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Refined analytic torsion for twisted

de Rham complexes

Rung-Tzung Huang

Let E be a flat complex vector bundle over a closed oriented odd
dimensional manifold M endowed with a flat connection ∇. The
refined analytic torsion for (M,E) was defined and studied by
Braverman and Kappeler. Recently, Mathai and Wu defined and
studied the analytic torsion for the twisted de Rham complex with
an odd-degree closed differential form H, other than one form, as
a flux and with coefficients in E. In this paper, we generalize the
construction of the refined analytic torsion to the twisted de Rham
complex. We show that the refined analytic torsion of the twisted
de Rham complex is independent of the choice of the Riemannian
metric on M and the Hermitian metric on E. We also show that
the twisted refined analytic torsion is invariant (under a natural
identification) if H is deformed within its cohomology class. We
prove a duality theorem, establishing a relationship between the
twisted refined analytic torsion corresponding to a flat connection
and its dual. We also define the twisted analogue of the Ray–Singer
metric and calculate the twisted Ray–Singer metric of the twisted
refined analytic torsion. In particular, we show that in case that the
Hermitian connection is flat, the twisted refined analytic torsion is
an element with the twisted Ray–Singer norm one.

1. Introduction

Let E be a flat complex vector bundle over a closed oriented odd-dimensional
manifold M endowed with a flat connection ∇. Braverman and Kappeler
[4–8] defined and studied the refined analytic torsion for (M, E), which can
be viewed as a refinement of the Ray–Singer torsion [9, 15, 18] and an
analytic analogue of the Farber–Turaev torsion, [10, 11, 22, 23]. It was shown
that the refined analytic torsion is closely related with the Farber–Turaev
torsion,[4, 5, 8, 14].

In [16, 17], Mathai and Wu generalize the classical construction of the
Ray–Singer torsion to the twisted de Rham complex with an odd-degree
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closed differential form H, other than one form, as a flux and with coef-
ficients in E. The twisted de Rham complex is the Z2-graded complex
(Ω•(M, E),∇H), where (Ω•(M, E) is the space of differential forms with
coefficients in E and ∇H := ∇ + H ∧ ·. Its cohomology H•(M, E, H) is
called the twisted de Rham cohomology. Mathai and Wu [16] defined the ana-
lytic torsion of the twisted de Rham complex τ(M, E, H) ∈ Det

(
H•(M, E,

H)
)

as a ratio of ζ-regularized determinants of partial Laplacians, multiplied
by the ratio of volume elements of the cohomology groups. They showed that
when dimM is odd, τ(M, E, H) is independent of the choice of the Rieman-
nian metric on M and the Hermitian metric on E. They also showed that
the torsion τ(M, E, H) is invariant (under a natural identification) if H is
deformed within its cohomology class and discussed its connection with the
generalized geometry [13].

In this paper, we define the refined analytic torsion for the twisted de
Rham complex ρan(∇H) ∈ Det

(
H•(M, E, H)

)
. We show that the twisted

refined analytic torsion ρan(∇H) is independent of the choice of the Rie-
mannian metric on M and the Hermitian metric on E. We then show that
the torsion ρan(∇H) is invariant (under a natural identification) if H is
deformed within its cohomology class. We also establish a duality theorem,
establishing a relationship between the twisted refined analytic torsion cor-
responding to a flat connection and its dual, which is a twisted analogue
of Theorem 10.3 of [5]. In the end, we define the twisted analogue of the
Ray–Singer metric and then calculate the twisted Ray–Singer norm of the
twisted refined analytic torsion. In particular, we show that in case of flat
Hermitian metric, the twisted refined analytic torsion is an element with the
twisted Ray–Singer norm one.

The paper is organized as follows. In Section 2, we review some stan-
dard materials about determinant lines of a Z2-graded finite dimensional
complex. Then we define and calculate the refined torsion of the Z2-graded
finite-dimensional complex with a chirality operator. In Section 3, we define
the graded determinant of the twisted version of the odd signature operator
of a flat vector bundle E over a closed oriented odd-dimensional manifold
M . We use this graded determinant to define a canonical element ρH of
the determinant line of the twisted de Rham cohomology of the vector bun-
dle E. We study the relationship between this graded determinant and the
η-invariant of the twisted odd signature operator. In Section 4, we first study
the metric dependence of the canonical element ρH and then use this ele-
ment to construct the refined analytic torsion twisted by the flux form H. We
show that the twisted refined analytic torsion is independent of the metric
gM and the representative H in the cohomology class [H]. In Section 5, we
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first review the concept of the dual of a complex and construct a natural
isomorphism between the determinant lines of a Z2-graded complex and its
dual. We then establish a relationship between the twisted refined analytic
torsion corresponding to a flat connection and that of its dual. In Section 6,
we first define the twisted Ray–Singer metric and then calculate the twisted
Ray–Singer norm of the twisted refined analytic torsion.

Throughout this paper, the bar over an integer means taking the value
modulo 2.

2. The refined torsion of a Z2-graded finite-dimensional
complex with a chirality operator

In this section, we first review some standard materials about determinant
lines of a Z2-graded finite-dimensional complex. Then we define and calcu-
late the refined torsion of the Z2-graded finite-dimensional complex with a
chirality operator. The contents are Z2-graded analogues of Sections 2, 4
and 5 of [5]. Throughout this section k is a field of characteristic zero.

2.1. The determinant line of a Z2-graded
finite dimensional complex

Given a k-vector space V of dimension n, the determinant line of V is the
line Det(V ) := ∧nV , where ∧nV denotes the nth exterior power of V . By
definition, we set Det(0) := k. Further, we denote by Det(V )−1 the dual line
of Det(V ). Let

(2.1) 0 −→ C0 ∂0−→ C1 ∂1−→ · · · ∂m−1−→ Cm ∂m−→ 0

be an odd length, i.e., m = 2r − 1 being a positive odd integer, cochain
complex of finite-dimensional k-vector spaces. Set

C 0̄ = Ceven =
r−1⊕

i=0

C2i, C 1̄ = Codd =
r−1⊕

i=0

C2i+1.

Let

(2.2) (C•, d) : · · · d1̄−→ C 0̄ d0̄−→ C 1̄ d1̄−→ C 0̄ d0̄−→ · · ·

be a Z2-graded cochain complex of finite-dimensional k-vector spaces. For
example, we can choose dk̄ =

∑
i,i=k mod 2 ∂i. Denote by H k̄(dk̄), (k = 0, 1)
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its cohomology. Set

Det(C•) := Det(C 0̄) ⊗ Det(C 1̄)−1,(2.3)

Det(H•(d)) := Det(H 0̄(d0̄)) ⊗ Det(H 1̄(d1̄))
−1.

2.2. The fusion isomorphisms (cf. [5, Subsection 2.3])

For two finite-dimensional k-vector spaces V and W , we denote by μV,W the
canonical fusion isomorphism,

(2.4) μV,W : Det(V ) ⊗ Det(W ) → Det(V ⊕ W ).

For v ∈ Det(V ), w ∈ Det(W ), we have

(2.5) μV,W (v ⊗ w) = (−1)dim V ·dim W μW,V (w ⊗ v).

By a slight abuse of notation, denote by μ−1
V,W the transpose of the inverse

of μV,W .
Similarly, if V1, . . . , Vr are finite-dimensional k-vector spaces, we define

an isomorphism

(2.6) μV1,...,Vr
: Det(V1) ⊗ · · · ⊗ Det(Vr) → Det(V1 ⊕ · · · ⊕ Vr).

2.3. The isomorphism between the determinant lines
of a Z2-graded complex and its cohomology

For k = 0, 1, fix a direct sum decomposition

(2.7) C k̄ = Bk̄ ⊕ H k̄ ⊕ Ak̄,

such that Bk̄ ⊕ H k̄ = (Ker dk̄) ∩ C k̄ and Bk̄ = dk+1

(
Ck+1

)
= dk+1

(
Ak+1

)
.

Then H k̄ is naturally isomorphic to the cohomology H k̄(dk̄) and dk̄ defines
an isomorphism dk̄ : Ak̄ → Bk+1.

Fix ck̄ ∈ Det(C k̄) and ak̄ ∈ Det(Ak̄). Let dk̄(ak̄) ∈ Det(Bk+1) denote the
image of ak̄ under the map Det(Ak̄) → Det(Bk+1) induced by the isomor-
phism dk̄ : Ak̄ → Bk+1. Then there is a unique element hk̄ ∈ Det(H k̄) such
that

(2.8) ck̄ = μBk̄,H k̄,Ak̄

(
dk+1(ak+1) ⊗ hk̄ ⊗ ak̄

)
,

where μBk̄,H k̄,Ak̄ is the fusion isomorphism, cf. (2.6), see also [5, Subsection
2.3].
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Define the canonical isomorphism

(2.9) φC• = φ(C•,d) : Det(C•) −→ Det(H•(d)),

by the formula

(2.10) φC• : c0̄ ⊗ c−1
1̄

	→ (−1)N (C•)h0̄ ⊗ h−1
1̄

,

where

(2.11) N (C•) :=
1
2

∑

k=0,1

dimAk̄ · ( dimAk̄ + (−1)k+1
)
.

It is easy to check that φC• is independent of the choices of ck̄, ak̄, hk̄ and
the decomposition (2.7).

2.4. The fusion isomorphism for Z2-graded complexes

Let C• = C 0̄ ⊕ C 1̄ and C̃• = C̃ 0̄ ⊕ C̃ 1̄ be finite-dimensional Z2-graded
k-vector spaces. The fusion isomorphism

μC•,C̃• : Det(C•) ⊗ Det(C̃•) → Det(C• ⊕ C̃•),

is defined by the formula

(2.12) μC•,C̃• := (−1)M(C•,C̃•)μC 0̄,C̃ 0̄ ⊗ μ−1

C 1̄,C̃ 1̄
,

where

(2.13) M(C•, C̃•) := dimC 1̄ · dim C̃ 0̄.

The following lemma is a Z2-graded analogue of [5, Lemma 2.7] and [11,
Lemma 2.4]. The proof is a slight modification of the proof of [5, Lemma
2.7].

Lemma 2.1. Let (C•, d) and (C̃•, d̃) be Z2-graded complexes with finite
dimensional k-vector spaces. Further, assume that the Euler characteristics
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χ(C•) = χ(C̃•) = 0. Then the following diagram commutes:

(2.14)

Det(C•) ⊗ Det(C̃•)
φC•⊗φC̃•−−−−−−→ Det

(
H•(d)

) ⊗ Det
(
H•(d̃)

)

μC•,C̃•
⏐
⏐
	

⏐
⏐
	μH•(d),H•(d̃)

Det(C• ⊕ C̃•)
φC•⊕C̃•−−−−−→ Det

(
H•(d ⊕ d̃)

) ∼= Det
(
H•(d) ⊕ H•(d̃)

)
.

Proof. Proceeding similar procedures as the proof of Lemma 2.7 of [5], cf.
[5, p. 152–153], we conclude that to prove the commutativity of the diagram
(2.14) it remains to show that, mod 2,

N (C• ⊕ C̃•) + N (C•) + N (C̃•) + M(C•, C̃•) + M(H•, H̃•)
(2.15)

≡
∑

k=0,1

(
dimAk̄ · dim Ãk+1 + dimH k̄ · dim Ãk+1 + dimAk̄ · dim H̃ k̄

)
.

Using the identity

(2.16)
(x + y)(x + y + (−1)j)

2
− x(x + (−1)j)

2
− y(y + (−1)j)

2
= xy,

where x, y ∈ C, j ∈ Z≥0, we have

(2.17) N (C• ⊕ C̃•) −N (C•) −N (C̃•) =
∑

k=0,1

dimAk̄ · dim Ãk̄.

By (2.7) and the equalities dimAk+1 = dimBk̄, dim Ãk+1 = dim B̃k̄, we have

dimC k̄ = dimAk̄ + dim Ak+1 + dim H k̄,(2.18)

dim C̃ k̄ = dim Ãk̄ + dim Ãk+1 + dim H̃ k̄.

By (2.13), (2.18) and a straightforward computation, we obtain, modulo 2,

M(C•, C̃•) + M(H•, H̃•) +
∑

k=0,1

(
dimAk̄ · dim Ãk+1(2.19)

+ dimH k̄ · dim Ãk+1 + dim Ak̄ · dim H̃ k̄
)

=
∑

k=0,1

dimAk̄ · dim Ãk̄ + dim A1̄ · (dim H̃ 0̄ + dim H̃ 1̄)

+ (dim H 0̄ + dimH 1̄) · dim Ã1̄.
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By (2.17), (2.19) and the assumption that the Euler characteristic of the
complex (C•, d) (resp. (C̃•, d̃)) is zero, i.e.,

∑
k=0,1 dim H k̄ ≡ 0 (mod 2) (resp.

∑
k=0,1 dim H̃ k̄ ≡ 0(mod 2)), we obtain the equality (2.15). �

2.5. The refined torsion of a finite dimensional Z2-graded
complex with a chirality operator

Let (C•, d) be a Z2-graded complex defined as (2.2). A chirality operator is an
involution Γ : C• → C• such that Γ(C k̄) = Ck+1, k = 0, 1. For ck̄ ∈ Det(C k̄),
we denote by Γck̄ ∈ Det(Ck+1) the image of ck̄ under the isomorphism
Det(C k̄) → Det(Ck+1) induced by Γ.

Fix a nonzero element c0̄ ∈ Det(C 0̄) and consider the element

(2.20) cΓ := (−1)R(C•) · c0̄ ⊗ (Γc0̄)
−1 ∈ Det(C•),

where

(2.21) R(C•) := 1
2 dimC 0̄ · (dim C 0̄ + 1).

The element defined in (2.20) is a Z2-graded analogue of the Z-graded
one as defined in [5, (4-1)], by Braverman–Kappeler, and is chosen to fit the
Z2-graded setting.

Definition 2.1. The refined torsion of the pair (C•, Γ) is the element

(2.22) ρΓ = ρC•,Γ := φC•(cΓ),

where φC• is the canonical map defined by (2.9).

The following is the Z2-graded analogue of Lemma 4.7 of [5].

Lemma 2.2. Let (C•, d) and (C̃•, d̃) be Z2-graded complexes defined as
(2.2) and let Γ : C• → C•, Γ̃ : C̃• → C̃• be chirality operators. Then Γ̂ :=
Γ ⊕ Γ̃ : C• ⊕ C̃• → C• ⊕ C̃• is a chirality operator on the direct sum complex
(C• ⊕ C̃•, d ⊕ d̃) and

(2.23) ρΓ̂ = μH•(d),H•(d̃)

(
ρΓ ⊗ ρΓ̃

)
.
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Proof. Clearly, Γ̂2 = 1 and Γ̂(C k̄ ⊕ C̃ k̄) = Ck+1 ⊕ C̃k+1. Hence, Γ̂ is a chi-
rality operator. By Lemma 2.1, to prove (2.23) it is enough to show that

(2.24) cΓ̂ = μC•,Ĉ•
(
cΓ ⊗ cΓ̃

)
.

Fix nonzero elements c0̄ ∈ Det(C 0̄), c̃0̄ ∈ Det(C̃ 0̄) and set ĉ0̄ = μC 0̄,C̃0̄
(c0̄ ⊗

c̃0̄). We denote the operators induced by Γ and Γ̃ on Det(C•) and Det(C̃•)
by the same letters. Thus,

Γ̂ĉ0̄ = (Γ ⊕ Γ̃) ◦ μC 0̄,C̃ 0̄(c0̄ ⊗ c̃0̄) = μC 1̄,C̃ 1̄(Γc0̄ ⊗ Γ̃c̃0̄).

Hence, it follows from (2.12) and (2.20) that:

μC•,C̃•(cΓ ⊗ cΓ̃) = (−1)M(C•,C̃•)+R(C•)+R(C̃•) · ĉ0̄ ⊗ (Γ̂ĉ0̄)
−1(2.25)

= (−1)M(C•,C̃•)+R(C•)+R(C̃•)−R(C•⊕C̃•) · cΓ̂.

Using the identity (2.16), we obtain from (2.21)

(2.26) R(C•) + R(C̃•) −R(C• ⊕ C̃•) = dim C 0̄ · dim C̃ 0̄.

Using the isomorphism Γ : C 0̄ → C 1̄, one sees that dim C 0̄ = dim C 1̄. Com-
bining this fact with (2.13) and (2.26), we conclude that

(2.27) M(C•, C̃•) + R(C•) + R(C̃•) −R(C• ⊕ C̃•) ≡ 0 mod 2.

The identity (2.24) follows from (2.25) and (2.27). �

2.6. Dependence of the Z2-graded refined torsion
on the chirality operator

Suppose that Γt, t ∈ R, is a smooth family of chirality operators on the
Z2-graded complex (C•, d). Let Γ̇t : C k̄ → Ck+1, k = 0, 1, denote the deriva-
tive of Γt with respect to t. Then, for k = 0, 1, the composition Γ̇t ◦ Γt maps
C k̄ into itself. Define the supertrace Trs(Γ̇t ◦ Γt) of Γ̇t ◦ Γt by the formula

(2.28) Trs(Γ̇t ◦ Γt) := Tr(Γ̇t ◦ Γt|C 0̄) − Tr(Γ̇t ◦ Γt|C 1̄).

The following proposition is the Z2-graded analogue of Proposition 4.9
of [5]. We modify the proof of Proposition 4.9 of [5] slightly to fit our setting.
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Proposition 2.1. Let (C•, d) be a Z2-graded complex of finite-dimensional
k-vector spaces and let Γt : C k̄ → Ck+1, t ∈ R, be a smooth family of chirality
operators on C•. Then the following equality holds:

(2.29)
d

dt
ρΓt

= 1
2 Trs(Γ̇t ◦ Γt) · ρΓt

.

Proof. Let Γt,0̄ denote the restriction of Γt to C 0̄. We denoted the map
Det(C 0̄) → Det(C 1̄) induced by Γt by the same symbol Γt above. To avoid
confusion we denote this map by ΓDet

t,0̄
in the proof.

For t0 ∈ R, we have Γt,0̄ = Γt,0̄ ◦ Γt0,1̄Γt0,0̄. Hence,

d

dt

∣
∣
∣
∣
t=t0

ΓDet
t,0̄ =

d

dt

∣
∣
∣
∣
t=t0

[
Det(Γt,0̄ ◦ Γt0,1̄)Γ

Det
t0,0̄

]
= Tr(Γ̇t0,0̄ ◦ Γt0,1̄)Γ

Det
t0,0̄

,

where for the latter equality we used the fact that for any smooth family
of operators At : C 1̄ → C 1̄, one has d

dt Det(At) = Tr(ȦtA
−1
t ) · Det(At) and

that Γ−1
t0,0̄

= Γt0,1̄. Hence, for any nonzero element c0̄ ∈ Det(C 0̄), we have

(2.30)
d

dt
(ΓDet

t,0̄ (c0̄))
± = ±Tr

(
Γ̇t,0̄ ◦ Γt,1̄

) · (ΓDet
t,0̄ (c0̄)

)±
.

By (2.30) and the definition (2.20) of cΓ, we obtain

(2.31)
d

dt
cΓt

= −Tr(Γ̇t,0̄ ◦ Γt,1̄) · cΓt
.

Since Γt,0̄ ◦ Γt,1̄ = 1, we have

0 =
d

dt
Tr(Γt,0̄ ◦ Γt,1̄) = Tr(Γ̇t,0̄ ◦ Γt,1̄) + Tr(Γt,0̄ ◦ Γ̇t,1̄).

Hence,

(2.32) Tr(Γ̇t,0̄ ◦ Γt,1̄) = −Tr(Γ̇t,1̄ ◦ Γt,0̄).

Combining (2.31) with (2.32), we obtain (2.29). �

2.7. The signature operator

We now introduce the Z2-graded analogue of the Z-graded finite dimensional
odd signature operator of [5, Section 5]. The signature operators Bk, k = 0, 1
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are defined by the formula

(2.33) Bk̄ := Γdk̄ + dk+1Γ.

Define

C k̄
+ := Ker(dk+1 ◦ Γ) ∩ C k̄ = Γ

(
Ker dk+1 ∩ Ck+1

)
, C k̄

− := Ker dk̄ ∩ C k̄.

(2.34)

Let B±
k̄

denote the restriction of Bk̄ to C k̄±. Then one has

ImB+
k̄
⊆ Im(Γ ◦ dk̄|C k̄) ⊆ Γ(Ker dk+1|Ck+1) ⊆ C k̄

+;(2.35)

ImB−
k̄
⊆ Im(dk+1 ◦ Γ|C k̄) ⊆ Im(dk+1|Ck+1) ⊆ C k̄

−.(2.36)

Hence,

B+
k̄

= Γ ◦ dk̄ : C k̄
+ → C k̄

+, B−
k̄

= dk+1 ◦ Γ : C k̄
− → C k̄

−.

Note that Bk̄ = Γ ◦ Bk+1 ◦ Γ.
The following lemma is the Z2-graded analogue of [5, Lemma 5.2]. The

proof is a verbatim repetition of the proof of [5, Lemma 5.2], we skip the
proof.

Lemma 2.3. Suppose that the signature operators Bk̄, k = 0, 1 are bijective.
Then the complex (C•, d) is acyclic and

(2.37) C k̄ = C k̄
+ ⊕ C k̄

−.

2.8. Calculation of the refined torsion in case B is bijective

In this subsection, we compute the Z2-graded refined torsion in the case that
Bk̄, k = 0, 1 are bijective. Assume that the signature operators Bk̄, k = 0, 1
are bijective. Then, by Lemma 2.3, the complex (C•, d) is acyclic. Note
that ΓB−

0̄
Γ = B+

1̄
. Hence Det(B−

0̄
) = Det(B+

1̄
). Then we have the following

definition.

Definition 2.2. The graded determinant of the signature operator B0̄ is
defined by the formula

(2.38) Detgr(B0̄) := Det(B+
0̄

)/ Det(−B−
0̄

) = Det(B+
0̄

)/ Det(−B+
1̄

).
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The following proposition is the Z2-graded analogue of [5, Proposition
5.6]. We modify the proof of [5, Proposition 5.6] slightly to fit our setting.

Proposition 2.2. Suppose that the signature operators Bk̄, k = 0, 1 are
invertible and, hence, the complex (C•, d) is acyclic. Then

(2.39) ρΓ = Detgr(B0̄).

Proof. We choose the decomposition (2.7) to be C k̄ = C k̄− ⊕ C k̄
+ and define

elements ck̄ as follows. Fix a nonzero element ak̄ ∈ Det(C k̄
+) and set

ck̄ = μC k̄
−,C k̄

+
(Γak+1 ⊗ ak̄),

where μC k̄
−,C k̄

+
is the fusion isomorphism, cf. (2.4), see also [5, (2-5)]. Note

that, by (2.5),

Γck̄ = μ
Ck+1

+ ,Ck+1
−

(ak+1 ⊗ Γak̄)(2.40)

= (−1)dim Ck+1
+ ·dim Ck+1

− · μ
Ck+1

− ,Ck+1
+

(Γak̄ ⊗ ak+1)

= (−1)dim Ck+1
+ ·dim Ck+1

− · ck+1.

Thus, from (2.20), we obtain

cΓ = (−1)R(C•) · c0̄ ⊗ (Γc0̄)
−1(2.41)

= (−1)R(C•)+dim C 1̄
+·dim C 1̄

− · c0̄ ⊗ c−1
1̄

.

Hence, by (2.22) and (2.10), to compute ρΓ we need to compute the elements
hk̄ ∈ Det(H k̄) ∼= k.

If L is a complex line and x, y ∈ L with y �= 0, we denote by [x : y] ∈ k
the unique number such that x = [x : y]y. Then

hk̄ = [ck̄ : μC k̄
−,C k̄

+
(dk+1ak+1 ⊗ ak̄)](2.42)

= [μC k̄
−,C k̄

+
(Γak+1 ⊗ ak̄) : μC k̄

−,C k̄
+
(dk+1ak+1 ⊗ ak̄)]

= [Γak+1 : dk+1ak+1]

= [ak+1 : Γdk+1ak+1]

= Det(Γdk+1)
−1.
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Combining (2.10) and (2.42), we obtain

φC•(c0̄ ⊗ c−1
1̄

) = (−1)N (C•) · Det(Γd0) · Det(Γd1)
−1(2.43)

= (−1)N (C•)+dim C 1̄
+ · Det(Γd0) · Det(−Γd1)

−1.

Combining (2.22), (2.38), (2.41) and (2.43), we have

ρΓ = φC•(cΓ) = (−1)R(C•)+dim C 1̄
+·dim C 1̄

−+N (C•)+dim C 1̄
+ · Detgr(B0̄).

Hence, we are remaining to show that

F(C•) := R(C•) + dimC 1̄
+ · dim C 0̄

+ + N (C•) + dimC 1̄
+ ≡ 0 mod 2,

(2.44)

here we use the fact that ΓB+
0̄

Γ = B−
1̄

. By the fact that ΓB+
1̄

Γ = B−
0̄

and
(2.21), we have

R(C•) = 1
2(dimC 0̄

+ + dimC 0̄
−) · (dimC 0̄

+ + dim C 0̄
− + 1)(2.45)

= 1
2(dimC 0̄

+ + dimC 1̄
+) · (dimC 0̄

+ + dim C 1̄
+ + 1)

= 1
2(dimC 0̄

+)2 + 1
2(dimC 1̄

+)2 + dim C 0̄
+ · dim C 1̄

+

+ 1
2 dimC 0̄

+ + 1
2 dim C 1̄

+.

Recall that, (2.11),

N (C•) = 1
2 dimC 0̄

+(C 0̄
+ + 1) + 1

2 dimC 1̄
+(C 1̄

+ − 1)(2.46)

= 1
2(dim C 0̄

+)2 + 1
2 dimC 0̄

+ + 1
2(dim C 1̄

+)2 − 1
2 dimC 1̄

+.

Combining (2.44) to (2.46), we have

F(C•) = (dim C 0̄
+)2 + (dim C 1̄

+)2 + 2 dimC 0̄
+ · dimC 1̄

+ + dimC 0̄
+ + dim C 1̄

+.

(2.47)

By (2.47) and the fact that for any x ∈ Z, x(x + 1) ≡ 0 (mod 2), we obtain

F(C•) = 0. �

2.9. Calculation of the refined torsion in case B is not bijective

In this subsection, we compute the Z2-graded refined torsion in the case
that Bk̄, k = 0, 1 are not bijective. Note that the operator B2

k̄
maps C k̄ into
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itself. For an arbitrary interval I, denote by C k̄
I ⊂ C k̄ the linear span of the

generalized eigenvectors of B2
k̄
, corresponding to eigenvalue λ with λ ∈ I.

Since both Γ and dk̄ commute with Bk̄ (and, hence, with B2
k̄
), Γ(C k̄

I) ⊂
Ck+1
I and dk̄(C

k̄
I) ⊂ Ck+1

I . Hence, we obtain a subcomplex C•
I of C• and

the restriction ΓI of Γ to C•
I is a chirality operator for C•

I . We denote by
H•

I(d) the cohomology of the complex (C•
I , dI). Denote by dk̄,I and Bk̄,I the

restrictions of dk̄ and Bk̄ to C k̄
I . Then Bk̄,I = ΓIdk̄,I + dk+1,IΓI .

Lemma 2.4. If 0 /∈ I, then the complex (C•
I , dI) is acyclic.

Proof. If, for k = 0, 1, x ∈ Ker dk̄,I , then B2
k̄,Ix = (dk+1Γ)2x ∈ Im dk+1,I ⊂

Ker dk,I . Since the operators B2
k̄,I : C k̄

I → C k̄
I , k = 0, 1 are invertible, we con-

clude that Ker dk,I = Im dk+1,I . �
For each λ ≥ 0, C• = C•

[0,λ] ⊕ C•
(λ,∞) and H•

(λ,∞)(d) = 0, whereas
H•

[0,λ](d) ∼= H•(d). Hence there are canonical isomorphisms

Φλ : Det(H•
(λ,∞)(d)) → C, Ψλ : Det(H•

[0,λ](d)) → Det(H•(d)).

In the sequel, we will write t for Φλ(t) ∈ C.
The following proposition is Z2-graded analogue of [5, Proposition 5.10].

Proposition 2.3. Let (C•, d) be a Z2-graded complex of finite dimensional
k-vector spaces and let Γ be a chirality operator on C•. Then, for each λ ≥ 0,

ρΓ = Detgr(B0̄
(λ,∞)) · ρΓ[0,λ] ,

where we view ρΓ[0,λ] as an element of Det(H•(d)) via the canonical isomor-
phism Ψλ : Det(H•

[0,λ](d)) → Det(H•(d)).

Proof. Recall the natural isomorphism

Det
(
H k̄

[0,λ](d) ⊗ H k̄
(λ,∞)(d)

) ∼= Det
(
H k̄

[0,λ](d) ⊕ H k̄
(λ,∞)(d)

)
= Det(H k̄(d)).

(2.48)

From Definition 2.1, Proposition 2.2 and (2.48), we obtain the result. �

3. Graded determinant of the twisted odd
signature operator

In this section, we define the graded determinant of the odd signature oper-
ator, cf. [1, 12], twisted by a flux form H, of a flat vector bundle E over a
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closed oriented odd-dimensional manifold M . We use this graded determi-
nant to define an element of the determinant line of the twisted de Rham
cohomology of the vector bundle E. We also study the relationship between
this graded determinant and the η-invariant of the twisted odd signature
operator.

3.1. The twisted odd signature operator

Let M be a closed oriented smooth manifold of odd dimension m = 2r − 1
and let E be a complex vector bundle over M endowed with a flat connection
∇. We denote by Ωp(M, E) the space of p-forms with values in the flat bundle
E, i.e., Ωp(M, E) = Γ(∧p(T ∗M)R ⊗ E) and by

∇ : Ω•(M, E) → Ω•+1(M, E)

the covariant differential induced by the flat connection on E. Fix a Rie-
mannian metric gM on M and let 
 : Ω•(M, E) → Ωm−•(M, E) denote the
Hodge 
-operator. We choose a Hermitian metric hE so that together with
the Riemannian metric gM we can define a scalar product < ·, · >M on
Ω•(M, E). Define the chirality operator Γ = Γ(gM ) : Ω•(M, E) → Ω•(M, E)
by the formula, cf. [5, (7-1)],

(3.1) Γω := ir(−1)
q(q+1)

2 
 ω, ω ∈ Ωq(M, E),

where r given as above by r = m+1
2 . The numerical factor in (3.1) has been

chosen so that Γ2 = Id, cf. Proposition 3.58 of [3].
Assume that H is an odd-degree closed differential form on M . Let

Ω0̄(M, E) := Ωeven(M, E), Ω1̄(M, E) := Ωodd(M, E) and ∇H := ∇ + H ∧ ·.
We assume that H does not contain a one-form component, which can be
absorbed in the flat connection ∇.

Definition 3.1. The twisted odd signature operator is the operator

(3.2) BH = B(∇H , gM ) := Γ∇H + ∇HΓ : Ω•(M, E) → Ω•(M, E).

We denote by BH
k̄

the restriction of BH to the space Ωk̄(M, E), k = 0, 1.

3.2. ζ-function and ζ-regularized determinant

In this subsection, we briefly recall some definitions of ζ-regularized determi-
nants of non-self-adjoint elliptic operators. See [5, Section 6] for more details.
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Let D : C∞(M, E) → C∞(M, E) be an elliptic differential operator of order
n ≥ 1. Assume that θ is an Agmon angle, cf. for example, Definition 6.3
of [5], for D. Let Π : L2(M, E) → L2(M, E) denote the spectral projection
of D corresponding to all nonzero eigenvalues of D. The ζ-function ζθ(s, D)
of D is defined as follows, cf. for example, [5, Subsection 6.4],

(3.3) ζθ(s, D) = Tr ΠD−s
θ , Re s >

dim M

n
.

It was shown by Seeley [20] (see also [21]) that ζθ(s, D) has a meromorphic
extension to the whole complex plane and that 0 is a regular value of ζθ(s, D).

Definition 3.2. The ζ-regularized determinant of D is defined by the
formula

Det′θ(D) := exp
(
− d

ds

∣
∣
∣
∣
s=0

ζθ(s, D)
)

.

We denote by

LDet′θ(D) = − d

ds

∣
∣
∣
∣
s=0

ζθ(s, D).

Let Q be a zeroth order pseudo-differential projection, i.e., a zeroth-order
pseudo-differential operator satisfying Q2 = Q. We set

(3.4) ζθ(s, Q, D) = Tr QΠD−s
θ , Re s >

dimM

n
.

The function ζθ(s, Q, D) also has a meromorphic extension to the whole
complex plane and, by Wodzicki, [24, Section 7], it is regular at 0.

Definition 3.3. Suppose that Q is a zeroth-order pseudo-differential pro-
jection commuting with D. Then V := Im Q is D invariant subspace of
C∞(M, E). The ζ-regularized determinant of the restriction D|V of D to
V is defined by the formula

Det′θ(D|V ) := eLDet′θ(D|V ),

where

(3.5) LDet′θ(D|V ) = − d

ds

∣
∣
∣
s=0

ζθ(s, Q, D).

Remark 3.1. The prime in Det′θ and LDet′θ indicates that we ignore the
zero eigenvalues of the operator in the definition of the regularized
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determinant. If the operator is invertible we usually omit the prime and
write Detθ and LDetθ instead.

3.3. The graded determinant of the twisted odd
signature operator

Note that for each k = 0, 1, the operator (BH)2 maps Ωk̄(M, E) to itself.
Suppose that I is an interval of the form [0, λ], (λ, μ], or (λ,∞) (μ > λ ≥ 0).
Denote by Π(BH)2,I the spectral projection of (BH)2 corresponding to the set
of eigenvalues, whose absolute values lie in I. set

Ω•
I(M, E) := Π(BH)2,I(Ω•(M, E)) ⊂ Ω•(M, E).

If the interval I is bounded, then, cf. Section 6.10 of [5], the space Ω•
I(M, E)

is finite dimensional.
For each k = 0, 1, set

Ωk̄
+,I(M, E) := Ker(∇HΓ) ∩ Ωk̄

I(M, E) =
(
Γ(Ker∇H)

) ∩ Ωk̄
I(M, E);

Ωk̄
−,I(M, E) := Ker(Γ∇H) ∩ Ωk̄

I(M, E) = Ker∇H ∩ Ωk̄
I(M, E).

(3.6)

Then

(3.7) Ωk̄
I(M, E) = Ωk̄

+,I(M, E) ⊕ Ωk̄
−,I(M, E), if 0 /∈ I.

We consider the decomposition (3.7) as a grading of the space Ωk̄
I(M, E), and

refer to Ωk̄
+,I(M, E) and Ωk̄

−,I(M, E) as the positive and negative subspaces
of Ωk̄

I(M, E). Denote by BH
I and BH

k̄,I the restrictions of BH to the subspaces

Ω•
I(M, E) and Ωk̄

I(M, E), respectively. Then BH
k̄,I maps Ωk̄

±,I(M, E) to itself.

Let BH,±
k̄,I denote the restriction of BH

k̄,I to the subspace Ωk̄
±,I(M, E). Clearly,

the operator BH,±
k̄,I are bijective whenever 0 /∈ I. Note that ΓBH,−

0̄,I Γ = BH,+
1̄,I .

Hence Detθ(BH,−
0̄,I ) = Detθ(BH,+

1̄,I ). Then we have the following definition.

Definition 3.4. Suppose that 0 /∈ I. The graded determinant of the oper-
ator BH,I

0̄
is defined by

(3.8) Detgr,θ(BH
0̄,I) :=

Detθ(BH,+
0̄,I )

Detθ(−BH,−
0̄,I )

=
Detθ(BH,+

0̄,I )

Detθ(−BH,+
1̄,I )

∈ C\{0},

where Detθ denotes the ζ-regularized determinant associated to the Agmon
angle θ ∈ (−π, 0), cf. for example, Section 6 of [5].
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We define, cf. (3.5),

LDetgr,θ(BH
0̄,I) = LDetθ(BH,+

0̄,I ) − LDetθ(−BH,−
0̄,I )(3.9)

= LDetθ(BH,+
0̄,I ) − LDetθ(−BH,+

1̄,I ).

It follows from formula (6-17) of [5] that (3.8) is independent of the choice
of θ ∈ (−π, 0).

3.4. The canonical element of the determinant line

It is not difficult to check that (∇H)2 = 0. Clearly, ∇H : Ωk̄(M, E) →
Ωk+1(M, E) and Γ : Ωk̄(M, E) → Ωk+1(M, E). Hence we can consider the
following twisted de Rham complex with chirality operator Γ:

(
Ω•(M, E),∇H

)
: · · · ∇H−→ Ω0̄(M, E) ∇H−→ Ω1̄(M, E) ∇H−→ Ω0̄(M, E) ∇H−→ · · · .

(3.10)

We define the twisted de Rham cohomology groups of (Ω•(M, E),∇H) as

H k̄(M, E, H) ≡ H k̄(∇H) :=
Ker(∇H : Ωk̄(M, E) → Ωk+1(M, E))

Im(∇H : Ωk+1(M, E) → Ωk̄(M, E))
, k = 0, 1.

The groups H k̄(M, E, H), k = 0, 1 are independent of the choice of the Rie-
mannian metric on M or the Hermitian metric on E. Suppose that H is
replaced by H ′ = H − dB for some B ∈ Ω0̄(M), there is an isomorphism
εB := eB ∧ · : Ω•(M, E) → Ω•(M, E) satisfying

εB ◦ ∇H = ∇H′ ◦ εB.

Therefore εB induces an isomorphism on the twisted de Rham cohomology,
also denote by εB,

(3.11) εB : H•(M, E, H) → H•(M, E, H ′).

Denote by (∇H
k̄

)∗ the adjoint of ∇H
k̄

with respect to the scalar product
< ·, · >M . Then the Laplacians

Δk̄ = ΔH
k̄ := (∇H

k̄ )∗∇H
k̄ + ∇H

k+1
(∇H

k+1
)∗, k = 0, 1

are elliptic operators and therefore the complex (3.10) is elliptic. By Hodge
theory, we have the isomorphism KerΔk̄

∼= H k̄(M, E, H), k = 0, 1. For more
details of the twisted de Rham cohomology, cf. for example [16].
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Since ∇H commutes with BH , the subspace Ω•
I(M, E) is a subcomplex

of the twisted de Rham complex (Ω•(M, E),∇H). Clearly, for each λ ≥ 0,
the complex Ω•

(λ,∞)(M, E) is acyclic. Since

(3.12) Ω•(M, E) = Ω•
[0,λ](M, E) ⊕ Ω•

(λ,∞)(M, E),

the cohomology H•
[0,λ](∇H) ≡ H•

[0,λ](M, E, H) of the complex
(
Ω•

[0,λ](M, E),
∇H

)
is naturally isomorphic to the cohomology H•(M, E, H). Let ΓI denote

the restriction of Γ to Ω•
I(M, E). For each λ ≥ 0, let

(3.13) ρΓ[0,λ] = ρΓ[0,λ](∇H , gM ) ∈ Det
(
H•

[0,λ](M, E, H)
)

denote the refined torsion of the twisted finite-dimensional complex
(Ω•

[0,λ](M, E),∇H) corresponding to the chirality operator Γ[0,λ], cf. Defini-
tion 2.1. We view ρΓ[0,λ] as an element of Det

(
H•(M, E, H)

)
via the canon-

ical isomorphism between H•(M, E, H) and H•
[0,λ](M, E, H).

Proposition 3.1. Assume that θ ∈ (−π, 0) is an Agmon angle for the oper-
ator BH

0̄
. Then the element

(3.14) ρH = ρ(∇H , gM ) := Detgr,θ(BH
0̄,(λ,∞)) · ρΓ[0,λ] ∈ Det

(
H•(M, E, H)

)

is independent of the choice λ ≥ 0. Further, ρH is independent of the choice
of the Agmon angle θ ∈ (−π, 0) of BH

0̄
.

Proof. Clearly, for 0 ≤ λ ≤ μ, we have

(3.15) Detgr(BH
0̄,(λ,∞)) = Detgr(BH

0̄,(λ,μ]) · Detgr(BH
0̄,(μ,∞)).

From Proposition 2.3, (3.15) and (6–17) of [5], we obtain the result. �

3.5. The η-invariant

In this subsection, we recall the definition of the η-invariant of a non-self-
adjoint elliptic operator D, cf. [12], [5, Subsection 6.15].

Definition 3.5. Let D : C∞(M, E) → C∞(M, E) be an elliptic differential
operator of order n ≥ 1 whose leading symbol is self-adjoint with respect
to some given Hermitian metric on E. Assume that θ is an Agmon angle
for D, cf. Definition 6.3 of [5]. Let Π> (resp. Π <) be a pseudo-differential
projection whose image contains the span of all generalized eigenvectors of D
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corresponding to eigenvalues λ with Re > 0 (resp. with Re < 0) and whose
kernel contains the span of all generalized eigenvectors of D corresponding
to eigenvalues λ with Re ≤ 0 (resp. with Re ≥ 0). We define the η-function
of D by the formula

ηθ(s, D) = ζθ(s, Π>, D) − ζθ(s, Π<,−D).

Note that, by the above definition, the purely imaginary eigenvalues of
D do not contribute to ηθ(s, D).

It was shown by Gilkey, [12], that ηθ(s, D) has a meromorphic extension
to the whole complex plane C with isolated simple poles, and that it is
regular at 0. Moreover, the number ηθ(0, D) is independent of the Agmon
angle θ.

Since the leading symbol of D is self-adjoint, the angles ±π/2 are prin-
cipal angles for D cf. [5, Definition 6.2]. Hence, there are at most finitely
many eigenvalues of D on the imaginary axis. Let m+(D) (resp. m−(D))
denote the number of eigenvalues of D, counted with their algebraic mul-
tiplicities, on the positive (resp. negative) part of the imaginary axis. Let
m0(D) denote the algebraic multiplicity of 0 as an eigenvalue of D.

Definition 3.6. The η-invariant η(D) of D is defined by the formula

(3.16) η(D) =
ηθ(0, D) + m+(D) − m−(D) + m0(D)

2
.

Since ηθ(0, D) is independent of the choice of the Agmon angle θ for D,
cf. [12], so is η(D). Note that the definition of η(D) is slightly different from
the one proposed by Gilkey in [12]. See [5, Remark 2.5].

Denote by η(∇H) = η(BH
0̄

) the η-invariant of the restriction BH
0̄

of the
twisted odd signature operator BH to Ω0̄(M, E).

3.6. Relationship with the η-invariant

In this subsection, we study the relationship between (3.8) and the
η-invariant of BH

0̄,(λ,∞)
.

To simplify the notation set

(3.17) ηλ(∇H) := η
(
BH

0̄,(λ,∞)

)



420 Rung-Tzung Huang

and

ξλ = ξλ(∇H , gM , θ) = 1
2

(
LDet2θ

(
(BH,+

0̄,(λ,∞)
)2

) − LDet2θ

(
(BH,+

1̄,(λ,∞)
)2

))
.

(3.18)

Let P±
k̄,I , k = 0, 1 be the orthogonal projection onto the closure of the

subspace Ωk̄
±,I(M, E). Set

(3.19) d∓
k̄,λ

:= rank(Id−P±
k̄,[0,λ]

) = dim Ωk̄
∓,I(M, E), k = 0, 1.

If I ⊂ R we denote by LI the solid angle

LI = {ρeiθ : 0 < ρ < ∞, θ ∈ I}.

Proposition 3.2. Let ∇ be a flat connection on a vector bundle E over
a closed Riemannian manifold (M, gM ) of odd dimension m = 2r − 1 and
H is an odd-degree closed differential form, other than one form, on M .
Assume θ ∈ (−π/2, 0) is an Agmon angle for the twisted odd signature oper-
ator BH

0̄,(λ,∞)
such that there are no eigenvalues of BH in the solid angles

L(−π/2,θ] and L(π/2,θ+π]. Then, for every λ ≥ 0, cf. (3.9),

(3.20) LDetgr,θ
(
BH

0̄,(λ,∞)

)
= ξλ − iπηλ(∇H) − iπ

2

∑

k=0,1

(−1)kd−
k̄,λ

.

Proof. From Definition 3.6 of the η-invariant it follows that:

(3.21) η
(
−BH,+

1̄,(λ,∞)

)
= −η

(
BH,+

1̄,(λ,∞)

)
.

By the fact that ΓBH,+
1̄,(λ,∞)

Γ = BH,−
0̄,(λ,∞)

, we have

(3.22) η
(
BH,+

1̄,(λ,∞)

)
= η

(
BH,−

0̄,(λ,∞)

)
.

Combining (3.17), (3.21) with (3.22), we have

η
(
BH,+

0̄,(λ,∞)

)
− η

(
−BH,+

1̄,(λ,∞)

)
= η

(
BH,+

0̄,(λ,∞)

)
+ η

(
BH,−

0̄,(λ,∞)

)
= ηλ(∇H).

(3.23)
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By [4, (4.34)], for k = 0, 1, we have

LDetθ(±BH,+

k̄,I ) = 1
2 LDet2θ

(
(BH,+

k̄,(λ,∞)
)2

)
(3.24)

− iπ

⎛

⎝η
(
± BH,+

k̄,I
)
−

ζ2θ

(
0,

(BH,+

k̄,(λ,∞)

)2
)

2

⎞

⎠

and, by [5, (6-6)] and (3.19), we have

(3.25) ζ2θ

(
0, (BH,+

0̄,(λ,∞)
)2

)
− ζ2θ

(
0, (BH,+

1̄,(λ,∞)
)2

)
= −

∑

k=0,1

(−1)kd−
k̄,λ

.

Combining (3.18), (3.23), (3.24) with (3.25), we obtain the result. �

4. Metric anomaly and the definition of the refined analytic
torsion twisted by a flux form

In this section, we study the metric dependence of the element ρH =
ρ(∇H , gM ) defined in (3.14). We then use this element to construct the
twisted refined analytic torsion, which is a canonical element of the determi-
nant line Det(H•(M, E, H)). We also show that the twisted refined analytic
torsion is independent of the metric gM and the representative H in the
cohomology class [H].

4.1. Relationship between ρH(t) and the η-invariant

Suppose that gM
t , t ∈ R, is a smooth family of Riemannian metrics on M .

Let

ρH(t) = ρ(∇H , gM
t ) ∈ Det(H•(M, E, H))

be the canonical element defined in (3.14).
Let Γt denote the chirality operator corresponding to the metric gM

t , cf.
(3.1), and let BH(t) = B(∇H , gM

t ) denote the twisted odd signature operator
corresponding to the Riemannian metric gM

t and let BH,+(t) denote the
restriction of BH(t) = B(∇H , gM

t ) to Ω•
+(M, E).

Fix t0 ∈ R and choose λ ≥ 0 such that there are no eigenvalues of (BH

(t0))2 of absolute value λ. Further, assume that λ is big enough so that the
real parts of eigenvalues of (BH

(λ,∞)(t0))
2 are all greater than 0. Then there

exists δ > 0 small enough such that the same holds for the spectrum of
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(BH(t))2 for t ∈ (t0 − δ, t0 + δ). In particular, d−
k̄,λ

, cf. (3.19), is independent
of t ∈ (t0 − δ, t0 + δ). Set

ηλ(∇H , t) := η(BH
0̄,(λ,∞)(t)), ξλ(t, θ) = ξλ(∇H , gM

t , θ).

By definition (3.14),

ρH(t) = Detgr,θ(BH
0̄,(λ,∞)(t)) · ρΓt,[0,λ] .

Assume that θ0 ∈ (π/2, 0) is an Agmon angle for BH(t0) such that there
are no eigenvalues of BH(t0) in L(−π/2,θ0] and L(−π/2,θ0+π). Choose δ > 0 so
that for every t ∈ (t0 − δ, t0 + δ) both θ0 and θ0 + π are Agmon angles of
BH(t0). For t �= t0, it might happen that there are eigenvalues of BH

k̄,(λ,∞)
(t)

in L(−π/2,θ0] and L(−π/2,θ0+π). Hence, (3.20) is not necessarily true. However,
from the independence of the Agmon angle of the ζ-function, cf. [5, (6-16)],
and (3.18), we conclude that for every angle θ ∈ (−π/2, 0), so that θ and
θ + π are Agmon angles for BH

k̄,(λ,∞)
(t),

ξλ(t, θ) ≡ ξλ(t, θ0) mod πi.

Hence, from (3.20), we obtain

(4.1) ρH(t) = ±eξλ(t,θ0) · e−iπηλ(∇H ,t) · e iπ
2

∑
k=0,1(−1)kd−

k̄,λ · ρΓt,[0,λ] .

Lemma 4.1. Under the above assumptions, the product

eξλ(t,θ0) · ρΓt,[0,λ] ∈ Det(H•(M, E, H))

is independent of t ∈ (t0 − δ, t0 + δ).

Proof. Let Γt denote the chirality operator corresponding to the metric gM
t .

Following the Z-graded case, cf. [18], as well as the Z2-graded case, cf. [16],
we set

f(s, t) =
∑

k=0,1

(−1)k

∫ ∞

0
us−1 Tr

[
exp(−u(Γt∇H)2|Ωk̄

+,(λ,∞)(M,E))
]
du(4.2)

= Γ(s)
∑

k=0,1

(−1)kζ
(
s, (Γt∇H)2|Ωk̄

+,(λ,∞)(M,E)

)
.

Using the fact that

Γt(Γt∇H)2
∣
∣
Ωk̄

+,(λ,∞)(M,E)
Γt = (∇HΓt)2

∣
∣
Ωk+1

−,(λ,∞)(M,E)
,
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we also have

f(s, t) = −
∑

k=0,1

(−1)k

∫ ∞

0
us−1 Tr

[
exp

(−u(∇HΓt)2
∣
∣
Ωk̄

−,(λ,∞)(M,E)

)]
du

(4.3)

= −Γ(s)
∑

k=0,1

(−1)kζ
(
s, (∇HΓt)2

∣
∣
Ωk̄

−,(λ,∞)(M,E)

)
.

We denote by Γ̇t the derivative of Γt with respect to the parameter t. Then

d

dt
(Γt∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)
= Γ̇tΓt(Γt∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)

(4.4)

+ (Γt∇H)
∣
∣
Ωk̄

+,(λ,∞)(M,E)
Γ̇tΓt(Γt∇H)

∣
∣
Ωk̄

+,(λ,∞)(M,E)
,

where we used that Γ2
t = 1. Similarly, we have

d

dt
(∇HΓt)2

∣
∣
Ωk̄

−,(λ,∞)(M,E)
= (∇HΓt)2ΓtΓ̇t

∣
∣
Ωk̄

−,(λ,∞)(M,E)
(4.5)

+ (∇HΓt)ΓtΓ̇t(∇HΓt)
∣
∣
Ωk̄

−,(λ,∞)(M,E)
.

If A is of trace class and B is a bounded operator, it is well known that
Tr(AB) = Tr(BA). Hence, by this fact and the semi-group property of the
heat operator, we have

Tr
[
(Γt∇H)

∣
∣
Ωk̄

+,(λ,∞)(M,E)
Γ̇tΓt(Γt∇H)

∣
∣
Ωk̄

+,(λ,∞)(M,E)
(4.6)

× exp
(−u(Γt∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)

)]

= Tr
[
exp

(−u

2
(Γt∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)

)
(Γt∇H)

∣
∣
Ωk̄

+,(λ,∞)(M,E)

· Γ̇tΓt(Γt∇H)
∣
∣
Ωk̄

+,(λ,∞)(M,E)
exp

(−u

2
(Γt∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)

)]

= Tr
[
Γ̇tΓt(Γt∇H)

∣
∣
Ωk̄

+,(λ,∞)(M,E)
exp

(−u

2
(Γt∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)

)

· exp
(−u

2
(Γt∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)

)
(Γt∇H)

∣
∣
Ωk̄

+,(λ,∞)(M,E)

]

= Tr
[
Γ̇tΓt(Γt∇H)

∣
∣
Ωk̄

+,(λ,∞)(M,E)
exp

(−u(Γt∇H)2
∣
∣
Ωk̄

+,(λ,∞)(M,E)

)

× (Γt∇H)
∣
∣
Ωk̄

+,(λ,∞)(M,E)

]

= Tr
[
Γ̇tΓt(Γt∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)
exp

(−u(Γt∇H)2
∣
∣
Ωk̄

+,(λ,∞)(M,E)

)]
,
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here in the last equality we used the fact that

(Γt∇H)
∣
∣
Ωk̄

+,(λ,∞)(M,E)
exp

(−u(Γt∇H)2
∣
∣
Ωk̄

+,(λ,∞)(M,E)

)
(Γt∇H)

∣
∣
Ωk̄

+,(λ,∞)(M,E)

= (Γt∇H)2
∣
∣
Ωk̄

+,(λ,∞)(M,E)
exp

(−u(Γt∇H)2
∣
∣
Ωk̄

+,(λ,∞)(M,E)

)
.

By (4.4), (4.2) and (4.6), we have

d

dt
f(s, t) =

∑

k=0,1

(−1)k

∫ ∞

0
us−1 Tr

[
−2uΓ̇tΓt(Γt∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)
(4.7)

× exp
(−u(Γt∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)

)]
du.

Similarly, we have

d

dt
f(s, t) = −

∑

k=0,1

(−1)k

∫ ∞

0
us−1 Tr

[
−2uΓtΓ̇t(∇HΓt)2

∣
∣
Ωk̄

−,(λ,∞)(M,E)
(4.8)

× exp
(−u(∇HΓt)2

∣
∣
Ωk̄

−,(λ,∞)(M,E)

)]
du.

By (4.7), (4.8) and the fact that Γ̇tΓt = −ΓtΓ̇t, we conclude that

d

dt
f(s, t) = −

∑

k=0,1

(−1)k

∫ ∞

0
us Tr

[
Γ̇tΓt(BH

k̄,(λ,∞)(t))
2

(4.9)

× exp
(−u(BH

k̄,(λ,∞)(t))
2
)]

du

=
∑

k=0,1

(−1)k

∫ ∞

0
us d

du
Tr

[
Γ̇tΓt exp

(−u(BH
k̄,(λ,∞)(t))

2
)]

du

= −s
∑

k=0,1

(−1)k

∫ ∞

0
us−1 Tr

[
Γ̇tΓt exp

(−u(BH
k̄,(λ,∞)(t))

2
)]

du,

where we used the integration by parts for the last equality. Since (BH(t))2

is an elliptic differential operator, the dimension of Ω•
[0,λ](M, E) is finite. Let

ε �= 0 be a small enough real number so that (BH(t))2 + ε is bijective and



Refined analytic torsion for twisted de Rham complexes 425

2θ0 is an Agmon angle for (BH(t))2 + ε. Then we can rewrite (4.9) as

d

dt
f(s, t) = −s

∑

k=0,1

(−1)k

∫ 1

0
us−1 Tr

[
Γ̇tΓt exp

(−u((BH
k̄ (t))2 + ε)

)]
du

(4.10)

− s
∑

k=0,1

(−1)k

∫ ∞

1
us−1 Tr

[
Γ̇tΓt exp

(−u((BH
k̄ (t))2 + ε)

)]
du

+ s
∑

k=0,1

(−1)k

∫ 1

0
us−1 Tr

[
Γ̇tΓt exp

(−u(BH
k̄,[0,λ](t))

2
)]

du

+ s
∑

k=0,1

(−1)k

∫ ∞

1
us−1 Tr

[
Γ̇tΓt exp

(−u(BH
k̄,[0,λ](t))

2
)]

du.

Since Γ̇tΓt is a local quantity and the dimension of the manifold M is odd,
the asymptotic expansion as u ↓ 0 for Tr

[
Γ̇tΓt(exp(−u(BH(t))2 + ε)

]
does

not contain a constant term. Therefore, the integrals of the first term on
the right-hand side of (4.10) do not have poles at s = 0. On the other
hand, because of exponential decay of Tr

[
Γ̇tΓt(exp(−u(BH(t))2 + ε)

]
and

Tr
[
Γ̇tΓt(exp(−u(BH

[0,λ](t))
2)

]
for large u, the integrals of the second term

and the fourth term on the right hand side of (4.10) are entire functions in
s. Hence we have

d

dt

∣
∣
∣
s=0

f(s, t) =
(
s

∑

k=0,1

(−1)k

∫ 1

0
us−1 Tr

[
Γ̇tΓt

∣
∣
∣
Ωk̄

[0,λ](M,E)

]
du

)∣
∣
∣
s=0

(4.11)

=
∑

k=0,1

(−1)k Tr
[
Γ̇tΓt

∣
∣
∣
Ωk̄

[0,λ](M,E)

]

and, by (4.2),

(4.12)
d

dt

∣
∣
∣
s=0

sf(s, t) =
d

dt

∣
∣
∣
s=0

∑

k=0,1

(−1)kζ
(
s, (Γt∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)

)
= 0.

By (3.18) and (4.2), we know that
(4.13)

ξλ(t, θ0) = −1
2

lims→0

[
f(s, t) − 1

s

∑

k=0,1

(−1)ζ(0, (Γt∇H)2
∣
∣
Ωk̄

+,(λ,∞)(M,E)
)
]
.
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Combining (4.11) to (4.13), we obtain

(4.14)
d

dt

∣
∣
∣
t=0

ξλ(t, θ0) = −1
2

∑

k=0,1

(−1)k Tr
[
Γ̇tΓt

∣
∣
∣
Ωk̄

[0,λ](M,E)

]

Combining (2.29) with (4.14), we obtain

d

dt
(eξλ(t,θ0) · ρΓt,[0,λ]) = 0.

�
We need the following lemma, which is a slight modification of the result

in Subsection 9.3 of [5].

Lemma 4.2. For any t1, t2 ∈ (t0 − δ, t0 + δ), we have

ηλ(∇H , t1) − ηλ(∇H , t2) ≡ η(BH
0̄ (t1)) − η(BH

0̄ (t2)), mod Z.

Let BH
trivial = B0̄(∇H

trivial, g
M ) : Ω0̄(M, E) → Ω0̄(M, E) denote the even

part of twisted odd signature operator corresponding to the metric gM and
the trivial line bundle over M endowed with the trivial connection ∇trivial.
Put

ηtrivial := 1
2η(0,BH

trivial).

We now need to study the dependence of η(BH
0̄

) on the Riemannian
metric gM . This was essentially done in [1] and [12].

Lemma 4.3. The function η(BH
0̄

(t)) − rank(E)ηtrivial(t) is, modulo Z, inde-
pendent of t ∈ (t0 − δ, t0 + δ).

4.2. Removing the metric anomaly and the definition of the
twisted refined analytic torsion

The following theorem is the main theorem of this subsection.

Theorem 4.1. Let M be an odd-dimensional oriented closed Riemannian
manifold. Let (E,∇, hE) be a flat complex vector bundle over M and H is a
closed differential form on M of odd degree, other than one form. Then the
element

(4.15) ρ(∇H , gM ) · eiπ(rank(E))ηtrivial ∈ Det
(
H•(M, E, H)

)
,

where ∇H := ∇ + H ∧ · and ρ(∇H , gM ) ∈ Det
(
H•(M, E, H)

)
is defined in

(3.14), is independent of gM .
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Proof. Consider a smooth family gM
t , t ∈ R of Riemannian metrics on M .

From (4.1), we obtain for t ∈ (t0 − δ, t0 + δ)

ρH(t) · eiπ(rank(E))ηtrivial = ±eξλ(t,θ0) · e−iπηλ(∇H ,t) · e iπ
2

∑
k=0,1(−1)kdk̄,λ(4.16)

· ρΓt,[0,λ] · eiπ(rank(E))ηtrivial .

Combining (4.14), (4.16) with Lemma 4.3 we conclude that for any t1, t2 ∈
(t0 − δ, t0 + δ)

ρH(t1) · eiπ(rank(E))ηtrivial = ±ρH(t2) · eiπ(rank(E))ηtrivial .

Since the function ρH(t) · eiπ(rank(E))ηtrivial is continuous and nonzero, the
sign in the right-hand side of the equality must be positive. This proves the
statement. �

Definition 4.1. Let M be an odd-dimensional oriented closed Riemannian
manifold. Let (E,∇, hE) be a flat complex vector bundle over M and H is
a closed differential form on M of odd degree, other than one form. The
twisted refined analytic torsion ρan(∇H) is the element of Det

(
H•(M, E, H)

)

defined by (4.15).

4.3. Variation of twisted refined analytic torsion with respect
to the flux in a cohomology class

Suppose that the (real) flux form H is deformed smoothly along a one-
parameter family with parameter v ∈ R in such a way that the cohomology
class [H] ∈ H 1̄(M, R) is fixed. Then d

dvH = −dB for some form B ∈ Ω0̄(M)
that depends smoothly on v. Let β = B ∧ ·. Fix v0 ∈ R and choose λ > 0
such that there are no eigenvalues of (BH)2(v0) of absolute value λ. Fur-
ther, assume that λ is big enough so that the real parts of eigenvalues of
(BH

(λ,∞)(v0))2 are all greater than 0. Then there exists δ > 0 small enough
such that the same holds for the spectrum of (BH(v))2 for v ∈ (v0 − δ, v0 +
δ). For simplicity, we often omit the parameter v in the notations of opera-
tors in the following discussion.

We have the following two lemmas, see also Lemmas 3.5 and 3.7 of [16].
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Lemma 4.4. Under the above assumptions, we have

d

dv
ξλ =

∑

k=0,1

(−1)k Tr(β
∣
∣
Ωk̄

[0,λ](M,E)
).

Proof. As in the proof of Lemma 4.1, we set

f(s, v) =
∑

k=0,1

(−1)k

∫ ∞

0
us−1 Tr

[
exp

(−u(Γ∇H)2
∣
∣
Ωk̄

+,(λ,∞)(M,E)

)]
du.

(4.17)

We note that B, hence β, is real. By (4.17) and the fact that

d

dv
∇H = [β,∇H ],

we have

d

dv
f(s, v) =

∑

k=0,1

(−1)k

∫ ∞

0
us−1 Tr

[
−u

(
Γ[β,∇H ]Γ∇H

)∣∣
Ωk̄

+,(λ,∞)(M,E)

(4.18)

× exp
( − u(Γ∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)

)]
du

+
∑

k=0,1

(−1)k

∫ ∞

0
us−1 Tr

[
−u

(
Γ∇HΓ[β,∇H ]

)∣∣
Ωk̄

+,(λ,∞)(M,E)

× exp
(−u(Γ∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)

)]
du.

Using the fact that Γ2 = 1, we have

Tr
[(

Γβ∇HΓ∇H
)∣∣

Ωk̄
+,(λ,∞)(M,E)

exp
(−u(Γ∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)

)]
(4.19)

= Tr
[(

ΓβΓ
)∣∣

Ωk̄
+,(λ,∞)(M,E)

· (Γ∇H
)2∣∣

Ωk̄
+,(λ,∞)(M,E)

× exp
(−u(Γ∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)

)]
.
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By using the trace property, Γ2 = 1, and the semi-group property of the
heat operator, we have

Tr
[(

Γ∇HβΓ∇H
)∣∣

Ωk̄
+,(λ,∞)(M,E)

exp
(−u(Γ∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)

)]
(4.20)

= Tr
[(

Γ∇HΓ · ΓβΓ∇H
)∣∣

Ωk̄
+,(λ,∞)(M,E)

exp
(−1

2u(Γ∇H)2
∣
∣
Ωk̄

+,(λ,∞)(M,E)

)

· exp
(−1

2u(Γ∇H)2
∣
∣
Ωk̄

+,(λ,∞)(M,E)

)]

= Tr
[
exp

(−1
2u(Γ∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)

) · (Γ∇HΓ · ΓβΓ∇H
)∣∣

Ωk̄
+,(λ,∞)(M,E)

· exp
(−1

2u(Γ∇H)2
∣
∣
Ωk̄

+,(λ,∞)(M,E)

)]

= Tr
[(

ΓβΓ∇H
)∣∣

Ωk̄
+,(λ,∞)(M,E)

exp
(−1

2u(Γ∇H)2
∣
∣
Ωk̄

+,(λ,∞)(M,E)

)

· exp
(−1

2u(Γ∇H)2
∣
∣
Ωk̄

+,(λ,∞)(M,E)

) · (Γ∇HΓ
)∣∣

Ωk+1
−,(λ,∞)(M,E)

]

= Tr
[(

ΓβΓ
)∣∣

Ωk+1
−,(λ,∞)(M,E)

· (∇HΓ
)2∣∣

Ωk+1
−,(λ,∞)(M,E)

× exp
(−u(∇HΓ)2

∣
∣
Ωk+1

−,(λ,∞)(M,E)

)]
.

For the last equality of (4.20), we used the fact that

∇H
∣
∣
Ωk̄

+,(λ,∞)(M,E)
exp

(−u(Γ∇H)2
∣
∣
Ωk̄

+,(λ,∞)(M,E)

)(
Γ∇HΓ

)∣∣
Ωk+1

−,(λ,∞)(M,E)

=
(∇HΓ

)2∣∣
Ωk+1

−,(λ,∞)(M,E)
exp

(−u(∇HΓ)2
∣
∣
Ωk+1

−,(λ,∞)(M,E)

)
.

By combining (4.19) with (4.20), we obtain

∑

k=0,1

(−1)k

∫ ∞

0
us Tr

[(
Γ[β,∇H ]Γ∇H

)∣∣
Ωk̄

+,(λ,∞)(M,E)

(4.21)

× exp
(−u(Γ∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)

)]
du

=
∑

k=0,1

(−1)k

∫ ∞

0
us

(
Tr

[(
ΓβΓ

)∣∣
Ωk̄

+,(λ,∞)(M,E)
· (Γ∇H

)2∣∣
Ωk̄

+,(λ,∞)(M,E)

× exp
(−u(Γ∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)

)]

− Tr
[(

ΓβΓ
)∣∣

Ωk+1
−,(λ,∞)(M,E)

· (∇HΓ
)2∣∣

Ωk+1
−,(λ,∞)(M,E)

× exp
(−u(∇HΓ)2

∣
∣
Ωk+1

−,(λ,∞)(M,E)

)] )
du
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=
∑

k=0,1

(−1)k

∫ ∞

0
us Tr

[(
ΓβΓ

)∣∣
Ωk̄

(λ,∞)(M,E)
· (BH

(λ,∞))
2

× exp
(−u(BH

(λ,∞))
2
]
du.

Similarly, we have

Tr
[(

Γ∇HΓ∇Hβ
)∣∣

Ωk̄
+,(λ,∞)(M,E)

exp
(−u(Γ∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)

)]
(4.22)

= Tr
[
β
∣
∣
Ωk̄

+,(λ,∞)(M,E)
· (Γ∇H

)2∣∣
Ωk̄

+,(λ,∞)(M,E)

× exp
(−u(Γ∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)

)]

and

Tr
[(

Γ∇HΓβ∇H
)∣∣

Ωk̄
+,(λ,∞)(M,E)

exp
(−u(Γ∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)

)]
(4.23)

= Tr
[
β
∣
∣
Ωk+1

−,(λ,∞)(M,E)
· (∇HΓ

)2∣∣
Ωk+1

−,(λ,∞)(M,E)

× exp
(−u(∇HΓ)2

∣
∣
Ωk+1

−,(λ,∞)(M,E)

)]
.

By combining (4.22) with (4.23), we have

∑

k=0,1

(−1)k

∫ ∞

0
us Tr

[(
Γ∇HΓ[β,∇H ]

)∣∣
Ωk̄

+,(λ,∞)(M,E)

(4.24)

× exp
(−u(Γ∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)

)]
du

=
∑

k=0,1

(−1)k

∫ ∞

0
us

(
Tr

[
β
∣
∣
Ωk̄

+,(λ,∞)(M,E)
· (Γ∇H

)2∣∣
Ωk̄

+,(λ,∞)(M,E)

× exp
(−u(Γ∇H)2

∣
∣
Ωk̄

+,(λ,∞)(M,E)

)]

− Tr
[
β
∣
∣
Ωk+1

−,(λ,∞)(M,E)
· (∇HΓ

)2∣∣
Ωk+1

−,(λ,∞)(M,E)

× exp
(−u(∇HΓ)2

∣
∣
Ωk+1

−,(λ,∞)(M,E)

)] )
du

=
∑

k=0,1

(−1)k

∫ ∞

0
us Tr

[
β
∣
∣
Ωk̄

(λ,∞)(M,E)
· (BH

(λ,∞))
2 exp

(−u(BH
(λ,∞))

2
]
du.
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Combining (4.21), (4.24), with (4.18), we obtain

d

dv
f(s, v) = −

∑

k=0,1

(−1)k

∫ ∞

0
us Tr

[(
ΓβΓ

)∣∣
Ωk̄

(λ,∞)(M,E)
· (BH

(λ,∞))
2

× exp
(−u(BH

(λ,∞))
2
]
du

−
∑

k=0,1

(−1)k

∫ ∞

0
us Tr

[
β
∣
∣
Ωk̄

(λ,∞)(M,E)
· (BH

(λ,∞))
2

× exp
(−u(BH

(λ,∞))
2
)]

du

= −2
∑

k=0,1

(−1)k

∫ ∞

0
us Tr

[
β
∣
∣
Ωk̄

(λ,∞)(M,E)
· (BH

(λ,∞))
2

× exp
(−u(BH

(λ,∞))
2
)]

du,

where for the latter equality we used the fact that Tr(β
∣
∣
Ωk̄

[0,λ](M,E)
) =

Tr(ΓβΓ
∣
∣
Ωk̄

[0,λ](M,E)
). The rest is similar to the proof of Lemma 4.1. �

Lemma 4.5. Under the same assumptions, along any one parameter defor-
mation of H that fixes the cohomology class [H], the element can be chosen
so that

d

dv
ρΓ[0,λ] = −

∑

k=0,1

(−1)k Tr(β
∣
∣
Ωk̄

[0,λ](M,E)
)ρΓ[0,λ] ,

where we identify Det
(
H•(M, E, H)

)
along the deformation using (3.11).

Proof. In order to compare the elements ρΓ[0,λ] ∈ Det
(
H•(M, E, H)

)
at dif-

ferent values of v. We choose a reference point, say v = 0, and let H(0),
ρ

(0)
Γ[0,λ]

be the values of H, ρΓ[0,λ] , respectively, at v = 0. By (3.11), we have
the isomorphism

Det(εB) : Det
(
H•(M, E, H(0))

) → Det
(
H•(M, E, H)

)
.

Since εB = eβ on Ω•(M, E), we have, for k = 0, 1,

d

dv
(Det(εB))−1ρΓ[0,λ] = −

∑

k=0,1

(−1)k Tr(β
∣
∣
Ωk̄

[0,λ](M,E)
)(Det(εB))−1ρΓ[0,λ] .

The result follows. �
The argument of the following lemma is similar to the argument of

Lemma 9.4 of [5].
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Lemma 4.6. For any v1, v2 ∈ (v0 − δ, v0 + δ), we have

ηλ(∇H , v1) − ηλ(∇H , v2) ≡ η(BH
0̄ (v1)) − η(BH

0̄ (v2)), mod Z.

Again we need to study the dependence of η(BH
0̄

) on the parameter v.
As Lemma 4.3, this was essentially done in [1] and [12, P. 52].

Lemma 4.7. The function η(BH
0̄

(v)) − rank(E)ηtrivial(v) is, modulo Z,
independent of v ∈ R.

Now we have the main theorem of this subsection.

Theorem 4.2. Let M be an odd-dimensional oriented closed Riemannian
manifold. Let (E,∇, hE) be a flat complex vector bundle over M . Suppose
that H and H ′ are closed differential forms on M of odd degrees representing
the same de Rham cohomology class, and let B be an even form so that H ′ =
H − dB. Then the refined analytic torsion ρan(∇H′

) = Det(εB)(ρan(∇H)).

Proof. Again we choose a reference point, say v = 0, and let H(0), ρ
(0)
Γ[0,λ]

be the values of H, ρΓ[0,λ] , respectively, at v = 0. By (3.11), we have the
isomorphism

Det(εB) : Det
(
H•(M, E, H(0))

) → Det
(
H•(M, E, H)

)
.

Recall that εB = eβ on Ω•(M, E). By combining Lemmas 4.4, and 4.5 with
Lemma 4.7, we conclude that (Det(εB))−1ρan(∇H) is, up to sign, invariant
along the deformation. Since the function (Det(εB))−1ρan(∇H) is continuous
and nonzero, the sign in the right hand side of the equality must be positive.
This proves the statement. �

5. A duality theorem for the twisted refined analytic torsion

In this section, we first review the concept of the dual of a complex and con-
struct a natural isomorphism between the determinant lines of a Z2-graded
complex and its dual. We then show that this isomorphism is compatible
with the canonical isomorphism (2.9). Finally, we establish a relationship
between the twisted refined analytic torsion corresponding to a flat con-
nection and that of its dual. The contents of this section are Z2-graded
analogues of Sections 3 and 10 of [5]. Throughout this section, k is a field
of characteristic zero endowed with an involutive automorphism τ : k → k.
The main examples are k = C with τ being the complex conjugation and
k = R with τ being the identity map.
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5.1. The Z2-graded τ -dual space

If V, W are k-vector spaces, a map f : V → W is said to be τ − linear if

f(x1v1 + x2v2) = τ(x1)v1 + τ(x2)v2, for any v1, v2 ∈ V, x1, x2 ∈ k.

The linear space V ∗ = V ∗τ of all τ -linear maps V → k is called the τ −
dual space to V . There are natural τ -linear isomorphisms, cf. [5, Subsection
3.1],

(5.1) αV : Det(V ∗) → Det(V )−1, βV : Det(V ) → Det(V ∗)−1.

Then for any v ∈ Det(V ), we have, cf. [5, (3-8)],

(5.2)
(
α−1

V (v−1)
)−1 = (−1)dim V βV (v),

Let V and W be k-vector spaces, then, for any v ∈ Det(V ), w ∈ Det(W ), we
have, cf. [5, (3-9)],

(5.3)
(
μV,W (v ⊗ w)

)−1 = αV ⊕W ◦ μV ∗,W ∗
(
α−1

V (v−1) ⊗ α−1
W (w−1)

)
.

Let T : V → W be a k-linear map. The τ − adjoint of T is the linear
map

T ∗ : W ∗ → V ∗

such that

(T ∗w∗)(v) = w∗(Tv), for all v ∈ V, w∗ ∈ W ∗.

If T is bijective, then, for any nonzero v ∈ Det(V ), we have, cf. [5, (3-11)],

(5.4) T ∗α−1
W

(
(Tv)−1

)
= α−1

V (v−1).

Let V 0, V 1, . . . , V m be finite-dimensional k-vector space, where m =
2r − 1 is an odd integer. Denote by V 0̄ =

⊕r−1
i=0 V 2i and V 1̄ =

⊕r−1
i=0 V 2i+1.

Let V • = V 0̄ ⊕ V 1̄ be a finite-dimensional Z2-graded k-vector space. We
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define the Z2 − graded (τ−) dual space V̂ = V̂ 0̄ ⊕ V̂ 1̄ by

V̂ k̄ := (V k+1)∗, k = 0, 1.

Then (5.1) induces a τ -linear isomorphism

(5.5) αV • : Det(V •) → Det(V̂ •),

defined by

(5.6) αV •(v0̄ ⊗ (v1̄)
−1) = (−1)M(V •) · α−1

V 1̄(v−1
1̄

) ⊗ αV 0̄(v0̄),

where vk̄ ∈ Det(V k̄), k = 0, 1 and, cf. (2.13),

M(V •) = M(V •, V •) = dimV 0̄ · dimV 1̄.

5.2. The dual complex of a Z2-graded complex

Consider the Z2-graded complex (2.2) of finite dimensional k-vector spaces.
The dual complex of the Z2-graded complex (2.2) is the complex

(5.7) (Ĉ•, d∗) : · · · d∗−→ Ĉ 0̄ d∗−→ Ĉ 1̄ d∗−→ Ĉ 0̄ d∗−→ · · · ,

where Ĉ k̄ = (Ck+1)∗ and d∗ is the τ -adjoint of d. Then the cohomology
H k̄(d∗) of Ĉ• is natural isomorphic to the τ -dual space to Hk+1(d) (k = 0, 1).
Hence by (5.5), we obtain τ -linear isomorphisms

(5.8) αC• : Det(C•) → Det(Ĉ•),
αH•(d) : Det(H•(d)) → Det(H•(d∗)).

The following lemma is the Z2-graded analogue of Lemma 3.6 of [5]. The
proof is similar to the proof of Lemma 3.6 of [5]. We skip the proof.

Lemma 5.1. Let (C•, d) be a Z2-graded complex of finite dimensional
k-vector spaces, defined as (2.2). Further, assume that the Euler charac-
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teristics χ(C•) = χ(Ĉ•) = 0. Then the following diagram commutes:

(5.9)

Det(C•) φC•−−−−→ Det(H•(d))

αC•
⏐
⏐
	

⏐
⏐
	αH•(d)

Det(Ĉ•)
φĈ•−−−−→ Det

(
H•(d∗)

)
,

where φC• and φĈ• are defined as in (2.10).

5.3. The refined torsion of the Z2-graded dual complex

Suppose now that k is endowed with an involutive endomorphism τ . Let Ĉ•

be the τ -dual complex of C and let αC• : Det(C•) → Det(Ĉ•) denote the
τ -isomorphism defined in (5.8). Let Γ∗ be the τ -adjoint of Γ. Then Γ∗ is a
chirality operator for the complex Ĉ•.

The following lemma is the Z2-graded analogue of Lemma 4.11 of [5].

Lemma 5.2. In the situation described above,

(5.10) ρΓ∗ = αH•(d)(ρΓ).

Proof. Fix c0̄ ∈ Det(C 0̄) and set

(5.11) ĉ0̄ = α−1
C 0̄

(
(Γc0̄)

−1
) ∈ Det(Ĉ 0̄).

Then, by (5.4),

(5.12) Γ∗ĉ0̄ = α−1
C 0̄ (c−1

0̄
) ∈ Det(Ĉ 0̄).

Using (5.2), we obtain from (5.11) and (5.12), that

(5.13) βC 0̄(c0̄) = (−1)dim C 0̄ · (Γ∗ĉ0̄)
−1, βC 1̄(Γc0̄) = (−1)dim C 0̄ · ĉ−1

0̄
.

Combining (5.6), (2.20), (5.11) to (5.13), we have

(5.14) αC•(cΓ) = (−1)M(C•)+dim C 0̄ · cΓ∗ .

By (2.22), ρΓ = φC•(cΓ). Therefore, from Lemma 5.1, we obtain

(5.15) αH•(d)(ρΓ) = φĈ• ◦ αC•(cΓ) = (−1)M(C•)+dim C 0̄ · ρΓ∗ .
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By (2.13) and the fact dimC 0̄ = dimC 1̄, we obtain

M(C•) + dimC 0̄ = dimC 1̄ · dimC 0̄ + dimC 0̄(5.16)

= dimC 0̄ · (dim C 0̄ + 1) ≡ 0, mod 2.

Combining (5.15) with (5.16), we obtain (5.10). �

5.4. The duality theorem

Suppose that M is a closed oriented manifold of odd dimension m = 2r − 1.
Let E → M be a complex vector bundle over M and let ∇ be a flat connec-
tion on E. Fix a Hermitian metric hE on E. Denote by ∇′ the connection
on E dual to the connection ∇, cf. [5, Subsection 10.1]. We denote by E′

the flat bundle (E,∇′), referring to E′ as the dual of the flat vector bundle
E. Using the construction of Section 5.1, with τ : C → C be the complex
conjugation, we have the canonical anti-linear isomorphism

(5.17) α : Det
(
H•(M, E, H)

) → Det
(
H•(M, E′, H)

)
.

The following theorem is the main result of this section and is the twisted
analogue of Theorem 10.3 of [5].

Theorem 5.1. Let E → M be a complex vector bundle over a closed ori-
ented odd-dimensional manifold M and let ∇ be a flat connection on E.
Denote by ∇′ the connection dual to ∇ with respect to a Hermitian metric
hE on E and let H be an odd-degree closed form, other than one form, on
M . Then

(5.18) α(ρan(∇H)) = ρan(∇′H) · e2πi
(
η̄(∇H ,gM )−(rank E)ηtrivial(gM )

)
,

where α is the anti-linear isomorphism (5.17) and gM is any Riemannian
metric on M .

The rest of this section is concerned about the proof of Theorem 5.1.

5.5. A choice of λ

Assume that no eigenvalue of BH
(λ,∞) lies in the solid angles L[−θ−π,θ] and

L[−θ,θ+π], cf. [5, Subsections 10.4 and 10.5], then it follows that no eigenvalue
of (BH

(λ,∞))
2 lies in the solid angles L[−2θ,2θ+2π].
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Let B′H denote the twisted odd signature operator associated to the
connection ∇′, the odd-degree form H and the Riemannian metric gM . One
can check that

(5.19) (∇H)∗ = Γ∇′HΓ and (∇′H)∗ = Γ∇HΓ.

Using (3.2), (5.19) and the equality Γ∗ = Γ, one can see that the adjoint B′H

of BH satisfies

(5.20) (BH)∗ = B′H .

The choice of the angle θ guarantees that ±2θ are Agmon angles for the
operator (Γ∇′H)2 =

(
(Γ∇H)2

)∗. In particular, for each λ ≥ 0, the number
ξλ(∇′H , gM , θ) can be defined by the formula (3.18), with the same angle θ
and with ∇H replaced by ∇′H everywhere.

The following lemma is twisted analogue of Lemma 10.6 of [5] and the
proof is similar to the proof of Lemma 10.6 of [5]. We skip the proof.

Lemma 5.3. Let θ be as above and let λ ≥ 0 be big enough so that the oper-
ator BH

(λ,∞) does not have purely imaginary eigenvalues, cf. [5, Subsection
10.5]. Then

ξλ(∇′H , gM , θ) = ξ̄λ(∇H , gM , θ),

and

(5.21) ηλ(∇′H) = η̄λ(∇H),

where z̄ denotes the complex conjugate of the number z ∈ C.

5.6. Small eigenvalues of BH and B′H

We define Ωk̄
±,I(M, E′), Ωk̄±(M, E′), and Ωk̄(M, E′) in similar ways as Ωk̄

±,I
(M, E), Ωk̄±(M, E) and Ωk̄(M, E), respectively. As (3.19), for k = 0, 1, set

(5.22) d±
k̄,λ

= dim Ωk̄
±,[0,λ](M, E), d′±k̄,λ = dim Ωk̄

±,[0,λ](M, E′).

From the fact that ΓBH,±
k̄,(λ,∞)

Γ = BH,∓
k+1,(λ,∞)

, we conclude that

(5.23) Γ
(
Ωk̄
±,[0,λ](M, E)

)
=

(
Ωk+1
∓,[0,λ](M, E)

)
, k = 0, 1.
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Therefore

d±
k̄,λ

= d∓
k+1,λ

, k = 0, 1.

Hence

∑

k=0,1

(−1)kd−
k̄,λ

= d−
0̄,λ

− d−
1̄,λ

≡ d−
0̄,λ

+ d+
0̄,λ

= dim Ω0̄
[0,λ](M, E), mod 2Z.

(5.24)

From (5.20) and (5.23), we obtain

dim Ω0̄
[0,λ](M, E) = dim Ω1̄

[0,λ](M, E) = dim Ω0̄
[0,λ](M, E′)(5.25)

= dim Ω1̄
[0,λ](M, E′).

Hence by (5.24) and (5.25), we have

(5.26)
∑

k=0,1

(−1)kd′−k̄,λ = dim Ω0̄
[0,λ](M, E), mod 2Z.

By definition (3.16), we obtain

(5.27) 2η(BH
0̄,[0,λ]) ≡ dim Ω0̄

[0,λ](M, E), mod 2Z.

From (3.17), (5.26) and (5.27), we obtain, modulo 2Z,

2η(BH
0̄ (∇H)) = 2η(BH

0̄,(λ,∞)(∇H)) + 2η(BH
0̄,[0,λ])(5.28)

≡ 2ηλ(∇H) +
∑

k=0,1

d−
k̄,λ

.

Similarly,

(5.29) 2η(BH
0̄ (∇′H)) ≡ 2ηλ(∇′H) +

∑

k=0,1

d−
k̄,λ

, mod 2Z.

5.7. Proof of Theorem 5.1

Let ρ′Γ[0,λ]
be the twisted refined torsion of the complex Ω•

[0,λ](M, E′) asso-
ciated to the restriction of Γ to Ω•

[0,λ](M, E′).
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By Lemma 5.2, (5.17) and the fact that Γ∗ = Γ, cf. [3, Proposition 3.58],
we obtain

(5.30) ρ′Γ[0,λ]
= α(ρΓ[0,λ]).

From (3.14), (3.20) and Definition 4.1, we obtain

ρan(∇H) = ρΓ[0,λ] · exp
(
ξλ(∇H , gM , θ) − iπηλ(∇H)(5.31)

− iπ
2

∑

k=0,1

(−1)kd−
k̄,λ

+ iπ(rank E)ηtrivial

)
.

Since α is an anti-linear isomorphism, α(ρan · z) = α(ρan) · z̄ for any z ∈ C.
Hence, from (5.30) and (5.31), we get

α
(
ρan(∇H)

)
= ρ′Γ[0,λ]

· exp
(
ξ̄λ(∇H , gM , θ)

(5.32)

+ iπη̄λ(∇H) +
iπ
2

∑

k=0,1

(−1)kd−
k̄,λ

− iπ(rankE)ηtrivial

)
.

Using Lemma 5.3 and the analogue of (5.31) for ρan(∇′H), we obtain from
(5.32)

α
(
ρan(∇H)

)
= ρan(∇′H) · exp

(
2iπη̄λ(∇H)(5.33)

+ iπ
∑

k=0,1

(−1)kd−
k̄,λ

− iπ(rankE)ηtrivial

)
.

From (5.33) and (5.29), we obtain (5.18). �

6. Comparison with the twisted analytic torsion

In this section, we first define the twisted Ray–Singer metric
‖ · ‖RS

Det(H•(M,E,H)) and then calculate the twisted Ray–Singer norm
‖ρan(∇H)‖RS

Det(H•(M,E,H)) of the twisted refined analytic torsion. In particu-
lar, we show that, if ∇ is a Hermitian connection, then
‖ρan(∇H)‖RS

Det(H•(M,E,H)) = 1.
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6.1. The twisted analytic torsion

Let E → M be a complex vector bundle over a closed oriented manifold M
of odd dimension m = 2r − 1. Let ∇ be a flat connection on E and H be
an odd-degree closed form, other than one form, on M . Fix a Riemannian
metric gM on M and a Hermitian metric hE on E. Let ∇H∗ denote the
adjoint of ∇H := ∇ + H ∧ · with respect to the scalar product < ·, · >M on
Ω•(M, E) defined by hE and the Riemannian metric gM .

Now let

ΔH = ∇H∗∇H + ∇H∇H∗

be the Laplacian twisted by the form H. We denote by ΔH
k̄

the restric-
tion of ΔH to Ωk̄(M, E), k = 0, 1. Assume that I is an interval of the form
[0, λ], (λ, μ], (λ,∞)(μ ≥ λ ≥ 0) and let ΠΔH

k̄
,I be the spectral projection of

ΔH
k̄

corresponding to I, cf. Subsection 3.3. Set

Ω̌k̄
I(M, E) := ΠΔH

k̄
,I

(
Ω•(M, E)

) ⊂ Ω•(M, E).

Let ΔH,I
k denote the restriction of ΔH

k̄
to Ω̌k̄

I(M, E) and define

TRS
I = TRS

I (∇H) := exp
(1

2

∑

k=0,1

(−1)k+1 LDet′−π

(∇H∗∇H
)∣∣

Ωk̄
I(M,E)

)
.

(6.1)

It is not difficult to check that, for any nonnegative, real numbers μ ≥ λ ≥ 0,

(6.2) TRS
(λ,∞) = TRS

(λ,μ] · TRS
(μ,∞).

Note that if ηk̄ is the unit volume element of H k̄(M, E, H), k = 0, 1, then

(6.3) τ(M, E, H) :=
(
TRS

(0,∞)

)−1 · η0̄ ⊗ η−1
1̄

∈ Det
(
H•(M, E, H)

)

is the twisted analytic torsion, introduced by Mathai and Wu in [16].
For each λ > 0, the cohomology of the finite dimensional complex

(
Ω̌•

[0,λ]

(M, E),∇H
)

is naturally isomorphic to H•(M, E, H). Identifying these two
cohomology spaces, we then obtain from (2.9) an isomorphism

(6.4) φλ = φΩ̌•
[0,λ](M,E) : Det

(
Ω̌•

[0,λ](M, E)
) → Det

(
H•(M, E, H)

)
.
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The scalar product < ·, · > on Ω̌•
[0,λ](M, E) ⊂ Ω•(M, E) defined by gM and

hE induces a metric ‖ · ‖
Det

(
Ω̌•

[0,λ](M,E)
) on the determinant line Det

(
Ω̌•

[0,λ]

(M, E)
)
. Let ‖ · ‖λ denote the metric on the determinant line Det

(
H•

(M, E, H)
)

such that the isomorphism (6.4) is an isometry. Then, for c ∈
Det

(
Ω̌•

[0,λ](M, E)
)
, we have

(6.5) ‖c‖
Det

(
Ω̌•

[0,λ](M,E)
) = ‖φλ(c)‖λ.

Using the Hodge theory, we have the canonical identification

H k̄(M, E, H) ∼= KerΔH
k̄ , k = 0, 1.

By their inclusion in Ωk̄(M, E), the space of twisted harmonic forms Ker ΔH
k̄

inherits a metric. We denote by | · |
Det

(
H•(M,E,H)

) the corresponding metric

on Det
(
H•(M, E, H)

)
. By definition,

(6.6) ‖ · ‖
Det

(
Ω̌•

{0}(M,E)
) = | · |

Det
(
H•(M,E,H)

).

The following is twisted analogue of [2, Proposition 1.5]. See also [19] for
the contact version.

Proposition 6.1.

(6.7) ‖ · ‖λ = | · |
Det

(
H•(M,E,H)

) · TRS
(0,λ].

Proof. For k = 0, 1, fix c′̄
k
∈ Det

(
Ω̌k̄
{0}(M, E)

) ∼= Det
(
H k̄(M, E, H)

)
and

c′′̄
k
∈ Det

(
Ω̌k̄

(0,λ](M, E)
)
. Then, using the natural isomorphism

Det
(
Ω̌k̄
{0}(M, E)

) ⊗ Det
(
Ω̌k̄

(0,λ](M, E)
) ∼= Det

(
Ω̌k̄
{0}(M, E) ⊕ Ω̌k̄

(0,λ](M, E)
)

= Det
(
Ω̌k̄

[0,λ](M, E)
)
,

we can regard the tensor product ck̄ := c′̄
k
⊗ c′′̄

k
as an element of Det

(
Ω̌k̄

[0,λ]

(M, E)
)
. Denote by

Ω̌k̄,−
I (M, E) = Ker∇H ∩ Ω̌k̄

I(M, E), Ω̌k̄,+
I (M, E) = Ker∇H∗ ∩ Ω̌k̄

I(M, E).
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Since the complexes Ω̌k̄
(0,λ](M, E), k = 0, 1, are acyclic, it is not difficult to

see that each Ω̌k̄
(0,λ](M, E) splits orthogonally into

(6.8) Ω̌k̄
(0,λ](M, E) = Ω̌k̄,−

(0,λ](M, E) ⊕ Ω̌k̄,+
(0,λ](M, E).

Take ak̄ ∈ Det
(
Ω̌k̄,+

(0,λ](M, E)
)

so that c′′̄
k

= ∇H(ak+1) ∧ ak̄. Denote by c =
c′ ⊗ c′′, where c′ = c′̄

0
⊗ c′̄

1
−1 and c′′ = c′′̄

0
⊗ c′′−1

1̄ . Then

‖c‖
Det

(
Ω̌•

[0,λ](M,E)
) = ‖c′‖

Det
(
Ω̌•

{0}(M,E)
) × ‖c′′‖

Det
(
Ω̌k̄

(0,λ](M,E)
)

(6.9)

= ‖c′‖
Det

(
Ω̌•

{0}(M,E)
) × ‖a0̄‖Det

(
Ω̌0̄,+

(0,λ](M,E)
)

× ‖∇H(a1̄)‖Det
(
Ω̌0̄,−

(0,λ](M,E)
) ×

(
‖a1̄‖Det

(
Ω̌1̄,+

(0,λ](M,E)
)
)−1

×
(
‖∇H(a0̄)‖Det

(
Ω̌1̄,−

(0,λ](M,E)
)
)−1

,

where ‖ · ‖V denotes the naturally induced norm on the subspace V . The
space Ω̌k̄

(0,λ](M, E) splits orthogonally into eigenspaces.

Ω̌k̄
(0,λ](M, E) = ⊕ν≤λΩ̌k̄

{ν}(M, E).

Given ν ∈ (0, λ], we choose an orthogonal basis (v1, . . . , vnk
) of each eigen-

space Ω̌k̄,+
{ν}(M, E) and choose the element ak̄,ν = v1 ∧ · · · ∧ vnk

∈ Det
(
H k̄,+

{ν}
(M, E, H)

)
, where nk = dim Ω̌k̄,+

{ν}(M, E). Then

‖∇H(ak̄,ν)‖
Det

(
Ω̌k+1,−

{ν} (M,E)
)(6.10)

= ‖∇Hv1 ∧ · · · ∧ ∇Hvnk
‖
Det

(
Ω̌k+1,−

{ν} (M,E)
)

= ‖∇Hv1‖Det
(
Ω̌k+1,−

{ν} (M,E)
) × · · · × ‖∇Hvnk

‖
Det

(
Ω̌k+1,−

{ν} (M,E)
)

= ν
nk
2 ‖v1‖Det

(
Ω̌k̄,+

{ν}(M,E)
) × · · · × ‖vnk

‖
Det

(
Ω̌k̄,+

{ν}(M,E)
)

= ν
nk
2 ‖ak̄,ν‖Det

(
Ω̌k̄,+

{ν}(M,E)
).
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By combining (6.9) with (6.10), we obtain

‖c‖
Det

(
Ω̌•

[0,λ](M,E)
) = ‖c′‖

Det
(
Ω̌•

{0}(M,E)
)(6.11)

×
∏

k=0,1

(
Det−π

(∇H∇H∗)∣∣
Ωk̄

(0,λ](M,E)

)(−1)k+1/2
.

By (6.1), (6.5), (6.6) and (6.11), we obtain the result. �

By (6.7), we have, for 0 ≤ λ ≤ μ,

(6.12) ‖ · ‖μ = ‖ · ‖λ · TRS
(λ,μ].

The twisted Ray–Singer metric on Det
(
H•(M, E, H)

)
is defined by the

formula

(6.13) ‖ · ‖RS

Det
(
H•(M,E,H)

) := ‖ · ‖λ · TRS
(λ,∞), λ ≥ 0.

It follows immediately from (6.2) and (6.12) that ‖ · ‖
Det

(
H•(M,E,H)

) is inde-

pendent of the choice of λ ≥ 0. Note that for λ = 0, by (6.3) and (6.13), we
have

‖τ(M, E, H)‖RS

Det
(
H•(M,E,H)

) = 1.

Theorem 6.1. Let E be a complex vector bundle over a closed oriented
odd-dimensional manifold M and let ∇ be a flat connection on E. Further,
let H be an odd-degree closed form on M and denote by ∇H := ∇ + H ∧ ·.
Then

(6.14) ‖ρan(∇H)‖RS

Det
(
H•(M,E,H)

) = eπ Im η(∇H ,gM ),

where

η(∇H , gM ) = η
(B0̄(∇H , gM )

)
.

In particular, if ∇ is a Hermitian connection, then ‖ρan(∇H)‖RS

Det
(
H•(M,E,H)

)

= 1.

The rest of this section is concerned with the proof of Theorem 6.1.
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6.2. Comparison between the twisted Ray–Singer metrics
associated to a connection and to its dual

We assume that θ ∈ (−π/2, 0) is any Agmon angle for the twisted odd sig-
nature operator BH such that no eigenvalue of BH

(λ,∞) lies in the solid angles
L[−θ−π,−π/2], L(−π/2,θ], L[−θ,π/2) and L(π/2,θ+π], cf. [5, Subsection 11.4]

As in Subsection 5.4, let ∇′ be the connection dual to ∇ with respect
to the Hermitian metric hE and let E′ denote the flat bundle (E,∇′). Let
H be an odd-degree closed form, other than one form, on M and denote by
∇H := ∇ + H ∧ ·. Let

Δ′H = (∇′H)∗∇′H + ∇′H(∇′H)∗,

denote the twisted Laplacian of the connection ∇′ twisted by the form H.
For any λ ≥ 0, we denote by

Ω̌•
[0,λ](M, E′) ⊂ Ω•(M, E′)

the image of the spectral projection ΠΔ′H ,[0,λ], cf. Subsection 3.3. As in Sub-
section 6.1, we use the scalar product induced by gM and hE on Ω̌•

[0,λ](M, E′)
to construct a metric ‖ · ‖′λ on Det

(
H•(M, E′, H)

)
and we define the twisted

Ray-Singer metric on Det
(
H•(M, E′, H)

)
by the formula

(6.15) ‖ · ‖RS

Det
(
H•(M,E′,H)

) := ‖ · ‖′λ · TRS
(λ,∞)(∇′H), λ ≥ 0.

As the untwisted case, cf. [5, Subsection 11.6], we have the following identi-
fication,

Ω̌•
[0,λ](M, E′) ∼= Ω̌m−•

[0,λ] (M, E)∗,

which preserves the scalar products induced by gM and hE on Ω̌•
[0,λ](M, E′)

and Ω̌m−•
[0,λ] (M, E)∗. Hence, the anti-linear isomorphism α, cf. (5.17), is an

isometry with respect to the metrics ‖ · ‖λ and ‖ · ‖′λ. In particular,

‖ρan(∇H)‖λ = ‖α(ρan(∇H))‖′λ.

It follows from (5.18) that:

(6.16) ‖ρan(∇H)‖λ = ‖ρan(∇′H)‖′λ · e2π Im η(∇H ,gM ).

We need the following lemma. For untwisted case, cf. for example,
[4, Lemma 8.8].
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Lemma 6.1.

(6.17) TRS
(λ,∞)(∇′H) = TRS

(λ,∞)(∇H).

Proof. From (5.19), we have

(6.18) (∇H)∗∇H = Γ∇′HΓ∇H = Γ(∇′HΓ∇HΓ)Γ = Γ∇′H(∇′H)∗Γ.

As in (6.8), we have

(6.19) Ω̌k̄
(λ,∞)(M, E) = Ω̌k̄,−

(λ,∞)(M, E) ⊕ Ω̌k̄,+
(λ,∞)(M, E).

The operator ∇H maps Ω̌k̄,+
(λ,∞)(M, E) isomorphically onto Ω̌k+1,−

(λ,∞) (M, E) and

∇H
∣
∣
Ω̌k̄,+

(λ,∞)(M,E)

(
(∇H)∗∇H

)∣∣
Ω̌k̄,+

(λ,∞)(M,E)
(6.20)

=
(∇H(∇H)∗

∣
∣
Ω̌k+1,−

(λ,∞) (M,E)

) · ∇H
∣
∣
Ω̌k̄,+

(λ,∞)(M,E)
.

Hence, by (6.20), we have

LDet′−π

(
(∇′H)∗∇′H)∣∣

Ωk̄,+
(λ,∞)(M,E)

= LDet′−π

(∇′H(∇′H)∗
)∣∣

Ωk+1,−
(λ,∞) (M,E)

.

(6.21)

From (6.18), we obtain

log TRS
(λ,∞)(∇H)

= 1
2

∑

k=0,1

(−1)k+1 LDet′−π

(
(∇H)∗∇H

)∣∣
Ωk̄,+

(λ,∞)(M,E)

= 1
2

∑

k=0,1

(−1)k+1 LDet′−π

(
Γ∇′H(∇′H)∗Γ

)∣∣
Ωk̄,+

(λ,∞)(M,E)

= 1
2

∑

k=0,1

(−1)k+1 LDet′−π

(∇′H(∇′H)∗
)∣∣

Ωm−k,−
(λ,∞) (M,E)

= 1
2

∑

k=0,1

(−1)k LDet′−π

(∇′H(∇′H)∗
)∣∣

Ωk̄,−
(λ,∞)(M,E)

= 1
2

∑

k=0,1

(−1)k+1 LDet′−π

(
(∇′H)∗∇′H)∣∣

Ωk̄,+
(λ,∞)(M,E)

,

where we use (6.21) for the last equality. This proves the lemma. �
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Hence, from (6.13), (6.15) to (6.17), we conclude that

‖ρan(∇H)‖RS

Det
(
H•(M,E,H)

) = ‖ρan(∇′H)‖RS

Det
(
H•(M,E′,H)

) · e2π Im η(∇H ,gM ).

(6.22)

6.3. Direct sum of a connection and its dual

Let

∇̃ =
( ∇ 0

0 ∇′

)

denote the flat connection on E ⊕ E obtained as a direct sum of the con-
nections ∇ and ∇′. Denote by

∇̃H :=
( ∇H 0

0 ∇′H

)
.

Then a discussion similar to [5, Subsection 11.7], where the untwisted case
was treated, one easily obtains that,

ρan(∇̃H) = μH•(M,E,H),H•(M,E′,H)

(
ρan(∇H) ⊗ ρan(∇′H)

)

and

ρan(∇̃H)‖RS

Det
(
H•(M,E⊕E′,H

)

= ‖ρan(∇H)‖RS

Det
(
H•(M,E,H

) · ‖ρan(∇′H)‖RS

Det
(
H•(M,E′,H

).

Combining this later equality with (6.22), we obtain

‖ρan(∇̃H)‖RS

Det
(
H•(M,E⊕E′,H

)

=
(‖ρan(∇H)‖RS

Det
(
H•(M,E,H

))2 · e−2π Im η(∇H ,gM ).

Hence, (6.14) is equivalent to the equality

(6.23) ‖ρan(∇̃H)‖RS

Det
(
H•(M,E⊕E′,H

) = 1.

By a slight modification of the deformation argument in [5, Section 11,
p. 205–211], where the untwisted case was treated, we can obtain (6.23).
Hence, we finish the proof of Theorem 6.1.
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