W 1,∞)(D2) and an element4 �L ∈ L2,∞(D2) such
that, up to extraction of a subsequence,

�Φk −−⇁ �Φ in W 2,2(D2)

and the system

(2.5)

{
∇�Φ · ∇⊥�L = 0,

∇�Φ ∧∇⊥�L = −2 ∇�Φ ∧∇ �H

holds in the sense of distributions, where �H denotes the mean curvature
vector associated with �Φ.

Remark 2.2. This result is one of the fundamental tools used in [25] to
construct minimizers (and critical points) of the Willmore functional under
various prescribed constraints (fixed conformal class, fixed surface area and
fixed volume, etc.) and to apply the principles of the calculus of variations
(e.g. minimizing principles, Ekeland variational principle, mountain-pass
lemma, etc.).

The apparent difference between the systems (2.2) and (2.5) is fictitious
only. Indeed, one verifies5 the identity

(2.6) ∇�Φ ∧∇ �H = (−1)m−1 ∇(
(�n �H)) ∇⊥�Φ.

4The space L2,∞ is defined in Appendix A.2.
5cf. Equation (2.49) in the paper [24].
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2.2. The conformal Willmore equation

The convergence result stated in Theorem 2.1 begs the following question:
if an immersion �Φ satisfies, for some function �L, the system (2.5), is it true
that �Φ is Willmore ? Unfortunately, and perhaps surprisingly, the answer
is negative (or rather, “not quite”). Nevertheless, the following description
can be obtained.

Theorem 2.2. Let �Φ ∈ W 2,2 ∩ W 1,∞ be a conformal weak immersion from
the unit disc D2 into R

m, and such that
∫

D2

|∇�n|2 ≤ ε,

for some ε > 0 small enough. Then there exists �L ∈ L2,∞(D2) satisfying
(2.5) if and only if �Φ is smooth and there holds

(2.7) e2λ

⎡
⎣Δ⊥ �H +

∑
α,β,i,j

hα
ij hβ

ij Hβ �nα − 2 | �H|2 �H

⎤
⎦ = �( �H0 f),

for some holomorphic function f . The Weingarten operator is defined via

�H0 := 1
2(hα

11 − hα
22 + 2i hα

12)�nα.

Although the amount of information on the holomorphic function f is
rather limited, we note that the way it appears on the right-hand side of
(2.7) makes it play the rôle of a Lagrange multiplier in the Willmore equation
(1.2). This observation enables one to give a natural geometric interpretation
of f in the context of Teichmüller theory (cf. [6]).

The Willmore functional being conformally invariant, the left-hand side
of (2.7) remains unchanged under a holomorphic change of coordinates. An
elementary computation reveals that 1

2
�H0 is the coefficient6 of dz ⊗ dz in

the second fundamental form. Looking at the right-hand side of (2.7), we
deduce that f must be the coordinate of a section f(z) ∂z ⊗ ∂z. There is thus
a one-to-one correspondence between the vector space to which f belongs
and the vector space H0(Σ) of holomorphic quadratic differentials. Let g be

6the variable z is defined as x1 + ix2, where (x1, x2) are the usual coordinates on
the unit disc for the flat metric.
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the genus of the immersed surface Σ. From the Riemann–Roch theorem (cf.
Corollary 5.4.2 in [18]), the space H0(Σ) satisfies

dimC H0(Σ) =

⎧⎪⎨
⎪⎩

0, g = 0,

1, g = 1,

3(g − 1), g ≥ 2.

Equation (2.7) is not novelty; it has been studied in various contexts.
Immersions that satisfy (2.7) are sometimes known as constrained Will-
more immersions, such as in [6], where it is shown that (2.7) is the Euler–
Lagrange equation deriving from the Willmore functional (1.1) under smooth
compactly supported infinitesimal conformal variations. The correspond-
ing critical points are the conformal-constrained Willmore surfaces. This
notion clearly generalizes that of a Willmore surface, obtained via all smooth
compactly supported infinitesimal variations. Conformal-constrained Will-
more surfaces form a Möbius invariant class of surfaces fostering remark-
able properties, some of which are studied in [6, 8, 22]. In the latter, it is
in particular established that every constant mean curvature surface in a
three-dimensional space form is conformal-constrained Willmore. We have
chosen to refer to (2.7) as the conformal Willmore equation, rather than
as the somewhat vaguer term “constrained Willmore equation.” There are
indeed many ways to constrain the variations of the Willmore functional
(e.g. restrictions on the volume and surface area in the Helfrich model). The
adjective “conformal” appears more descriptive in our situation.

3. Proofs of the theorems

3.1. Proof of Theorem 2.1

Let us set

(3.1) Qk := ∇ �Hk − 3 π�n(∇ �Hk) + 
 (∇⊥�nk ∧ �Hk).

We suppose that

(3.2) div Qk −→ 0 strongly in (W 2,2 ∩ W 1,∞)′(D2)

and

(3.3) ‖�Φk‖W 2,2∩W 1,∞ ≤ C uniformly, for some constant C > 0.
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By definition and from (3.3), it is not hard to see that the sequences (�nk),
( �Hk) and (Qk) are uniformly bounded in W 1,2, L2 and R

2 ⊗ (W−1,2 + L1),
respectively. These facts shall be recurrently used in the sequel.

We begin our study with an elementary result.

Lemma 3.1. There holds{
�Φk · div Qk −→ 0
�Φk ∧ div Qk −→ 0

in D′(D2).

Proof. Both convergences are obtained in analogous fashions (interchanging
the dot and wedge products), so we concentrate only on the first one. For
notational convenience, we set

X := W 2,2 ∩ W 1,∞,

and X0 is the space of elements of X with vanishing trace on ∂D2. Let u
be an arbitrary element of D = C∞

c (D2). The Sobolev embedding theorem
guarantees that the elements �Φk of X are Hölder continuous on D2. Since
in addition X is an intersection of Sobolev spaces, it is clear that �Φku is an
element of X0. More precisely, from (3.3),

(3.4) ‖�Φk u‖X0 � ‖�Φk‖X‖u‖D ≤ C‖u‖D.

We can make sense of �Φk · Tk as a distribution via

〈�Φk · div Qk, u〉D′,D := 〈div Qk, �Φk u〉X′
0,X0 .

It then follows immediately from (3.2) and (3.4) that �Φk · div Qk converges
to zero in the sense of distributions. �

By hypothesis, div Qk is a bounded linear functional on X (with X as
in the proof of the previous lemma). According to (A.3), the space W

2,(2,1)
0

is continuously embedded into X. Hence div Qk belongs to W−2,(2,∞), dual
of W

2,(2,1)
0 . Proposition A.1 grants therefore the existence of an element Pk

in R
2 ⊗ W−1,(2,∞) satisfying

(3.5) div Qk = div Pk

and

(3.6) ‖Pk‖W−1,(2,∞) ≤ ‖div Qk‖W−2,(2,∞) + δk,

for some positive constant δk arbitrarily chosen.
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We next establish a useful result.

Lemma 3.2. There holds{
�Φk · Pk −→ 0
�Φk ∧ Pk −→ 0

in D′(D2).

Proof. Owing to (3.2) and (3.6), the sequence (Pk) converges strongly to
zero in W−1,(2,∞) ≡ (W 1,(2,1)

0 )′. Moreover, from (3.3) and (A.4), the sequence
(�Φk) is uniformly bounded in W 1,(2,1). The desired statements may now be
reached by repeating mutatis mutandis the proof of Lemma 3.1, and letting
δk tend to zero. �

Identity (3.5) says that

(3.7) div (Qk − Pk) = 0.

We have seen that Qk belongs to R
2 ⊗ (W−1,2 + L1) and that Pk belongs

to R
2 ⊗ W−1,(2,∞). Hence, altogether, the difference (Qk − Pk) lies in R

2 ⊗
(W−1,2 + W−1,(2,∞) + L1). As proved in Lemma A.1, Equation (3.7) implies
the existence of an element �Lk in L2,∞ satisfying

(3.8) Qk − Pk = ∇⊥�Lk.

Because all sequences involved are uniformly bounded, one notices that like-
wise the sequence (∇⊥�Lk) is uniformly bounded in R

2 ⊗ W−1,(2,∞).

Lemma 3.3. There holds{
∇�Φk · ∇⊥�Lk −→ 0

∇�Φk ∧ (∇⊥�Lk + 2∇ �Hk)−→ 0
in D′(D2).

Proof. Observe that

∇�Φk · Pk = div (�Φk · Pk) − �Φk div Pk = div (�Φk · Pk) − �Φk div Qk.

Whence, the results of Lemmas 3.1 and 3.2 show that

(3.9) ∇�Φk · Pk −→ 0 in D′(D2).

Similarly, one obtains

(3.10) ∇�Φk ∧ Pk −→ 0 in D′(D2).
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From (A.13) in Appendix A, we have the identities

∇�Φk · Qk = 0 and ∇�Φk ∧ Qk = −2∇�Φk ∧∇ �Hk.

The desired statement now ensues by combining (3.8) to (3.10). �
From the characterization provided in Proposition A.1, we can always

arrange for the L2,∞-norm of �Lk to come as close as we please to the
W−1,(2,∞)-norm of ∇⊥�Lk. In particular, the sequence (�Lk) is uniformly
bounded in L2,∞. We may thus extract a weak* convergent subsequence
(indexed for notational convenience as the original sequence) with

(3.11)

{
�Lk

∗−−⇁ �L in L2,∞,

∇⊥�Lk

∗−−⇁g in R
2 ⊗ W−1,(2,∞),

and g = ∇⊥�L in the sense of distributions.
As the sequence (�Φk) is uniformly bounded in W 2,2 ∩ W 1,∞ by hypoth-

esis, the Banach–Alaoglu theorem yields a subsequence (�Φk) converging
weak* in W 2,2 ∩ W 1,∞ to some element �Φ. In turn, the compact embeddings
(A.4) provided by the Rellich–Kondrachov theorem enable us to further
extract a subsequence, still denoted (�Φk), satisfying the strong convergences

(3.12)

⎧⎪⎨
⎪⎩

�Φk −→ �Φ in
⋂

p<∞
W 1,p,

∇�Φk −→∇�Φ in R
2 ⊗ ⋂

p<∞
Lp.

Convergences (3.11) and (3.12) imply the next result.

Lemma 3.4.
{
∇�Φk · ∇⊥�Lk −→∇�Φ · ∇⊥�L

∇�Φk ∧∇⊥�Lk −→∇�Φ ∧∇⊥�L
in D′(D2).

Proof. We shall only establish the first convergence, the second one being
obtained mutatis mutandis. Owing to the general identity

div(a∇⊥b) = ∇a · ∇⊥b,

it suffices to show that

�Φk ∇⊥�Lk −→ �Φ∇⊥�L in D′(D2).
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This is what we shall do. For convenience, we set Y := R
2 ⊗ W 1,(2,1) and

Y0 := R
2 ⊗ W

1,(2,1)
0 . Let g be as in (3.11), and u be an arbitrary test func-

tion in R
2 ⊗D. Clearly, �Φ u and �Φku are elements of Y0 with an estimate

analogous to (3.4). Note that

〈�Φk∇⊥�Lk − �Φ g, u〉D′,D ≡ 〈∇⊥�Lk, u(�Φk − �Φ)〉Y ′
0 ,Y0 + 〈∇⊥�Lk − g, u�Φ〉Y ′

0 ,Y0 .

Whence, from the uniform boundedness of (∇⊥�Lk) in R
2 ⊗ W−1,(2,∞) and

the convergences (3.11) to (3.12), the announced result follows. �

As explained in Theorem 3.3.8 from [14], the fact that7

Δλk = −e2λkKk

is an element of the Hardy space H1 implies that (λk) is a sequence of
elements in W 1,(2,1), uniformly bounded in norm by a constant depending
only upon the uniform bound on (‖�Φk‖W 2,2∩W 1,∞). Owing to the Rellich–
Kondrachov theorem, we may extract a subsequence (λk) satisfying

(3.13) λk −→ λ in
⋂

p<∞
Lp,

for some λ. Furthermore, since λk � log |∇�Φk|, we note from hypothesis (2.3)
that the sequence (λk) is uniformly bounded in L∞, from which it follows
that λ itself must be bounded.

Recall that for j ∈ {1, 2}, there holds

e2λk = |∂xj
�Φk|2 and thus ∂xi

(e2λk) = 2 ∂xj
�Φk · ∂xjxi

�Φk.

Accordingly, from (2.3), the sequence (e2λk) is uniformly bounded in W 1,2 ∩
L∞. Paired to the uniform boundedness of λk, this implies the same is true
about the sequences (e±λk). Combining this to the convergences (3.12) and
(3.13), we find

(3.14)
{

e±λk −→ e±λ

(�ej)k := e−λk∂xj
�Φk −→ e−λ∂xj

�Φ =: �ej
in

⋂
p<∞

Lp.

This argument sheds light onto the imposed assumption that (λk) be a
uniformly bounded sequence. It enables us to conclude that λ lies in L∞,

7where Kk denotes the Gaussian curvature of the immersion �Φk.
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and thus in particular that eλ is bounded from below; thereby making the
limit �Φ into a non-degenerate immersion without collapse.

Because the sequence ( �Hk) is uniformly bounded in L2, we can extract
a weakly convergent subsequence:

(3.15) �Hk −−⇁ �H in L2.

Altogether, (3.14) and (3.15) show that

(3.16) (�e1)k ∧ (�e2)k ∧ �Hk −−⇁ �e1 ∧ �e2 ∧ �H in
⋂

1≤p<2

Lp.

Equation (2.42) established in [24] states that


 (�nk
�Hk) = (−1)m−1 (�e1)k ∧ (�e2)k ∧ �Hk.

Consequently, (3.16) is tantamount to


 (�nk
�Hk) −−⇁ 
 (�n �H) in

⋂
1≤p<2

Lp.

Combining this to (3.12) shows that

(3.17) 
 (�nk
�Hk) ∇⊥�Φk −−⇁ 
 (�n �H) ∇⊥�Φ in

⋂
1≤p<2

Lp.

It takes little effort to verify that

div (u ∇⊥v) = ∇u ∇⊥v

holds in general. In particular, (3.17) yields

∇(
(�nk
�Hk)) ∇⊥�Φk −→ ∇(
(�n �H)) ∇⊥�Φ in D′(D2).

Per identity (2.6), the latter is equivalent to

(3.18) ∇�Φk ∧∇ �Hk −→ ∇�Φ ∧∇ �H in D′(D2).

Finally, bringing altogether Lemmas 3.3, 3.4 and (3.18), we conclude as
desired that, in the sense of distributions,

(3.19)

{
∇�Φ · ∇⊥�L = 0,

∇�Φ ∧∇⊥�L = −2∇�Φ ∧∇ �H.



576 Yann Bernard & Tristan Rivière

3.2. Proof of Theorem 2.2

Since Δ�Φ ∧ H = 2 e2λ �H ∧ �H = �0, Equations (3.19) are in divergence form.
In particular, we may introduce a scalar function S and an R

m-valued two-
form �R satisfying

(3.20)

{
∇S := ∇�Φ · �L,

∇�R := ∇�Φ ∧ �L + 2∇⊥�Φ ∧ �H.

Clearly, S and �R are defined on D2 up to unimportant additive constants.
By hypothesis, �L is an element of L2,∞, while �Φ is Lipschitz. Accordingly,

∇S and ∇�R belong to L2,∞(D2) and to R
2 ⊗ L2,∞(D2), respectively. This

observation and the particular structure of the right-hand side of the system
(3.20) will enable us to deduce the regularity result we are seeking to obtain.

3.2.1. Regularity It is shown in [24]8 that S and �R satisfy the system

(3.21)

{
ΔS = ∇(
�n) · ∇⊥ �R,

Δ�R = −∇(
�n) • ∇⊥ �R −∇(
�n) · ∇⊥S.

The advantage of these equations lies essentially in their right-hand sides
comprising Jacobians. This peculiar feature will enable us to apply tech-
niques of integration by compensation, in particular Wente-type estimates,
which we now recall. They are due in parts to contributions by Wente [33],
Tartar [28], Coifman et al. [10], Bethuel [5] and Hélein [14].

Lemma 3.5. Let Ω be an open subset of R
2 with C2-boundary. Suppose

that a and b are elements of W 1,2(Ω) and of W 1,(2,∞)(Ω), respectively. If u
satisfies {

Δu =∇a · ∇⊥b in Ω,
u = 0 on ∂Ω,

then ∇u belongs to the space L2(Ω) with the estimate

‖∇u‖L2(Ω) � ‖∇a‖L2(Ω)‖∇b‖L2,∞(Ω),

up to a multiplicative constant depending only on Ω.

8the equations appearing in [24] are slightly different (although equivalent) to
those given here. The system (3.21) is derived in [4].



Local Palais–Smale sequences 577

The interested reader will find the proof of this result and further vari-
ations on the same theme in [12]. A second result (Theorem 3.4.1 in [14])
which will be useful to us is the following.

Lemma 3.6. Let Ω be an open subset of R
2 with C1-boundary. Suppose

that a and b are elements of W 1,2(Ω). If u satisfies
{

Δu =∇a · ∇⊥b in Ω,
u = 0 on ∂Ω,

then u belongs to the space W 1,(2,1)(Ω) ⊂ C0(Ω) with the estimate

‖∇u‖L2,1(Ω) � ‖∇a‖L2(Ω)‖∇b‖L2(Ω),

up to a multiplicative constant depending only on Ω.

Geared with these results, we are prepared to start our proof. Let us
fix once and for all some point x0 ∈ D1/2(0) and some radius 0 < r < 1/2,
so that the flat disk Dr(x0) of radius r and centered on the point x0 is
properly contained in the unit disc D2. We use an argument developed by
Bethuel [5]. With the help of the theorem of Fubini, we may always choose
r0 ∈ (r/4, r/2) such that

∫
∂D(x0,r0)

|∇S| 32 � 1
r

∫
∂D(x0,r)

|∇S| 32 � r−
1
2 ‖∇S‖

3
2

L2,∞(D(x0,r))
(3.22)

≤ r−
1
2 ‖∇S‖

3
2

L2,∞(D2).

We define

(3.23) S = S0 + S1 and �R = �R0 + �R1,

where the new variables, in accordance with (3.21), satisfy

(3.24)

{
ΔS0 = 0, Δ�R0 = �0 in Dr0(x0),

S0 = S, �R0 = �R on ∂Dr0(x0),

and

(3.25)

{
ΔS1 = ΔS, Δ�R1 =Δ�R in Dr0(x0),

S1 = 0, �R1 = �0 on ∂Dr0(x0).
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We set

s :=
1

2πr0

∫
∂Dr0 (x0)

S.

Classical Sobolev embedding theorems then give

‖∇S0‖L2(Dr0(x0)) ≤ ‖S − s‖H1/2(∂Dr0 (x0)) � r
1
3 ‖∇S‖L3/2(∂Dr0(x0))(3.26)

� ‖∇S‖L2,∞(D2) < ∞,

where (3.22) was used. In exactly the same manner, there holds

(3.27) ‖∇�R0‖L2(Dr0 (x0)) � ‖∇�R‖L2,∞(D2) < ∞.

Owing to (3.26) and (3.27), we may invoke classical growth estimates (cf.,
e.g., Theorem 3.3.12 in [14]) for the harmonic functions S0 and �R0, and so
deduce that for 0 < k < 1 one has:

(3.28) ‖∇S0‖L2(Dkr0(x0)) � k‖∇S0‖L2(Dr0 (x0)),

and

(3.29) ‖∇�R0‖L2(Dkr0(x0)) � k‖∇�R0‖L2(Dr0 (x0)).

We next move on to obtaining information for the functions S1 and �R1. Since
the right-hand sides of (3.21), and thus of (3.25), comprise only Jacobians,
Lemma 3.5 may be called upon so as to produce the estimates

{
‖∇S1‖L2(Dr0 (x0)) � ε ‖∇�R‖L2,∞(Dr0 (x0)),

‖∇�R1‖L2(Dr0 (x0)) � ε (‖∇S‖L2,∞(Dr0 (x0)) + ‖∇�R‖L2,∞(Dr0 (x0))),

up to some unimportant multiplicative constants. Here ε denotes the
(adjustable) upper bound on the energy:

(3.30) ‖∇�n‖L2(D2) ≤ ε.

As by hypothesis S and �R are elements of W 1,(2,∞), the above estimates
combined to (3.26) and (3.27) yield

‖∇S‖L2(Dr0 (x0)) + ‖∇�R‖L2(Dr0 (x0)) < ∞.
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We are now in position of applying Lemma 3.6 to the system (3.25), thereby
obtaining (since k < 1),

{
‖∇S1‖L2,1(Dkr0(x0)) � ε‖∇�R‖L2(Dr0 (x0)),

‖∇�R1‖L2,1(Dkr0(x0)) � ε(‖∇S‖L2(Dr0 (x0)) + ‖∇�R‖L2(Dr0 (x0))).

In particular, since L2,1 ⊂ L2 and k < 1, the latter paired to (3.28) and
(3.29) shows that for some positive constants C0 and C1, there holds

(3.31) EDkr0 (x0)(S, �R) ≤ (C0 k + C1 ε)EDr0 (x0)(S, �R),

where, for notational convenience, we have set the Dirichlet energy

EDρ(x0)(u,�v) := ‖∇u‖L2(Dρ(x0)) + ‖∇�v‖L2(Dρ(x0)).

We have the freedom to adjust the positive parameter ε as we please. Because
k ∈ (0, 1), we may in particular arrange for the constant (C0k + C1ε) to
be smaller than 1. Then, iterating (3.31), we infer the existence of some
γ ∈ (0, 1) such that

(3.32) EDρ(x)(S, �R) ≤ C ργ

holds for all 0 < ρ < 1/2, all points x ∈ D1/2(0), and some constant C > 0.
With the help of the Poincaré inequality, the estimate (3.32) may be used to
show that S and �R are locally Hölder continuous. We are however interested
in another one of its corollaries. Consider the maximal function

M2−γF (x) := sup
ρ>0

ρ−γ

∫
Dρ(x)

|F (y)| dy.

Going back to (3.21), owing to (3.30) and (3.32), it follows that

M2−γ(χD1/2(0)ΔS)(x) ≤ ε sup
0<ρ< 1

2

ρ−γ EDρ(x) ≤ C ε

is a uniformly bounded function on D1/2(0), and similarly with �R in place
of S. Here χD1/2(0) denotes the characteristic function of the disc D1/2(0).
It is clear that ΔS and Δ�R belong to L1(D1/2(0)), since S, �R, and 
�n are
elements of W 1,2(D1/2(0)). We may thus call upon Proposition 3.2 in [2] to
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deduce that

1
|x| ∗ χD1/2(0)ΔS and

1
|x| ∗ χD1/2(0)Δ�R

belong to Lq,∞(D1/2(0)), with q = 2−γ
1−γ .

A classical estimate about Riesz kernels states that in general, there
holds

|∇u|(y) ≤ C1
1
|x| ∗ χD1/2(0)Δu + C2, ∀ y ∈ D1/4(0),

for two constants C1 and C2. We then infer that ∇S and ∇�R are elements of
Lq,∞(D1/4(0)), with q as above. In particular, because γ ∈ (0, 1), it follows
that q > 2, and thus

(3.33) ∇S,∇�R ∈ L2+δ(D1/4(0)),

for some δ > 0.
Now that we have this result at our disposal, we are ready to implement

our regularity proof. It involves a bootstrapping argument, which will be
performed on the following identity, established in Lemma A.4:

(3.34) −2 Δ�Φ = ∇�R • ∇⊥�Φ + ∇S · ∇⊥�Φ.

By hypothesis, �Φ is a Lipschitz function. Combining (3.33) and the latter
thus shows that

(3.35) ∇�Φ ∈ W 1,2+δ(D1/4(0)).

Recall that


�n = �e1 ∧ �e2 with �ej :=
∂xj

�Φ

|∂xj
�Φ| .

Hence there holds

∇ 
 �n =
√

2

|∇�Φ| [π�n(∂x1∇�Φ) ∧ �e2 + �e1 ∧ π�n(∂x2∇�Φ)],

and consequently

(3.36) |∇�n| � |∇�Φ|−1|π�n∇2�Φ|.
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Accordingly, (3.35) and the fact that |∇�Φ| is bounded from above and below
yield that

(3.37) ∇�n ∈ L2+δ(D1/4(0)).

For the reader’s convenience, we recall
{

ΔS = ∇(
�n) · ∇⊥ �R,

Δ�R = −∇(
�n) • ∇⊥ �R −∇(
�n) · ∇⊥S.

Accounting for (3.33) and (3.37) in this system gives

(3.38) ∇S,∇�R ∈ W 1,1+δ/2 ⊂ Lβ with β := 2
2 + δ

2 − δ
.

Comparing the latter to (3.33) reveals that the regularity has been improved.
We are dealing with a non-degenerate immersion �Φ, so in particular the

modulus |∇�Φ| is bounded from both above and below. Then (3.38) and
(3.35) brought into (3.34) show that

∇2�Φ ∈ W 1,β(D1/4(0)),

and hence
|∇�Φ|, |∇�Φ|−1 ∈ W 2,β(D1/4(0)).

Put into (3.36), the latter gives that ∇�n ∈ W 1,β . The above procedure may
then be repeated until we reach that all functions involved are continuous
(from belonging to a Sobolev space of high enough order). Finally, a stan-
dard “strong solution analysis” of the equations eventually yields that �Φ is
smooth, thereby concluding the proof.

3.2.2. Conformal Willmore equation We open our derivations by
introducing some notation. Let z = x1 + ix2 and z̄ be its complex conju-
gate. We set

�ez := e−λ ∂z
�Φ = 1

2 (�e1 − i �e2) and �ez̄ := e−λ ∂z̄
�Φ = 1

2 (�e1 + i �e2).

Since �Φ is conformal, there holds

∂xj
�Φ · ∂xk

�Φ = e2λ δjk for (j, k) ∈ {1, 2},

and thus

∂a
�Φ · ∂b

�Φ =
1
2

e2λ δab̄ for (a, b) ∈ {z, z̄}.
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From this, it follows easily that for any triple (a, b, c) ∈ {z, z̄} there holds

∂a
�Φ · ∂bc

�Φ ≡ δca(∂a
�Φ · ∂ab

�Φ) + δcb(∂a
�Φ · ∂bb

�Φ)

=
1
2

(δca − δcb)∂b|∂a
�Φ|2 + δcb∂b(∂a

�Φ · ∂b
�Φ) = δcb δab̄ e2λ ∂bλ.

Hence,

�ea · ∂b�ec ≡ e−2λ (∂a
�Φ · ∂bc

�Φ − (∂bλ) ∂a
�Φ · ∂c

�Φ)(3.39)
= 1

2 (2 δcb δab̄ − δac̄) ∂bλ.

Observe furthermore that

(3.40) �ea · �eb =
1
2

δab̄.

Thus, combining (3.39) and (3.40) gives

(3.41) ∂b�ec = ∂bλ
∑

a∈{z,z̄}
(2δcbδab − δac)�ea + π�n(∂b�ec).

Next, we have

�nα · ∂z̄�ez = −�ez · ∂z̄�nα = −1
4
(�e1 − i�e2)(∂x1 + i ∂x2)�nα

=
eλ

4
(hα

11 + hα
22) =

eλ

2
Hα,

and similarly

�nα · ∂z̄�ez̄ =
eλ

2
Hα

0 .

Accordingly, we may now deduce from (3.41) that

(3.42)

⎧⎪⎪⎨
⎪⎪⎩

∂z̄�ez = −(∂z̄λ)�ez +
eλ

2
�H,

∂z̄�ez̄ = (∂z̄λ)�ez̄ +
eλ

2
�H0.

Note that we can also easily obtain from the above computations the identity

(3.43) ∂z̄�nα = −eλ (Hα
0 �ez + Hα �ez̄) + π�n(∂z̄�nα).

These expressions shall come helpful in the sequel.
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Suppose now that �Φ is smooth and satisfies for some �L the system

(3.44)

{
∇�Φ · ∇⊥�L = 0,

∇�Φ ∧∇⊥�L = −2∇�Φ ∧∇ �H.

Since �ej = e−λ ∂xj
�Φ, the first equation in the system is equivalent to

�e1 · ∂x2
�L = �e2 · ∂x1

�L.

Whence, we deduce that �L satisfies

(3.45) ∇⊥�L =
(

a b
c −a

) (
�e1

�e2

)
+

(
pα
1

pα
2

)
�nα,

for some suitable coefficients a, b, c and pα
j .

Substituting this form in the second equation from (3.44) gives

�e1 ∧ [2(�e1 · ∂x1
�H)�e1 + 2(�e2 · ∂x1

�H)�e2 + 2(�nα · ∂x1
�H)�nα

+ a�e1 + b�e2 + pα
1 �nα]

= −�e2 ∧ [2(�e1 · ∂x2
�H)�e1 + 2(�e2 · ∂x2

�H)�e2 + 2(�nα · ∂x2
�H)�nα

+ c�e1 − a�e2 + pα
2 �nα],

thereby yielding

c − b = 2(�e2 · ∂x1 − �e1 · ∂x2) �H and pα
j = −2�nα · ∂xj

�H.

However, because �H = Hα�nα and the second fundamental form is symmet-
ric, there holds

c − b = 2(�e2 · ∂x1 − �e1 · ∂x2) �H = 2 Hα (�e1 · ∂x2 − �e2 · ∂x1)�nα

= 2 Hα eλ (hα
21 − hα

12) = 0.

Whence, (3.45) may be recast in the form

∇⊥�L =
(

a b
b −a

) (
�e1

�e2

)
− 2 π�n(∇ �H).

Equivalently, in the {�ez, �ez̄}-frame, this expression reads

(3.46) ∂z
�L = A�ez̄ − 2 i π�n(∂z

�H),

where A := b + ia.
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Owing to the identities (3.42), there holds

∂z̄π�n ∂z
�H − π�n ∂z̄π�n ∂z

�H(3.47)

≡ 2(�ez · ∂z̄π�n ∂z
�H)�ez̄ + 2(�ez̄ · ∂z̄π�n ∂z

�H)�ez

= −2(∂z̄�ez · π�n ∂z
�H)�ez̄ − 2(∂z̄�ez̄ · π�n ∂z

�H)�ez

= −(eλ �H · π�n ∂z
�H)�ez̄ − (eλ �H0 · π�n ∂z

�H)�ez

= −eλ [( �H · ∂z
�H)�ez̄ + ( �H0 · ∂z

�H)�ez].

From (3.46), the latter, and (3.43), we see that

∂z̄z
�L = ∂z̄(A�ez̄) − 2 i ∂z̄π�n ∂z

�H(3.48)

= ∂z̄(A�ez̄) + 2 i eλ [( �H · ∂z
�H)�ez̄ + ( �H0 · ∂z

�H)�ez]

− 2 i π�n ∂z̄π�n ∂z
�H

= e−λ ∂z̄(eλA)�ez̄ + 2 i eλ [( �H · ∂z
�H)�ez̄ + ( �H0 · ∂z

�H)�ez]

+
eλ

2
A �H0 − 2 i π�n ∂z̄π�n ∂z

�H.

Because the imaginary part �(∂z̄z
�L) = 0, we separate this last identity into

its normal and tangential components to discover

(3.49) ∂z̄(eλA) = −2 i e2λ ( �H · ∂z
�H + �H0 · ∂z̄

�H)

and

(3.50) 4� [i π�n ∂z̄π�n ∂z
�H] = eλ �(A �H0).

Comparing (3.49) to the Codazzi–Mainardi equation (A.21) shows that

∂z̄[eλ(A + 2 i eλ �H0 · �H)] = 0.

Accordingly, there exists some holomorphic function f(z) such that

(3.51) A = −e−λf(z) − 2 i eλ �H0 · �H.

In conformal coordinates, there holds

e2λ Δ⊥ �H = π�n(div π�n(∇ �H)) ≡ 4�[i π�n ∂z̄π�n ∂z
�H],

so that (3.50) becomes
eλ Δ⊥ �H = �(A �H0).
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Introducing (3.51) in the latter gives thus

(3.52) Δ⊥ �H + 2�(( �H0 · �H) �H0) = e−2λ �( �H0 f).

To complete our derivation, there remains to observe that

�[Hα
0 Hβ

0 ] =
1
4

[(hα
11 − hα

22)(h
β
11 − hβ

22) + 4 hα
12 hβ

12]

=
1
2

2∑
i,j=1

hα
ij hβ

ij −
1
4

(hα
11 + hα

22)(h
β
11 + hβ

22)

=
1
2

2∑
i,j=1

hα
ij hβ

ij − HαHβ .

Accordingly, (3.52) yields

(3.53) Δ⊥ �H +
m−2∑

α,β=1

2∑
i,j=1

hα
ij hβ

ij Hβ �nα − 2 | �H|2 �H = e−2λ �( �H0 f).

This identity is the desired conformal Willmore equation announced in The-
orem 2.2.

The converse of Theorem 2.2 is easily deduced from reversing the above
computations. Assuming that (3.53) holds for some holomorphic function f ,
we may define A as in (3.51). The fact that f is holomorphic, along with
our previous derivations, notably (3.47) and (3.48), yield

∂z̄(A�ez̄ − 2 i π�n ∂z
�H) = e−λ ∂z̄(eλA)�ez̄ +

eλ

2
A �H0 + 2 i π�n ∂z̄ π�n ∂z

�H

−2 i eλ (( �H · ∂z
�H)�ez̄ + ( �H0 · ∂z

�H)�ez)

= −2 i e−λ∂z̄(e2λ �H0 · �H)�ez̄ +
1
2

f �H0

−i e2λ( �H0 · �H) �H0 + 2 i π�n ∂z̄ π�n ∂z
�H

−2 i eλ (( �H · ∂z
�H)�ez̄ + ( �H0 · ∂z

�H)�ez).

Taking the imaginary part on both sides of the latter, and introducing the
conformal Willmore equation (3.53) and the Codazzi–Mainardi equation
(A.21), we find

� [∂z̄(A�ez̄ − 2 i π�n ∂z
�H)] = 0.
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On the contractible unit disc, we deduce that there exists some �L such that

∂z
�L = A�ez̄ − 2 i π�n ∂z

�H,

or equivalently

∇⊥�L = e−λ

( �(A) �(A)
�(A) −�(A)

)
∇�Φ − 2 π�n(∇ �H).

It takes little effort to verify9 that

∇�Φ · ∇⊥�L = 0,

which is the first part of the system (2.5). Similarly, calling upon the identity
(A.17), one finally finds the desired

∇�Φ ∧∇⊥�L = −2∇�Φ ∧ π�n(∇ �H) = −2∇�Φ ∧∇ �H.

A. Appendix

A.1. Notational Conventions

We append an arrow to all the elements belonging to R
m. To simplify the

notation, by �Φ ∈ X(D2) is meant �Φ ∈ X(D2, Rm) whenever X is a function
space. Similarly, we write ∇�Φ ∈ R

2 ⊗ X(D2) for ∇�Φ ∈ X(D2, R2m).
Although this custom may seem at first odd, we allow the differential

operators classically acting on scalars to act on elements of R
m. Thus, for

example, ∇�Φ is the element of (∂x1
�Φ, ∂x2

�Φ) ∈ R
2 ⊗ R

m. If S is a scalar and
�R an element of R

m, then we let

�R · ∇�Φ := (�R · ∂x1
�Φ, �R · ∂x2

�Φ),

∇⊥S · ∇�Φ := ∂x1S ∂x2
�Φ − ∂x2S ∂x1

�Φ,

∇⊥ �R · ∇�Φ := ∂x1
�R · ∂x2

�Φ − ∂x2
�R · ∂x1

�Φ,

∇⊥ �R ∧∇�Φ := ∂x1
�R ∧ ∂x2

�Φ − ∂x2
�R ∧ ∂x1

�Φ.

Similar quantities are defined following the same logic.

9recall that the operator ∇�Φ · π�n is trivial.
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Two operations between multivectors are useful. The interior multipli-
cation maps a pair comprising a q-vector γ and a p-vector β to a (q − p)-
vector. It is defined via

〈γ β, α〉 = 〈γ, β ∧ α〉 for each (q − p)-vector α.

Let α be a k-vector. The first-order contraction operation • is defined induc-
tively through

α • β = α β when β is a 1-vector,

and
α • (β ∧ γ) = (α • β) ∧ γ + (−1)pq (α • γ) ∧ β,

when β and γ are, respectively, a p-vector and a q-vector.

A.2. Lorentz and Sobolev–Lorentz Spaces

For the reader’s convenience, we recall in this section the fundamentals of
Lorentz spaces. Detailed accounts may be found in [3, 17, 27].

For a real-valued measurable function f on an open subset of U ⊂ R
n,

its belonging to a Lorentz space is determined by a condition involving
the non-decreasing rearrangement of |f | on the interval (0, |U |), where |U |
denotes the Lebesgue measure of U . The non-increasing rearrangement f∗

of |f | is the unique positive continuous function from (0, |U |) into R which
is non-increasing and satisfies

|{x ∈ U | |f(x)| ≥ s}| = |{t ∈ (0, |U |) | f∗(t) ≥ s}|.

If p ∈ (1,∞) and q ∈ [1,∞], the Lorentz space Lp,q(U) is the set of measur-
able functions f : U → R for which

∫ ∞

0
(t1/pf∗(t))q dt

t
< ∞ if q < ∞,

or
sup
t>0

t1/pf∗(t) < ∞ if q = ∞.

A complete norm on Lp,q(U) is given by

‖f‖Lp,q(U) = ‖t1/pf∗∗‖Lq([0,∞),dt/t) where f∗∗(t) :=
1
t

∫ t

0
f∗(τ) dτ.
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One verifies that
Lp = Lp,p,

and that Lp,∞ is the weak-Lp Marcinkiewicz space.
Moreover, we have the inclusions

Lp,1 ⊂ Lp,q′ ⊂ Lp,q′′ ⊂ Lp,∞ for 1 < q′ < q′′ < ∞;

and if U has finite measure, there holds for all q and q′

Lp′,q′
(U) ⊂ Lp,q(U) whenever p < p′.

More precisely,

(A.1) ‖f‖Lp,q(U) � |U | p′−p

p′p ‖f‖Lp′,q′ (U).

Finally, if q < ∞, the space L
p

p−1
, q

q−1 is the dual of Lp,q.
Similarly to Lebesgue spaces, Lorentz spaces obey a pointwise multiplica-

tion rule and a convolution product rule. More precisely, for 1 < p1, p2 < ∞
and 1 ≤ q1, q2 ≤ ∞, there holds

Lp1,q1 × Lp2,q2 ⊂ Lp,q with

{
p−1 = p−1

1 + p−1
2 ,

q−1 = q−1
1 + q−1

2 ,

and

Lp1,q1 ∗ Lp2,q2 ⊂ Lp,q with

{
p−1 = p−1

1 + p−1
2 − 1,

q−1 = q−1
1 + q−1

2 .

An interesting feature of Lorentz spaces is that they are interpolation spaces
between Lebesgue spaces.

Lorentz spaces offer the possibility to sharpen the classical Sobolev
embedding theorem. More precisely, it can be shown (see [3, 29]) that

W k,q(Rm) ⊂ Lp,q(Rm)

is a continuous embedding so long as

1 ≤ q ≤ p < ∞ and
k

m
=

1
q
− 1

p
.

Our study requires that we introduce Sobolev–Lorentz spaces. These
spaces are defined analogously to the “standard” Sobolev spaces, but with
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the Lebesgue norms replaced by Lorentz norms. In an effort to simplify
the presentation, we shall focus only on the two-dimensional unit disc D2.
Let m ∈ N, p ∈ (1,∞), and q ∈ [1,∞]. The (homogeneous) Sobolev–Lorentz
space Wm,(p,q)(D2) consists of all locally summable functions u on D2 such
that Dαu exists in the weak sense and belongs to the Lorentz space Lp,q(D2)
for each multiindex α with |α| = m. The norm

‖u‖W m,(p,q) :=
∑

|α|=m

‖Dαu‖Lp,q

clearly makes Wm,(p,q)(D2) into a Banach space. The space W 0,(p,q) is under-
stood to be Lp,q. For notational convenience, we shall from now on omit to
precise that we work on the unit disc D2. This shall arise no confusion.
We also focus on a case of particular interest to us, namely (p, q) = (2, 1).
Because L2,1 is a subspace of L2, it follows immediately that for all m ∈ N

there holds

(A.2) Wm,(2,1) ⊂ Wm,2,

where Wm,2 is the usual (homogeneous) Sobolev space. The embedding (A.2)
shows that each element of Wm,(2,1) has a well-defined trace on the boundary
of the unit disc, for m ≥ 1. If that trace is null, the said element belongs to
the space W

m,(2,1)
0 .

In [7], the authors prove10 that W
1,(2,1)
0 is a subspace of L∞ ∩ C0, so

that W
m,(2,1)
0 is a subspace of Wm−1,∞ ∩ Cm−1. Altogether, there holds

(A.3) W
m,(2,1)
0 ⊂ Wm,2 ∩ Wm−1,∞ ∩ Cm−1.

The Rellich–Kondrachov theorem states that W 1,2 is compact in Lr for all
finite r ≥ 1. By standard interpolation techniques, it follows that

(A.4) Wm,2 ⊂⊂ Wm−1,(p,q) for 1 < p < ∞, 1 ≤ q ≤ ∞

is a compact inclusion for every m ∈ N
∗.

It is instructive to characterize the dual space of W
m,(p,q)
0 , denoted

W−m,(p′,q′), where (p′, q′) is the conjugate pair of (p, q):

(A.5) p′ = (1 − p−1)−1 and q′ = (1 − q−1)−1.

10see also Theorem 3.3.4 in [14].
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Proposition A.1. Let T be an element of W−m,(p′,q′)(D2, R). For every
δ > 0, there exists an element P of W 1−m,(p′,q′)(D2, R2) such that

(A.6) T = div P,

and

(A.7) ‖P‖W 1−m,(p′,q′) ≤ ‖T‖W−m,(p′,q′) + δ.

Proof. This is a mere adaption of the analogous statement for the Lebesgue–
Sobolev space Wm,p, ultimately following from the Hahn–Banach theorem.
The reader is referred to Theorem 3.10 in [1] for details. �

We next bring into light an interesting Hodge decomposition result which
follows from standard elliptic theory and the interpolation nature of Lorentz
spaces (cf. Proposition 3.3.9 in [14]).

Proposition A.2. To every vector field �g ∈ L1(D2, R2) we associate the
functions α, β, and h on D2 which are solutions of

{
Δα = div�g,
α = 0,

Δβ = curl�g in D2,
β = 0 on ∂D2,

with

�g = ∇α + ∇⊥β + ∇h

so that h is harmonic on D2.
Then the operators

�g �−→ ∇α, �g �−→ ∇β, and �g �−→ ∇h

map continuously Lp,q(D2, R2) into itself for every choice of p ∈ (1,∞) and
q ∈ [1,∞].

This lemma is the central ingredient of the following result.
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Lemma A.1. Suppose that G = G1 + G2 + G3 satisfies

div G = 0 in D2,

where

G1 ∈ W−1,(2,∞)(D2, R2), G2 ∈ W−1,2(D2, R2), G3 ∈ L1(D2, R2).

Then there exists an element L in the space L2,∞(D2, R) such that

(A.8) G = ∇⊥L.

Proof. A classical result of Laurent Schwartz guarantees the existence of L0

in L1 such that G = ∇⊥L0 holds in the sense of distributions. Owing to the
density of C∞

c in W
1,(2,1)
0 , it follows that

(A.9)
∫

D2

G · F = −
∫

D2

L0 curlF, ∀F ∈ W
1,(2,1)
0 (D2, R2).

Next, let f be an arbitrary element of L2,1(D2, R). Choosing

�g =
(

0, f −
∫

D2

f

)

in Proposition A.2, we infer the existence of an element F := (−α, β) in
W

1,(2,1)
0 (D2, R2) satisfying

(A.10) curlF = f −
∫

D2

f

as well as

(A.11) ‖F‖W 1,(2,1) � ‖f‖L2,1 .

Putting (A.10) into (A.9) then yields

(A.12) −
∫

D2

L f =
∫

D2

G · F, where L := L0 −
∫

D2

L0.

Clearly, the function L is a solution to (A.8). Recall that

W
1,(2,1)
0 ⊂ W 1,2

0 ∩ L∞ and W−1,(2,∞) = (W 1,(2,1)
0 )′,
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Accordingly, using (A.12) and (A.11), we find
∣∣∣∣
∫

D2

L f

∣∣∣∣ ≤
∣∣∣∣
∫

D2

G1 · F
∣∣∣∣ +

∣∣∣∣
∫

D2

G2 · F
∣∣∣∣ +

∣∣∣∣
∫

D2

G3 · F
∣∣∣∣

≤ ‖G1‖W−1,(2,∞)‖F‖W 1,(2,1) + ‖G2‖W−1,2‖F‖W 1,2 + ‖G3‖L1‖F‖L∞

� (‖G1‖W−1,(2,∞) + ‖G2‖W−1,2 + ‖G3‖L1) ‖f‖L2,1 .

Because L2,∞ is the dual space of L2,1, the announced statement ensues. �

A.3. Miscellaneous identities

We use in this section the same notation as that defined in the Introduction.

Lemma A.2. Let �Φ, �n, and �H be as in Theorem 2.1. We set

Q := ∇ �H − 3 π�n(∇ �H) + 
(∇⊥�n ∧ �H).

Then the following identities hold:

(A.13) ∇�Φ · Q = 0 and ∇�Φ ∧ Q = −2∇�Φ ∧∇ �H.

Proof. We first note that11

∇⊥�nα = 〈�e1,∇⊥�nα〉�e1 + 〈�e2,∇⊥�nα〉�e2 + 〈�nβ ,∇⊥�nα〉�nβ ,

so that

(�n ∧∇⊥�nα) = 〈�e1,∇⊥�nα〉�e2 − 〈�e2,∇⊥�nα〉�e1.

Whence, since �nα ∧ �n = 0,

(A.14) 
(∇⊥�n ∧ �nα) =
(

hα
22

−hα
12

)
∂x1

�Φ +
( −hα

12

hα
11

)
∂x2

�Φ.

Accordingly, we find

∇�Φ ∧ 
(∇⊥�n ∧ �nα) = (hα
12 − hα

12)∂x1
�Φ ∧ ∂x2

�Φ = 0,

and
∇�Φ · 
(∇⊥�n ∧ �nα) = e2λ (hα

11 + hα
22) = 2 e2λ Hα.

11implicit summations over repeated indices are understood wherever
appropriate.
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The last two identities yield

(A.15) ∇�Φ ∧ 
(∇⊥�n ∧ �H) = 0

and

(A.16) ∇�Φ · 
(∇⊥�n ∧ �H) = 2 e2λ | �H|2.

For three indices (a, b, c) ∈ {x1, x2}, let

F (a, b, c) := ∂a
�Φ ∧ 〈�eb, ∂c

�H〉�eb.

We have

F (a, b, c) = eλ 〈�eb, ∂c
�H〉�ea ∧ �eb

= −eλ Hα 〈�nα , ∂c�eb〉�ea ∧ �eb since �H = Hα�nα

= −eλ Hα hα
cb �ea ∧ �eb.

Using this, we obtain

∇�Φ ∧ (∇ �H − π�n(∇ �H)) ≡ ∇�Φ ∧ (〈�e1,∇ �H〉�e1 + 〈�e2,∇ �H〉�e2)(A.17)
= F (x1, x1, x1) + F (x1, x2, x1)

+ F (x2, x1, x2) + F (x2, x2, x2)

= −eλ Hα hα
21 �e1 ∧ �e2 − eλ Hα hα

12 �e2 ∧ �e1

= 0.

Hence

(A.18) ∇�Φ ∧ (∇ �H − 3 π�n(∇ �H)) = −2∇�Φ ∧ ∇ �H.

An evident yet nonetheless useful identity is

∇�Φ · π�n(∇ �H) = 0,

thereby giving

(A.19) ∇�Φ · (∇ �H − 3 π�n(∇ �H)) = ∇�Φ · ∇ �H.

Bringing altogether (A.15) and (A.18) yields the second part of (A.13).
Deriving the first part of (A.13) requires a bit more work. Combining (A.16)
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and (A.19) shows that

(A.20) ∇�Φ · Q = ∇�Φ · ∇ �H + 2 e2λ | �H|2.

For three indices (a, b, c) ∈ {x1, x2}, let

G(a, b, c) := ∂a
�Φ · 〈�eb, ∂c

�H〉�eb.

Just as above, we verify easily that

G(a, b, c) = −e2λ Hα hα
cb δab.

Consequently, there holds

∇�Φ · ∇ �H = G(x1, x1, x1) + G(x1, x2, x1) + G(x2, x1, x2) + G(x2, x2, x2)

= −e2λ Hα hα
11 − e2λ Hα hα

22

= −2 e2λ | �H|2.

Putting this into (A.20) finally gives the first sought after identity in (A.13).
�

Lemma A.3. Using the notation introduced in Section 3.2.2, the Codazzi–
Mainardi identity may be recast in the form

(A.21) e−2λ ∂z̄(e2λ �H0 · �H) = �H · ∂z
�H + �H0 · ∂z̄

�H.

Proof. Consider the 1-form

ηα := 〈�ez̄, d�nα〉.

On one hand, from (3.43), there holds

ηα = (�ez̄ · ∂z�nα) dz + (�ez̄ · ∂z̄�nα) dz̄ = −eλ

2
(Hαdz + Hα

0 dz̄),

so that

(A.22) 
 dηα = −eλ

2
(Hα

0 ∂zλ − Hα∂z̄λ + ∂zH
α
0 − ∂z̄H

α).
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On the other hand, with (3.42) and (3.43), we find


 dηα = 
 d 〈�ez̄, d�nα〉 = ∂z�ez̄ · ∂z̄�nα − ∂z̄�ez̄ · ∂z�nα

=
eλ

2
(Hα

0 ∂zλ + Hα∂z̄λ + �H · ∂z̄�nα − �H0 · ∂z�nα).

Comparing the latter to (A.22) yields

(A.23) 2Hα
0 ∂zλ = ∂z̄H

α − ∂zH
α
0 − �H · ∂z̄�nα + �H0 · ∂z�nα.

By antisymmetry, there holds

Hα �H · ∂z̄�nα = HαHβ �nβ · ∂z̄�nα = 0,

and whence

(A.24) Hα(∂z̄H
α − �H · ∂z̄�nα) = Hα(∂z̄H

α + �H · ∂z̄�nα) ≡ �H · ∂z̄
�H.

Similarly, we find

Hα(∂zH
α
0 − �H0 · ∂z�nα) = ∂z( �H0 · �H) − Hα

0 ∂zH
α − Hα �H0 · ∂z�nα(A.25)

= ∂z( �H0 · �H) − �H0 · ∂z
�H.

Multiplying (A.23) throughout by Hα, summing over α, and using (A.24)
and (A.25) gives

2 �H · �H0 ∂zλ = −∂z( �H · �H0) + �H · ∂z̄
�H + �H0 · ∂z

�H,

from which the (complex conjugate of the) desired (A.21) ensues. �

Lemma A.4. Using the notation of Section 3.2, there holds

(A.26) −2 Δ�Φ = ∇�R • ∇⊥�Φ + ∇S · ∇⊥�Φ.

Proof. Note that for any 1-vector �a, we have

(�a ∧ �ej) • �ei = (�ei �a) ∧ �ej + �a ∧ (�ei �ej) = (�ei · �a)�ej + δij �a.
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From this, and �ei := e−λ∂xi
�Φ, it follows that whenever

�V := V i �ei + V α �nα,

then
{

(�V ∧∇⊥�Φ) • ∇⊥�Φ = e2λ (3 V i �ei + 2 V α �nα)
(�V ∧∇�Φ) • ∇⊥�Φ = e2λ (V 2 �e1 − V 1 �e2) ≡ (�V · ∇�Φ) · ∇⊥�Φ.

In particular, since �H = Hα �nα, we find that

∇�R • ∇⊥�Φ ≡ −(�L ∧∇�Φ + 2 �H ∧∇⊥�Φ) • ∇⊥�Φ

= −(�L · ∇�Φ) · ∇⊥�Φ − 4 e2λ �H

= −∇S · ∇⊥�Φ − 4 e2λ �H.

Hence,

∇�R • ∇⊥�Φ + ∇S · ∇⊥�Φ = −4 e2λ �H.

Finally, there remains to recall that

Δ�Φ = 2 e2λ �H

to reach the desired identity (A.26). �
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