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Smooth metric measure spaces with non-negative

curvature

Ovidiu Munteanu and Jiaping Wang

In this paper, we study both function theoretic and spectral proper-
ties on complete non-compact smooth metric measure space (M, g,
e−fdv) with non-negative Bakry–Émery Ricci curvature. Among
other things, we derive a gradient estimate for positive f -harmonic
functions and obtain as a consequence the strong Liouville prop-
erty under the optimal sublinear growth assumption on f. We
also establish a sharp upper bound of the bottom spectrum of
the f -Laplacian in terms of the linear growth rate of f. Moreover,
we show that if equality holds and M is not connected at infinity,
then M must be a cylinder. As an application, we conclude steady
Ricci solitons must be connected at infinity.

1. Introduction

On a Riemannian manifold (M, g), the consideration of weighted measure of
the form e−fdv, where f is a smooth function and dv is the volume element
induced by the metric g, arises naturally in various situations. It can be
viewed as the volume form of a suitable conformal change of the metric g.
Perhaps a more notable example is in the work of Perelman [27], where he
introduces a functional involving the integral of the scalar curvature with
respect to such a weighted measure and formulates the Ricci flow as the
gradient flow of the functional. The triple (M, g, e−fdv) is customarily called
a smooth metric measure space. The differential operator Δf , which is called
f -Laplacian and given by

Δf := Δ −∇f · ∇

is more naturally associated with such a smooth metric measure space than
the classical Laplacian as it is symmetric with respect to the measure e−fdv.
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That is,
∫

M
〈∇ϕ,∇ψ〉e−f = −

∫
M

(Δfϕ)ψe−f ,

for any ϕ,ψ ∈ C∞
0 (M).

Again, we point out that the operator f -Laplacian is very much related
to the Laplacian of a suitable conformal change of the background Rieman-
nian metric. It also appears as the generator of a class of stochastic diffusion
processes, the Brownian motion with drifts.

The Bakry–Émery Ricci tensor [1] of the metric measure space (M, g, e−f

dv) is defined by

Ricf := Ric + Hess(f),

where Ric denotes the Ricci curvature of M and Hess(f) the Hessian of f.
This curvature relates to f -Laplacian via the following Bochner formula:

Δf |∇u|2 = 2|Hess(u)|2 + 2〈∇u,∇Δfu〉 + 2Ricf (∇u,∇u).

This of course suggests the important role of Ricf in the analysis of
f -Laplacian. Perhaps as a more prominent example, Ricf also appears in
the study of the Ricci flow. The gradient solitons of the Ricci flow, which
arise from the singularity analysis of the Ricci flow, are defined to be com-
plete manifolds (M, g) that the following equation

Ricf = λg

holds for some function f and constant λ. Obviously, the Einstein manifolds
are gradient Ricci solitons. The gradient Ricci solitons are called shrinking,
steady and expanding accordingly when λ > 0, λ = 0 and λ < 0, [15].

The classification of gradient Ricci solitons is an important problem from
the point of view of both the Ricci flow singularity analysis and purely as
a class of geometric partial differential equations. The problem has received
much attention recently. The book [7] is a good source for some of the
important results. But it seems fair to say that the whole picture is far from
clear for now.

Partially motivated by interest in the study of gradient Ricci solitons,
various attempts have been made recently to study the geometry and anal-
ysis on general metric measure spaces. We will refer the readers to [22, 31]
for some of the results. It should be noted however a while back, Lich-
nerowicz [23] has already done some pioneering work in this direction. In
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particular, he has extended the classical Cheeger–Gromoll splitting theorem
to the metric measure spaces with Ricf ≥ 0 and f bounded.

In this paper, we will investigate some function theoretic and spectral
properties of metric measure space (M, g, e−fdv). While the results are of
independent interest, applications to the steady gradient Ricci solitons are
no doubt of our main focus. Throughout, we will assume Ricf ≥ 0 and f is
of linear growth unless otherwise noted. Recall that f is of linear growth if
for all x in M,

|f |(x) ≤ α r(x) + β

for some constants α and β, where r(x) := d(p, x) is the geodesic distance
function to a fixed point p in M. The linear growth rate a of f is then defined
as the infimum of all such values α.

Clearly, a steady gradient Ricci soliton (M, g) satisfies Ricf = 0 for
some f . It is also well-known that the potential function f in this case
is of linear growth. So all of our results are applicable to the steady gradient
solitons. On the other hand, it should also be noted that many, if not all, of
our results will fail without the growth assumption on function f.

Our first result gives a gradient estimate for positive f -harmonic func-
tions on (M, g, e−fdv).

Theorem 1.1. Let (M, g, e−fdv) be a complete non-compact smooth metric
measure space with Ricf ≥ 0. Assume that f has linear growth rate a and let
u > 0 be f-harmonic on M, i.e., Δfu = 0 on M. Then the following gradient
estimate holds true on M :

|∇ log u| ≤ C(n)a,

where the constant C(n) depends only on the dimension n. In particular,
if f is of sublinear growth, then any positive f-harmonic function u on M
must be constant.

This estimate is sharp as demonstrated by the following simple example.

Example 1.1 [26]. Let M = R × S
n−1 and f(t, θ) = at for t ∈ R and θ ∈

S
n−1. Then u(t, θ) := eat is positive f -harmonic on M. Clearly, the linear

growth rate of f is a and |∇ log u| = a.

Although the statement in the theorem takes the form of Yau’s classical
result on the positive harmonic functions, we would like to point out that
our proof is quite different. In the classical case of the Ricci curvature,
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Yau [34] directly works with log u and obtains an estimate on |∇ log u| via
the Bochner formula. This approach works also with the N -Bakry–Émery
Ricci curvature given by

RicN
f := Ric + Hessf − 1

N
df ⊗ df

as demonstrated by Li [22]. For the case of curvature Ricf , if one imposes
suitable assumption on |∇f |, say, it is bounded, then it is still possible to
utilize Yau’s argument as shown by Wu [32]. However, with only the growth
assumption on f, this direct approach seems to run into essential obstacles.
Our argument relies on both Yau’s idea and the well-known De Giorgi–
Nash–Moser theory. In a recent paper [2], Brighton, by applying Yau’s idea
to function uε instead of log u, proved bounded f -harmonic functions must
be constant without any assumption on f so long as Ricf ≥ 0. In our proof,
we first refined Brighton’s argument and derived the gradient estimate under
the assumption that u is of exponential growth. Here, no growth assumption
on f is necessary. In particular, this implies that any sub-exponential growth
positive f -harmonic onM with Ricf ≥ 0 is constant. The growth assumption
on f was then used to get the desired growth control on u. For that, we utilize
a different set of techniques including a mean value inequality obtained
through the Moser’s iteration argument.

We also deal with the polynomial growth f -harmonic functions. Here,
the result is very much parallel to the case of harmonic functions on a man-
ifold with non-negative Ricci curvature, obtained by Cheng and Yau [10],
Li–Tam [18], Li [17] and Colding–Minicozzi [11], respectively. We define the
space

Hd(M) := {u : Δfu = 0 and |u|(x) ≤ C(r(x) + 1)d}.

Theorem 1.2. Let (M, g, e−fdv) be a complete non-compact smooth metric
measure space with Ricf ≥ 0 and f bounded. Then we have

dimHd(M) = 1, if d < 1

dimHd(M) ≤ n+ 1, if d = 1

and
dimHd(M) ≤ Cdn−1, if d ≥ 1.

Our second objective is to study the spectrum of the f -Laplacian on
(M, g, e−fdv). Define λ1(Δf ) := min Spec(−Δf ) to be the bottom spectrum
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of Δf . By the variational characterization, we have

λ1(Δf ) = inf
φ∈C∞

0 (M)

∫
M |∇φ|2e−f∫

M φ2e−f
.

The following result summarizes what we proved concerning the bottom
spectrum.

Theorem 1.3. Let (M, g, e−fdv) be a complete non-compact smooth metric
measure space with Ricf ≥ 0. Then

λ1(Δf ) ≤ 1
4
a2,

where a is the linear growth rate of f . Moreover, if λ1(Δf ) = 1
4a

2, then
M is connected at infinity; or M is isometric to R ×N for some compact
manifold N .

Note that the splitting case in the theorem does occur. Indeed, for M =
R ×N, if we take f(t, y) = at for (t, y) ∈ R ×N, then |∇f | = a, Δfe

1
2
at =

−1
4a

2e
1
2
at and λ1(Δf ) = 1

4a
2.

Applying the preceding result to the gradient steady Ricci solitons, we
obtain the following.

Corollary 1.1. A non-trivial gradient steady Ricci soliton must be con-
nected at infinity.

This is because for a steady gradient Ricci soliton (M, g, f) such that
Ricf = 0 on M and sup |∇f | = a, one can show λ1(Δf ) = 1

4a
2. Note now

that the splitting case cannot arise as otherwise Hess(f) = 0 and M would be
Ricci flat. We remark that previous attempts on the issue of connectedness
at infinity for steady solitons can be found in [12, 24].

Historically, Cheng [9] proved a sharp upper bound of the bottom spec-
trum of the Laplacian on a complete manifold with Ricci curvature bounded
below. Later on, in [19, 20], Li and the second author studied the rigidity
issue when the sharp upper bound is achieved. Our results here are very
much in the same spirit. Our arguments, however, follow [21] more closely.

The paper is organized as follows. In Section 2, we discuss Laplacian and
volume comparison estimates and establish the upper bound estimate for the
bottom spectrum λ1(Δf ). In Section 3, we prove the gradient estimate for
positive f -harmonic functions and related Liouville type results concerning
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f -harmonic functions of polynomial growth. Finally, in Section 4 we discuss
the structure of manifolds with maximal bottom spectrum and the resulting
application to the steady Ricci solitons.

In a sequel to this paper [25], we will address some similar issues on
smooth metric measure spaces with Ricf bounded below. Among other
things, we obtain a gradient estimate as Theorem 1.1 of the form |∇ log u| ≤
c(n, a) if Ricf ≥ −(n− 1), where a now is the maximum oscillation of f
over all unit balls in M. A parallel result to Theorem 1.3 also holds true.
More precisely, the bottom spectrum satisfies λ1(Δf ) ≤ 1

4(n− 1 + a)2 if
Ricf ≥ −(n− 1), where a again is the linear growth rate of f. Under slightly
stronger assumption on f that its gradient is bounded by a, then that the
equality holds implies the manifold M must be connected at infinity unless
it is a product R ×N with N being compact.

2. Volume comparison theorems

In this section, we discuss Laplacian and volume comparison estimates for
smooth metric measure spaces with non-negative Bakry–Émery Ricci curva-
ture. The estimates in this section are instrumental in proving other results
of this paper. Also, as an immediate application, we obtain upper bound
estimates for the bottom spectrum of Δf .

Let (M, g, e−fdv) be a smooth metric measure space. Take any point
x ∈M and denote the volume form in geodesic polar coordinates centered
at x with

dV |expx(rξ) = J(x, r, ξ)drdξ,

where r > 0 and ξ ∈ SxM, a unit tangent vector at x. It is well-known that
if y ∈M is any point such that y = expx (rξ), then

Δd(x, y) =
J ′(x, r, ξ)
J(x, r, ξ)

and Δfd(x, y) =
J ′

f (x, r, ξ)
Jf (x, r, ξ)

,

where Jf (x, r, ξ) := e−fJ(x, r, ξ) is the f -volume form in geodesic polar coor-
dinates. For a fixed point p ∈M and R > 0, define

(2.1) A(R) := sup
x∈Bp(3R)

|f |(x).

For a set Ω, we will denote by V (Ω) the volume of Ω with respect to the
usual volume form dv, and Vf (Ω) the f -volume of Ω. The following result
has been established in [33].
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Lemma 2.1. Let (M, g, e−fdv) be a smooth metric measure space with
Ricf ≥ 0. Then along any minimizing geodesic starting from x ∈ Bp(R) we
have

Jf (x, r2, ξ)
Jf (x, r1, ξ)

≤ e4A

(
r2
r1

)n−1

and
J(x, r2, ξ)
J(x, r1, ξ)

≤ e6A

(
r2
r1

)n−1

for any 0 < r1 < r2 < R. In particular, for any 0 < r1 < r2 < R,

Vf (Bx(r2))
Vf (Bx(r1))

≤ e4A

(
r2
r1

)n

and
V (Bx(r2))
V (Bx(r1))

≤ e6A

(
r2
r1

)n

.

Here, A = A(R) as defined by (2.1).

Proof of Lemma 2.1. We include a proof here for the reader’s convenience.
Some of the ingredients of this proof will also be used later.

Let γ be the minimizing geodesic from x to y such that γ(0) = x and
γ(r) = y. Recall the following Laplace comparison theorem [12, 31],

(2.2) Δfd(x, y) ≤ n− 1
r

− 2
r2

∫ r

0
tf ′(t)dt,

where f(t) := f(γ(t)). Integrating by parts, we get

(2.3) Δfd(x, y) ≤ n− 1
r

− 2
r
f(r) +

2
r2

∫ r

0
f(t)dt.

For 0 < r1 < r2 < R, integrating (2.3) from r1 to r2 yields

log
(
Jf (x, r2, ξ)
Jf (x, r1, ξ)

)
≤ (n− 1) log

(
r2
r1

)
+ 2

∫ r2

r1

1
r2

(∫ r

0
f(t)dt

)
dr(2.4)

− 2
∫ r2

r1

1
r
f(r)dr.

However,
∫ r2

r1

1
r2

(∫ r

0
f(t)dt

)
dr = −1

r

(∫ r

0
f(t)dt

)
|r2
r1

+
∫ r2

r1

1
r
f(r)dr.

Plugging into (2.4), we conclude

(2.5)
Jf (x, r2, ξ)
Jf (x, r1, ξ)

≤
(
r2
r1

)n−1

exp
(

2
r1

∫ r1

0
f(t)dt− 2

r2

∫ r2

0
f(t)dt

)
.



458 Ovidiu Munteanu & Jiaping Wang

Therefore,

Jf (x, r2, ξ)
Jf (x, r1, ξ)

≤ e4A

(
r2
r1

)n−1

for all x ∈ Bp(R) and 0 < r1 < r2 < R. Clearly, the corresponding result for
J(x, r, ξ) follows by using again the definition (2.1).

To establish the volume comparison, we use that

Jf (x, t, ξ)
Jf (x, s, ξ)

≤ e4A

(
t

s

)n−1

for any 0 < s < r1 < t < r2 < R. Integrating in t from r1 to r2 and s from 0
to r1, we get

Vf (Bx(r2)) − Vf (Bx(r1))
Vf (Bx(r1))

≤ e4A (r2)n − (r1)n

(r1)n
.

This implies that

Vf (Bx(r2))
Vf (Bx(r1))

≤ e4A

(
r2
r1

)n

+ 1 − e4A ≤ e4A

(
r2
r1

)n

.

Now the volume comparison for V (Bx(r)) follows directly from here. The
lemma is proved. �

Using the proof of Lemma 2.1 we obtain a sharp upper bound for λ1(Δf ),
the bottom spectrum of Δf , by assuming f is of linear growth. Recall

λ1(Δf ) := inf
φ∈C∞

0 (M)

∫
M |∇φ|2e−f∫

M φ2e−f
.

Theorem 2.1. Let (M, g, e−fdv) be a complete non-compact smooth metric
measure space with Ricf ≥ 0. If there exist positive constants a, b > 0 such
that

|f |(x) ≤ ar(x) + b for all x ∈M,

then we have the upper bound estimate

λ1(Δf ) ≤ 1
4
a2.

In particular, if f has sublinear growth, then λ1(Δf ) = 0.
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Proof of Theorem 2.1. By setting x = p, r1 = 1 and r2 = R > 1 and noting
|f |(x) ≤ ar(x) + b on M, (2.5) implies

Jf (p,R, ξ) ≤ CRn−1e−
2
R

∫ R

0 f(t)dt ≤ CRn−1eaR

for all R > 1. Therefore,

(2.6) Vf (Bp(R)) ≤ CRneaR.

We now claim λ1(Δf ) ≤ 1
4a

2. Indeed, take a cut-off ψ on Bp(R) such that
ψ = 1 on Bp(R− 1), ψ = 0 on M\Bp(R) and |∇ψ| ≤ c. Consider φ(y) :=
e−

1
2
(a+ε)r(y)ψ(y) as a test function in the variational principle for λ1(Δf ).

Using the volume growth (2.6) we get immediately that λ1(Δf ) ≤ 1
4(a+ ε)2.

Since ε > 0 is arbitrary this implies the desired estimate. The theorem is
proved. �

As indicated in the Introduction, the estimate in Theorem 2.1 is sharp.
We now show that the bottom spectrum of steady Ricci solitons also attains
this upper bound. Recall a gradient steady Ricci soliton is a manifold
(M, g, f) satisfying Rij + fij = 0. It is known that there exists a positive
constant a > 0 such that |∇f |2 + S = a2, where S is the scalar curvature
of M. It is also known that S ≥ 0 for any gradient steady Ricci soliton [4,
8]. Another useful relation is Δf + S = 0, which is obtained directly from
Ricf = 0 by taking trace. In summary, a steady Ricci soliton satisfies the
following.

|∇f |2 + S = a2, for some constant a > 0(2.7)
Δf + S = 0

S ≥ 0.

We first recall a well-known result.

Lemma 2.2. Let (M, g, e−fdv) be a smooth metric measure space. If there
exists a positive function v > 0 such that Δfv ≤ −λv for some constant
λ > 0, then λ1(Δf ) ≥ λ.

Proof of Lemma 2.2. For completeness, we include a proof of this result.
For an exhaustion of M by compact domains Ωi ⊂⊂M, consider the first
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Dirichlet eigenfunction ui.

Δfui = −λ1(Ωi)ui in Ωi

ui = 0 on ∂Ωi.

It is known that we may assume ui > 0. By the strong maximum principle,
∂ui

∂η < 0 on ∂Ωi. Now,

(λ1(Ωi) − λ)
∫

Ωi

vuie−f ≥
∫

Ωi

(uiΔfv − vΔfui)e−f

=
∫

∂Ωi

(
ui
∂v

∂η
− v

∂ui

∂η

)
e−f = −

∫
∂Ωi

v
∂ui

∂η
e−f > 0.

Since both ui and v are positive, this shows λ1(Ωi) ≥ λ. The Lemma follows
from

lim
i→∞

λ1(Ωi) = λ1(Δf ).

�

Proposition 2.1. Let (M, g, f) be a gradient steady Ricci soliton, normal-
ized as in (2.7). Then λ1(Δf ) = a2

4 .

Proof of Proposition 2.1. Since S ≥ 0, it follows that |∇f | ≤ a. Therefore,
|f |(x) ≤ ar(x) + b for any x ∈M. So by Theorem 2.1, λ1(Δf ) ≤ 1

4a
2. To

show the equality, we proceed as follows. Observe that

Δfe
1
2
f =

(
1
2

Δf (f) +
1
4
|∇f |2

)
e

1
2
f .

But for a steady soliton,

Δf (f) = Δf − |∇f |2 = −(S + |∇f |2) = −a2.

Since |∇f | ≤ a, we conclude that

Δfe
1
2
f =

(
−1

2
a2 +

1
4
|∇f |2

)
e

1
2
f

≤
(
−1

2
a2 +

1
4
a2

)
e

1
2
f = −a

2

4
e

1
2
f .

By Lemma 2.2, we have λ1(Δf ) ≥ a2

4 . This proves Proposition 2.1. �
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3. f-harmonic functions

In this section, we continue to assume Ricf ≥ 0 on (M, g, e−fdv). The main
objective is to derive the following global gradient estimate for positive
f -harmonic functions defined on M. This in particular leads to a strong
Liouville theorem under optimal growth assumption on f.

For a fixed point p ∈M, we let r(x) := d(p, x).

Theorem 3.1. Let (M, g, e−fdv) be a complete non-compact smooth metric
measure space with Ricf ≥ 0. Assume there exist positive constants a and b
such that

|f |(x) ≤ a r(x) + b on M.

Let u > 0 be f-harmonic on M. Then the following gradient estimate holds
true on M :

|∇ log u| ≤ C(n)a,

where constant C(n) depending only on n, the dimension of M.

An immediate consequence is the following strong Liouville property. As
noted by the explicit example in first section, the growth assumption on f
is optimal.

Corollary 3.1. Let (M, g, e−fdv) be a complete non-compact smooth met-
ric measure space with Ricf ≥ 0. If f is of sublinear growth, then any positive
f-harmonic function u on M is constant.

We prove Theorem 3.1 in several steps. First, we show that |∇ log u| can
be controlled from above by 1

R supBp(R) log(u+ 1). This follows by adapting
Yau’s [34] argument. We then verify that u must be of exponential growth
with the exponent controlled by the constant a. To achieve this, we use the
Moser iteration technique, following the ideas in [13, 28].

Proposition 3.1. Let (M, g, e−fdv) be a complete non-compact smooth
metric measure space with Ricf ≥ 0. Assume that there exist constants a > 0
and b > 0 such that

|f |(x) ≤ ar(x) + b on M.

Then for any positive f-harmonic function u on M, we have

sup
M

|∇ log u|2 ≤ C(n)(Ω(u)2 + aΩ(u)),
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where C(n) > 0 is a constant only depending on the dimension n of M and

Ω(u) := lim sup
R→∞

{
1
R

sup
Bp(R)

log(u+ 1)

}
.

Proof of Proposition 3.1. The proof is based on Yau’s argument using the
Bochner technique, with a modification similar to that in [2]. Let u > 0 be
f -harmonic. For 0 < ε < 1

2 , define

h :=
1
ε
uε.

Then a direct computation gives Δfh = (ε− 1)uε−2|∇u|2.
Let us denote σ := |∇h|2 = u2ε−2|∇u|2. The Bochner formula asserts

that

1
2

Δfσ = |hij |2 + 〈∇h,∇(Δfh)〉 + Ricf (∇h,∇h)

≥ 〈∇h,∇(Δfh)〉 = (ε− 1)〈∇h,∇(uε−2|∇u|2)〉
= (ε− 1)〈∇h,∇(u−εσ)〉.

Notice that

〈∇h,∇(u−εσ)〉 = −ε〈∇h,∇u〉u−ε−1σ + u−ε〈∇h,∇σ〉
= −ε|∇h|2u−2εσ + u−ε〈∇h,∇σ〉.

Consequently,

(3.1)
1
2

Δfσ ≥ ε(1 − ε)u−2εσ2 + (ε− 1)u−ε〈∇h,∇σ〉.

We now take a function φ : [0, 2R] → [0, 1] with the following properties:

φ = 1 on [0, R]
supp(φ) ⊆ [0, 2R)

− c

R
≤ φ′√

φ
≤ 0

|φ′′| ≤ c

R2
,

where c > 0 is a universal constant. We continue to denote by c > 0 some
universal constant, which may differ from line to line. We use this function



Metric measure spaces 463

to define a cut-off on M by taking φ(x) := φ(r(x)). Define G := φσ. Then
G is non-negative on M and has compact support in Bp(2R). Therefore, it
achieves its maximum at some point y ∈ Bp(2R).

Without loss of generality we can assume that y is not in the cut-locus
of p. So φ is smooth at y. Now at point y, we have

(3.2) ΔG(y) ≤ 0 and ∇G(y) = 0.

By (2.3) together with |f |(x) ≤ ar(x) + b, we get

Δfr(x) ≤ n− 1 + 4b
r

+ 3a.

So there exists r0 > 0 such that Δfr(x) ≤ 4a for x ∈M\Bp(r0). Therefore,
for R > r0, we have

Δfφ = φ′Δfr + φ′′ ≥ −c
(
a

R
+

1
R2

)

and

φ−1|∇φ|2 ≤ c

R2
.

Combining with inequality (3.1), we find that

1
2

ΔfG =
1
2
φΔfσ +

1
2
σΔfφ+ 〈∇φ,∇σ〉

≥ ε(1 − ε)u−2εφ−1G2 + (ε− 1)u−ε〈∇h,∇(φ−1G)〉φ
− c

(
a

R
+

1
R2

)
φ−1G+ 〈∇φ,∇(φ−1G)〉

= ε(1 − ε)u−2εφ−1G2 + (ε− 1)u−ε〈∇h,∇φ−1〉Gφ
+ (ε− 1)u−ε〈∇h,∇G〉 − c

(
a

R
+

1
R2

)
φ−1G

− |∇φ|2φ−2G+ φ−1〈∇φ,∇G〉.

After multiplying both sides by φ and invoking (3.2), we conclude that at y,

0 ≥ ε(1 − ε)u−2εG2 − (1 − ε)u−ε|∇h||∇φ|G− c

(
a

R
+

1
R2

)
G.

Note that

u−ε|∇h||∇φ| ≤ c

R
u−εσ

1
2φ

1
2 =

c

R
(u−2εG)

1
2 .
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This shows at point y,

ε(u−2εG) − c

R
(u−2εG)

1
2 − c

(
a

R
+

1
R2

)
≤ 0.

Solving this as a quadratic inequality in (u−2εG)
1
2 we get

u−2ε(y)G(y) ≤ c

(εR)2
+
ca

εR
.

This proves that

sup
Bp(R)

(u2ε|∇ log u|2) = sup
Bp(R)

σ ≤ sup
Bp(2R)

G

≤
(

c

(εR)2
+
ca

εR

)
sup

Bp(2R)
(u2ε).

We now observe that if u is globally bounded on M, then the estimate
implies u is constant by letting R→ ∞. That means the gradient estimate
claimed in the Proposition is automatically true. For unbounded u, we let

ε :=

(
2 + sup

Bp(2R)
log(u+ 1)

)−1

> 0.

Then,

sup
Bp(2R)

(u2ε) ≤ e2.

So we obtain, for any R > 0 and r < R, that

sup
Bp(r)

(u2ε|∇ log u|2) ≤
(
c

R
sup

Bp(2R)
log(u+ 1)

)2

+
ca

R
sup

Bp(2R)
log(u+ 1) +

c(a+ 1)
R

.

Since u is unbounded, it is clear that ε→ 0 as R→ ∞. Therefore, after
letting R→ ∞ with r fixed, we arrive at

sup
Bp(r)

|∇ log u|2 ≤ C(n)(Ω(u)2 + aΩ(u)).

Since r is arbitrary, this proves the proposition. �
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Let us point out that it is possible to prove another version of Propo-
sition 3.1 without any growth assumption on f. It takes the form of supM

|∇ log u|2 ≤ C(Ω(u)2 + Ω(u)) for some constant C depending on the Ricci
curvature lower bound and sup |∇f | on Bp(1). This is because we can use
the Laplace comparison Theorem 3.1 of [31] instead, which does not require
any assumption on f . It in particular says that a positive f -harmonic func-
tion of sub-exponential growth on a complete manifold with Ricf ≥ 0 must
be a constant.

In the next step, we will establish an upper bound estimate for Ω(u)
defined in Proposition 3.1 by using Moser iteration argument. First, we will
establish a local Sobolev inequality on M , following the arguments in [3, 13,
14, 28]. Since it will be crucial to have explicit and accurate dependency of
the constants appearing in the inequality in terms of the growth of f, we
provide details of the proof here.

We now use Lemma 2.1 to prove a Neumann Poincaré inequality. For
this, we follow Buser’s proof, see [3] (also cf.[5, p. 354]). There is an alternate
proof, see [29, p. 176], which first establishes a weaker version of Neumann
Poincaré and then uses a covering argument to prove the strong version.
For the proof of Theorem 3.1, the weaker version of Neumann Poincaré
inequality is in fact sufficient. Recall

(3.3) A(R) := sup
x∈Bp(3R)

|f |(x).

In the following, we will suppress R in A(R) and simply call it A.

Lemma 3.1. Let (M, g, e−fdv) be a smooth metric measure space with
Ricf ≥ 0. Then for any x ∈ Bp(R) we have

∫
Bx(r)

|ϕ− ϕBx(r)|2 ≤ c1ec2A · r2
∫

Bx(r)
|∇ϕ|2

for all 0 < r < R and ϕ ∈ C∞(Bx(r)), where ϕBx(r) := V −1(Bx(r))
∫
Bx(r) ϕ.

The constants c1 and c2 depend only on the dimension n.

Proof of Lemma 3.1. First, we show that Lemma 2.1 and the argument in [3]
imply a lower bound on the isoperimetric constant. Let Γ be a smooth
hypersurface in Bx(r) with Γ̄ imbedded in Bx(r). Let D1 and D2 be disjoint
open subsets in Bx(r) such that D1 ∪D2 = Bx(r)\Γ. We will show that

(3.4) min{V (D1), V (D2)} ≤ rc1ec2AA(Γ).
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Then, by Cheeger’s theorem, the inequality (3.4) gives the claimed Neumann
Poincaré inequality.

We fix D1 so that V
(
D1 ∩Bx

(
r
2

)) ≤ 1
2V

(
Bx

(
r
2

))
. For a fixed α ∈ (0, 1)

to be chosen later, consider first the case when V
(
D1 ∩Bx

(
r
2

)) ≤ αV (D1).
We denote by C(x) the cut-locus of x. For y ∈ D1\C(x), let y∗ be the first
intersection point of yx, the unique minimizing geodesic from y to x, with Γ.
In the case yx does not intersect Γ, we set y∗ = x.

Define

A1 :=
{
y ∈ D1\

(
C(x) ∪Bx

(r
2

))
: y∗ /∈ Bx

(r
4

)}

A2 :=
{
y ∈ D1\

(
C(x) ∪Bx

(r
2

))
: y∗ ∈ Bx

(r
4

)}

A3 :=
(
Bx

(r
2

)
\Bx

(r
4

))
∩ (∪y∈A2rod(y)) ,

where rod(y) := {expx(τξ) : r
4 < τ < s} for y = expx(sξ) with ξ ∈ SxM

and 0 < s < r.
From now on, we will use c1 and c2 to denote constants depending only

on dimension n. By Lemma 2.1 we have V (A2)
V (A3)

≤ c1ec2A. Note that V (A1) +
V (A2) = V

(
D1\Bx

(
r
2

)) ≥ (1 − α)V (D1) and V (A3) ≤ V
(
D1 ∩Bx

(
r
2

)) ≤
αV (D1). Thus,

(1 − α)V (D1) ≤ V (A1) + V (A2) ≤ V (A1) + c1ec2AV (A3)

≤ V (A1) + αc1ec2AV (D1),

or

(3.5) V (A1) ≥ (1 − αc1ec2A)V (D1).

By setting

(3.6) α :=
1
2

(c1)−1e−c2A,

we conclude V (A1) ≥ 1
2V (D1). Moreover, Lemma 2.1 implies that

A(Γ)
V (A1)

≥ (c3)−1e−c4Ar−1,

where constants c3 and c4 depending only on n.
This, together with (3.5), proves the lemma in the case when V

(
D1 ∩

Bx

(
r
2

)) ≤ αV (D1), where α is given by (3.6).
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Now we assume that V
(
D1 ∩Bx

(
r
2

)) ≥ αV (D1) and finish the proof
of the lemma. We need the following general fact, see [3]. Set W0 := D1 ∩
Bx

(
r
2

)
and W1 := D2 ∩Bx

(
r
2

)
or vice versa W0 := D2 ∩Bx

(
r
2

)
and W1 :=

D1 ∩Bx

(
r
2

)
. Then, for at least one of the two choices of {W0,W1}, there

exist a point w0 ∈W0 and a measurable set W1 ⊂W1 so that V (W1) ≥
1
2V (W1). Moreover, for each y ∈ W1, the minimizing geodesic yw0 from y
to w0 intersects Γ and the first intersection point y∗ satisfies d(y, y∗) ≤
d(y∗, w0).

Observe that αV (D1) ≤ V
(
D1 ∩Bx

(
r
2

)) ≤ 1
2V

(
Bx

(
r
2

))
. Therefore,

αV (D1) ≤ V
(
D2 ∩Bx

(
r
2

))
, too. So, regardless of how W1 is picked, we

have αV (D1) ≤ 2V (W1). Now, to establish the lemma, we need only to
show A(Γ)

V (W1)
≥ (c3)−1e−c4Ar−1 for some c3 and c4 depending only on n. For

this, we use polar coordinates at w0. For y ∈ W1, write y = expw0
(t0ξ). Let

y∗ be the first intersecting point of yw0 with Γ. Define t1 by y∗ = expw0
(t1ξ).

From the choice of w0 and W1, we know t1 ≥ 1
2 t0. Let t2 be the maximal t so

that expw0
(tξ) ∈ W1\C(w0). Clearly, t2 ≤ 2t1. From Lemma 2.1 we conclude

that ∫ t2

t1

J(w0, t, ξ)dt ≤ (t2 − t1)J(w0, t1, ξ)c1ec2A

≤ rJ(w0, t1, ξ)c1ec2A.

The desired result then follows after integrating in ξ. This proves the
lemma. �

Combining Lemma 2.1, Lemma 3.1 and the argument in [14], we get a
local Neumann Sobolev inequality of the following form.

Lemma 3.2. Let (M, g, e−fdv) be a smooth metric measure space with
Ricf ≥ 0. Then there exist constants ν > 2, c1 and c2, all depending only
on n such that

(∫
Bp(R)

|ϕ− ϕBp(R)|
2ν

ν−2

) ν−2
ν

≤ c1ec2A R2

V (Bp(R))
2
ν

∫
Bp(R)

|∇ϕ|2

for ϕ ∈ C∞(Bp(R)), where ϕBp(R) := V −1(Bp(R))
∫
Bp(R) ϕ.

Proof of Lemma 3.2. For y ∈ Bp(R), let γ(t) be a minimizing geodesic from
p to y such that γ(0) = p and γ(L) = y.Define y0 := p and yi := γ

(∑i
j=1

R
2j

)
for 1 ≤ i ≤ i0, where i0 is the largest integer i so that

∑i
j=1

R
2j < L. Define

also Bi := Byi

(
R

2i+1

)
for i < i0 and Bi := By

(
R

2i+1

)
for i ≥ i0.
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Let ϕBi
:= V −1(Bi)

∫
Bi
ϕ. Then limi→∞ ϕBi

= ϕ(y). Thus, we have

|ϕB0 − ϕ(y)| ≤
∑
i≥0

|ϕBi
− ϕBi+1 | ≤

∑
i≥0

(|ϕBi
− ϕDi

| + |ϕDi
− ϕBi+1 |).

Here, Di := Bzi

(
R

2i+3

) ⊂ Bi ∩Bi+1, and zi := γ
(∑i

j=1
R
2j + 3R

2i+3

)
.

By Lemma 2.1 it is easy to see that

|ϕBi
− ϕDi

| ≤ V (Di)−1

∫
Bi

|ϕ− ϕBi
| ≤ c1ec2AV (Bi)−1

∫
Bi

|ϕ− ϕBi
|.

Note that a similar bound for |ϕDi
− ϕBi+1 | also holds. So we conclude that

|ϕB0 − ϕ(y)| ≤ c1ec2A
∑
i≥0

V (Bi)−1

∫
Bi

|ϕ− ϕBi
|

≤ c1ec2A
∑
i≥0

(V (Bi)−1

∫
Bi

|ϕ− ϕBi
|2)

1
2

≤ c1ec2A
∑
i≥0

R

2i+1
(V (Bi)−1

∫
Bi

|∇ϕ|2)
1
2 ,

where in the second line we have use the Cauchy–Schwarz inequality and in
the last line we have used Lemma 3.1. On the other hand,

|ϕB0 − ϕ(y)| = cR− 1
2

∑
i≥0

(
R

2i+1

) 1
2

|ϕB0 − ϕ(y)|,

where c is a universal constant. So for Ri := R
2i+1 , we have

∑
i≥0

(Ri)
1
2 |ϕB0 − ϕ(y)| ≤ c1ec2AR

1
2

∑
i≥0

Ri

(
V (Bi)−1

∫
Bi

|∇ϕ|2
) 1

2

.

Hence, there exists an i (depending on y) so that

|ϕB0 − ϕ(y)|2 ≤ c1ec2A(RRi)
1

V (Bi)

∫
Bi

|∇ϕ|2.

Since Bi ⊂ By(3Ri), it follows that for each y ∈ Bp(R) there exists ry > 0
so that

(3.7) |ϕB0 − ϕ(y)|2 ≤ c1ec2A(Rry)V (By(ry))−1

∫
By(ry)∩Bp(R)

|∇ϕ|2.
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According to Lemma 2.1,

(3.8)
V (Bp(R))
V (By(ry))

≤ V (By(2R))
V (By(ry))

≤ c1ec2A

(
R

ry

)n

,

Solving ry from (3.8) and plugging into (3.7) then gives

|ϕB0 − ϕ(y)|2 ≤ c1ec2AR2V (Bp(R))−
1
nV (By(ry))

1
n
−1(3.9)

×
∫

By(ry)∩Bp(R)
|∇ϕ|2.

We now define At := {y ∈ Bp(R) : |ϕB0 − ϕ(y)| ≥ t}. Applying the Vitali
covering lemma, we find a countable disjoint collection {Bi(ri)}i∈I of balls
from {By(ry) : y ∈ At} such that for any y ∈ At, there exists i ∈ I such that
Bi(ri) ∩By(ry) �= φ and By(ry) ⊂ Bi(3ri). Then it follows, by Lemma 2.1
and (3.9), that

V (At)1−
1
n ≤ c1ec2A

∑
i∈I

V (Bi)1−
1
n

≤ c1ec2AR
2

t2
V (Bp(R))−

1
n

∑
i∈I

∫
Bi(ri)∩Bp(R)

|∇ϕ|2

= c1ec2AR
2

t2
V (Bp(R))−

1
n

∫
Bp(R)

|∇ϕ|2.

This may be rewritten as

(3.10) V (At) ≤ t−
2n

n−1B

with B := c1ec2AR
2n

n−1V (Bp(R))−
1

n−1

(∫
Bp(R) |∇ϕ|2

) n

n−1
. Now, for any

2n
n−1 > q > 2, we have

∫
Bp(R)

|ϕ− ϕB0 |q = q

∫ ∞

0
tq−1V (At)dt

= q

∫ T

0
tq−1V (At)dt+ q

∫ ∞

T
tq−1V (At)dt

≤ T qV (Bp(R)) +
q

2n
n−1 − q

T q− 2n

n−1B,
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where we have used (3.10) to bound the second integral in the second line.

Choosing q = 2n−1
n−1 and T :=

(
R2 1

V (Bp(R))

∫
Bp(R) |∇ϕ|2

) 1
2
, we get

(∫
Bp(R)

|ϕ− ϕB0 |
2ν

ν−2

) ν−2
ν

≤ c1ec2A R2

V (Bp(R))
2
ν

∫
Bp(R)

|∇ϕ|2,

where ν := 2q
q−2 = 4n− 2. This proves the theorem. �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let u be a positive solution to Δfu = 0. Applying the
Moser iteration scheme to the equation Δfu = 0 with the help of Lemma
2.1 and Lemma 3.2, we obtain

(3.11) sup
Bp( 1

2
R)
u ≤ c1ec2A

V (Bp(R))

∫
Bp(R)

u,

where c1 and c2 are constants depending only on n. For this, notice that
the Neumann Sobolev inequality, Lemma 3.2, also holds true when integrals
are with respect to the measure e−fdv, without changing the nature of the
dependency of the constants on A.

Now we start using the assumption on f that |f |(x) ≤ ar(x) + b on M .
The following argument follows closely the proof of Proposition 2.1 in [30].
Applying (2.3) we obtain, for any r > 0, that Δfr(x) ≤ n−1+4b

r + 3a. There-
fore, we can find r0 > 0 so that

(3.12) Δfr(x) ≤ 4a for any x ∈M\Bp(r0).

So for r > r0,

4a
∫

Bp(r)\Bp(r0)
ue−f ≥

∫
Bp(r)\Bp(r0)

u(Δfr)e−f

= r0

∫
∂Bp(r0)

〈∇u,∇r〉e−f − r

∫
∂Bp(r)

〈∇u,∇r〉e−f

+
∫

∂Bp(r)
ue−f −

∫
∂Bp(r0)

ue−f

=
∫

∂Bp(r)
ue−f −

∫
∂Bp(r0)

ue−f ,
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where we have used the fact that Δfu = 0 and
∫

∂Bp(r)
〈∇u,∇r〉e−f =

∫
Bp(r)

(Δfu)e−f = 0.

Denote by

U(r) :=
∫

Bp(r)\Bp(r0)
ue−f and

C0 :=
∫

∂Bp(r0)
ue−f .

Then the preceding inequality implies that for r > r0,

U ′(r) ≤ 4aU(r) + C0.

After integrating from r0 to R > r0, we obtain

U(R) ≤ C1e4aR

with C1 := U(r0) + 1
aC0. Consequently, we have

∫
Bp(R)

u ≤ C2e5aR.

Plugging this into (3.11), we conclude that

sup
Bp( 1

2
R)
u ≤ C3ec(n)aR,

where c(n) depends only on dimension n and C3 is independent of R. This
shows that

Ω(u) := lim sup
R→∞

{
1
R

sup
Bp(R)

log(u+ 1)

}
≤ c(n)a,

where c(n) depends only on n. By Proposition 3.1, we conclude

sup
M

|∇ log u| ≤ C(n)a

with C(n) being a constant depending only on n, as claimed in Theorem 3.1.
It is evident that if f has sublinear growth, then a can be taken as close to
zero as we wish, thus proving that u must be constant. �
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We now turn to polynomial growth f -harmonic functions.

Theorem 3.2. Let (M, g, e−fdv) be a complete non-compact smooth met-
ric measure space with Ricf ≥ 0 and f bounded. Then a sublinear growth
f-harmonic function on M must be a constant.

Proof of Theorem 3.2. Let w be an f -harmonic function so that

(3.13) lim
x→∞

|w|(x)
r(x)

= 0.

The Bochner formula asserts that

1
2

Δf |∇w|2 = |wij |2 + Ricf (∇w,∇w) ≥ 0.

So |∇w|2 is f -subharmonic. Applying the Moser iteration scheme, we obtain
a mean value inequality of the form

(3.14) sup
Bp( 1

2
R)

|∇w|2 ≤ C

V (Bp(R))

∫
Bp(R)

|∇w|2e−f

for some constant C depending on n and sup |f |. Note that now the constant
A in Lemma 2.1 and Lemma 3.2 is independent of R as f is assumed to be
bounded.

We now choose a cut-off φ such that φ = 1 on Bp(R), φ = 0 on M\Bp

(2R) and |∇φ| ≤ C
R . Integrating by parts and using Δfw = 0 we get

∫
M

|∇w|2φ2e−f = −2
∫

M
wφ〈∇w,∇φ〉e−f

≤ 2
∫

M
|w|φ|〈∇w,∇φ〉|e−f

≤ 1
2

∫
M

|∇w|2φ2e−f + 2
∫

M
w2|∇φ|2e−f .



Metric measure spaces 473

This shows that∫
Bp(R)

|∇w|2e−f ≤ 4
∫

M
w2|∇φ|2e−f ≤ C

R2

∫
Bp(2R)\Bp(R)

w2e−f

≤ C

R2

(
sup

Bp(2R)
w2

)
V (Bp(2R))

≤ C

R2

(
sup

Bp(2R)
w2

)
V (Bp(R)),

where in the last line we have used Lemma 2.1.
Together with (3.13) we obtain

lim
R→∞

1
V (Bp(R))

∫
Bp(R)

|∇w|2e−f = 0.

So by (3.14), |∇w| = 0 on M. The theorem is proved. �
Our next result is a dimension estimate for the space of polynomial

growth f -harmonic functions. For this, we use again Moser iteration and
Sobolev inequality. However, the situation here is considerably easier as f is
assumed to be bounded.

Theorem 3.3. Let (M, g, e−fdv) be a complete non-compact smooth metric
measure space with Ricf ≥ 0 and f bounded. We have

dimHd(M) ≤ Cdn−1 for any d ≥ 1.

Moreover, we have the sharp estimate

dimH1(M) ≤ n+ 1.

Proof of Theorem 3.3. We first establish the second result about the dimen-
sion of the space of linear growth f -harmonic functions. Consider u an
f -harmonic function with linear growth, i.e., Δfu = 0 and |u|(x) ≤ C
(r(x) + 1) on M. Using the argument in the proof of Theorem 3.2 we want
to claim that |∇u| is bounded on M. Indeed, since f is bounded, (3.14) is
true here, too. Now the reverse Poincaré inequality for f -harmonic function
yields

1
V (Bp(R))

∫
Bp(R)

|∇u|2e−f ≤ C

R2
sup

Bp(2R)
u2 ≤ C.

By (3.14) this shows that |∇u| is bounded on M .
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We now prove a mean value theorem at infinity of the following form.
For any bounded positive f -subharmonic function v we have

(3.15) lim
R→∞

1
Vf (Bp(R))

∫
Bp(R)

ve−f = sup
M

v.

When f is constant this was first established by P. Li [36] by a heat equation
method. Here, we follow the argument in [6] which uses a monotonicity
formula.

Let w = supM v − v, which is a positive function that satisfies

Δfw ≤ 0 and inf
M
w = 0.

To prove (3.15) we show instead

(3.16) lim
R→∞

1
Vf (Bp(R))

∫
Bp(R)

we−f = 0.

Let hR solve ΔfhR = 0 in Bp(R) with hR = w on ∂Bp(R). By the maximum
principle, hR is positive and uniformly bounded. Moreover, since infM w = 0,
for any ε > 0 there exists Rε > 0 such that

inf
Bp(R)

w < ε for any R > Rε.

Again, by the maximum principle, it follows that

inf
Bp(R)

hR < ε for any R > Rε.

Notice the following Harnack inequality holds.

sup
Bp( 1

2
R)
hR ≤ C inf

Bp( 1
2
R)
hR,

where C depends only on n and supM |f |. Indeed, this follows from
Lemma 2.1, Lemma 3.1 and Lemma 3.2 by the Moser iteration argument as
in [29, Chapter II].
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We therefore conclude that

(3.17) sup
Bp( 1

2
R)
hR < Cε for any R > 2Rε.

Furthermore, for R > r > 0, we have

0 =
∫

Bp(r)
(ΔfhR)e−f =

∫
∂Bp(r)

∂hR

∂r
e−f

=
∂

∂r

∫
∂Bp(r)

hRe−f −
∫

∂Bp(r)
hRΔf (r)e−f

≥ ∂

∂r

∫
∂Bp(r)

hRe−f − C

r

∫
∂Bp(r)

hRe−f ,

where in the last line we have used (2.3) and the fact that f is bounded.
This shows that log

(
1

rC

∫
∂Bp(r) hRe−f

)
is decreasing as a function of r for

0 < r < R. In particular, it shows that

∫
∂Bp(R)

hRe−f ≤ C

∫
∂Bp( 1

2
R)
hRe−f

for a constant C depending only on n and supM |f |.
So for R > 2Rε,

∫
∂Bp(R)

we−f =
∫

∂Bp(R)
hRe−f ≤ C

∫
∂Bp( 1

2
R)
hRe−f

≤ CεAf

(
∂Bp

(
1
2
R

))
,

where in the second line we have used (3.17). Since this inequality is true
for all R > 2Rε, integrating this from 2Rε to R gives

∫
Bp(R)\Bp(2Rε)

we−f ≤ Cε

∫ R

2Rε

Af

(
∂Bp

(
1
2
t

))
dt

≤ CεVf

(
Bp

(
1
2
R

))
.
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Hence, for R sufficiently large,

1
Vf (Bp(R))

∫
Bp(R)

we−f =
1

Vf (Bp(R))

∫
Bp(R)\Bp(2Rε)

we−f

+
1

Vf (Bp(R))

∫
Bp(2Rε)

we−f

≤ Cε+
1

Vf (Bp(R))

∫
Bp(2Rε)

we−f ≤ 2Cε.

This proves (3.16).
The rest of the argument now follows verbatim [18]. For completeness

we sketch it below.
For u, v ∈ H1(M) define

〈〈u, v〉〉 := lim
R→∞

1
Vf (Bp(R))

∫
Bp(R)

〈∇u,∇v〉e−f .

This is well defined in view of (3.16). Also, 〈〈, 〉〉 defines an inner product on

H′ := {u ∈ H1(M) : u(p) = 0}.

Consider any finite dimensional subspace H′′ of H′, of dimension l. Let
{u1, . . . , ul} be an orthonormal basis of (H′′, 〈〈, 〉〉) and define

F 2(x) :=
l∑

i=1

u2
i (x).

Note F is independent of the choice of {ui}. For a fixed point x ∈M, we
may choose {ui} so that ui(x) = 0 for all i �= 1. Then it follows that

F 2(x) = u2
1(x) and

F (x)∇F (x) = u1(x)∇u1(x).

Since 〈〈u1, u1〉〉 = 1, we have

sup
M

|∇u1| = 1.



Metric measure spaces 477

This shows that |∇F |(x) ≤ 1, too. Integrating along minimizing geodesics
and using F (p) = 0, we get that F (x) ≤ r(x). On the other hand,

2
l∑

i=1

∫
Bp(R)

|∇ui|2e−f =
∫

Bp(R)
(ΔfF

2)e−f(3.18)

≤ 2
∫

∂Bp(R)
F |∇F |e−f ≤ 2RAf (∂Bp(R)).

Since {ui} is orthonormal with respect to 〈〈, 〉〉, for any ε > 0 there exists
Rε such that for R > Rε,

l∑
i=1

1
Vf (Bp(R))

∫
Bp(R)

|∇ui|2e−f ≥ l − ε.

So, according to (3.18), for any R ≥ Rε,

l − ε

R
≤ (Vf (Bp(R)))′

Vf (Bp(R))
.

Integrating the inequality from Rε to R, we then conclude that

(3.19)
(
R

Rε

)l−ε

≤ Vf (Bp(R))
Vf (Bp(Rε))

On the other hand, according to Lemma 2.1, we have

Vf (Bp(R)) ≤ CRn.

Plugging into (3.19), we conclude that

dimH1(M) ≤ n+ 1.

This proves the second claim of Theorem 3.3.
To prove that dimHd(M) ≤ Cdn−1 for d > 1, we observe first that since

f is bounded we have for any x ∈M,

V (Bx(R))
V (Bx(r))

≤ Cv

(
R

r

)n

for r < R,
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where Cv depends on n and supM |f |. Moreover, the Sobolev inequality
Lemma 3.2 and the Moser iteration imply that we have a mean value inequal-
ity of the form

u2(x) ≤ CM
1

V (Bx(R))

∫
Bx(R)

u2

for any non-negative f -subharmonic function u on M. The result in [17] then
implies dimHd(M) ≤ Cdn−1. The theorem is proved. �

4. Rigidity

In this section, we investigate the structure at infinity of smooth metric
measure spaces whose λ1 (Δf ) attains its upper bound in Theorem 2.1. We
prove our result by using a Busemann function argument, which is similar
to the one in [21]. A manifold M is called connected at infinity if it has only
one end.

Theorem 4.1. Let
(
M, g, e−fdv

)
be a smooth metric measure space such

that Ricf ≥ 0. Assume that λ1 (Δf ) = 1
4a

2, where a is the linear growth rate
of f. Then, either M is connected at infinity or M is isometric to R ×N
for some compact manifold N .

Before proving the theorem, we recall some terminology. First, a man-
ifold is f -non-parabolic if Δf admits a positive Green’s function. Other-
wise, it is called f -parabolic. For an end of the manifold, the same definition
applies, where the Green’s function now refers to the one satisfying the Neu-
mann boundary conditions. We will divide our proof into two cases according
to the type of ends of M. In fact, the result for f -non-parabolic ends does
not require any assumption on f or λ1(Δf ). We state it in the following
lemma.

Lemma 4.1. Let (M, g, e−fdv) be a smooth metric measure space with
Ricf ≥ 0. Then M has at most one f-non-parabolic end.

Proof of Lemma 4.1. Suppose M has two f -non-parabolic ends. Then M
admits a positive non-constant bounded f -harmonic function v with

∫
M |∇v|2

e−f <∞. This kind of result was first discovered by Li and Tam (see [35]).
Now according to a result of Brighton [2], since v is bounded, it must be a
constant function. This is a contradiction.
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Alternatively, the lemma may be proved as follows. Using the Bochner
formula

1
2

Δf |∇v|2 = |vij |2 + 〈∇Δfv,∇v〉 + Ricf (∇v,∇v) ≥ |vij |2

and a cut-off argument, we get

2
∫

M
|vij |2e−fφ2 ≤

∫
M

(Δf |∇v|2)φ2e−f

= −
∫

M
〈∇|∇v|2,∇φ2〉e−f

≤
∫

M
|vij |2φ2e−f + 4

∫
M

|∇v|2|∇φ|2e−f .

Thus, ∫
M

|vij |2e−fφ2 ≤ 4
∫

M
|∇v|2|∇φ|2e−f .

Since
∫
M |∇v|2e−f <∞, the right hand side goes to 0 after taking the limit

R→ ∞ by choosing φ to be the standard cut-off function so that φ = 1 on
Bp(R) and φ = 0 outside Bp(2R). This forces vij = 0. Therefore, |∇v| must
be a constant on M . Now the weighted volume Vf (M) =

∫
M e−fdv = ∞ as

M is f -non-parabolic. Using
∫
M |∇v|2e−f <∞ again, we conclude |∇v| = 0

and v is a constant. This finishes our proof. �

We now prove Theorem 4.1.

Proof of Theorem 4.1. First, since λ1(Δf ) > 0, we know that M is f -non-
parabolic. This follows exactly as in the case f = constant. We refer to [16]
for details.

Let us assume that M has at least two ends. By Lemma 4.1 exactly one
end is f -non-parabolic, and all other are f -parabolic. We denote E to be
the f -non-parabolic end and let F := M\E. Then F is an f -parabolic end.

First, we claim the fact that λ1(Δf ) = 1
4a

2 implies

(4.1) Vf (F\Bp(R)) ≤ Ce−aR.

This claim can be verified by following the argument of Li and Wang in [20].
Since they only use the variational principle for the bottom spectrum and
integration by parts, it is easy to check that their estimates can be carried
over to our setting. We shall omit the details here.
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For a geodesic ray γ contained in the end F, define the associated Buse-
mann function by

β(x) := lim
t→∞(t− d(x, γ(t))).

Denote by τt(s) the normal minimizing geodesic from γ(t) to x. According
to (2.3) we have

Δf (d(γ(t), x)) ≤ n− 1
r

− 2
r
f(x) +

2
r2

∫ r

0
f(s)ds,

where r := d(γ(t), x) and f(s) := f(τt(s)). Let us assume that there exist
α > 0 and C > 0 such that |f(z)| ≤ αd(p, z) + C, for all z ∈M. Then,

|f(s)| = |f(τt(s))| ≤ αd(p, τt(s)) + C

≤ α(d(p, x) + d(x, τt(s))) + C

= α(r − s) + (αd(p, x) + C),

for any 0 < s < r. Therefore, since |f(x)| ≤ αd(p, x) + C, we conclude

Δf (d(γ(t), x)) ≤ n− 1 + 4(αd(p, x) + C)
r

+
2
r2

∫ r

0
α(r − s)ds

=
n− 1 + 4(αd(p, x) + C)

r
+ α.

Now, by using this and the definition of the Busemann function, it is stan-
dard to see that the following inequality holds in the sense of distributions:

Δfβ(x) ≥ −α.

Now, if a denotes the linear growth rate of f i.e., it is the infimum of such
α, it follows that

(4.2) Δfβ(x) ≥ −a.

To estimate the volume growth of the f -non-parabolic end E we will use
(4.2) and the fact that |∇β| = 1. Note

Δfe
aβ ≥ 0.

We also know that on the end E the Busemann function is equivalent to the
distance function, that is, there exists a constant C such that

−r(x) − C ≤ β(x) ≤ −r(x) + C
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for x ∈ E, see [21]. Integrating Δfeaβ on {−t ≤ β ≤ −r} ∩ E and using
Stokes theorem we get

0 ≤ 1
a

∫
{−t≤β≤−r}∩E

(Δfeaβ)e−f

=
∫
{β=−r}∩E

eaβe−f −
∫
{β=−t}∩E

eaβe−f

= e−arAf ({β = −r} ∩ E) − e−atAf ({β = −t} ∩ E),

where we have used |∇β| = 1. Here, Af (Ω) denotes the area of the set Ω
with respect to the weighted area form. This shows for a fixed r and all
t > r,

Af ({β = −t} ∩ E) ≤ C(r)eat.

Integrating with respect to t from r to R we obtain an upper bound for the
volume of the sublevel sets of the Busemann function. Since the Busemann
function is equivalent with the distance function on E, it follows that for
R > 0,

(4.3) Vf (Bp(R) ∩ E) ≤ CeaR.

Consider the function

B := e
1
2
aβ .

By (4.2) and |∇β| = 1, we have

(4.4) ΔfB ≥ −1
4
a2B.

We now use B as a test function for the variational formula of λ1(Δf ) =
1
4a

2. For this sake, we define a cut-off function φ with support in Bp(2R)
such that φ = 1 on Bp(R) and |∇φ| ≤ C

R . Then, according to the variational
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characterization of λ1(Δf ), we have

1
4
a2

∫
M

(Bφ)2e−f ≤
∫

M
|∇(Bφ)|2e−f

=
∫

M
|∇B|2φ2e−f +

1
2

∫
M
〈∇B2,∇φ2〉e−f +

∫
M

|∇φ|2B2e−f

=
∫

M
|∇B|2φ2e−f − 1

2

∫
M

(ΔfB
2)φ2e−f +

∫
M

|∇φ|2B2e−f

= −
∫

M
B(ΔfB)φ2e−f +

∫
M

|∇φ|2B2e−f

=
1
4
a2

∫
M
B2φ2e−f +

∫
M

|∇φ|2B2e−f −
∫

M
B

(
ΔfB +

1
4
a2B

)
φ2e−f .

Therefore,
∫

M
B

(
ΔfB +

1
4
a2B

)
φ2e−f ≤

∫
M

|∇φ|2B2e−f .

From (4.1) and (4.3) and the construction of B, arguing as in [21], we have
∫

M
|∇φ|2B2e−f ≤ C

R
→ 0.

In view of (4.4), we conclude ΔfB + 1
4a

2B = 0. In particular, B is smooth.
Therefore,

Δfβ = −a and |∇β| = 1

hold everywhere on M. Now, by the Bochner formula,

0 =
1
2

Δf |∇β|2 = |βij |2 + 〈∇Δfβ,∇β〉 +Ricf (∇β,∇β) ≥ |βij |2.

This proves βij = 0, which implies M is a direct product given by M =
R ×N. That N is compact follows from the assumption of M having two
ends. This proves the theorem. �

We now discuss an important application of this result to the gradi-
ent Ricci solitons. Recall that a gradient steady Ricci soliton is a manifold
(M, g, f) such that Rij + fij = 0. Here we prove that gradient steady Ricci
solitons are either connected at infinity or they are trivial, that is, isometric
to a Ricci flat cylinder.
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Theorem 4.2. Let (M, g, f) be a gradient steady Ricci soliton. Then either
M is connected at infinity or M is isometric to R ×N for a compact Ricci
flat manifold N.

Proof of Theorem 4.2. Let us assume that M has at least two ends. It is
known that for any gradient steady Ricci soliton there exists a > 0 so that
|∇f |2 + S = a2, see (2.7). By Proposition 2.1 we know that λ1(Δf ) = 1

4a
2.

Then, by Theorem 4.1 we conclude M = R ×N for some compact manifold
N. It is easy to see N has to be a steady Ricci soliton also. However, any
compact steady gradient Ricci soliton must be Ricci flat. This concludes the
proof. �
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