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Properties of knots preserved by cabling

Alexander Zupan

We examine geometric properties of a knot J that are unchanged
by taking a (p, q)-cable K of J . Specifically, we show that w(K) =
q2 · w(J), where w(K) is the width of K in the sense of Gabai. We
use this fact to demonstrate that thin position is a minimal bridge
position of J if and only if the same is true for K, and more gener-
ally we show that an “obvious” cabling of any thin position of J is
a thin position of K. We conclude by proving that J is meridionally
small (mp-small) if and only if K is meridionally small (mp-small),
and if J is mp-small and every non-minimal bridge position for J
is stabilized, then the same is true for K.

1. Introduction

In [14], Horst Schubert introduces the bridge number b(K) of a knot K in
S3 and proves that for a satellite knot K with companion J and pattern
K̂ with wrapping number n, b(K) ≥ n · b(J). This is also proven by Schul-
tens [15]. In particular, if K is a (p, q)-cable of J , then Schubert’s bound
is sharp; that is, b(K) = q · b(J). Bridge number can be approached as an
element of the broad collection of topological invariants that can be cal-
culated by minimizing some sort of numerical complexity over all possible
positions of a space with respect to a Morse function. Knot width, intro-
duced by Gabai [5], also falls into this category, as do Heegaard genus and
thin position of three-manifolds. In fact, knot width can be seen as a type
of loose refinement of bridge number: for any knot K whose exterior con-
tains no essential meridional planar surfaces, w(K) = 2 b(K)2 and any thin
position is a minimal bridge position for K [17]. We call any knot satisfying
w(K) = 2 b(K)2 bridge-thin and denote the collection of all such knots BT .
For knots K not in BT , the situation becomes more complicated: recently
Blair and Tomova have shown that the bridge number of a knot K cannot
always be recovered from the thin position of K [2].

In order to further develop the connection between bridge number and
knot width, we make the following conjecture in [19] as an analogue to the
above theorem of Schubert and Schultens:
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Conjecture 1.1. If K is a satellite knot with companion J and pattern K̂
with wrapping number n, then

w(K) ≥ n2 · w(J).

One purpose of this paper is to prove the conjecture for cable knots and
to show that the bound is sharp, as with bridge number. We prove

Theorem 1.1. If K is a (p, q)-cable of J , then

w(K) = q2 · w(J),

and an “obvious” (p, q)-cabling of any thin position of J is a thin position
of K.

In particular, this shows that J is in BT if and only if some cable of J
is in BT .

The collection BT contains many knots. Let MP denote the collection
of knots K whose exterior E(K) contains no essential meridional planar
surface (mp-small knots), let M denote the collection whose exterior E(K)
contains no essential meridional surface (meridionally small knots), and let
S consist of those knots whose exterior E(K) contains no essential closed
surface (small knots). By Culler-Gordon-Luecke-Shalen [4], S ⊂ M , clearly
M ⊂ MP, and by Thompson [17], MP ⊂ BT . In summary,

S ⊂ M ⊂ MP ⊂ BT .

It is well known that S �= M ; for instance, see Proposition 1.6 of [10].
Examples of knots K ∈ BT such that K /∈ MP appear in [1, 6]. We are
not aware of examples of knots K in MP and not in M , but we suspect
that such examples exist.

For any knot J and (p, q)-cable K of J , we have that K /∈ S as the com-
panion torus is essential in E(K), so smallness is not preserved by cabling.
However, since cabling does preserve containment in BT , we can examine
the situation when J ∈ M or J ∈ MP. We prove

Theorem 1.2. For a knot J , the following are equivalent:

(a) J ∈ M .

(b) Every cable K of J is in M .

(c) There exists a cable K of J in M .
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The same statement is true if MP replaces M .

Thus, meridional smallness and mp-smallness are also preserved by
cabling.

Finally, a natural problem concerning bridge number is to determine
for which knots are all non-minimal bridge positions stabilized. A bridge
position is stabilized if a minimum and maximum can be cancelled to create
a presentation with a lower bridge number. In this direction, Otal shows
in [11] that every non-minimal bridge position of the unknot or a two-bridge
knot is stabilized, and Ozawa has recently proved the same statement for
torus knots in [12]. We follow Ozawa’s proof in order to show the following:

Theorem 1.3. Suppose K is a (p, q)-cable of J , where J is mp-small.

(a) If every non-minimal bridge position of J is stabilized, then every non-
minimal bridge position of K is stabilized.

(b) The cardinality of the collection of minimal bridge positions of K does
not exceed the cardinality of the collection of minimal bridge positions
of J .

2. Preliminaries

Fix a Morse function h : S3 → R such that h has exactly two critical points,
which we denote ±∞. Now, fix a knot K and let K denote the set of all
embeddings k of S1 into S3 isotopic to K and such that h|k is Morse. For
each such k, there are critical values c0 < · · · < cp of h|k. Choose regular
values c0 < r1 < · · · < rp < cp of h|k, and for each i, let xi = |k ∩ h−1(ri)|;
thus, we associate the tuple (x1, . . . , xp) of even integers to k. Define the
width of k to be

w(k) =
∑

xi

and the bridge number of k, b(k), to be the number of maxima (or minima)
of h|k. Then the width and bridge number of the knot K are defined as

w(K) = min
k∈K

w(k) and b(K) = min
k∈K

b(k).

Any k ∈ K satisfying w(k) = w(K) is called a thin position of K, and any
k with all maxima above all minima is called a bridge position of K. If k is a
bridge position and b(k) = b(K), we call k a minimal bridge position of K.

For any k ∈ K with associated tuple (x1, . . . , xp), we say xi corresponds
to a thick level if xi > xi−1, xi+1, and xi corresponds to a thin level if
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xi < xi−1, xi+1, where 2 ≤ i ≤ n − 1. Thus, we can associate a thick/thin
tuple of integers (a1, b1, a2, . . . , bn−1, an) to k, where each ai corresponds to
a thick level and each bi corresponds to a thin level. We also have a collection
of level surfaces Âi and B̂i satisfying |k ∩ Âi| = ai and |k ∩ B̂i| = bi. We call
these surfaces thick and thin surfaces, respectively, for k. From [13],

(2.1) w(k) =
1
2

(∑
a2

i −
∑

b2
i

)
.

The definitions in the next two paragraphs are taken from [16]. Given an
embedding k, there may exist certain isotopies that decrease w(k), as deter-
mined by the intersections of strict upper and lower disks. An upper disk for
k at a thick surface Âi is an embedded disk D such that ∂D consists of two
arcs, one arc in k and one arc in Âi, where the arc in k does not intersect
any thin surfaces and contains exactly one maximum. A strict upper disk is
an upper disk whose interior contains no critical points with respect to h. A
lower disk and strict lower disk are defined similarly.

If there is a pair (D, E) of strict upper and lower disks for k at Âi that
intersect in a single point contained in k, we can cancel out the maximum
and minimum of k contained in D and E, and w(k) decreases by 2ai − 2. We
call this a type I move. If k admits a type I move at Âi, we say k is stabilized
at Âi. If D and E are disjoint, we can slide the minimum above the maximum
with respect to h, decreasing w(k) by 4. This is called a type II move.

3. Cable knots and the companion torus

The knots we will study are called cable knots, a specific type of satellite
knot, defined below:

Definition 3.1. Suppose that K̂ is a knot contained in a solid torus V
with core C such that every meridian of V intersects K̂, and let J be any
nontrivial knot in S3. Further, let ϕ : V → S3 be an embedding such that
ϕ(C) is isotopic to J . Then we say that K = ϕ(K̂) is a “satellite knot”
with companion J and pattern K̂. We call ∂ϕ(V ) the “companion torus”
corresponding to J .

In general, if K is a satellite knot, K might not be isotopic into the
companion torus. However, if its pattern K̂ is a torus knot, we can push
the pattern K̂ into T = ∂ϕ(V ), an assumption that yields more information
than the general case when we study the foliation of T induced by h. This
leads to the definition of cable knots.
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Figure 1: A (1, 5)-cable of the figure eight knot with the blackboard
framing.

Definition 3.2. A “(p, q)-cable knot” is a satellite knot with pattern a
(p, q)-torus knot K̂.

For an example of a cable knot, see figure 1. We follow the convention
of [7], where a (p, q)-torus knot in T has homology class p[μ] + q[λ] with μ
a meridian and λ a longitude of ϕ(V ). Observe that a (p, q)-torus knot has
intersection number q with any meridian of ϕ(V ).

As noted above, h induces a singular foliation, FS , of any surface S ⊂ S3

such that h|S is Morse. As in [15], we distinguish between the various types
of saddle points of FS :

Definition 3.3. Let c be a critical value corresponding to a saddle σ of
FS , so that some component of S ∩ h−1([c − ε, c + ε]) is a pair of pants P .
Let s1 and s2 denote the components of ∂P lying in the same level. If either
bounds a disk in S, we say that σ is an “inessential saddle.” If σ is not
inessential, then it is an “essential saddle.”

In addition to type I and type II moves, we will require one more move
to systematically simplify cable knots: disk slides.

Definition 3.4. Suppose that some embedding k of a knot K is contained
in a surface S such that h|S is Morse. Suppose further that D ⊂ S is a disk
satisfying the following conditions:
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Figure 2: A disk slide.

1. ∂D is contained in some level surface h−1(r);

2. int(D) contains exactly one minimum or maximum;

3. some component of k ∩ D is an outermost arc γ that contains exactly
one critical point of h|k and cobounds a disk Δ with an arc in ∂D,
where int(Δ) contains the critical point of D.

Then there is an isotopy through Δ supported in a neighborhood of Δ that
takes γ to an arc γ′ that cobounds a disk Δ′ with an arc in ∂D such that
int(Δ′) contains no critical points and int(Δ′) ∩ k = ∅. Additionally, γ′ can
be chosen so that it contains exactly one critical point occuring at the same
height as the critical point of γ. We call the isotopy that replaces γ with γ′

a “disk slide,” pictured in figure 2.

Note that by requiring that the critical point of γ′ occur on the same level
as the critical point of γ, we ensure that if k′ is the result of performing a disk
slide on k, we have w(k′) = w(k), although the width of k may temporarily
increase during some intermediate step of the disk slide.

4. Efficient position of k

From this point forward, we set the convention that K is a (p, q)-cable knot
with companion J and companion torus T . As noted above, for any k ∈ K ,
we may assume there is a torus isotopic to T containing k. In order to study
each embedding k ∈ K with respect to various representatives in the isotopy
class of the companion torus T , we define the following collection:

K T = {(k, Tk) : k ∈ K , Tk ∼ T, k ⊂ Tk, and h|Tk
is Morse}.

For an arbitrary element (k, Tk) of K T , the torus Tk is compressible only
on one side, and we let Vk denote the solid torus bounded by Tk. We may also
assume that the critical points of k and Tk occur at different levels. The goal



Properties of knots preserved by cabling 547

of this section is to show that any embedding k can be deformed to lie on a
torus isotopic to T in an efficient way and without increasing w(k). To this
end, consider an arc γ of k embedded in an annulus A, where both bound-
ary components of A are level and int(A) contains no critical points with
respect to h. Suppose that γ is an essential arc containing critical points,
and let x denote the lowest maximum of γ. There are two points y, z ∈ γ
corresponding to minima (one could be an endpoint) such that γ contains
a monotone arc connecting x to y and x to z. Without loss of generality,
suppose that h(y) > h(z). Then level arc components of A ∩ h−1(h(y) + ε)
cobound disks D, E ⊂ A with arcs in γ such that ∂D contains exactly one
maximum (x), ∂E contains exactly one minimum (y) and int(D) ∩ γ =
int(E) ∩ γ = ∅. Further, D ∩ E is a single point contained in γ. Refer to
figure 3.

If there is exactly one thick surface between x and y, then k admits a
type I move canceling the two critical points. If there is more than one such
thick surface, we can slide x down along D, performing some number of type
II moves, until there is one such thick surface, after which k admits a type I
move. A similar argument is valid if γ is inessential in A or if γ is embedded
in a disk D̂ with level boundary and one critical point, and γ contains more
than one critical point. We will use these ideas in the proof of the next
lemma, which is similar to the proof of Lemma 3.3 in [19] modified slightly
to accommodate the fact that for any (k, Tk) ∈ K T , we have k ⊂ Tk.

Lemma 4.1. For any k ∈ K , there exists (k′, Tk′) ∈ K T such that w(k′) ≤
w(k) and the foliation of Tk′ by h contains no inessential saddles.

Figure 3: An essential arc γ containing critical points, shown with upper
and lower disks D and E described above.
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Proof. Suppose that (k, Tk) ∈ K T and FTk
contains an inessential saddle.

By Lemma 1 (the Pop Over Lemma) of [15], we can modify Tk so that there
exists a saddle σ of FTk

with corresponding critical value c such that some
component P of Tk ∩ h−1([c − ε, c + ε]) is a pair of pants, with boundary
components s1, s2, s3 satisfying

1. s1 and s2 are contained in the same level surface L of h,

2. s1 bounds a disk D1 ⊂ Tk such that FTk
restricted to D1 contains only

one maximum or minimum,

3. D1 co-bounds a three-ball B with a disk D̃1 ⊂ L such that B does not
contain ±∞ and such that s2 lies outside of D̃1.

Without loss of generality, let D1 contain one maximum. By the above argu-
ment, we can perform type I and II moves so that each component of k ∩ D1

contains exactly one maximum. Let A = P ∪ D1, so that A is an annulus
with boundary components s2 and s3. We can choose P so that k ∩ P con-
sists only of vertical arcs. Then if k ∩ D1 �= ∅, k ∩ A contains inessential
arcs with exactly one critical point and boundary in s3. Let γ denote an
outermost arc in A, so that γ cobounds a disk Δ with an arc in s3 and
int(Δ) ∩ k = ∅. If int(Δ) contains a critical point, we can perform a disk
slide to remove it, after which can remove γ from k ∩ A, possibly by type II
moves.

Thus, after some combination of type I moves, type II moves and disk
slides, we may assume that k ∩ D1 = ∅. By the proof of Lemma 3.2 in [19], we
can cancel the saddle σ with the maximum contained in D1 without increas-
ing w(k). Repeating this process finitely many times finishes the proof. �

Hence, for the purpose of finding thin position we may assume that for
any (k, Tk) ∈ K T , the foliation FTk

contains no inessential saddles, and
so each disk D ⊂ Tk with level boundary must contain exactly one critical
point. We distinguish between two types of saddles:

Definition 4.1. Let (k, Tk) ∈ K T , with σ a saddle point of FTk
and c

the corresponding critical value. Then some component P of T ∩ h−1([c − ε,
c + ε]) is a pair of pants. We say that σ is a “lower saddle” if P ∩ h−1(c + ε)
has two components; otherwise, σ is an “upper saddle.”

Next, for (k, Tk) ∈ K T , we suppose that the foliation of Tk contains
only essential saddles and decompose Tk into annuli as follows: for each
critical value ci corresponding to a saddle, some component of Tk ∩ h−1
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([ci − ε, ci + ε]) is a pair of pants, call it Pi. If Pi is a lower saddle, then
Pi ∩ h−1(c − ε) is a simple closed curve that bounds a disk Di in S with
exactly one minimum. If Pi is an upper saddle, there exists a similar disk
Di with exactly one maximum. In either case, Ai = Pi ∪ Di is an annulus
whose foliation contains exactly one saddle and one minimum or maximum,
called a lower annulus or an upper annulus, respectively.

Now Tk \ ∪Ai is a collection of vertical annuli whose foliations contain
no critical points, and we have decomposed S into a collection of lower,
upper, and vertical annuli, which we denote {A1, . . . , Ar}. In addition, these
r annuli as a collection have r distinct boundary components, which we
denote {δ1, . . . , δr}. Let L be any level two-sphere containing some δi. Of all
curves in Tk ∩ L that are essential in Tk, consider a curve α that is innermost
in L. Thus α bounds a disk D in L containing no other essential simple closed
curves in Tk ∩ L. Potentially, D contains some inessential curves in Tk ∩ L,
but these curves bound disks in Tk, so after some gluing operations, we see
that α bounds a compressing disk for Tk. Since Tk is compressible only on
one side, it follows that α bounds a meridian disk of the solid torus Vk;
hence, δi also bounds a meridian disk since it is parallel to α in Tk. As
K is a (p, q)-cable, each δi (oriented properly) has algebraic intersection q
with k, which implies k has at least q · r intersections with the collection
{δ1, . . . , δr}.

We would like k to be contained in the companion torus as efficiently as
possible; for this purpose, we define efficient position, where we decompose
Tk into annuli as describe above.

Definition 4.2. We say that (k, Tk) ∈ K T is an “efficient position” if
k ∩ Ai is a collection of essential arcs in Ai for every i. Further, if Ai is a
vertical annulus, we require that each arc of k ∩ Ai contain no critical points,
and if Ai is an upper or lower annulus, we require that each arc of k ∩ Ai

contains exactly one minimum or maximum.

Note that if (k, Tk) is an efficition position, it is implicit in Definition 4.2
that the foliation of Tk contains only essential saddles. Of course, given an
arbitrary element (k, Tk) ∈ K T , we may not necessarily assume that (k, Tk)
is an efficient position, but we may employ the next lemma.

Lemma 4.2. For any k ∈ K , there exists (k′, Tk′) ∈ K such that w(k′) ≤
w(k) and (k′, Tk′) is an efficient position.

Proof. Let (k, Tk) ∈ K T such that FTk
contains no inessential saddles and

decompose Tk into annuli as described above. Suppose that
∑ |k ∩ δi| is
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minimal up to isotopies that do not increase width. By previous arguments,
we suppose that after a series of type I and type II moves, we have for
every vertical annulus Ai, k ∩ Ai consists of monotone essential arcs and
inessential arcs with exactly one critical point, and for every lower or upper
annulus Ai, k ∩ Ai consists of essential and inessential arcs with exactly one
critical point. As determined above,

∑ |k ∩ δi| ≥ q · r. If
∑ |k ∩ δi| = q · r,

then every oriented intersection of k with δi must occur with the same sign,
so every arc of k ∩ Ai is essential and (k, Tk) is an efficient position.

Conversely, if every arc of k ∩ Ai is essential for all i, then all oriented
intersections of k with δi occur with the same sign and

∑ |k ∩ δi| = q · r.
Thus, if

∑ |k ∩ δi| > q · r, there exists Aj such that k ∩ Aj contains an
inessential arc. Let γ be an inessential arc that is outermost in Aj , so that γ
cobounds a disk Δ with a level arc in ∂Aj such that int(Δ) ∩ k = ∅. Possibly
after a disk slide if Aj is upper or lower, we can slide γ along Δ to remove
two points of some k ∩ δi. This isotopy does not increase the width of k,
contradicting the minimality assumption above. �

As a result of the proof of Lemma 4.2, if (k, Tk) is an efficient position,
we have that k ∩ Ai consists of q essential arcs for each i. See figure 4.

5. The width of the companion torus and the width of
cable knots

Neglecting K for the moment, let L be any knot in S3 and L the set of
embeddings of S1 isotopic to L. In this section, we define the width of a torus
in S3. However, instead of modifying the standard definition that counts the
number of intersections of a knot with level two-spheres, we will keep track
of the order in which the upper and lower saddles occur in the foliation
of the torus by h. In the case of knots, observe that we can calculate the
width of any embedding l ∈ L if we know the order in which all minima
and maxima of l occur with respect to h. To formalize this notion, let Z be
the free monoid generated by two elements, m and M . Now, define Ẑ to be
those elements σ = mα1Mβ1 . . . mαnMβn ∈ Z such that

1. αi, βi �= 0 for all i,

2.
∑j

i=1 αi >
∑j

i=1 βi for all j < n, and

3.
∑n

i=1 αi =
∑n

i=1 βi.

We define a map from L to Ẑ, l 
→ σl, by the following: Let c0 < · · · <
cp be the critical values of h |l. We create a word σl consisting of p + 1



Properties of knots preserved by cabling 551

Figure 4: An example of the simplification suggested by Lemma 4.2. In the
first picture, an inessential arc γ is contained in an upper annulus. After a
disk slide, we remove γ from the upper annulus, and then remove it from
the vertical annulus. Now the inessential arc contains three critical points,
so after a type I move, we can remove it from the lower annulus, continuing
as necessary until an efficient position is attained.

letters by mapping the tuple (c0, . . . , cp) to a word by assigning m to each
minimum and M to each maximum. Next, we define the width of an element
σ = mα1Mβ1 . . . mαnMβn ∈ Ẑ by

w(σ) = 2
(∑

αi

)2 − 4
∑

i>j

αiβj .

The following lemma should be expected:

Lemma 5.1. For any l ∈ L , w(l) = w(σl).

Proof. Let σl = mα1Mβ1 . . . mαnMβn . Then the thick/thin tuple for l is
(2α1, 2(α1 − β1), 2(α1 − β1 + α2), . . . , 2(α1 − β1 + α2 − · · · + αn)). From the
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width formula given by (2.1),

w(k) =
1
2
[(2α1)2 − (2(α1 − β1))2 + (2(α1 − β1 + α2))2

− · · · + (2(α1 − β1 + α2 − · · · + αn))2]

= 2[α2
1 + α2

2 + 2α2(α1 − β1)

+ · · · + α2
n + 2αn(α1 − β1 + α2 − · · · − βn−1)]

= 2
(∑

αi

)2 − 4
∑

i>j

αiβj ,

as desired. �

As an example, consider the embedding l pictured in figure 5. A simple
verification shows that σl = m3MmM3 and w(l) = w(σl) = 28.

Next, we consider the collection of possible companion tori for a satellite
knot with companion L. Define SL to be the collection of embedded tori S
such that

1. h|S is Morse,

2. the foliation FS induced by h contains no inessential saddles, and

3. S is isotopic to the boundary of a regular neighborhood of L.

Now, as with L , we can define a map from SL to Ẑ, S 
→ σS , by the fol-
lowing: Let c0 < · · · < cp be the critical values corresponding to the saddles
of FS . We create a word σS consisting of p + 1 letters by mapping the tuple

Figure 5: An embedding l with σl = m3MmM3.
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(c0, . . . , cp) to a word by assigning m to each lower saddle and M to each
upper saddle. It is clear that σS ∈ Z, and slightly more difficult to see that
σS ∈ Ẑ. The proof of this fact is left to the reader.

Using this association, we define the width of any torus S ∈ SL by
w(S) = w(σS), and similar to the definition of knot width, we have

Definition 5.1. The “neighborhood width” of the knot L, nw(L), is given by

nw(L) = min
S∈SL

w(S).

As a knot invariant, neighborhood width is not new; it is equivalent to
knot width by the next lemma.

Lemma 5.2. For any knot L, nw(L) = w(L).

Proof. First, let l0 be an embedding of L such that w(l0) = w(L), and let
S0 be the boundary of a regular neighborhood of l0 in S3 such that every
saddle of S0 occurs slightly above a minimum or slightly below a maximum
of l0. All such saddles are easily seen to be essential, so S0 ∈ SL. Further,
w(S0) = w(σS0) = w(σl0) = w(L); hence

nw(L) ≤ w(L).

For the reverse inequality, let S ∈ SL. Since S is isotopic to a regular
neighborhood of L, we have that any longitude of S is isotopic to L. Decom-
pose S into a collection of upper, lower, and vertical annuli {A1, . . . , Ar} as
in Section 4. For each lower or upper annulus Ai, let li be an essential arc
in Ai passing through the saddle with exactly one minimum or maximum.
For each vertical annulus Ai, let li be a monotone arc connecting the two
endpoints of the arcs contained in the annuli adjacent to Ai (these annuli
must contain saddles). Lastly, let l be the union of all the arcs li, so that l
is a simple closed curve.

As shown above, the collection of boundary components {δi} of the
annuli {Ai} bound meridian disks for the solid torus bounded by S, and
since l intersects each δi once, l is a longitude of S. By construction w(S) =
w(σS) = w(σl) = w(l) ≥ w(L), and since this is true for all S ∈ SL, we have

nw(L) = w(L),

completing the proof. �

Finally, we have all the necessary tools to find the width of a cable knot.
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Theorem 5.1. Suppose that K is a (p, q)-cable of a nontrivial knot J . Then

w(K) = q2 · w(J).

Proof. Let j be an embedding of J such that w(j) = w(J), and let Tj be the
boundary of a regular neighborhood of j such that every saddle of Tj occurs
slightly above a minimum or slightly below a maximum of j. Suppose that
σj = mα1Mβ1 . . . mαnMβn . We can cable j along Tj , creating an embedding
k ∈ K such that σk = mqα1M qβ1 . . . mqαnM qβn . By Lemma 5.1,

w(K) ≤ w(σk) = q2 · w(σj) = q2 · w(J).

We call k an “obvious” cabling of j.
On the other hand, suppose k′ ∈ K is a given thin position. By

Lemmas 4.1 and 4.2, there exists a torus Tk′ such that (k′, Tk′) ∈ K T is
an efficient position. Let σTk′ = mα′

1Mβ′
1 . . . mα′

n′Mβ′
n′ . Note that Tk′ ∈ SJ ,

and thus w(Tk′) ≥ w(J) by Lemma 5.2. We decompose Tk′ into a collec-
tion of upper, lower, and vertical annuli {A1, . . . , Ar} as above in Sec-
tion 4. For each upper annulus Ai, k′ ∩ Ai consists of q essential arcs,
each containing one maximum. Suppose ci is the critical value correspond-
ing to the saddle in Ai. Then there is an isotopy of k supported in Ai

taking the q arcs to arcs in h−1((ci, ci + ε]), and this isotopy does not
increase w(k′). A similar statement is true for each lower annulus Ai. As all
critical points of k′ are contained in upper or lower annuli, we can compute
σk′ = mqα′

1M qβ′
1 . . . mqα′

n′M qβ′
n′ , and thus

w(K) = w(mqα′
1M qβ′

1 . . . mqα′
n′M qβ′

n′ ) = q2 · w(Tk′) ≥ q2 · w(J),

completing the proof. �

The proof of the theorem reveals that if k is an “obvious” cabling of a
thin position of J , then it is a thin position of K.

Corollary 5.1. For a knot J in S3, the following are equivalent:

(a) J is bridge-thin.

(b) Every cable of J is bridge-thin.

(c) There exists a cable of J that is bridge-thin.
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6. Meridional smallness of cable knots

In the previous section, we showed that bridge-thinness is a property pre-
served by cabling. Here we wish to show the same is true for meridional
smallness and mp-smallness, defined below. We need several other defini-
tions first (we assume the reader is familiar with the definitions of incom-
pressibility and ∂-incompressibility).

Definition 6.1. A surface S ⊂ M is “essential” if it is incompressible,
∂-incompressible and not parallel to ∂M .

Definition 6.2. A knot L ⊂ S3 is “meridionally small” if E(L) contains
no essential surface S with ∂S consisting of meridian curves of η(K), where
η denotes a regular neighborhood. A knot L ⊂ S3 is “meridionally planar
small,” or mp-small, if E(L) contains no essential planar surface S with
meridional boundary.

Note that if S is a properly embedded surface with meridional boundary
in a knot exterior E(L) and S is ∂-compressible, then either S is compressible
or ∂-parallel. In addition, all components of ∂E(L) \ η(∂S) are annuli, so if
S is ∂-parallel, S must be an annulus. Thus to show S is essential it suffices
to show S is incompressible and not a ∂-parallel annulus.

Recall that K is a (p, q)-cable of J , with pattern K̂ a (p, q)-torus knot
contained in a solid torus V . Letting Cp,q = V \ η(K̂), we observe that we can
decompose E(K) as E(J) ∪ Cp,q, where the attaching map depends on the
framing ϕ : V → S3 that maps a core of V to J . Following [7], we call Cp,q a
(p, q)-cable space. See figure 6. Note that Cp,q has a Seifert fibering with one
exceptional fiber (a core of V ), and it has two torus boundary components,
∂V (the outer boundary, denoted ∂+Cp,q) and ∂ η(K̂) (the inner boundary,
denoted ∂−Cp,q). In order to understand essential meridional surfaces in
E(K), we require the next lemma. We note that this lemma is implied by
Lemma 3.1 of [7], but we do not need its full generality and so we provide
an elementary proof. For a treatment of Seifert fibered spaces, see [8]. A
surface in a Seifert fibered space is horizontal if it is transverse to all fibers
and vertical if it is a union of fibers.

Lemma 6.1. Suppose S is a connected incompressible surface in Cp,q,
where S ∩ ∂−Cp,q �= ∅ and each component of S ∩ ∂−Cp,q is a meridian curve.
Then S is a disk with q punctures, and S ∩ ∂+Cp,q is a meridian curve of V .
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Figure 6: The cable space C3,2.

Proof. Since Cp,q is Seifert fibered, every incompressible surface is either hor-
izontal or vertical by Hatcher [8]. By assumption S has meridional boundary
in ∂−Cp,q, so S is horizontal. We can extend S to a horizontal surface S′ in a
Seifert fibered solid torus by attaching meridian disks to each component of
S ∩ ∂−Cp,q and gluing η(K̂) back into Cp,q. But every connected horizontal
surface in such a torus is a meridian disk, so S′ is a meridian disk, from
which it follows that S is a disk with q punctures and ∂S ∩ ∂+Cp,q = ∂S′ is
a meridian curve. �

On the other hand, let S′ be a meridian disk of V intersecting K̂ mini-
mally, with S = S′ ∩ Cp,q. Then Cp,q cut along S is homeomorphic to S × I,
from which it follows that S is incompressible in Cp,q. We use these facts in
the proof of the next theorem.

Theorem 6.1. For a knot J in S3, the following are equivalent:

(a) J is meridionally small.

(b) Every cable of J is meridionally small.

(c) There exists a cable of J that is meridionally small.

Proof. First we prove that (c) implies (a) or, equivalently, if J is not merid-
ionally small and K is a cable of J , then K is not meridionally small. If J
is not meridionally small then E(J) contains an essential meridional surface
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S, and let K be a (p, q)-cable of J , so that E(K) = E(J) ∪T Cp,q, where
T = ∂E(J). Then every component of ∂S bounds a disk with q punctures
in Cp,q, and thus we can construct a meridional surface S′ in E(K) by glu-
ing such a disk D to each boundary component of ∂S. We claim that S′ is
essential in E(K). By the above, S′ ∩ Cp,q is incompressible in Cp,q. Note
that |∂S′| = q · |∂S| > 2, so S′ is not a ∂-parallel annulus. Suppose Δ is a
compressing disk for S′ in E(K). If Δ ∩ T = ∅, then either Δ ⊂ Cp,q, which
is ruled out by the argument above, or Δ ⊂ E(J), which contradicts the
incompressibility of S.

Thus, Δ ∩ T �= ∅, and suppose Δ is chosen so that |Δ ∩ T | is minimal.
Since T is incompressible in E(K), Δ ∩ T contains no simple closed curves.
Let α be an arc in Δ ∩ T that is outermost in Δ, so that α cobounds a disk
Δ′ ⊂ Δ with an arc β ⊂ ∂Δ such that int(Δ′) ∩ T = ∅. There are two cases
to consider: First, suppose that Δ′ ⊂ Cp,q. Then both endpoints of α are
contained in the same component of S′ ∩ T , which means that α is inessential
in an annular component of T \ S′ and cobounds a disk Δ′′ ⊂ T with an arc
γ ⊂ S′ ∩ T . Gluing Δ′ to Δ′′ along α yields a disk Δ∗ with ∂Δ∗ ⊂ S′ ∩ Cp,q,
and by the incompressibility of S′ ∩ Cp,q in Cp,q, ∂Δ∗ = β ∪ γ bounds a disk
D contained in S′ ∩ Cp,q. Sliding β along D, we can remove at least one
intersection of Δ with T , contradicting the minimality of |Δ ∩ T |.

In the second case, suppose that Δ′ ⊂ E(K). If α is an inessential arc in
some annular component of T , the above argument holds. If α is essential,
then Δ′ is a ∂-compressing disk for S in E(J), contradicting the assumption
that S is essential. We conclude that S′ is an essential meridional surface in
E(K), showing that (c) implies (a).

Now we show that (a) implies (b) or, equivalently, if some cable of J is
not meridionally small then J is not meridionally small. Suppose that there
exists a (p, q)-cable K of J such that E(K) contains an essential meridional
surface R. As above, E(K) = E(J) ∪T Cp,q. Assume |R ∩ T | is minimal up to
isotopy. We claim that R ∩ Cp,q is incompressible in Cp,q. Suppose not. Then
there is a compressing disk Δ ⊂ Cp,q for R ∩ Cp,q. Since R is incompressible
in E(K), ∂Δ bounds a disk Δ′ ⊂ R, and by isotopy we can replace Δ′ with
Δ and reduce the number of intersections of R with T , a contradiction. By
Lemma 6.1, each component of R ∩ Cp,q is a punctured disk, and it follows
that R′ = R ∩ E(J) is a meridional surface. If R′ is a ∂-parallel annulus
in E(J), we can lower |R ∩ T | via isotopy, contradicting the minimality of
|R ∩ T |. Likewise, if R′ is compressible in E(J), we can lower |R ∩ T | as
in the case of R ∩ Cp,q above. Thus, R′ is an essential meridional surface
in E(J), and (a) implies (b). Clearly, (b) implies (c), completing the proof.

�
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It should be noted that in the above proof, if either surface S or R is
planar, then the induced surface S′ or R′ is also planar, yielding:

Theorem 6.2. For a knot J in S3, the following are equivalent:

(a) J is mp-small.

(b) Every cable of J is mp-small.

(c) There exists a cable of J that is mp-small.

7. Destabilizing non-minimal bridge positions of cables

If l is a bridge position for a knot L, then l has exactly one thick level
Â = h−1(a1). We call this level a bridge sphere and say that two bridge
positions l and l′ equivalent if there exists an isotopy ft, called a bridge
isotopy, taking l to l′ such that for all t, ft(Â) is a bridge sphere for ft(l). If
l is a bridge position admitting a type I move, we say that l is stabilized. In
this context a type I move is also called a destabilization. Since a type I move
cancels a minimum and a maximum, it is clear that every minimal bridge
position is not stabilized. For K a (p, q)-cable of J , we have the following:

Lemma 7.1. Suppose that k is a bridge position. Then there exists (k′, Tk′)∈
K T such that k′ is equivalent to k and (k′, Tk′) is an efficient position, or
k is stabilized.

Proof. Let (k, Tk) ∈ K T . By Lemma 2.4 of [12], there exists (k′, Tk′) ∈
K T such that k′ is equivalent to k and all saddles in the foliation of Tk′ by
h are essential. Note that any disk slide of k′ is supported in a neighborhood
away from a bridge sphere; thus, if k′′ is the result of a disk slide on k′,
k′′ is equivalent to k′. Now, as in Section 4, we split Tk′ into a collection
{A1, . . . , Ar} of vertical, upper and lower annuli, where each component of
k′ ∩ Ai is an arc containing at most one critical point, or else a minimum and
maximum of some arc can be canceled and k′ is stabilized. If Ai is vertical
and some arc component α of k′ ∩ Ai is inessential, outermost in Ai, and
contains a maximum, we can push α off Ai and onto the adjacent lower
annulus Aj , where its maximum cancels a minimum of an arc component
of k′ ∩ Aj . A similar argument holds if α contains a minimum or if α is
an inessential arc in an upper or lower annulus, although in this case we
may require a disk slide before pushing α. See figure 4. We conclude either
(k′, Tk′) is an efficient position or k′ admits a destabilization. �
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In [12], Makoto Ozawa shows that if K is a torus knot, then every non-
minimal bridge position of K is stabilized. We essentially follow his proof,
which we will summarize here, to show that if J is mp-small and every non-
minimal bridge position of J is stabilized, then every cable K of J has the
same property. Ozawa utilizes the following theorem, proved by Hayashi and
Shimokawa [9] and later by Tomova [18]:

Theorem 7.1. If k ∈ K is a bridge position admitting a type II move,
then either k is stabilized or E(K) contains an essential meridional planar
surface.

Thus, if K is mp-small, any bridge position admitting a type II move is
stabilized.

From this point on, suppose J is mp-small. By Theorem 6.2, K is also
mp-small. We recall that for (k, Tk) ∈ K T , the solid torus bounded by Tk

is denoted Vk. Although Ozawa [12] deals specifically with torus knots, some
results apply in the setting of mp-small cable knots. Lemmas 3.2 to 3.4 of [12]
together imply

Lemma 7.2. Suppose k is a bridge position. Then there exists (k′, Tk′) ∈
K T an efficient position such that k′ is equivalent to k and a bridge sphere
Â = h−1(a1) such that all upper saddles of Tk′ occur above Â, all lower
saddles occur below Â, and Vk′ ∩ Â is a collection of disks, or k is stabilized.

Thus, h foliates the solid torus Vk′ by disks, and any such (k′, Tk′) induces
a bridge position j of J by taking j a longitude of Tk′ as constructed in
Lemma 5.1. This fact also ensures that any upper or lower disk for j can be
chosen to miss int(Vk′) and thus can easily be modified to an upper or lower
disk for k′. Finally, we have

Theorem 7.2. Suppose K is a (p, q)-cable with companion J , where J is
mp-small.

(a) If every non-minimal bridge position of J is stabilized, then every non-
minimal bridge position of K is stabilized.

(b) The cardinality of the collection of minimal bridge positions of K does
not exceed the cardinality of the collection of minimal bridge positions
of J .

Proof. (a) Suppose k ∈ K is a bridge position. By Lemmas 7.1 and 7.2, we
may pass to an equivalent bridge position and assume there exists (k, Tk) ∈
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K T an efficient position such that h foliates Vk by disks, or else k is sta-
bilized. Let Â be a bridge sphere for k guaranteed by Lemma 7.2, and note
that the induced bridge position j of J satisfies b(j) = 1

2 |Â ∩ Tk|. There are
two cases to consider: First, suppose that |Â ∩ Tk| = 2 · b(J). Since each
upper annulus contains q maxima, we have b(k) = q · b(J). By [14, 15],
b(K) = q · b(J), and thus k is a minimal bridge position of K. On the other
hand, suppose that |Â ∩ Tk| > 2 · b(J). Then j is a non-minimal bridge posi-
tion for J , and by assumption j is stabilized. It follows that k is stabilized,
finishing the first part of the proof.

(b) For each minimal bridge position j of J , assign an obvious cabling
k ⊂ ∂η(j) of j with q · b(J) maxima. It suffices to prove that the association
ϕ : j 
→ k is surjective. First, suppose that k′ is another obvious cabling of
a bridge position of j′ equivalent to j with q · b(J) maxima. Then there is a
bridge isotopy taking j′ to j, which induces an isotopy from ∂η(j′) to ∂η(j)
which is also a bridge isotopy of k′. Since k is isotopic to k′ in ∂η(j), we can
remove intersections of k and k′ and then push k′ onto k by a bridge isotopy,
and so ϕ is well-defined. Now, if k is a minimal bridge position of K, we
may pass to an equivalent bridge position and assume there exists (k, Tk)
such that h foliates Vk by disks by Lemma 7.2. Thus, the induced minimal
bridge position j for J from Lemma 5.1 satisfies ϕ(j) = k, as desired. �

From [11, 12], we have

Corollary 7.1. If K is an n-fold cable of a torus knot or a two-bridge knot,
then any non-minimal bridge position of K is stabilized. Additionally, if K
is an n-fold cable of a torus knot, it has a unique minimal bridge position,
and if K is an n-fold cable of a two-bridge knot, it has at most two minimal
bridge positions.

In [3], Coward proves that if J is a hyperbolic knot, then J has finitely
many minimal bridge positions. Hence

Corollary 7.2. If K is a (p, q)-cable of J , where J is hyperbolic and mp-
small, then K has finitely many minimal bridge positions.
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