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A comparison theorem for the isoperimetric profile

under curve-shortening flow

Ben Andrews and Paul Bryan

We prove a comparison theorem for the isoperimetric profiles of
simple closed curves evolving by the normalized curve-shortening
flow: if the isoperimetric profile of the region enclosed by the initial
curve is greater than that of some “model” convex region with
exactly four vertices and with reflection symmetry in both axes,
then the inequality remains true for the isoperimetric profiles of
the evolved regions. We apply this using the “paperclip” solution
as the model region to deduce sharp time-dependent upper bounds
on curvature for arbitrary embedded closed curves evolving by the
normalized curve-shortening flow. A slightly different comparison
also gives lower bounds on curvature, and the result is a simple
and direct proof of Grayson’s theorem without use of any blowup
or compactness arguments, Harnack estimates or classification of
self-similar solutions.

1. Introduction

The curve-shortening flow produces a smooth family of curves γ̃t = X̃(S1, t)
in the plane R

2, from an initial curve γ̃0 given by an immersion X̃0 : S1 →
R

2, according to the equation

(1.1)
∂X̃

∂τ
= −κ̃N =

1
∣
∣
∣X̃ ′

∣
∣
∣

⎛

⎝
X̃ ′
∣
∣
∣X̃ ′

∣
∣
∣

⎞

⎠

′

,

where κ̃ is the curvature of the curve γ̃τ , N is the outward unit normal and
primes denote derivatives with respect to a local parameter on S1. This sys-
tem has received considerable study, and in particular it is known that for
any smooth immersion X0 there exists a unique solution on a finite maxi-
mal time interval, and that the maximum curvature becomes unbounded as
the maximal time is approached [7]. Gage [5, 6] and Gage and Hamilton [7]
considered the case of convex embedded closed curves, and proved that solu-
tions are asymptotic to shrinking circles as the final time is approached.
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Grayson [8] then extended this result to arbitrary embedded closed curves.
Our aim in this paper is to provide an estimate on the curvature for embed-
ded closed curves evolving by curve-shortening flow, and deduce from this a
simple proof of Grayson’s theorem.

In recent work [1], we used isoperimetric estimates to deduce curvature
bounds for embedded solutions of curve-shortening flow, by controlling the
lengths of chords to the evolving curves as a function of the arc length
between the end points and elapsed time. Precisely, for an embedded curve
γ = X(S1) of length 2π we define the chord–arc profile to be the function
cγ : [0, 2π] → R given by

cγ(�) := inf
{

|X(p) −X(q)| :
∫ q

p
|X ′(u)| du = �, p, q ∈ S1

}

.

Our theorem can then be stated as follows:

Theorem (Theorems 1 and 3 of [1]). Let X : S1 × [0, T ) → R
2 be a

smooth embedded solution of the normalized curve-shortening flow normal-
ized to fixed length 2π, so that ∂X

∂t = κ2X − κN where κ2 is the average value
of the square of the curvature on the curve γt = X(S1, t). Then there exists
t̄ ∈ R such that for every t ≥ 0,

(1.2) cγt
(�) ≥ 2et−t̄ arctan

(

e−(t−t̄) sin
(
�

2

))

.

It follows that κ(p, t)2 ≤ 1 + 2e−2(t−t̄) for all p ∈ S1 and t ≥ 0.

The isoperimetric estimate is a sharper version of one proved by Huisken
[11], which gave a lower bound on the ratio of the chord–arc profile to that of
the circle. In particular our estimate gives stronger control of chord length for
short segments, and it is this which implies the very strong curvature bound
in the theorem and enables a rather simple proof of Grayson’s theorem.
The precise estimate stated in the theorem was discovered by exhaustive
experiment, rather than being suggested by any guiding principle, so the
result is in some ways mysterious.

Subsequently [2], we used similar ideas to give sharp curvature esti-
mates for the normalized Ricci flow on the two-sphere. As before, the key
motivating idea is that sufficiently strong control on an isoperimetric profile
implies control on curvatures, but in this case we no longer relied on a purely
serendipitous calculation. We considered the classical isoperimetric profile
defined by the infimum of perimeters of subsets with given area. Previous
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work by Hamilton [10] gave a lower bound on the ratio of the isoperimetric
profile to that of the sphere for a solution of the normalized Ricci flow on
the two-sphere. Our stronger result states that if the isoperimetric profile
of a metric on the two-sphere is bounded below by the isoperimetric pro-
file of a model metric (which can be any axially symmetric metric on S2

which is invariant under reflection in the equatorial plane and with curva-
ture decreasing from the poles to the equator) then the inequality continues
to hold if both metrics are evolved under normalized Ricci flow. This implies
a curvature bound: the maximum curvature at any time is bounded by the
curvature at the pole for the model solution. In particular, explicit estimates
are obtained by choosing the model solution to be the explicit solution of
Ricci flow known as the Rosenau (or King) solution or “sausage model”.

In this paper, we show that the same situation arises in curve-shortening
flow when one estimates the isoperimetric profile of the enclosed region:

Theorem (see Theorems 3.1 and 5.1 below). Let X : S1 × [0, T ) →
R

2 be a solution of the normalized curve-shortening flow (2.1), and let ψ
be the isoperimetric profile defined by Equation (2.2). Let ϕ be the isoperi-
metric profile of any solution X̄ of (2.1) which is symmetric in both coor-
dinate axes and has exactly four vertices. If ψ(ξ, 0) ≥ ϕ(ξ, 0) for all ξ, then
ψ(ξ, t) ≥ ϕ(ξ, t) for all ξ and all t ∈ [0, T ). It follows that the curvature of
X is bounded above by the maximum curvature of X̄ at each time t ≥ 0.

Applying this theorem with X̄ given by the explicit solution of curve-
shortening flow know as the “paperclip” gives an upper bound on curvature
which decays exponentially to 1 as t→ ∞. Estimates on the isoperimetric
profile were used previously by Hamilton to rule out slowly forming singu-
larities [9] — in that case the main estimate is a lower bound on the ratio
of the isoperimetric ratio to that of the unit ball.

As part of our investigations we characterize in Section 4 the isoperi-
metric regions for any convex body in the plane which is invariant under
reflection in the coordinate axes and which has exactly four vertices. This
result is similar to the investigation of isoperimetric regions for surfaces of
rotation due to Ritoré [14].

A new ingredient, which arises here is that the isoperimetric estimate
does not imply lower bounds on the curvature κ (in contrast to the result
in [1] where a bound on κ2 − 1 is deduced for normalized solutions). We
deduce a suitable lower bound on κ in Section 7 by estimating the isoperi-
metric profile of the exterior region, and indeed the lower bounds we obtain
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(produced by comparison with a self-similar expanding solution) have some
similarity to those which arise in Ricci flow.

2. Notation and preliminary results

To set our conventions, we routinely parametrize simple closed curves in
the anticlockwise direction with outward-pointing normal, which means the
Serret–Frenet equations take the form

X ′ = |X ′|T;
T′ = −κ|X ′|N;
N′ = κ|X ′|T.

Our result is most easily formulated in terms of a normalized version of
the curve-shortening flow, which we now introduce: given a solution X̃ of
(1.1), we define X : S1 × [0, T ) → R

2 by

X(p, t) =
√

π

A[γ̃τ ]
X̃(p, τ),

where A[γ̃τ ] is the area enclosed by the curve γ̃τ , and

t =
∫ τ

0

π

A[γ̃τ ′ ]
dτ ′ and T =

∫ T̃

0

π

A[γ̃τ ′ ]
dτ ′.

Then the rescaled curve γt = X(S1, t) has A[γt] = π for every t, and X
evolves according to the normalized equation

(2.1)
∂X

∂t
= X − κN = X +

1
|X ′|

(
X ′

|X ′|
)′
,

where κ denotes the curvature of γt. Our main result controls the behaviour
of solutions of (2.1) via their isoperimetric profiles, which we now discuss.

Let Ω be an open subset of R
2 of area A (possibly infinite) with smooth

boundary curve γ. The isoperimetric profile of Ω is the function Ψ : (0, A) →
R+ defined by

(2.2) Ψ(Ω, a) = inf {|∂ΩK| : K ⊆ Ω, |K| = a} .

Here ∂ΩK denotes the boundary of K as a subset of Ω, which is given by the
part of the boundary of K as a subset of R

2 which is not contained in γ. If
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∂Ω is compact, then for each a ∈ (0, A), equality in the infimum is attained
for some K ⊆ Ω, so that we have |K| = a and |∂ΩK| = Ψ(a), and in this case
∂ΩK consists of circular arcs of some fixed radius meeting γ orthogonally.

Later in this paper we will also consider the exterior isoperimetric pro-
file Ψext(Ω, .), which is simply the isoperimetric profile of the exterior of
Ω: Ψext(Ω, a) = Ψ(R2 \ Ω̄, a). If Ω is compact with smooth boundary, the
exterior isoperimetric profile is defined on [0,∞), and for each a > 0 there
is some region K in the exterior of Ω which attains the isoperimetric profile
in the sense that |K| = a and |∂

R2\Ω̄K| = Ψext(Ω, a).

Proposition 2.1. For any smoothly bounded domain Ω of area π, we have

lim
a→0

Ψ(Ω, a) −√
2πa

a
= −4 sup∂Ω κ

3π
; lim

a→0

Ψext(Ω, a) −
√

2πa
a

=
4 inf∂Ω κ

3π
.

Proof. In the case Ω = B1(0), we can check this result explicitly, since the
isoperimetric regions (shown in figure 1) are precisely the disks and half-
spaces which intersect B1(0) orthogonally, so that the isoperimetric profile
is given implicitly by

a = θ − tan θ + (π/2 − θ) tan2 θ and Ψ(B1(0), a) = (π − 2θ) tan θ,

Figure 1: Isoperimetric regions of the unit disk.
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from which the asymptotic result Ψ(B1(0), a) =
√

2πa− 4a
3π +O(a3/2)

follows.
The exterior isoperimetric profile can be computed similarly: in this

case the isoperimetric regions are the intersections with R
2 \B1(0) of disks

which meet the boundary orthogonally, so the exterior isoperimetric profile
is defined implicitly by the identities

a = tan θ − θ + (π/2 + θ) tan2 θ and Ψext(B1(0), a) = (π − 2θ) tan θ.

By scaling, we have also that the isoperimetric profiles for a ball of radius
r are given by

Ψ(Br(0), a) = rΨ(B1(0), a/r2) =
√

2πa− 4a
3πr

+O(a3/2);

Ψext(Br(0), a) = rΨext(B1(0), a/r2) =
√

2πa+
4a
3πr

+O(a3/2).

We also note the isoperimetric profile of a half-space: Ψ({x > 0}, a) =
√

2πa.
In the general case, we begin by proving Ψ(Ω, a) ≤ √

2πa+O(a): let
p ∈ ∂Ω, and set Kr = Br(p) ∩ Ω. A direct computation gives

|∂ΩKr| = πr +O(r2),

while
|Kr| =

π

2
r2 +O(r3)

as r → 0. Setting a = |Kr| and rearranging, we find

(2.3) Ψ(Ω, a) ≤ |∂ΩKr| =
√

2πa+O(a),

as a→ 0.
Now we prove the stronger result: let X : R → ∂Ω be a unit speed

counterclockwise parametrization of the boundary, and define Y : (R/LZ) ×
[0, δ) → Ω by Y (u, s) =X(u) − sN(u). For small δ > 0 this map parametrizes
a neighbourhood of the boundary, with induced metric given by

(2.4) g(∂s, ∂s) = 1, g(∂s, ∂u) = 0, g(∂u, ∂u) = (1 − sκ(u))2.

For κ ∈ R we define a ‘model’ region Ωκ with the origin in its boundary:

Ωκ =

⎧

⎪⎨

⎪⎩

{(x, y) : x ≤ 0}, κ = 0;
Bκ−1(−κ−1, 0), κ > 0;
R

2 \ (B|κ|−1(|κ|−1, 0)), κ < 0.
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For any ū ∈ R, we can construct a local diffeomorphism χ from a neighbour-
hood of X(u0) in Ω to a neighbourhood of the origin in Ωκ, as follows:

χ(Y (u, s)) =

{

−s+ (u− ū)i, κ(ū) = 0;
(κ(ū)−1 − s)eiκ(ū)(u−ū) − κ(ū)−1, κ(ū) 
= 0.

We see from (2.4) that χ is nearly an isometry, in the sense that there exists
r > 0 such that χ maps Br(X(u0)) ∩ Ω to a neighbourhood U of the origin
in Ωκ in such a way that g(1 − Cd2) ≤ χ∗g ≤ g(1 + Cd2), where d is the
distance to X(u0) (comparable to s+ |u− ū|) and g is the standard metric
on R

2. We prove an upper bound on the isoperimetric profile as follows: for
a sufficiently small, we can find an isoperimetric domain K for Ωκ contained
in U such that χ−1(K) has area a (hence K has area at least a(1 − Ca)).
But then we have

Ψ(Ω, a) ≤ |∂Ωχ
−1(K)|g

= |∂Ωκ
K|χ∗g

= Ψ(Ωκ, |K|)
≤

√

2π|K| − 4κ|K|
3π

+ C|K|3/2

≤
√

2πa− 4κa
3π

+ C̃a3/2.

The reverse inequality is proved similarly: by the estimate (2.3), for a small
the isoperimetric domain K for Ω of area a is contained in the domain of
the map χ centred at some point X(u0). Then we have

Ψ(Ω, a) = |∂ΩK|g
= |∂Ωκ

χ(K)|χ−1
∗ g

≥ |∂Ωκ
χ(K)|g(1 − Ca)

≥ (1 − Ca)Ψ(Ωκ, |χ(K)|)
≥ (1 − Ca)

(
√

2π|χ(K)| − 4κ|χ(K)|
3π

− C|χ(K)|3/2

)

≥
√

2πa− 4κa
3π

− C̃a3/2,

where we used |χ(K)|g = |K|χ∗g ≥ |K|g(1 − Ca) = a(1 − Ca). �
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3. A comparison theorem for the isoperimetric profile

In this section, we show that the isoperimetric profile of a region evolving by
(2.1) can be bounded below by any function satisfying a certain differential
inequality, provided this is true at the initial time. In the following section,
we will show how to construct such functions from particular solutions of
the normalized curve-shortening flow. In order to state the main result of
this section we first require the following definition:

Definition 3.1. For a, b ∈ R, we define

F [a, b] = inf

{
∫ 1

0

∣
∣
∣
∣

∂ϕ

∂x

∣
∣
∣
∣

2

dx− a2

∫ 1

0
ϕ2 dx− b

(∫ 1

0
ϕdx

)2

:

ϕ ∈ C∞([0, 1]), ϕ(0) = ϕ(1) = 1

}

.

A direct computation shows that

(3.1)
1

F [a, b]
= min

{
cos(a/2)

2a sin(a/2)
− 1
a2

+
1

a2 + b
, 0
}

,

where this should be interpreted as a suitable limit in the case a = 0. In
particular, in the region where F [a, b] is positive, it is a smooth function of
a and b which is strictly decreasing in b.

Theorem 3.1. Let f : [0, π]× [0,∞)→R be continuous, smooth on (0, π) ×
(0,∞), concave in the first argument for each t, and symmetric (so that
f(z, t) = f(π − z, t) for all z, t). Assume that lim supz→0

f(z,t)√
2πz

< 1 and

∂f

∂t
< −f−1F [ff ′, f3f ′′] + f + f ′(π − 2a) − f(f ′)2,

for all a ∈ (0, π) and t > 0. Suppose γt = ∂Ωt is a family of smooth embedded
curves evolving by (2.1) and satisfying Ψ(Ω0, a) > f(a, 0) for all a ∈ (0, π),
then Ψ(Ωt, a) > f(a, t) for all t ≥ 0 and a ∈ (0, π).

Proof. We argue by contradiction: if the inequality Ψ(Ωt, a) > f(a, t) does
not hold everywhere, then define t0 = inf{t : Ψ(Ωt, a) ≤ f(a, t) for some a ∈
(0, π)}. Since Ψ(Ωt, a) is continuous in a and t, and Ψ(Ωt, a) > f(a, t) for a
sufficiently close to either 0 or π, we have Ψ(Ωt, a) ≥ f(a, t) for all a ∈ [0, π]
and 0 ≤ t ≤ t0, and there exists a0 ∈ (0, π) such that Ψ(Ωt0 , a0) = f(a0, t0).
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Let K be an isoperimetric region in Ωt0 of area a0, so that |∂Ωt0
K| =

f(|K|, t0).
The concavity of f has topological implications for K:

Lemma 3.1. Let f : (0, π) → R be positive, strictly concave and symmetric
in the sense that f(π − x) = f(x) for each x. If Ω ⊂ R

2 is a compact simply
connected domain of area π with Ψ(Ω, a) ≥ f(a) for every a, then every
region K in Ω with |∂ΩK| = f(|K|) and |K| ∈ (0, π) is connected and simply
connected.

Proof. We first prove that K is connected, by contradiction: suppose K1 and
K2 are non-empty open subsets of K with K = K1 ∪K2, then we have

f(|K|) = |∂ΩK|
= |∂ΩK1| + |∂ΩK2|
≥ f(|K1|) + f(|K2|)
> f(0) + f(|K1| + |K2|)
≥ f(|K|),

where the strict inequality follows from the strict concavity of f . This is a
contradiction, so K is connected.

Since |∂Ω

(

Ω \ K̄) |= |∂ΩK|= f(|K|) = f(π− |K|) = f(|Ω \ K̄|), the same
argument implies that Ω \ K̄ is connected. It follows that ∂ΩK has only one
component and that K is simply connected. �

Lemma 3.2 (First variation). ∂Ωt0
K has constant curvature equal to f ′.

Proof. Given any smooth function ϕ : [0, 1] → R, there exists a smooth vari-
ation σ : [0, 1] × (−δ, δ) → Ωt0 with σ([0, 1], 0) = ∂Ωt0

K, σ(0, s) = X(u+(s),
t0) and σ(1, s) = X(u−(s), t0), and such that ∂σ

∂s (x, 0) = ϕ(x)n, where
n is the outward-pointing unit normal to K. Write ∂σ

∂s = ηn + ξt, where
t = σx/|σx| is the unit tangent vector, and by assumption η(x, 0) = ϕ(x)
and ξ(x, 0) = 0 for each x ∈ [0, 1]. The situation is illustrated in figure 2.

Let Ks be the region in Ωt0 bounded by the curve σ(., s) for each s ∈
(−δ, δ). The area of Ks is given by the following expression:

|Ks| =
1
2

∫ 1

0
σ × ∂σ

∂x
dx+

1
2

∫ u+(s)

u−(s)
X × ∂X

∂u
du,

where σ is evaluated at (x, s) and X at (u, t0). We can assume that the
parameter u is chosen to be the arc-length parameter at time t0, so that



512 Ben Andrews & Paul Bryan

Figure 2: A smooth variation of the domain K in Ωt0 .

∂X
∂u = T everywhere. Differentiating with respect to s, we find

∂

∂s
|Ks| =

1
2

∫ 1

0
(ηn + ξt) × t|σx| dx+

1
2

∫ 1

0
σ × ∂

∂x
(ηn + ξt) dx(3.2)

+
1
2
u̇+X(u+) × T(u+) − 1

2
u̇−X(u−) × T(u−)

=
∫ 1

0
η|σx| dx+

1
2
σ × (ηn + ξt)

∣
∣
x=1

− 1
2
σ × (ηn + ξt)

∣
∣
x=0

+
1
2
u̇+X(u+) × T(u+) − 1

2
u̇−X(u−) × T(u−)

=
∫ 1

0
η(x, s)|σx| dx.

Here dots denote derivatives with respect to s. We integrated by parts and
used the identity n × t = 1 to produce the second equality, and the last
equality uses the following identities which are proved by differentiating the
equations σ(1) = X(u−) and σ(0) = X(u+) with respect to s:

(ηn + ξt)
∣
∣
x=1

=
∂σ

∂s
(1) =

∂

∂s
X(u−(s)) = u̇−T(u−);

(ηn + ξt)
∣
∣
x=0

=
∂σ

∂s
(0) =

∂

∂s
X(u+(s)) = u̇+T(u+).
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Next we compute the rate of change of the length of σ([0, 1], s) = ∂Ωt0
Ks:

∂

∂s
|∂Ωt0

Ks| =
∂

∂s

∫ 1

0
|σx| dx

=
∫ 1

0
t · ∂x (ηn + ξt) dx(3.3)

=
∫ 1

0
ηκσ|σx| + ξx dx

=
∫ 1

0
ηκσ|σx| dx+ ξ

∣
∣1

0
,(3.4)

where κσ is the curvature of σ. At s = 0 we have η = ϕ and ξ = 0, so

∂

∂s

(|∂Ωt0
Ks| − f(|Ks|, t0)

) ∣
∣
s=0

=
∫ 1

0
ϕ
(

κσ − f ′
) |σx| dx.

Now we observe that |∂Ωt0
Ks| ≥ Ψ(Ωt0 , |Ks|) ≥ f(|Ks|, t0) for each s, with

equality for s = 0. Therefore the derivative with respect to s vanishes when
s = 0 for any choice of ϕ, and it follows that κσ = f ′ at each point of σ0. �

Lemma 3.3 (Second variation inequality). For any ϕ : [0, 1] → R,

κ(u−)ϕ(1)2 + κ(u+)ϕ(0)2 ≤ 1
f

∫ 1

0
ϕ2

x dx− f(f ′)2
∫ 1

0
ϕ2 dx

− f2f ′′
(∫ 1

0
ϕdx

)2

.

In particular

(3.5) κ(u−) + κ(u+) ≤ 1
f
F(ff ′, f3f ′′).

Proof. We consider the variations from the proof of the previous lemma.
Differentiating Equation (3.2) we find

∂2

∂s2
|Ks|

∣
∣
∣
s=0

=
∫ 1

0

(

η̇ + η2κσ

) |σx| + ηξx dx

=
∫ 1

0

(

η̇ + η2κσ

) |σx| dx.
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To compute the second derivative of the length |∂Ωt0
Ks| it is convenient to

differentiate Equation (3.3)

∂2

∂s2
∣
∣∂Ωt0

Ks

∣
∣ =

∫ 1

0

|∂x (ηn + ξt)|2
|σx| − |t · ∂x (ηn + ξt)|2

|σx| dx

+
∫ 1

0
t · ∂x∂s (ηn + ξt) dx

=
∫ 1

0

|n · ∂x (ηn + ξt)|2
|σx| dx+ t · ∂s (ηn + ξt)

∣
∣
∣

1

0

+
∫ 1

0
κσn · ∂s (ηn + ξt) |σx| dx.

To expand this further we need to compute ∂t
∂s

∂t
∂s

=
∂

∂s

(
σx

|σx|
)

=
∂x(ηn + ξt)

|σx| − t · ∂x(ηn + ξt)
|σx| t

=
(
ηx

|σx| − kξ

)

n.

It follows that

∂

∂s
n = −

(
ηx

|σx| − kξ

)

t,

and hence we have (since ξ = 0 for s = 0)

∂

∂s
(ηn + ξt)

∣
∣
s=0

= η̇n +
(

ξ̇ − ηηx

|σx|
)

t.

Substituting this above, and using the result of Lemma 3.2, we deduce

∂2

∂s2
∣
∣∂Ωt0

Ks

∣
∣

∣
∣
∣
s=0

=
∫ 1

0

(∂xϕ)2

|σx| dx+ f ′
∫ 1

0
η̇|σx| dx+

(

ξ̇ − ηηx

|σx|
) ∣
∣
∣

1

0
.
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Now we observe that differentiating the identity X(u+(s)) = σ(0, s) twice
with respect to s yields

(

η̇n +
(

ξ̇ − ηηx

|σx|
)

t
) ∣
∣
∣
x=0

= ∂s (ηn + ξt)
∣
∣
∣
x=0

=
∂2

∂s2
X(u+)

=
∂

∂s
(u̇+T(u+))

= ü+T(u+) − (u̇+)2 κ(u+)N(u+).

At s = 0 we have N(u+) = −t(0) and ηn|x=0 = u̇+T(a+), so

(

ξ̇ − ηηx

|σx|
) ∣
∣
∣
x=0

= ϕ(0)2κ(u+).

Similarly, we have (since N(u−) = t(1) and ηn|x=1 = u̇−T(u−))

(

ξ̇ − ηηx

|σx|
) ∣
∣
∣
x=1

= −ϕ(1)2κ(u−).

Thus the second variation for length becomes

∂2

∂s2
∣
∣∂Ωt0

Ks

∣
∣

∣
∣
∣
s=0

=
∫ 1

0

(∂xϕ)2

|σx| dx+ f ′
∫ 1

0
η̇|σx| dx

− ϕ(0)2κ(u+) − ϕ(1)2κ(u−).

Putting the second variations for length and area together, and choosing the
parameter x to be constant speed at s = 0 (so that |σx| = f) we find

0 ≤ ∂2

∂s2
(∣
∣∂Ωt0

Ks

∣
∣− f(|Ks|, t0)

)
∣
∣
∣
s=0

=
1
f

∫ 1

0
ϕ2

x dx− ϕ(0)2κ(u+) − ϕ(1)2κ(u−)

− f(f ′)2
∫ 1

0
ϕ2 dx− f2f ′′

(∫ 1

0
ϕdx

)2

.

This completes the proof of Lemma 3.3. �
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Lemma 3.4 (Time variation inequality).

−∂f
∂t

+ f ′(π − 2|K|) + f − f(f ′)2 ≤ κ(u−) + κ(u+),

where f ′ and ∂f
∂t are evaluated at (|K|, t0), and f ′ denotes the derivative of

f with respect to the first argument.

Proof. Consider any smoothly varying family of regions {Kt} for t ≤ t0
close to t0, with Kt0 = K. Describe the boundary curves by a smooth fam-
ily of embeddings σ : [0, 1] × (t0 − δ, t0] → R

2 with σ(x, t) ∈ Ωt, σ(0, t) =
X(u+(t), t), and σ(1, t) = X(u−, t). Note that such a family always exists.
Then we have |∂Ωt

Kt| − f(|Kt|, t) ≥ 0 for each t ∈ [t0 − δ, t0], with equality
at t = t0. It follows that ∂t (|∂Ωt

Kt| − f(|Kt|, t))
∣
∣
t=t0

≤ 0. We compute

|∂Ωt
Kt| =

∫ 1

0
|σx| dx,

while

|Kt| =
1
2

∫ 1

0
σ × σx dx+

1
2

∫ u+(t)

u−(t)
X ×Xu du.

Write ∂tσ = V + σ. For convenience we choose the parameter u to be arc-
length parametrization for t = t0. Differentiating the first equation gives

∂

∂t
|∂Ωt

Kt| =
∫ 1

0
t · ∂x(V + σ) dx

= |∂Ωt
Kt| +

∫ 1

0
t · ∂xV dx

= |∂Ωt
Kt| + t · V ∣∣1

0
+
∫ 1

0
κσn · V |σx| dx.

Since σ(0, t) = X(u+(t), t) and σ(1, t) = X(u−(t), t) for each t, we have

σ(0) + V (0) = X(u+) − κ(u+)N(u+) + u̇+T(u+);(3.6)
σ(1) + V (1) = X(u−) − κ(u−)N(u−) + u̇−T(u−).(3.7)

The first terms on left and right cancel. Since N(u+) = −t(0) and N(u−) =
t(1), we have V (0) · t(0) = κ(u+) and V (1) · t(1) = −κ(u−), and so

(3.8)
∂

∂t
|∂Ωt

Kt|
∣
∣
∣
t=t0

= |∂Ωt0
K| − κ(u−) − κ(u+) + f ′

∫ 1

0
V · n|σx| dx.
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Next we compute the rate of change of the area:

∂

∂t
|Kt|

∣
∣
∣
t=t0

=
∂

∂t

(

1
2

∫ 1

0
σ × σx dx+

1
2

∫ u+(t)

u−(t)
X ×Xu du

)

=
1
2

∫ 1

0
[(σ + V ) × σx + σ × ∂x(σ + V )] dx

+
1
2

∫ u+

u−

[(X − κN) ×Xu +X × ∂u (X − κN)] du

+ u̇+X(u+) × T(u+) − u̇−X(u−) × T(u−)

= 2|K| +
∫ 1

0
V × t|σx| dx+

1
2
σ × V

∣
∣
∣

1

0

+
∫ u+

u−

κ du− κ

2
X × N

∣
∣
∣

u+

u−

+ u̇+X(u+) × T(u+) − u̇−X(u−) × T(u−)

= 2|K| +
∫ 1

0
V · n|σx| dx−

∫ u+

u−

κ du,

where in the last step we used Equations (3.6) and (3.7), the identities
σ(0) = X(u+), σ(1) = X(u−), t(0) = −N(u+), t(1) = N(u−), T(u−) = n(0),
and T(u+) = −n(1), and the fact that the parameter u is chosen to be the
arc-length parameter at time t0, so that |Xu| = 1. Now since σ([0, 1], t0) and
X([u−, u+], t0) form a simple closed curve with two corners of angle π/2,
the theorem of turning tangents implies

∫ a+

a−

κ du+
∫ 1

0
κσ|σx| dx = π,

so that (since |σx| = f and κσ = f ′)

∫ u+

u−

κ du = π − ff ′,

and hence

(3.9)
∂

∂t
|Kt|

∣
∣
∣
t=t0

= 2|K| + ff ′ − π.
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Finally, combining Equations (3.8) and (3.9) we deduce

0 ≥ ∂t (|∂Ωt
Kt| − f(|Kt|, t))

∣
∣
t=t0

= f − κ(u−) − κ(u+) + f ′(π − 2|K|) − f(f ′)2 − ∂f

∂t

as claimed. �
Now we can complete the proof of Theorem 3.1: combining the inequality

from Lemma 3.4 with inequality (3.5), we find

−∂f
∂t

+ f + f ′(π − 2|K|) − f(f ′)2 ≤ κ(u−) + κ(u+) ≤ 1
f
F(ff ′, f3f ′′)

where f , f ′ and f ′′ are evaluated at (|K|, t0). But this contradicts the
strict inequality in the theorem. Therefore the inequality Ψ(Ωt, a) > f(a, t)
remains true as long as the solution exists. �

4. The isoperimetric profile of symmetric convex curves
with four vertices

In this section, we determine the isoperimetric regions and isoperimetric
profile for convex domains which are symmetric in both coordinate axes
and have exactly four vertices. This result is somewhat analogous to the
characterization of isoperimetric regions in rotationally symmetric surfaces
with decreasing curvature due to Ritoré [14]. We use it in the next section
to construct solutions of the differential inequality arising in Theorem 3.1.

Theorem 4.1. Let γ = ∂Ω, where Ω is a smoothly bounded uniformly con-
vex region of area π with exactly four vertices and symmetry in both coor-
dinate axes, with the points of maximum curvature on the x-axis. Let X :
R → R

2 be the map which takes θ ∈ R to the point in γ with outward nor-
mal direction (cos θ, sin θ). Then for each θ ∈ (0, π) there exists a unique
constant curvature curve σθ which is contained in Ω and has endpoints at
X(θ) and X(−θ) meeting γ orthogonally. Let Kx

θ denote the connected com-
ponent of Ω \ σθ containing the vertex of γ on the positive x-axis. Then there
exists a smooth, increasing diffeomorphism θ from (0, π) to (0, π) such that
Ka = Kx

θ(a) has area a for each a ∈ (0, π), and the isoperimetric regions of
area a in Ω are precisely Ka and its reflection in the y-axis.

Proof. The result is illustrated in the case of an elliptical domain in figure 3.
Since Ω is uniformly convex and γ is smooth, for each θ ∈ R there exists a
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Figure 3: Isoperimetric regions of the ellipse {x2 + 4y2 ≤ 4}, according to
Theorem 4.1.

unique point X(θ) ∈ γ where the outward unit normal is equal to eiθ =
(cos θ, sin θ). Furthermore, we can write X(θ) in terms of the support func-
tion h : R/(2πZ) → R of Ω, defined by h(θ) = sup{〈x, eiθ〉 : x ∈ Ω}:

(4.1) X(θ) = (h(θ) + ih′(θ))eiθ.

The radius of curvature at the corresponding point is then given by h′′ + h.
The symmetry assumptions on Ω imply that h is even and π-periodic.

For strictly convex Ω it was proved by Sternberg and Zumbrun [15] that
the boundary ∂ΩK of an isoperimetric region K is connected. Therefore we
have two possibilities: the first case is where the curvature of the boundary is
zero, in which case K = Ω ∩ {x : 〈x, eiθ〉 ≤ r} for some θ, r ∈ R. Since ∂ΩK
meets γ orthogonally, the endpoints of points of intersection must have nor-
mal orthogonal to eiθ, and so are the two points X(θ + π/2) and X(θ − π/2).
But then we must also have 〈X(θ + π/2), eiθ〉 = 〈X(θ − π/2), eiθ〉, which by
(4.1) and the symmetry of h implies

0 =
〈(

h
(

θ +
π

2

)

+ ih′
(

θ +
π

2

))

ei(θ+ π

2 )

−
(

h
(

θ − π

2

)

+ ih′
(

θ − π

2

))

ei(θ−π

2 ), eiθ
〉

= −h′
(

θ +
π

2

)

− h′
(

θ − π

2

)

= −2h′
(

θ +
π

2

)

.

Lemma 4.1. h′(θ) = 0 only for θ = kπ
2 , k ∈ Z.
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Proof. Since h is even and π-periodic, we have h(3) + h′ = 0 at each of the
points θ = kπ

2 , so there are four vertices (critical points of curvature, hence of
the radius of curvature) at θ = 0, π/2, π and 3π/2. Since there are precisely
four vertices by assumption, we have h(3) + h′ 
= 0 at every other point. By
assumption h′′(π/2) + h(π/2) > h′′(0) + h(0), so we must have h(3) + h′ > 0
on (0, π/2).

Now let P (θ) = h′(θ) cos θ − h′′(θ) sin θ and Q(θ) = h′(θ) sin θ + h′′(θ)
cos θ. We have P (0) = h′(0) = 0 and P ′ = −(h(3) + h′) sin θ < 0 on (0, π/2),
so P < 0 on (0, π/2]. Also we have Q(π/2) = h′(π/2) = 0 and Q′ = (h(3) +
h′) cos θ > 0 on (0, π/2), so Q < 0 on [0, π/2). But then h′(θ) = P (θ) cos θ +
Q(θ) sin θ < 0 on (0, π/2). Thus h has no critical points in (0, π/2), and
hence also no critical points on

(
kπ
2 ,

(k+1)π
2

)

for any k ∈ Z since h is even
and periodic. �

It follows that the only possibilities for isoperimetric regions of this kind
are the intersections of the coordinate half-spaces with Ω. These all divide
the area of Ω into regions with area π/2, and so the only ones which can
be isoperimetric are those with shorter length of intersection, which are the
half-spaces of positive or negative x.

The second case is where the curvature of the boundary of K is non-
zero, in which case K = Ω ∩Br(p) for some r > 0 and p ∈ R

2. In this case
the intersection of the circle Sr(p) with γ consists of two points X(θ2) and
X(θ1), and since the circle meets γ orthogonally the line from p to X(θ1)
is orthogonal to eiθ1 , and we have p = X(θ1) + rieiθ1 . Similarly p = X(θ2) −
rieiθ2 . That is, we have by (4.1)

p = (h(θ1) + ih′(θ1) + ir)eiθ1 = (h(θ2) + ih′(θ2) − ir)eiθ2 .

The equality on the right can be solved for r: multiply by e−i(θ1+θ2)/2 and
write Δ = θ2−θ1

2 . This gives

2ir cosΔ = (h(θ2) − h(θ1)) cos Δ − (h′(θ2) + h′(θ1)) sin Δ
+ i

[

(h(θ2) + h(θ1) sin Δ + (h′(θ2) − h′(θ1)) cos Δ
]

.

Since r is real, the real part of the right-hand side vanishes. We denote this
by G(θ1, θ2)

G(θ1, θ2) := (h(θ2) − h(θ1)) cos Δ − (h′(θ2) + h′(θ1)) sin Δ.

Lemma 4.2. The zero set of G consists precisely of the points {θ1 + θ2 =
kπ} for k ∈ Z and the points {θ2 − θ1 = 2kπ} for k ∈ Z.
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Proof. The symmetry of h implies h(θ) = h(θ + kπ) = h(kπ − θ) and h′(θ) =
h′(θ + kπ) = −h′(kπ − θ) for any k ∈ Z. Thus when θ2 + θ1 = kπ we have
h(θ2) = h(kπ − θ1) = h(θ1) and h′(θ2) = h′(kπ − θ1) = −h′(θ1), and hence
G = 0. Also, when θ2 − θ1 = 2kπ then we have sin Δ = 0 and h(θ2) − h(θ1) =
0, so G = 0. To show the converse, we compute the derivative of G along
lines of constant θ1 + θ2:

∂G

∂θ2
= h′(θ2) cos Δ − 1

2
(h(θ2) − h(θ1)) sin Δ

− h′′(θ2) sin Δ − 1
2
(h′(θ1) + h′(θ2)) cos Δ

= −(h′′(θ2) + h(θ2)) sin Δ

+
1
2
(h′(θ2) − h′(θ1) cos Δ +

1
2
(h(θ1) + h(θ2)) sin Δ;

∂G

∂θ1
= −h′(θ1) cos Δ +

1
2
(h′(θ1) − h′(θ2) sin Δ

− h′′(θ1) sin Δ +
1
2
(h′(θ2) + h′(θ1)) cos Δ

= −(h′′(θ1) + h(θ1)) sin Δ

+
1
2
(h′(θ2) − h′(θ1) cos Δ +

1
2
(h(θ1) + h(θ2)) sin Δ.

Taking the difference gives

(4.2)
∂G

∂θ2
− ∂G

∂θ1
= [(h′′(θ1) + h(θ1)) − (h′′(θ2) + h(θ2)] sin Δ.

As above, the assumption that γ has exactly four vertices with the points of
maximum curvature on the x-axis implies that h′′ + h is strictly increasing on
intervals [kπ, (k + 1

2)π], and strictly decreasing on intervals [(k + 1
2)π, (k +

1)π] for any k ∈ Z. The symmetries of h imply that G is odd under reflec-
tion in the lines θ1 + θ2 = 0, θ2 − θ1 = 0 and θ2 + θ1 = π, and even under
reflection in the line θ2 − θ1 = π, and that G(θ1 + π, θ2 + π) = G(θ1, θ2)
and G(θ1 + π, θ2 − π) = −G(θ1, θ2). Therefore it suffices to show that G 
=
0 on the fundamental domain W =

{

(θ1, θ2) : θ1 ∈ (−π
2 ,

π
2 ), θ2 ∈ (|θ1|, π−

|θ1|)}. The monotonicity of h′′ + h implies that h′′(θ2) + h(θ2) > h′′(θ1) +
h(θ1) on W . Equation (4.2) implies that G is increasing along lines of con-
stant θ1 + θ2 in W away from the line {θ2 = θ1} where G = 0. Hence G is
positive on W as required. �
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The lemma implies that the only candidates for boundaries of isoperi-
metric regions of this type are the following two families:

For each θ ∈ (0, π/2) there is a unique region Kx
θ = Ω ∩Br(θ)(p(θ)),

where p(θ) lies in the positive x axis, and the outward normals to Ω at the
endpoints of ∂ΩK

x
θ make angles ±θ with the positive x-axis. In this family

we also take Kx
π/2 to be the intersection of Ω with the positive x half-space,

and Kx
π−θ is the exterior in Ω of the reflection of Kx

θ in the y-axis.
The second family is similar but with centres on the y-axis: Ky

θ = Ω ∩
Bρ(θ)(q(θ)), where q(θ) lies in the positive y-axis, and the outward normals
to Ω at the endpoints of ∂ΩK

y
θ makes angles ±θ with the positive y-axis, for

0 < θ < π/2, while Ky
π/2 is the intersection of Ω with the upper y half-space,

and Ky
π−θ is the exterior in Ω of the reflection of Ky

θ in the x-axis. Note that
these regions are candidates for the isoperimetric region only if Ky

θ has only
a single boundary curve, which is not always the case.

Note that we do not claim at this stage that the regions Kx
θ and Ky

θ
define simply connected sub-regions of Ω for every θ ∈ (0, π): the curves
certainly exist, but may intersect the boundary of Ω at other points. Indeed
this certainly occurs for very long, thin regions for the family Ky

θ . We will
prove below that the family Kx

θ are always simply connected and have a
single boundary component.

The following result shows that only the Kx
θ can be isoperimetric

regions:

Proposition 4.1. For any θ ∈ (0, π) for which ∂ΩK
y
θ is connected, there

exists a smooth family of regions {K̃(s) : |s| < δ} with K̃(0) = Ky
θ ,

d
ds |K(s)| = 0 for all s, and d

ds |∂ΩK̃(s)
∣
∣
s=0

= 0, and d2

ds2 |∂ΩK̃(s)
∣
∣
s=0

< 0. In
particular, Ky

θ does not minimize length among regions with the same area.

Proof. The idea of the proof is to use the fact that the isoperimetric domains
inside a round ball are neutrally stable (with the direction of neutral stability
given by rotation around the disk). We will transplant this variation onto
∂ΩK

y
θ to produce an area-preserving variation for which the second variation

of the length |∂ΩK| is negative.
As in Lemma 3.2 we parametrize ∂ΩK

y
θ by a smooth map σ0 : [0, 1] →

Ω with σ0(0) = X(π/2 + θ) and σ0(1) = X(π/2 − θ), and |∂xσ0| constant
(equal to the length |∂ΩK

y
θ |). For any smooth function ϕ : [0, 1] → R with

∫ 1
0 ϕdx = 0, σ0 can be extended to a smooth family of embeddings σ :

[0, 1] × (δ, δ) → Ω with the following properties: σ(x, 0) = σ0(x) for all x ∈
[0, 1]; σ(0, s) = X(θ+(s)) and σ(1, s) = X(θ−(s)) for some θ±(s);
∂
∂sσ(x, s)

∣
∣
s=0

= ϕ(x)n(x), where n is the outward-pointing unit normal to
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Figure 4: A candidate isoperimetric region Ky
θ , given by the intersection

with Ω of a disk with centre on the y-axis. Also shown is a disk B of radius
r̄ = 1

κ̄ which meets the same curve orthogonally.

Ky
θ ; and the areas of the enclosed regions Ks are constant:

|Ks| =
1
2

∫ 1

0
σ × σx dx+

∫ θ+(s)

θ−(s)
X ×Xθ dθ = |Ky

θ |.

As in Lemma 3.2 we write ∂σ
∂s = ηn + ξt, so that η(x, 0) = ϕ(x) and

ξ(x, 0) = 0. The computation of Lemma 3.3 yields the following:

∂2

∂s2
|Ks|

∣
∣
s=0

=
∫ 1

0
(η̇ + ϕ2κσ)|σx| dx = 0;

∂2

∂s2
|∂ΩKs|

∣
∣
s=0

=
∫ 1

0

(ϕ2
x)

|σx| dx+ κσ

∫ 1

0
η̇|σx| dx− ϕ(0)2κ(θ+) − ϕ(1)2κ(θ−).

The first identity gives an expression for
∫ 1
0 η̇|σx| dx, which we substitute in

the second equation to give

∂2

∂s2
|∂ΩKs|

∣
∣
s=0

=
∫ 1

0

(ϕ2
x)

|σx| − κ2
σϕ

2|σx| dx
− ϕ(0)2κ(π/2 + θ) − ϕ(1)2κ(π/2 − θ),(4.3)

since κ+(0) = π/2 + θ and κ−(0) = π/2 − θ.
It remains to choose ϕ to make this expression negative. To do this we

note that there is a unique disk B which meets the curve σ0 orthogonally
at the same pair of endpoints (see figure 4). By symmetry B has centre
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on the y-axis, and we denote the curvature of B by κ̄. Now consider the
area-preserving variation corresponding to rotation of the curve σ0 about
the centre of the circle B. This does not change either the enclosed area or
the length in B, so for the corresponding function ϕ we have

0 =
∫ 1

0

(ϕ2
x)

|σx| − κ2
σϕ

2|σx| dx− ϕ(0)2κ̄− ϕ(1)2κ̄.

Substituting this in Equation (4.3) then gives a variation in Ω for which

∂2

∂s2
|∂ΩKs|

∣
∣
s=0

= ϕ(0)2 (κ̄− κ(π/2 + θ) + ϕ(1)2 (κ̄− κ(π/2 − θ))

= 2ϕ(0)2 (κ̄− κ(π/2 + θ)),

where we used the symmetry in the last equality. Since ϕ(0) 
= 0, it remains
only to prove that κ(π/2 + θ) > κ̄.

By symmetry it suffices to prove this for 0 < θ ≤ π/2. The point on γ
with normal direction making angle θ with the y-axis is given byX(θ + π/2),
where X is given by Equation (4.1). Note that ∂X

∂θ = (h′′ + h)ieiθ = rieiθ, so
integrating we find

X(π/2 + θ) = X(π/2) +
∫ π/2+θ

π/2
rieiθ′

dθ′.

By symmetry, the x component of X(π/2) vanishes, so

〈X(π/2 + θ), 1〉 = −
∫ π/2+θ

π/2
r sin(θ′) dθ′.

Now we do the same computation for the circle which meets bothX(π/2 + θ)
and X(π/2 − θ) tangentially (i.e., for the boundary of B). Denote the point
on this circle with normal direction θ by X̄(θ). By symmetry we have X̄(π/2)
on the y axis, and hence the x component of X̄(π/2 + θ) is given by

〈X̄(π/2 + θ), 1〉 = −
∫ π/2+θ

π/2
r̄ sin(θ′) dθ′,

where r̄ is the radius of curvature of this circle. SinceX(π/2 + θ) = X̄(π/2 +
θ), we have

r̄ =

∫ π/2+θ
π/2 r(θ′) sin(θ′) dθ′
∫ π/2+θ
π/2 sin(θ′) dθ′

.
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By assumption, r(θ′) is strictly decreasing on the interval [π/2, π/2 + θ], so
r(θ′) > r(π/2 + θ) for every θ′ ∈ [π/2, π/2 + θ). Therefore we have

1
κ̄

= r̄ > r(π/2 + θ) =
1

κ(π/2 + θ)

as required. This completes the proof of Proposition 4.1. �

To complete the proof of Theorem 4.1 it remains to check that Kx
θ has

a single boundary curve in Ω for each θ ∈ (0, π), and that for each value
of a ∈ (0, π) there is a unique θ ∈ (0, π) such that |Kx

θ | = a. This suffices
to prove the theorem, since the result of [15] implies that the isoperimetric
region is connected and simply connected, and hence must consist either of
one of the regions Kx

θ or the exterior of such a region.

Lemma 4.3. For each θ ∈ (0, π) the disc B centred on the x-axis which
passes through X(θ) and X(−θ) has curvature strictly greater than the cur-
vature of γ at X(±θ), and is contained in Ω.

Proof. We first show the inequality between the curvatures. By assump-
tion, the point of maximum curvature (hence minimum r) is at θ = 0, and
we have r strictly increasing on the interval (0, π/2). Choose the origin
to be at the centre c of the ball B, and let h be the support function.
From Equation (4.1) we have X ′(φ) = ireiφ, so the vertical component y
satisfies y′(φ) = r(φ) cosφ. Since y(0) = 0 by symmetry, we have y(θ) =
∫ θ
0 r(φ) cosφdφ < r(θ)

∫ θ
0 cosφdφ. Now the ball B also has y coordinate

ȳ(0) = 0 and ȳ′(φ) = r̄ cosφ, and by assumption ȳ(θ) = y(θ), so we have

r̄

∫ θ

0
cosφdφ = ȳ(θ) = y(θ) < r(θ)

∫ θ

0
cosφdφ,

from which it follows that r(θ) > r̄.
Next we show that the ball B is inscribed. We prove this only for θ ∈

(0, π/2), since the result for θ > π/2 follows by symmetry, and for θ = π/2
by continuity. It suffices to show that h ≥ r̄ everywhere. We prove this first
on the interval [0, θ]: set v = h′, and q = r′ > 0. From Equation (4.1) we
note that X(0) = (h(0), h′(0)) lies on the x-axis, so v(0) = h′(0) = 0. Also,
by our choice of origin r̄eiθ = X(θ) = h(θ)eiθ + ih′(θ)eiθ, so v(θ) = h′(θ) = 0
and h(θ) = r̄. We can also write v′′ + v = q > 0. It follows that v < 0 on
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[0, θ]: for example we can use the representation formula

v(φ) = −sinφ
sin θ

∫ θ

φ
sin(θ − α) dα− sin(θ − φ)

sin θ

∫ φ

0
sinαdα < 0,

for 0 < φ < θ. Therefore we have h(φ) = h(θ) − ∫ θ
φ h

′(α) dα > h(θ) = r̄ for
0 ≤ φ < θ. By symmetry the same holds for −θ < φ ≤ 0.

Now on the interval (θ, π/2] we have r(φ) > r(θ), so the function w =
h− r̄ satisfies w(0) = 0, w′(0) = 0 and f = w′′ + w > 0. Therefore

w(φ) =
∫ φ

θ
sin(φ− α)f(α) dα > 0,

so that h(φ) = w(φ) + r̄ > r̄ for θ < φ ≤ π/2, and by symmetry we now have
h ≥ r̄ on [−π/2, π/2], with a strict inequality except at ±θ. Also, we have

w′(φ) =
∫ φ

θ
cos(φ− α)f(α) dα > 0,

Thus in particular x(π/2) = −w′(π/2) < 0. The reflection symmetry implies
that y(π − φ) = y(φ) and x(π − φ) − x(π/2) = −x(φ) − x(π/2), so x(π −
φ) = −x(φ) + 2x(π/2) < −x(φ). Finally, for φ ∈ (−π/2, π/2) we have

h(π + φ) = x(π + φ) cos(π + φ) + y(π + φ) sin(π + φ)
= −(2x(π/2) − x(−φ)) cosφ+ y(φ) sinφ
= h(φ) − 2x(π/2) cosφ
> r̄.

Thus we have h ≥ r̄ everywhere, so the ball B is inscribed in Ω. �

It follows that the boundary ∂ΩK
x
θ consists of a single arc from X(θ)

to X(−θ), since two circles cannot meet at three points unless they are
identical. It remains only to show that the area is monotone along this
family.

We assume initially that θ ∈ (0, π/2). Then the radius of curvature ρ of
the boundary curve of Kx

θ is given by ρ = y
cos θ , where y = 〈X(θ), i〉 is the

distance of X(θ) from the x-axis. This situation is illustrated in figure 5.
Noting that ∂θX = ireiθ, we have ∂θy = 〈ireiθ, i〉 = r cos θ, where r is the
radius of curvature of γ atX(θ). From this we obtain the following expression
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Figure 5: Construction of the region Kx
θ by intersecting Ω with a disk of

radius ρ centred at p, showing the inscribed disk B of radius r̄.

for the rate of change of the radius of curvature ρ of the boundary as θ varies:

∂θρ = ∂θ

( y

cos θ

)

=
r cos θ
cos θ

+
y sin θ
cos2 θ

= r + ρ tan θ.

An expression for the area ofKx
θ can be computed as follows: we compute

the area of the sector of the disk of radius ρ and angle π − 2θ, subtract
the area of the triangle subtended by p, X(θ) and X(−θ), and add the
area between γ and the line from X(θ) to X(−θ): this gives (assuming
θ ∈ (0, π/2))

|Kx
θ | =

(π

2
− θ

)

ρ2 − ρ2 sin θ cos θ +
∫ θ

0
(X(θ′) −X(−θ′)) ×Xθ(θ′) dθ′.

Differentiating with respect to θ, we find

∂θ |Kx
θ | = −ρ2 + (π − 2θ)ρ(r + ρ tan θ) − ρ2(cos2 θ − sin2 θ)

− 2ρ sin θ cos θ(r + ρ tan θ) + (X(θ) −X(−θ)) × rieiθ

= ρ2 (−2 + (π − 2θ) tan θ) + rρ ((π − 2θ) − 2 sin θ cos θ)

+ 2r

[
0
y

]

×
[− sin θ

cos θ

]

= ρ2(−2 + (π − 2θ) tan θ) + rρ(π − 2θ).
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Now we use the result of Lemma 4.3 which gives r > r̄ = ρ
tan θ , so that

∂θ |Kx
θ | > ρ2

(

−2 + (π − 2θ)
(

tan θ +
1

tan θ

))

.

= ρ2

(

−2 +
π − 2θ

sin θ cos θ

)

=
2L2

z2 sin z
(z − sin z) ,

where z = π − 2θ and L = |∂ΩK
x
θ | is the length of the boundary curve, and

we used the identity zρ = L. The right-hand side is strictly positive for
z ∈ (0, π), and has limit L2/3 as z → 0. It follows that ∂θA is strictly positive
for θ ∈ (0, π/2], and by symmetry the same is true for θ ∈ [π/2, π). �

Remark. Although we do not need it here, one can prove that the family
Kx

θ is increasing in θ, and in fact one can construct a smooth embedding σ
from (0, 1) × (0, π) to the interior of Ω such that Kx

θ = σ((0, 1) × (0, θ) and
∂θσ = ηn, so that σ varies in the normal direction everywhere.

5. The equality case and model solutions

In this section, we demonstrate a correspondence between solutions of the
comparison equation arising in Theorem 3.1,

(5.1)
∂f

∂t
= −f−1F [ff ′, f3f ′′] + f + f ′(π − 2a) − f(f ′)2,

and certain solutions of the normalized curve-shortening flow. Note that by
the expression (3.1), Equation (5.1) is a strictly parabolic fully non-linear
equation for f in the region where F [ff ′, f3f ′′] > 0.

Most important for our purposes is the following method of constructing
solutions:

Theorem 5.1. Let Ω0 be a compact convex subset of R
2, symmetric in both

coordinate axes and with smooth boundary curve γ0 given by the image of
a smooth embedding X0 : S1 → R

2 and having exactly four vertices, with
the maxima of curvature located on the x-axis. Let X : S1 × [0, T ) → R

2

be the solution of (2.1) with initial data X0. Then for each t ∈ [0, T ), the
region Ωt enclosed by γt = X(S1, t) is a compact convex region symmet-
ric in both coordinate axes, with exactly four vertices and with the max-
ima of curvature located on the x-axis. For each t, let Ka,t be the fam-
ily of isoperimetric regions for Ωt constructed in Theorem 4.1, and define
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f(a, t) = |∂Ωt
Ka,t|. Then f : (0, π) × [0, T ) → R is a symmetric concave

solution of equation (5.1) with lima→0
f(a,t)√

2πa
= 1 and F [ff ′, f3f ′′] > 0.

Proof. The symmetry of Ωt follows from the geometric invariance and
uniqueness of solutions, and preservation of convexity was proved in [7].
The result of [3] implies that the number of critical points of curvature
cannot increase, and the four-vertex theorem implies there are always at
least four vertices, so there are always exactly four vertices for t > 0. The
symmetry implies that these are located on the axes, and the maxima of
curvature therefore remain on the x-axis. It follows from Theorem 4.1 that
f(a, t) is the isoperimetric profile of Ωt for each t. The symmetry of f is
immediate from the symmetry of Ωt and the definition of f (i.e., we have
f(a, t) = f(π − a, t)). The concavity of f is proved in [15] (in fact it was
proved in [13] that f2 is also concave — this can be deduced directly by
substituting ϕ = 1 in the second variation inequality (5.2) below and using
the convexity of Ωt). It remains to show that f satisfies Equation (5.1).

For any fixed t, along the family {Ka,t} we have |∂Ωt
Ka,t| = f(|Ka,t|, t),

while for all regions we have |∂Ωt
K| ≥ f(|K|, t). It follows from Lemma 3.2

that κσ = f ′, where σ is the curvature of the boundary curve σ of Ka,t. By
Lemma 3.3 the second variation inequality holds, i.e.,

κ(u−)ϕ(1)2 + κ(u+)ϕ(0)2 ≤ 1
f

∫ 1

0
ϕ2

x dx− f(f ′)2
∫ 1

0
ϕ2 dx

− f2f ′′
(∫ 1

0
ϕdx

)2

.(5.2)

On the other hand, for the particular choice of ϕ corresponding to moving
through the family {Ka,t} in such a way that the endpoints of the boundary
curve move with unit speed, we have equality in the above inequality, and
ϕ(1) = ϕ(0) = 1. Therefore by the definition of F ,

(5.3) κ(u−) + κ(u+) =
1
f
F(ff ′, f3f ′′).

Now consider the family of regions {Ka,t} for fixed a, as t varies. The proof
of Lemma 3.4 gives that

0 = ∂t (|∂Ωt
Kt| − f(|Kt|, t))

∣
∣
t=t0

= f − κ(u−) − κ(u+) + f ′(π − 2|K|) − f(f ′)2 − ∂f

∂t
.(5.4)

Combining Equations (5.3) and (5.4), we deduce that (5.1) holds. �
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Corollary 5.1. Let {Ωt : 0 ≤ t < T} be any smooth compact embedded
solution of the normalized curve-shortening flow (2.1), and let {Θt : 0 ≤
t < T} be any solution of (2.1) for which Θ0 is a smoothly bounded com-
pact convex region with reflection symmetries in both coordinate axes and
exactly four vertices, such that Ψ(Ω0, a) ≥ Ψ(Θ0, a) for every a ∈ (0, π).
Then Ψ(Ωt, a) ≥ Ψ(Θt, a) for all a ∈ (0, π) and all t ∈ [0, T ).

Proof. Let f : [0, π] × [0, T ) → R be as in Theorem 5.1. Under the assump-
tion Ψ(a, 0) ≥ f(a, 0), we will construct a family of functions fε satisfying
the assumptions of Theorem 3.1 such that limε→0 fε = f . That is, we need
fε(a, 0) < f(a, 0), lim supa→0

fε(a,t)√
2πa

< 1, and fε should satisfy the strict dif-
ferential inequality in Theorem 3.1.

It is convenient to work with the function v(a, t) = 1
2f(a, t)2 instead of

f . Equation (5.1) then becomes

∂v

∂t
= G[v] + 2v + v′(π − 2a) − (v′)2,

where

G[v] = −F [ff ′, f3f ′′] =
(

min
{

0,
1

2vv′′
− 1

(v′)2
+

cos(v′/2)
2v′ sin(v′/2)

})−1

.

Furthermore, we know that v is strictly concave by the result of [13], and has
|v′(a)| < π for a ∈ (0, π) by combining the strict concavity with the result
of Proposition 2.1.

We accomplish the construction in two stages: first, we construct strictly
concave solutions of the strict differential inequality on slightly smaller
domains: fix C > 2, and set μ = 1 − εeCt and τ =

∫ t
0 μ

−1(t′) dt′, and define

vε(a, t) = μv
(

π/2 + μ−1(a− π/2), τ
)

,

for εeCt ≤ a ≤ π − εeCt and εeCt < 1. Then v′ε = v′ and vεv
′′
ε = vv′′,

so G[vε] = G[v]. We also have (denoting time derivatives by dots)

∂

∂t
vε = μ̇v + μτ̇

∂v

∂t
− μv′μ−2μ̇(a− π/2)

= G[v] + (2 + μ̇)v + v′(π − 2a)(μ−1 +
1
2
μ−1μ̇) − (v′)2

= G[vε] +
2 + μ̇

2μ
(2vε + v′ε(π − 2a)) − (v′ε)

2

< G[vε] + 2vε + v′ε(π − 2a) − (v′ε)
2,
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where vε is always evaluated at (a, t), while v is evaluated at (π/2 + μ−1(a−
π/2), τ). We used the identities μτ̇ = 1 and 2+μ̇

2μ < 1 (coming from our choice
C > 2). Thus for any ε > 0, vε satisfies the required strict inequality.

Next we must overcome the difficulty caused by the fact that vε is not
defined on the whole interval (0, π). To do this we simply replace vε by the
smallest concave positive function which lies above it, as follows: we define

ṽε(a, t) = max
{

sup
{a

x
vε(x, t) : x ∈ (a, π − εeCt)

}

,

sup
{
π − a

π − x
vε(x, t) : x ∈ (εeCt, a)

}}

.

By smoothness and strict concavity of vε, there exists εeCt < a−(t) < π/2
depending smoothly on t such that

ṽε(a, t) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a

a−
vε(a−, t), 0 ≤ a ≤ a−;

vε(a), a− ≤ a ≤ π − a−;
π − a

a−
vε(a−, t), π − a− ≤ a ≤ π,

where a− is characterized by the condition v′ε(a−) = vε(a−)
a−

. ṽε is then C1,1

and concave, and positive on (0, π). The corresponding function f̃ε =
√

2ṽε

is strictly concave. Note also that ṽ′ε(0) = v′ε(a−) ∈ (0, π), so the boundary
requirement lim supa→0

ṽε(a,t)
πa < 1 is satisfied. We check that ṽε still satisfies

the strict differential inequality: for a ∈ (a−, π − a−) this is immediate since
we have checked the inequality for vε. In the case a ∈ (0, a−) we have

∂

∂t
ṽε(a) =

a

a−
∂

∂t
vε(a−)

<
a

a−

(G[vε] + 2vε + v′ε(π − 2a−) − (v′ε)
2
)

.

Since v′′(a) = 0 we have G[ṽε](a) = 0 > a
a−

G[vε](a−). Also ṽ′ε(a) = v′ε(a−), so
that

∂

∂t
ṽε(a) < G[ṽε] + 2ṽε + ṽ′ε(π − 2a) − (ṽ′ε)

2 − v′ε(1 − a

a−
)(π − ṽ′ε)

< G[ṽε] + 2ṽε + ṽ′ε(π − 2a) − (ṽ′ε)
2.

The case a ∈ (π − a−, π) follows by symmetry.
Now for any ε > 0 we can apply Theorem 3.1 to show that Ψ(Ωt, a) >

f̃ε(a, t) (we leave it to the reader to check that the fact that f̃ε is only
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Figure 6: The un-normalized paperclip for a range of τ < 0.

C1,1 and piecewise smooth is no obstacle). Letting ε→ 0 we deduce that
Ψ(Ωt, a) ≥ f(a, t) = Ψ(Θt, a) for all a ∈ (0, π) and t ∈ [0, T ). �

Corollary 5.2. Under the conditions of Corollary 5.1, the curvature κ of
∂Ωt satisfies max∂Ωt

κ ≤ max∂Θt
κ.

Proof. This follows immediately from Corollary 5.1 and the asymptotic
behaviour of the isoperimetric profile given in Proposition 2.1. �

6. Upper curvature bound from the Angenent solution

In this section, we compare with an explicit solution to produce an upper
curvature bound for any embedded smooth solution of the normalized curve
shortening flow Equation (2.1). The “paperclip” solution of (1.1) is given by

Θ̃τ = {(x̃, ỹ) ∈ R × (−π/2, π/2) : eτ cosh(x̃) − cos(ỹ) ≤ 0} , τ < 0.

This is illustrated in figure 6. This solution contracts to the origin with
circular asymptotic shape as τ → 0. In bounded regions it converges as τ →
−∞ to the parallel lines y = ±π

2 , while near the maxima of curvature it is
asymptotic to the grim reaper {x = −τ + log 2 + log cos y}.

Corresponding to this is the solution of (2.1) given for t ∈ R by

Θt =
{

(x, y) : |y| < π

2
et, e−

1
2
e−2t

cosh
(

e−tx
)− cos

(

e−ty
) ≤ 0

}

.

The curvatures can be computed exactly: since Θ̃τ is a sub-level set of the
convex function G(x, y) = eτ cosh x̃− cos ỹ, we have for (x̃, ỹ) ∈ ∂Θ̃τ

N(x̃, ỹ) =
∇G
|∇G| =

1
√

e2τ sinh2 x̃+ sin2 ỹ

[
eτ sinh x̃

sin ỹ

]

=
1√

1 − e2τ

[
eτ sinh x̃

sin ỹ

]

so that

T(x̃, ỹ) =
[
0 −1
1 0

]

N(x̃, ỹ) =
1√

1 − e2τ

[ − sin ỹ
eτ sinh x̃

]

.
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The curvature is then given by

κ̃(x̃, ỹ) = DTN · T =
eτ

√
1 − e2τ

cosh x̃ =
1√

1 − e2τ
cos ỹ.

The only critical points of κ̃ are where ỹ = 0 or x̃ = 0, and the points of
maximum curvature lie on the x̃-axis and have value (1 − e2τ )−1/2. The
rescaled regions Θt therefore satisfy the conditions of Theorem 5.1, and
have maximum curvature given by

κmax =
e−t

√
1 − e−e−2t

= 1 +
1
4
e−2t +O(e−4t) as t→ ∞.

We claim that for any simply connected region Ω0 of area π with smooth
boundary γ0, there exists t0 such that Ψ(Ω0, a) ≥ Ψ(Θt0 , a) for all a ∈ (0, π).
To see this, note that for fixed a ∈ (0, π) we have Ψ(Θt, a) = πet(1 + o(1)) →
0 as t→ −∞, since Θt is asymptotic to a pair of parallel lines with separation
πet. The asymptotic grim reaper shape gives for a > 0

Ψ(Θt, ae2t) = etΨ(G, a)(1 + o(1)) as t→ −∞,

where G is the grim reaper {x ≤ log cos y, |y| < π/2}. The existence of a
suitable t0 follows, and hence by Corollary 5.2 we have κ ≤ e−(t−t0)√

1−e−e−2(t−t0)
,

and so κ ≤ 1 + 1
4e−2(t−t0) +O(e−4t) as t→ ∞ for any closed curve evolving

by the normalized curve-shortening flow.

7. Exterior isoperimetric profile and lower curvature bound

In order to deduce long-time existence of the solution of normalized curve-
shortening flow, it suffices to show that the curvature remains bounded. The
previous section gave an upper bound, and in this section we prove a lower
bound by considering the exterior isoperimetric profile. We begin with the
analogue of Theorem 3.1 for the exterior profile:

Theorem 7.1. Let f : R+ × [0,∞) → R be continuous, smooth where both
arguments are positive, concave in the first argument for each t, and such
that lim supz→0

f(z,t)√
2πz

< 1 and lim supz→∞
f(z,t)√

4πz
< 1, and

∂f

∂t
< −f−1F [ff ′, f3f ′′] + f + f ′(π − 2a) − f(f ′)2,
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for all a > 0 and t ≥ 0. Suppose γt = ∂Ωt is a family of smooth embedded
curves evolving by (2.1) and satisfying Ψext(Ω0, a) > f(a, 0) for all a > 0,
then Ψext(Ωt, a) > f(a, t) for all t ≥ 0 and a ∈ (0, π).

Proof. The proof is closely analogous to that of Theorem 3.1. We first estab-
lish conditions under which the isoperimetric exterior domains are simply
connected and have a single boundary curve:

Lemma 7.1. If f : R+ → R is strictly concave and strictly increasing, and
Ω ⊂ R

2 is a compact simply connected domain with Ψ(Ω, a) ≥ f(a) for every
a ≥ 0, then every region K ⊂ R

2 \ Ω̄ with |∂
R2\Ω̄K| = f(|K|) and |K| > 0 is

connected and simply connected.

Proof. As in the proof of Lemma 3.1, K is connected since f is strictly
concave. Now suppose that R

2 \ (Ω̄ ∪ K̄) is not connected. Then there exists
a component L of R

2 \ (Ω ∪K) which is bounded. Let K̃ be the interior of
(̄K ∪ L). Then every boundary component (relative to R

2 \ Ω̄) of K̃ is a
boundary component of K, so |∂

R2\Ω̄K̃| ≤ |∂
R2\Ω̄K|, while |K̃| > |K|. But

then since f is strictly increasing, we have

|∂
R2\Ω̄K̃| ≤ |∂

R2\Ω̄K| = f(|K|) < f(|K̃|),

which contradicts the assumption of the Lemma. Therefore K and its com-
plement in R

2 \ Ω̄ are connected, so K is simply connected. �
The behaviour of the exterior profile for small a is determined by Propo-

sition 2.1. We also need to establish the behaviour for large a:

Lemma 7.2. For Ω ⊂ R
2 compact, lima→∞

Ψext(Ω,a)√
4πa

= 1.

Proof. The upper bound is trivial, since for any a > 0 we can choose K
to be a ball of area a which does not intersect Ω, giving f(a) ≤ |∂K| =√

4πa. For the lower bound, let K be an isoperimetric region of area a in
R

2 \ Ω̄. Then ∂R2K ⊂ ∂
R2\Ω̄K ∪ ∂Ω, so |∂R2K| ≤ |∂

R2\Ω̄K| + |∂Ω|. By the
isoperimetric inequality for the plane we have |∂R2K| ≥ √

4π|K| =
√

4πa.
Combining these inequalities we find f(|K|) ≥ √

4πa− |∂Ω|. �
This guarantees that under the assumptions of Theorem 7.1, at the first

time where the inequality does not hold strictly, we must have equality for
some a ∈ (0,∞). The remainder of the proof is identical to that in Theo-
rem 3.1 (except that since we are working with the exterior of Ωt, the normal
direction and the curvature are replaced by their negatives throughout). �
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To apply this we prove a result analogous to Theorem 4.1:

Theorem 7.2. Let γ = ∂Ω, where Ω is a smoothly bounded non-compact
strictly convex region with only one vertex and reflection symmetry in the
x axis. Let X : (−θ0, θ0) → R

2 be the map which takes θ to the point in γ
with outward normal direction (cos θ, sin θ). Then for each θ ∈ (0, θ0) there
exists a unique constant curvature curve σθ which is contained in Ω and has
endpoints at X(θ) and X(−θ) meeting γ orthogonally. Let Kx

θ denote the
compact connected component of Ω \ σθ. Then there is a smooth, increasing
diffeomorphism θ from (0,∞) to (0, θ0) such that Ka = Kx

θ(a) has area a for
each a ∈ (0,∞), and the isoperimetric region of area a in Ω is Ka.

Proof. By convexity, ∂Ω is defined by an embedding X : (−θ0, θ0) → R
2 for

some θ0 ∈ (0, π/2] which takes θ to the point in ∂Ω with outward normal
direction θ. The argument of [13] shows that Ψ(Ω, a)2 is strictly concave,
hence strictly increasing since it is defined and positive for all positive a. By
the argument in [15] or Lemma 7.1 the boundary of any isoperimetric region
is a single circular arc meeting ∂Ω orthogonally at both ends. The argument
of Theorem 4.1 shows there is only one candidate for an isoperimetric region
for each a > 0, which is that given in the theorem. �

To produce suitable solutions of the differential inequality we consider
suitable non-compact solutions of the normalized flow:

Theorem 7.3. Let Ω0 be a non-compact convex subset of R
2, with smooth

boundary curve γ0 given by the image of a smooth embedding X0 : S1 → R
2,

and assume Ω0 is symmetric in the x-axis and has only one vertex. Let
X : S1 × [0, T ) → R

2 be the solution of (2.1) with initial data X0. Then
for each t ∈ [0, T ), the region Ωt enclosed by γt = X(S1, t) is a non-compact
convex region symmetric in the x axis, with only one vertex. For each t, let
Ka,t be the family of isoperimetric regions for Ωt constructed in Theorem 7.2,
and define f(a, t) = |∂Ωt

Ka,t|. Then f : (0,∞) × [0, T ) → R is an increasing
concave solution of Equation (5.1) with lima→0

f(a,t)√
2πa

= 1, F [ff ′, f3f ′′] > 0,

and lima→∞
f(a,t)√

4πa
= 1.

The proof is the same as that of Theorem 5.1, using Theorem 7.2 instead
of Theorem 4.1. Arguing as in Corollary 5.1, we deduce a comparison theo-
rem:

Corollary 7.1. Let {Ωt : 0≤ t<T} be any smooth compact embedded solu-
tion of the normalized curve-shortening flow (2.1), and let {Θt : 0 ≤ t < T}
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be a solution of (2.1) for which Θ0 is a smoothly bounded non-compact con-
vex region with reflection symmetry in the x-coordinate axes and exactly one
vertex, such that Ψext(Ω0, a) ≥ Ψ(Θ0, a) for every a > 0. Then Ψext(Ωt, a) ≥
Ψ(Θt, a) for all a > 0 and all t ∈ [0, T ).

The asymptotics for small a of the exterior profile given in Proposi-
tion 2.1 then imply the following:

Corollary 7.2. Under the conditions of Corollary 7.1, min∂Ωt
κ ≥

−max∂Θt
κ.

Now we apply this for a particular choice of model region to deduce the
required lower curvature bound:

Theorem 7.4. For any compact embedded solution of (2.1) there exists C
such that κ(x, t) ≥ −Ce−t for t > 0.

Proof. We choose as a comparison region a solution of (2.1) arising from a
homothetically expanding solution of curve-shortening flow (see [4, Th. 5.1]
or [12]) which we can construct as follows: define h : (−θ0, θ0) → R implicitly
by

θ =
∫ 1

h(θ)

dz
√

1 − z2 − C log z
,

where θ0 ∈ (0, π/2) is determined by C > 0. θ0 is strictly monotone in C
and approaches 0 as C → ∞ and approaches π/2 as C → 0. The curve given
by the image of the map X in Equation (4.1) on the interval (−θ0, θ0) is
then a complete convex curve asymptotic to the lines of angle ±θ0 with
a single critical point of curvature at θ = 0, at which point the curvature
takes its maximum value of 1/C. At every point of the curve the equation
κ = −C−1〈X, ν〉 holds. Let Θ be the non-compact convex region enclosed by
this curve. Then the regions Θ̃τ =

√
2τ
C Θ satisfy the curve-shortening flow,

and the rescaled regions Θt = r(t)Θ satisfy the normalized curve-shortening
flow (2.1), where r(t) =

√
e2t−1

C for t > 0.
As t = 0 the region Θt converges to the wedge of angle 2θ0, so the isoperi-

metric profile is exactly
√

4θ0a for a > 0. In particular for any smooth simply
compact region Ω0, for sufficiently small θ0 we have Ψext(Ω0, a) > Ψ(Θ0, a)
for every a, and by continuity we also have Ψext(Ω0, a) > Ψ(Θδ, a) for all a
for small δ > 0. Corollary 7.1 gives κ ≥ −1/(Cr(t)) = − 1√

C(e2t−1)
. �
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Remark. One could also apply the comparison theorem with Θt = et−t0G

for sufficiently large t0, where G is the convex region enclosed by the grim
reaper curve. This gives the lower bound κ ≥ −Ce−t for some C. The com-
parison used above is interesting because it implies curvature bounds for
positive times, independent of any initial curvature bound, provided the ini-
tial exterior isoperimetric profile is bounded below by C

√
a for some C, and

the initial isoperimetric profile is bounded below by Cmin{√a,√π − a}.

8. Proof of Grayson’s theorem

We have proved upper and lower bounds on curvature for any compact
simply connected region with boundary evolving by (2.1), with the upper
curvature bound exponentially decaying to 1 as t→ ∞. The argument in [1,
Sections 3–4] applies, proving Grayson’s theorem.
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