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The classification of toroidal Dehn surgeries

on Montesinos knots

Ying-Qing Wu

Exceptional Dehn surgeries have been classified for two-bridge
knots and Montesinos knots of length at least 4. In this paper, we
classify all toroidal Dehn surgeries on Montesinos knots of length 3.

1. Introduction

A Dehn surgery on a hyperbolic knot K along a non-trivial slope δ is said
to be exceptional if the resulting manifold Kδ is either reducible, toroidal or
a small Seifert fibered manifold. By the Geometrization Conjecture proved
by Perelman [1], a non-trivial surgery is exceptional if and only if Kδ is
non-hyperbolic. By Thurston’s Hyperbolic Surgery Theorem, all but finitely
many Dehn surgeries on a hyperbolic knot produce hyperbolic manifolds,
hence there are only finitely many exceptional surgeries.

It is known that there are no exceptional surgeries on Montesinos knots
of length at least four [5]. Exceptional surgeries for two-bridge knots have
been classified in [2]. Thus length 3 knots are the only ones among the
Montesinos knots, which have not been settled. In this paper, we will classify
toroidal surgeries for such knots. See Theorems 1.1 and 1.2 below. By [3]
there is no reducible surgery on a hyperbolic Montesinos knot because it is
strongly invertible. It remains a challenging open problem to determine all
small Seifert fibred surgeries on Montesinos knots of length 3.

Hatcher and Oertel [4] have an algorithm to determine all boundary
slopes of a given Montesinos knot. We will therefore focus on finding all
length 3 knots such that some of their boundary slopes are toroidal slopes.
Each incompressible surface in the exterior of K corresponds to three “allow-
able edgepaths” γ1, γ2, γ3. We will define an Euler number for allowable edge
paths, and show that if F (γ1, γ2, γ3) is a punctured torus then one of the
γi must have non-negative Euler number. We then analyze the graph of
Hatcher–Oertel (figure 1), and show that the ending point of one of the
above γi must lie in a subgraph consisting of seven edges. This breaks the
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Figure 1:

problem down to several different cases. We will then use the properties of
allowable edge paths to find all possible solutions in each case.

Two knots are considered equivalent if there is a (possibly orientation
reversing) homeomorphism of S3 sending one knot to the other. Thus K1

is equivalent to K2 if K1 is isotopic to K2 or its mirror image. Similarly, if
N(Ki) is a neighborhood of Ki and δi is a slope on ∂N(Ki), then (K1, δ1) is
equivalent to (K2, δ2) if there is a homeomorphism of S3 sending N(K1) to
N(K2) and δ1 to δ2. The following is the classification theorem for toroidal
boundary slopes of Montesinos knots of length 3. Some knots are listed more
than once, with different boundary slopes, which means that they admit
more than one toroidal surgery. The variable ū is the u coordinate of the
ending points of the edge paths, which will be defined in Section 2. Note
that some knots may have the same toroidal boundary slope at different ū
values, in which case we will only list one ū value.

Theorem 1.1. Let K be a hyperbolic Montesinos knot of length 3, let
E(K) = S3 − IntN(K), and let δ be a slope on ∂E(K). Then E(K) con-
tains an essential surface F of genus one with boundary slope δ if and only
if (K, δ) is equivalent to one of the pairs in the following list.

(1) K = K(1/q1, 1/q2, 1/q3), qi odd, |qi| > 1, δ = 0; ū = 1.

(2) K = K(1/q1, 1/q2, 1/q3), q1 even, q2, q3 odd, |qi| > 1, δ = 2(q2 + q3);
ū = 1.
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(3) K = K(−1/2, 1/3, 1/(6 + 1/n)), n �= 0,−1, δ = 16 if n is odd, and 0
if n is even; ū = 6.

(4) K = K(−1/3,−1/(3 + 1/n), 2/3), n �= 0,−1, δ = −12 when n is odd,
and δ = 4 when n is even; ū = 3.

(5) K = K(−1/2, 1/5, 1/(3 + 1/n)), n even, and n �= 0, δ = 5 − 2n; ū = 3.

(6) K = K(−1/2, 1/3, 1/(5 + 1/n)), n even, and n �= 0, δ = 1 − 2n; ū = 3.

(7) K = K(−1/(2 + 1/n), 1/3, 1/3), n odd, n �= −1, δ = 2n; ū = 2.

(8) K = K(−1/2, 1/3, 1/(3 + 1/n)), n even, n �= 0, δ = 2 − 2n; ū = 2.

(9) K = K(−1/2, 2/5, 1/9), δ = 15; ū = 5.

(10) K = K(−1/2, 2/5, 1/7), δ = 12; ū = 4.

(11) K = K(−1/2, 1/3, 1/7), δ = 37/2; ū = 2.5.

(12) K = K(−2/3, 1/3, 1/4), δ = 13; ū = 2.5.

(13) K = K(−1/3, 1/3, 1/7), δ = 1; ū = 2.5.

For each case in Theorem 1.1, the candidate system (γ1, γ2, γ3) is given
in the proofs of the lemmas, hence it is straightforward using the algorithm
of Hatcher–Oertel to calculate the boundary slope of F (γ1, γ2, γ3) and show
that it is an incompressible toroidal surface. For each individual knot this
can also be verified using a computer program of Dunfield [16]. We will
therefore concentrate on showing the “only if” part, that is, if the exterior
of K has an incompressible toroidal surface with boundary slope δ then
(K, δ) must be one of those in the list.

In general, the existence of a toroidal incompressible surface F with
boundary slope δ in the exterior of a knot K does not guarantee that Kδ is
toroidal, because the corresponding closed surface F̂ may be compressible
in Kδ. However, the following theorem shows that this does not happen
for Montesinos knots of length 3; hence the above theorem actually gives a
classification of all toroidal surgeries for Montesinos knots of length 3.

Theorem 1.2. Let K be a hyperbolic Montesinos knot of length 3, and let
δ be a slope on T = ∂N(K). Then Kδ is toroidal if and only if (K, δ) is
equivalent to one of those in the list of Theorem 1.1.

Together with [2] and [5], this gives a complete classification of toroidal
surgeries on all Montesinos knots. The following are some of the conse-
quences.
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(1) The only non-integral toroidal surgery on a Montesinos knot is the
37/2 surgery on K(−1/2, 1/3, 1/7).

(2) No Montesinos knot admits more than three toroidal surgeries, and
the figure 8 knot and K(−1/2, 1/3, 1/7) are the only ones admitting three
toroidal surgeries.

(3) By [2], a 2-bridge knot admits exactly two toroidal surgeries if and
only if it is associated to the rational number 1/(2 + 1/n) for some |n| > 2.
By checking the list in Theorem 1.1 for knots which are listed more than
once, we see that K(t1, t2, t3) admits exactly two toroidal surgeries if and
only if it is equivalent to one of the following 5 knots.

K(−1/2, 1/3, 2/11), δ = 0 and − 3;
K(−1/3, 1/3, 1/3), δ = 0 and 2;
K(−1/3, 1/3, 1/7), δ = 0 and 1;
K(−2/3, 1/3, 1/4), δ = 12 and 13;
K(−1/3,−2/5, 2/3), δ = 4 and 6.

(4) A toroidal essential surface F in Theorem 1.1 has at most four bound-
ary components. In case (1) of Theorem 1.1 F is a Seifert surface with a
single boundary component. In all other cases F is a separating surface and
the result follows from the proof of Theorem 1.2.

(5) Also follows from results of Gordon and Luecke [6] and Eudave–
Munoz [7], which classified non-integral toroidal surgeries on all knots in S3.
There are many other interesting results about toroidal Dehn surgery, see
for example [8–15].

The paper is organized as follows. In Section 2 we give a brief intro-
duction to some definitions and results of Hatcher and Oertel in [4], then
define and explore the properties of Euler numbers e(γ) for any edge path
in the Hatcher–Oertel graph D shown in figure 1. It will be shown that if
F (γ1, γ2, γ3) is a punctured torus then up to equivalence the ending point
v1 of γ1 must lie on the subgraph G in figure 4. Sections 3, 4 and 5 discuss
the cases that v1 lies on a horizontal edge in G, and Section 6 deals with
the remaining cases. The proofs of Theorems 1.1 and 1.2 will be given in
Section 7.

2. Preliminaries

In this section we first give a brief introduction to some results of Hatcher–
Oertel in [4]. We will then define Euler numbers for points and edge paths on
the Hatcher–Oertel diagram D, and show how they are related to the Euler
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characteristic of the corresponding surfaces. The main result is Theorem 2.8,
which will play a key role in finding Montesinos knots which admit toroidal
surgeries.

2.1. The diagram D

The diagram D of Hatcher–Oertel is a two-complex on the plane R
2 consist-

ing of vertices, edges and triangular faces described as follows. See figure 1,
which is the same as [4, figure 1.3]. Unless otherwise stated, we will always
write a rational number as p/q, where p, q are coprime integers, and q > 0.

(1) To each rational number y = p/q is associated a vertex 〈y〉 in D, which
has Euclidean coordinates (x, y) = ((q − 1)/q, p/q).

(2) For each rational number y = p/q, there is also an “ideal” vertex 〈y〉0
with Cartesian coordinates (1, p/q).

(3) There is a vertex ∞ = 1/0 located at (−1, 0).

(4) There is an edge E = 〈p/q, p′/q′〉 connecting 〈p/q〉 to 〈p′/q′〉 if and
only if |pq′ − p′q| = 1. Thus for example, there is an edge connecting
∞ to each vertex 〈p/1〉, and there is an edge connecting 〈p/q〉 to 〈0〉
if and only if p = ±1.

(5) For each rational number y there is a horizontal edge L(y) connecting
〈y〉 to the ideal vertex 〈y〉0.

(6) A face of D is a triangle bounded by three non-horizontal edges of D.

Note that a non-horizontal line segment in the figure with one endpoint
on an ideal vertex (i.e., a vertex on the vertical line x = 1) is not an edge of
D. It is a union of infinitely many edges of D and contains infinitely many
vertices of D. Similarly a triangle Δ in the figure is not a face of D if it con-
tains a horizontal edge because there are edges in the interior of Δ. Actually
in this case Δ is a union of infinitely many faces of D. On the other hand, if
all three vertices of a triangle Δ in the figure are non-ideal vertices of D, and
if all three boundary edges of Δ are edges of D as defined above, then Δ is a
face of D; in particular, its interior contains no other edges or vertices of D.

2.2. Allowable edge paths, candidate systems and
candidate surfaces

An edge path γ in D is a piecewise linear path in the one-skeleton of D.
Note that the endpoints of γ may not be vertices of D. An edge path γ is a
constant path if its image is a single point.
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Let K = K(t1, t2, t3) be a Montesinos knot of length 3. Let γ1, γ2, γ3 be
three edge paths in D. According to [4, p. 457], we say that the three edge
paths form a candidate system for K(t1, t2, t3) if they satisfy the following
conditions:

(1) The starting point of γi is on the horizontal edge L(ti), and if this
starting point is not the vertex 〈ti〉 then γi is a constant path.

(2) γi is minimal in the sense that it never stops and retraces itself, or
goes along two sides of a triangle of D in succession.

(3) The ending points of γi are rational points D which all lie on one
vertical line and whose vertical coordinates add up to zero.

(4) γi proceeds monotonically from right to left, “monotonically” in the
weak sense that motion along vertical edges is permitted.

Each γi above is called an allowable edge path. By definition, an allowable
edge path must be of one of the following three types:

(1) A constant path on a horizontal edge, possibly at a vertex of D.

(2) An edge path with both endpoints on vertices of D.

(3) An edge path starting from a vertex of D and ending in the interior of
a non-horizontal edge.

For each candidate system, one can construct a surface F = F (γ1, γ2, γ3)
in the exterior of K, called a candidate surface. We refer the reader to
[4, p. 457] for the construction of the surface. Denote by F̂ = F̂ (γ1, γ2, γ3)
the corresponding closed surface obtained by capping off each boundary
component of F with a disk. Let N(K) be a regular neighborhood of K. If
δ is the boundary slope of F on ∂N(K) then F̂ is a closed surface in the
manifold Kδ obtained by δ surgery on K.

When γi ends at 〈∞〉 there may also be some “augmented” candidate
surface, but fortunately this does not happen for Montesinos knots of length
3. The following is [4, Proposition 1.1].

Proposition 2.1. Every incompressible, ∂-incompressible surface in S3 −
K having non-empty boundary of finite slope is isotopic to one of the can-
didate surfaces.

To find all toroidal surgeries on Montesinos knots of length 3, it suffices
to find all candidate systems (γ1, γ2, γ3) such that F̂ = F̂ (γ1, γ2, γ3) is a
torus. By Theorem 1.2 all toroidal F̂ are incompressible.
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2.3. The u-coordinate of a point and the length of an edge path

Any rational point (x, y) in the diagram represents some curve system
(a, b, c) on a four-punctured sphere as shown in figure 2. (When c is negative,
reverse the tangency of the train track, and relabel c by −c.) The parameters
(a, b, c) and (x, y) are related as follows.

y =
c

a + b
, x =

b

a + b

See [4, p. 455].
Note that (a, b, c) is determined by (x, y) up to scalar multiplication, i.e.,

(a, b, c) and k(a, b, c) correspond to the same rational point in D, so for any
rational point (x, y) one can choose a, b, c to be integers with a > 0.

A rational point in the interior of an edge 〈p/q, r/s〉 in D corresponds
to a curve system (1, b, c), which can be written as a linear combination

(1, b, c) = α(1, s − 1, r) + β(1, q − 1, p),

where α, β are positive rational numbers, and α + β = 1. We write

v = α〈r/s〉 + β〈p/q〉

to indicate that the point v is related to 〈p/q〉 and 〈r/s〉 as above. The
number α (resp. β) is called the length of the edge segment from 〈p/q〉
(resp. 〈r/s〉) to v. It is important to note that this is not the euclidean
length of the segments of the edge cut by v, even if the length of the edge is
normalized to 1. From the construction of the candidate surface ([4, p. 457]),
we see that traveling from the vertex 〈r/s〉 to the point v above corresponds
to adding mβ saddles to the surface, where m is the number of times the
surface intersects a meridian of K, which must be an integer. This fact will
be useful in the calculation of the Euler number of the resulting surface.

Figure 2:
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To make calculation easier, we introduce the u-coordinate of a point v.
Define

u = u(v) =
1

1 − x
,

where x is the x-coordinate of the point v in D. Thus, we have x = (u − 1)/u.
The u-coordinate has two important properties.

(1) The u-coordinate of a vertex 〈p/q〉 is q.

(2) The length of an edge segment is equal to its length in u-coordinate
when the length of the edge is normalized to 1, as shown in the fol-
lowing lemma.

Lemma 2.1. Let v = α〈r/s〉 + β〈p/q〉. Let u = u(v), u0 = q and u1 = s be
the u-coordinates of v, 〈p/q〉 and 〈r/s〉 respectively. Then

u = αu1 + βu0.

In particular, α and β can be calculated by the following formulas:

α =
u − u0

u1 − u0
=

u − q

s − q
,

β =
u1 − u

u1 − u0
=

s − u

s − q
.

Proof. Suppose 〈p/q〉 is represented by the curve system (a0, b0, c0), and
〈r/s〉 by (a1, b1, c1). By definition we may choose (a1, b1, c1) so that a1 =
a0. Then the x-coordinates of these points are xi = bi/(ai + bi), hence ui =
1/(1 − x) = (ai + bi)/ai = 1 + (bi/ai) for i = 0, 1.

By definition v = a〈r/s〉 + β〈p/q〉 is represented by 〈αa1 + βa0, αb1 +
βb0, αc1 + βc0〉. Using the facts that α + β = 1 and a0 = a1, we can calculate
the u-coordinate of α〈r/s〉 + β〈p/q〉 as follows

u = 1 +
αb1 + βb0

αa1 + βa0
= 1 +

αb1 + βb0

a0

= α

(
1 +

b1

a1

)
+ β

(
1 +

b0

a0

)

= αu1 + βu0.

�
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Definition 2.1. The length |γ| of an edge path γ in D is defined by counting
the length of a full edge as 1, and the length of a partial edge from 〈r/s〉 to
α〈r/s〉 + β〈p/q〉 as β.

2.4. Euler numbers of points, edge paths and surfaces

The knot K = K(t1, t2, t3) in S3 can be constructed as follows. Let (Bi, Ti)
be a rational tangle of slope ti = pi/qi, where Bi = D2 × I, and Ti consists
of two strings with endpoints on the vertical diameters of D2 × ∂I. Gluing
the end disks D2 × ∂I of the tangles in a cyclic way, we get a knot in a
solid torus V , which can be trivially embedded in S3 to produce the knot
K = K(t1, t2, t3) in S3.

Denote by Mi the tangle space Bi − IntN(Ti). Let Ei be a disk in Mi

separating the two arcs of Ti, and let Di = D1
i ∪ D2

i be a pair of disks prop-
erly embedded in Mi such that Dj

i intersects the meridian of the j-th string
of Ti at a single point and is disjoint from the meridians of the other string.

Define a number mi as follows. If γi is a not a constant path, let mi be the
minimal positive integer such that mi × |γi| is an integer. If γi is a constant
path on L(pi/qi) at a point with u-coordinate ū, let mi be the smallest
positive integer such that miū/qi is an integer. Let n = lcm(m1, m2, m3) be
the least common multiple of m1, m2, m3, and let m be a multiple of n. A
candidate surface is said to have m sheets if it intersects the meridian of K
(and hence the meridian of each strand of the tangles) at m points.

Lemma 2.2. Let F (γi) be an m-sheet surface in the tangle space Mi cor-
responding to the edge path γi constructed in [4, p. 457].

(1) If γi is not a constant path then χ(F (γi)) = m(2 − |γi|).
(2) If γi is a constant path on the horizontal edge L(ti) with u-coordinate

ū, then χ(F (γi)) = m(1 + ū/qi)

(3) Let mi be defined as above, and let n = lcm(m1, m2, m3). Then there
exists an m-sheet orientable candidate surface F = F (γ1, γ2, γ3) with
m = n or 2n.

Proof. (1) If γi is not a constant path in the interior of L(ti) then according
to [4, p. 457], F (γi) is obtained from m copies of Di by adding some saddles.
For each full edge in γi one adds m saddles, and for a partial edge of length
βi one adds mβi saddles. (By the choice of m in the construction, mβi must
be an integer.) Since χ(mDi) = 2m, and adding a saddle reduces the Euler
characteristic by 1, we have χ(F (γi)) = 2m − m|γi|.



314 Ying-Qing Wu

(2) Suppose γi is a constant path in the interior of the horizontal edge
L(ti). Then by [4, p. 457], F (γi) consists of m copies of Di and k copies of
Ei for some k, hence χ(F (γi)) = 2m + k. We need to determine the number
k.

Let (a′, b′, c′) be the parameters of ∂Di on the four-punctured sphere
∂Mi. Since it is a vertex on L(ti), we have yi = pi/qi = c′/(a′ + b′), and
xi = (qi − 1)/qi = b′/(a′ + b′). Also a′ = 1 because a meridian intersects ∂Di

at a single point. Solving these equations gives b′ = qi − 1, and c′ = pi.
Let (a′′, b′′, c′′) be the parameters of ∂Ei. Then a′′ = 0 because ∂Ei is

disjoint from the meridians of Ti. Examining the curve on ∂Bi explicitly we
see that b′′ = qi and c′′ = pi, hence it has parameters (0, qi, pi).

Now the parameters of mDi + kEi are given by

m(1, qi − 1, pi) + k(0, qi, pi) = (m, (m + k)qi − m, (m + k)pi).

Hence the x-coordinate and u-coordinate of the constant path γi satisfy

xi =
(m + k)qi − m

(m + k)qi
,

ū =
1

1 − xi
=

(m + k)qi

m
= qi +

kqi

m
.

Solving the last equation gives k = mū/qi − m, therefore χ(F (γi)) = 2m +
k = m + mū/qi.

(3) Let F ′ be an n-sheet candidate surface corresponding to the candi-
date system, constructed in [4, p. 457]. If F ′ is orientable then we are done.
If not, let F be the boundary of a regular neighborhood of F ′. Then F is an
orientable surface. It can be constructed by doubling the intersection of F ′

with each tangle space and therefore is a candidate surface corresponding
to the same candidate system, with m = 2n sheets. �

Definition 2.2. Let v be a rational point in D with u = u(v) as its
u-coordinate, and let γ be an edge path with v as its ending point.

(1) If v is not on a horizontal line, define e(v) = 1
3(4 − u(v)).

(2) If v is on a horizontal line L(p/q), define e(v) = 1
3 + u(v)(1

q − 1
3).

(3) For an allowable edge path γ with ending point v, define e(γ) = e(v) −
|γ|.

(4) Given a candidate edge path system (γ1, γ2, γ3), define ē =
ē(γ1, γ2, γ3) =

∑
e(γi).
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The numbers e(v), e(γ) and ē are called the Euler number of a point,
an edge path, and a candidate system, respectively.

Example 2.1. (a) If v ∈ L(p/2) then e(v) = 1
3 + 1

6u > 0.
(b) If v ∈ L(p/3) then e(v) = 1

3 > 0.
(c) If v ∈ L(p/q) and q ≥ 4 then e(v) = 1

3 + u(1
q − 1

3) ≤ 1
3 + q(1

q − 1
3) =

4
3 − q

3 ≤ 0, and e(v) = 0 if and only if q = u = 4.
(d) At a vertex v = 〈p/q〉, u(v) = q, so e(v) can be rewritten as e(v) =

1
3(4 − q); in particular, e(〈p/q〉) < 0 for all q > 4.

Lemma 2.3. Let γ be an edge path with |γ| < 1. Let v be the ending point
of γ, and let u = u(v) be the u-coordinate of v. Then

(1) e(γ) > 0 if and only if (i) v is on the horizontal edge L(p/q) with
q ≤ 3, (ii) v is on 〈p/1, r/s〉 for some s ≤ 3, or (iii) v is on 〈p/2, r/3〉 and
u > 2.5.

(2) e(γ) = 0 if and only if (i) v is on 〈p/1, r/4〉, or (ii) v is on 〈p/2, r/3〉
and u = 2.5.

Proof. Since |γ| < 1, γ cannot contain a full edge, hence if v is a vertex then
γ is a constant path. By definition γ is also a constant path if v is in the
interior of a horizontal edge. Thus if v is on a horizontal line L(p/q) then the
result follows from the calculations in Example 2.1(4) because e(γ) = e(v).

We now assume that v ∈ 〈p/q, r/s〉, and v �= 〈p/q〉, 〈r/s〉. Let ū be the u-
coordinate of v. Then by definition we have e(γ) = 1

3(4 − ū) − (s − ū)/(s −
q), which is a linear function of ū, e(γ) = e(〈p/q〉) − 1 when ū = q, and
e(γ) = e(〈r/s〉) when ū = s. Thus when s ≥ 5 we have e(γ) ≤ 0 at ū = q, and
<0 at ū = s, hence e(γ) < 0 for all q < ū ≤ s. The cases where 1 ≤ q < s ≤ 4
can be done one by one. We omit the details. �

The set of v such that e(γ) > 0 for some γ ending at v is shown in
figure 3 for the square [0, 1] × [0, 1]. Those in the other squares are vertical
translations of this graph.

Theorem 2.1. Let K = K(p1/q1, p2/q2, p3/q3) be a Montesinos knot of
length 3, let (γ1, γ2, γ3) be a candidate system, let F = F (γ1, γ2, γ3) be the
associated candidate surface, and let F̂ = F̂ (γ1, γ2, γ3) be the corresponding
closed surface. Denote by r = a/b the boundary slope of F , where a, b are
coprime integers. Then F̂ is a torus if and only if

ē =
∑

e(γi) =
b − 1

b
.
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Figure 3:

In particular, if r is an integer slope then ē = 0, and if r is a half integer
slope then ē = 1

2 .

Proof. Let (ai, bi, ci) be the parameters of the ending point of γi, chosen so
that a1 = a2 = a3 for all i, which will be denoted by m. Since xi = bi/(bi +
ai) are the same for a candidate system, we have b1 = b2 = b3, which we
denote by b.

First consider the surface F ′ obtained by gluing F (γi) along the three
twice punctured disks Pj on the boundary of the tangle spaces. Each F (γi)
intersects Pj at 2m + b arcs, hence after gluing the F (γi) to each other, we
have

χ(F ′) =
∑

χ(F (γi)) − 3(2m + b).

By construction F = F (γ1, γ2, γ3) is obtained from F ′ by adding 2m + 2b
disjoint meridional disks in the solid torus S3 − ∪Bi, hence

χ(F ) = χ(F ′) + 2m + 2b =
∑

χ(F (γi)) − 4m − b.

From x = bi/(ai + bi) = b/(m + b) and ū = 1/(1 − x), one can solve b to
obtain

b =
mx

1 − x
= m(ū − 1).
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When r is an integer slope, we need to attach m disks to F to obtain F̂ ,
hence

χ(F̂ ) = χ(F ) + m =
∑

χ(F (γi)) − 3m − m(ū − 1)

= m
∑ (

1
m

χ(F (γi)) − 2
3
− 1

3
ū

)
.

If γi is a constant path, by Lemma 2.2(2) and Definition 2.2 we have

1
m

χ(F (γi)) − 2
3
− 1

3
ū =

(
1 +

ū

qi

)
− 2

3
− 1

3
ū

=
1
3

+ ū

(
1
qi

− 1
3

)
= e(γi).

If γi is not a constant path, by Lemma 2.2(1) and Definition 2.2 we have

1
m

χ(F (γi)) − 2
3
− 1

3
ū = (2 − |γi|) − 2

3
− 1

3
ū

=
4
3
− 1

3
ū − |γi| = e(γi).

Therefore, we always have χ(F̂ ) = m
∑

e(γi), hence F̂ is a torus if and only
if

∑
e(γi) = 0.

The proof for r = a/b and b �= 1 is similar. In this case F has m/b bound-
ary components, so F̂ is obtained by attaching m/b disks to F . Hence a
similar calculation shows that

χ(F̂ ) = χ(F ) +
m

b
= (χ(F ) + m) − b − 1

b
m = m

(∑
e(γi) − b − 1

b

)
.

Therefore in this case F̂ is a torus if and only if
∑

e(γi) = (b − 1)/b. �

Proposition 2.2. Let (γ1, γ2, γ3) be a candidate system such that F̂ (γ1, γ2,
γ3) is a torus. Suppose ū ≤ 1. Then (i) ū = 1, and (ii) K = K(1/q1, 1/q2,
1/q3) for some (possibly negative) integers qi, such that |qi| > 1, and at most
one qi is even.

The knots and the corresponding toroidal slopes are the same as those
in Theorem 1.1(1) and (2).

Proof. Let γ′
i be the part of γi in the strip of x ∈ [0, 1) (i.e., u ≥ 1), and

let y′i be the ending points of γ′
i. Then |γ′

i| are all nonzero integers, hence
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we have

0 ≤ ē = (4 − ū) −
∑

|γi| ≤ 3 −
∑

|γ′
i| ≤ 0.

Thus all the inequalities above are equalities, and we have ū = |γi| = |γ′
i| = 1

for all i, so γi = γ′
i contains only one edge. Since ū = 1, yi = y′i are integers.

By definition of candidate system we have
∑

yi = 0, hence by choosing the
parameters properly we may assume that yi = 0 for all i. It is now easy to
see that K = K(1/q1, 1/q2, 1/q3) for some qi. Since K is of length 3, |qi| > 1.
Since K is a knot, at most one qi is even.

The knots are the same as those in Theorem 1.1(1) and (2). The toroidal
surface corresponding to a candidate system above is the pretzel surface S,
or its double cover if S is nonorientable. One can draw the pretzel surface
and show that the boundary slope of F is the same as that in Theorem
1.1(1) and (2). �

Up to equivalence we may change the parameters of K = K(t1, t2, t3) by
the following moves.

(1) Replace all ti by −ti;

(2) Permute ti;

(3) Replace (t1, t2, t3) by (t1 + k1, t2 + k2, t3 + k3), where ki are integers,
and

∑
ki = 0.

If (γ1, γ2, γ3) is a candidate system for K(t1, t2, t3), and (t′1, t′2, t′3) is
equivalent to (t1, t2, t3) by the above relations, then we can obtain a can-
didate system (γ′

1, γ
′
2, γ

′
3) for K(t′1, t′2, t′3) in the obvious way. For example,

when (t1, t2, t3) is replaced by (t1 + 1, t2 − 1, t3), the edge path γ′
1 is obtained

by moving γ1 upward by one unit, and γ′
2 downward by one unit. Clearly

the surface F (γ1, γ2, γ3) is homeomorphic to F (γ′
1, γ

′
2, γ

′
3).

Let G = 〈0,−1
3〉 ∪ 〈0,−1

2〉 ∪ 〈−1
2 ,−1

3〉 ∪ 〈−1
2 ,−2

3〉 ∪ 〈−1,−1
2〉 ∪ L(−1

2) ∪
L(−1

3), as shown in figure 4.

Lemma 2.4. Let (γ1, γ2, γ3) be a candidate edge path system for K =
K(t1, t2, t3) such that the corresponding surface F̂ (γ1, γ2, γ3) is a torus. Let
vi = (xi, yi) be the ending point of γi, and let ū be the u-coordinate of vi.
Assume ū > 1. Then the following hold up to re-choosing the parameters
of K.

(1)
∑

yi = 0;

(2) |yi| + |yj | ≤ 1 for any i �= j;
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Figure 4:

(3) 0 < |yi| ≤ 2
3 ;

(4) v1 is on the subgraph G in figure 4.

Proof. We may assume that the parameters of the knot has been chosen,
among equivalent knots, so that

∑ |yi| is minimal. The minimum can be
reached because (i)

∑ |yi| remains the same when permuting the parameters
or replacing (t1, t2, t3) by (−t1,−t2,−t3), and (ii)

∑ |yi| goes to ∞ when
(t1, t2, t3) is replaced by (t1 + k1, t2 + k2, t3 − k1 − k2) and at least one ki

goes to ∞.
(1) This follows from the definition of candidate system.
(2) By permuting the ti and simultaneously changing their signs if nec-

essary, we may assume without loss of generality that −y1 ≥ y2 ≥ y3 ≥ 0. If
the result is false then −y1 + y2 > 1. But then replacing (t1, t2, t3) of K by
(t1 + 1, t2 − 1, t3) will give a candidate system such that the y-coordinates
of the ending points are y′1 = −y1 + 1, y′2 = y2 − 1, and y′3 = y3, respectively.
One can check that

∑ |y′i| <
∑ |yi| if |y1| + |y2| > 1.

(3) Since ū > 1, vi cannot be on L(0) as otherwise γi would be a con-
stant path on L(0), so ti would be 0, contradicting the assumption that
the parameters of K = K(t1, t2, t3) are non-integers. Therefore, yi �= 0. If
|y1| > 2

3 , say, then since y1 = −y2 − y3, we would have |yi| > 1
3 for i = 2 or

3, which implies |y1| + |yi| > 1, contradicting (2).
(4) Up to relabeling we may assume that e(γ1) ≥ e(γi) for i = 2, 3, and

by taking the mirror image of K if necessary we may assume that y1 < 0.
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By Theorem 2.1, ē =
∑

e(γi) ≥ 0, hence either e(γ1) > 0, or e(γi) = 0 for
all i.

First assume e(γ1) > 0. Since −1 < y1 < 0, by Lemma 2.3 v1 is on one
of the edges in G, except that it may also be on the edge L(−2

3). However,
if v1 ∈ L(−2

3) then since −y1 = y2 + y3 and −y1 + yi ≤ 1, we must have
y2 = y3 = 1

3 , hence replacing (t1, t2, t3) by (−t2,−t3,−t1) will give a new
candidate system such that the ending point of the first edge path is on
L(−1

3), as required.
Now assume e(γi) = 0 for all i. We may assume that no vi is on G or its

reflection along the line y = 0, as otherwise we may choose the parameters
of K so that v1 ∈ G. Thus by Lemmas 2.3 and 2.4(3), each vi must be on
〈0,±1

4〉. However, in this case one can show that
∑

yi �= 0, contradicting
Lemma 2.4(1). Therefore this case cannot happen. �

2.5. Calculation of boundary slopes

Denote by e− (resp. e+) the number of edges in all the γi on which a point
moves downward (resp. upward) when traveling from right to left. Then the
twist number of the edge path system (γ1, γ2, γ3) is defined as

τ = τ(γ1, γ2, γ3) = 2(e− − e+).

Denote by δ = δ(γ1, γ2, γ3) the boundary slope of the surface F (γ1, γ2, γ3).
The following lemma is due to Hatcher and Oertel [4], and can be used to
calculate the boundary slope δ for a given edge path system.

Lemma 2.5. Let ti be rational numbers, and let (γ1, γ2, γ3) be a candidate
system with γi starting at a point on L(ti). Then δ − τ depends only on ti
and is independent of the paths γi.

Thus, if F ′ = F (γ′
1, γ

′
2, γ

′
3) has boundary slope δ′ and γ′

i has starting point
on L(ti), then δ = τ + δ′ − τ ′, where δ′ = δ(γ′

1, γ
′
2, γ

′
3) and τ ′ = τ(γ′

1, γ
′
2, γ

′
3).

In particular if F ′ is a Seifert surface then δ = τ − τ ′.

Proof. This is in page 460 of [4], where it was shown that δ = τ − τ ′, where
τ ′ is the twist number of the edge path system corresponding to the Seifert
surface of K, starting from the vertices 〈ti〉. Therefore δ − τ depends only
on (t1, t2, t3). �
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2.6. Notations and conventions

Throughout this paper we will denote by γi the edge path for the i-th tangle,
by vi the ending point of γi, by ū the u-coordinate of vi, which must be the
same for all i, and by yi the y-coordinate of vi. Let L be the union of the
two horizontal edges in G, i.e., L = L(−1/2) ∪ L(−1/3).

The case ū ≤ 1 has been discussed in Proposition 2.2. Hence in Sections
3–6 we will assume that ū > 1. By Lemma 2.4, in this case we may choose the
parameters ti of K = K(t1, t2, t3) to satisfy the conclusions of that lemma; in
particular, the ending point v1 of γ1 lies on the subgraph G of D in figure 4.
In Sections 3–6 we will determine K case by case, according to the position
of v1 in G.

3. The case that v1 ∈ L and αi = 0 for i = 2 or 3

In this section, we will discuss the case that one of the vertices, say v1, lies
on the horizontal lines L = L(−1/2) ∪ L(−1/3), and α2 = 0. Note that the
second condition is equivalent to that either γ2 is a constant path, or v2 is
a vertex of D.

Lemma 3.1. γi cannot all be constant paths.

Proof. Let yi = pi/qi be the y-coordinates of the ending points vi of γi, where
pi, qi are coprime integers. By Lemma 2.4(1) we have

(3.1)
∑

yi =
∑ pi

qi
= 0.

If all γi are constant paths, K = K(p1/q1, p2/q2, p3/q3) and since K is a
knot, at most one of the qi is even. If one of the qi, say q1, is even, then we
have

q2q3p1 + q1(q3p2 + q2p3) = 0.

Since the first term is odd and the other two are even, this is impossible. If
all qi are odd, then equation (3.1) implies that

q2q3p1 + q1q3p2 + q1q2p3 ≡ p1 + p2 + p3 ≡ 0 mod 2,

which implies that either one or three pi are even. However, in this case K
is a link of two components, which is again a contradiction. �
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Lemma 3.2. If v1 is in the interior of L, and v2 is in the interior of
L(p2/q2) for some q2 ≤ 3, then K = K(−1/2, 1/3, 1/(6 + 1/n)) for some
n �= 0,−1, and ū = 6.

Proof. Recall that we have assumed that yi satisfy the conclusions of
Lemma 2.4, hence y1 + y2 + y3 = 0, 0 < |yi| ≤ 2

3 , and |yi| + |yj | ≤ 1 for i �= j.
First assume y1 = −1

2 . Then the above and the assumption of v2 ∈
L(p2/q2) for q2 ≤ 3 imply that y2 = 1

3 , and y3 = −y1 − y2 = 1/6. The hori-
zontal line y = 1/6 intersects the graph D at the horizontal edge L(1/6) and
one point on each edge 〈0, 1/q〉 with q ≤ 6. By Lemma 3.1, v3 cannot be
in the interior of L(1/6) as otherwise we would have three constant paths.
It follows that v3 must be on some 〈0, 1/q〉 with q ≤ 6. By calculating the
intersection point of y = 1/6 with 〈0, 1/q〉 we see that u ≤ 3 when q ≤ 5,
which would be a contradiction because v2 ∈ IntL(1

3) implies that ū > 3.
Therefore, we must have q = 6, in which case v3 is the vertex 〈1/6〉.

By Definition 2.2 we have

∑
e(vi) =

(
1
3

+ 6
(

1
2
− 1

3

))
+

1
3

+
1
3
(4 − 6) = 1,

therefore by Theorem 2.1 we must have ē =
∑

e(γi) =
∑

e(vi) −
∑ |γi| = 0,

so there is exactly one edge in ∪γi, which must be in γ3 because γ1 and γ2

are constant paths. Therefore

K = K

(
−1

2
,
1
3
,

1
6 + 1

n

)
.

Since γ3 must be an allowable edge path, we have n �= 0,−1, and the result
follows.

Now assume y1 = −1
3 . The case of y2 = 1

2 is similar to the above, and
we obtain the same knot up to equivalence. If y2 = −1

2 then |y2| + |y3| > 1,
contradicting Lemma 2.4. In all other cases we have vi ∈ IntL(pi/3) for each
i, which implies that γi are all constant paths, contradicting Lemma 3.1. �

Lemma 3.3. Suppose v1 ∈ L(−1/3). Then v2 cannot be in the interior of
a horizontal edge L(p2/q2) with q2 ≥ 4.

Proof. If this is not true then γ2 is a constant path, so by Lemma 3.1 γ3

cannot be a constant path, hence |γ3| > 0. By Definition 2.2 we have

e(γ1) =
1
3
,
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e(γ2) =
1
3

+ ū

(
1
q2

− 1
3

)
,

e(γ3) =
1
3
(4 − ū) − |γ3|

0 ≤ ē =
∑

e(γi) = 2 − 5
12

ū − ū

(
1
4
− 1

q2

)
− |γ3|

≤ 2 − 5
12

ū − |γ3| < 2 − 5
12

ū.

This gives 5 > ū. Since ū ≥ q3 and q3 ≥ 4, we must have q2 = 4. Assume v3

is on the edge 〈p3/q3, t3/s3〉. Then s3 > ū ≥ 4, so s3 ≥ 5.
Define β3(u) = (s3 − u)/(s3 − q3). Then β3(ū) is the length of the last

edge segment in γ3, so β3(ū) ≤ |γ3|.
The function e(u) = 2 − 5

12u − β3(u) is a linear function of u. We have
e(5) < 0, and e(ū) ≥ ē ≥ 0, for some 4 < ū < 5, so e(4) > 0, and hence β3(4)
< 1

3 . Since β3(4) = (s3 − 4)/(s3 − q3), this is true if and only if q3 = 1 and
s3 = 5. Hence v3 is on an edge E3 = 〈p3/1, t3/5〉 for some p3, t3. Since 0 <
|y3| ≤ 2

3 , we must have E3 = 〈0, ±1/5〉.
By assumption we have y1 = −1

3 . Since |y2| = |p2/q2| = |p2|/4 and |y1| +
|y2| ≤ 1, we must have |y2| = 1

4 , hence (y2, y3) = (−1
4 , 5

12) or (1
4 , 1

12). It is easy
to see that the horizontal line y = 5

12 does not intersect the edge E3 above.
Therefore, we must have (y2, y3) = (1

4 , 1
12), hence E3 = 〈0, 1

5〉.
The line equation of E3 is given by y = x/4, hence the only solution for

y3 = 1/12 and x > 0 is at x = 1/3, which has u-coordinate u = 1/(1 − x) =
3/2 < 4. Therefore, there is no solution in this case because ū > 4. �

Lemma 3.4. Suppose v1 ∈ L(−1
2). Then v2 cannot be in the interior of a

horizontal edge L(p2/q2) with q2 ≥ 4.

Proof. Similar to Lemma 3.3, we have

e(γ1) =
1
3

+ ū

(
1
2
− 1

3

)
=

1
3

+
1
6
ū,

e(γ2) =
1
3

+ ū

(
1
q2

− 1
3

)
,

e(γ3) =
1
3
(4 − ū) − |γ3|,

0 ≤ ē =
∑

e(γi) = 2 − ū

(
1
2
− 1

q2

)
− |γ3|.
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Since K is a knot, q2 must be odd, hence q2 ≥ 5. Hence from the above
we have 2 − ū(1

2 − 1
5) ≥ 0, so ū < 7. Since q2 < ū, we must have q2 = 5.

Therefore, y2 = p2/q2 = ±k/5 for some k = 1, 2, 3, 4. Since |yi| + |yj | ≤ 1
and |y1| = 1

2 , we must have y2 = 1
5 or 2

5 . (The cases of y2 = −1
5 and −2

5
are impossible because then y3 > 1

2 , so |y1| + |y3| > 1.)
When y2 = 2

5 , we have y3 = −y1 − y2 = 1
10 . The intersection of the line

y = 1
10 and D is the union of L( 1

10) and one point in each edge 〈0, 1/q3〉 for
q3 ≤ 10. Since ū < 7, v2 cannot be on L( 1

10). By direct calculation we see
that the u value of the intersection between y = 1

10 and 〈0, 1/q3〉 is

u =
1

1 − (q3 − 1)y
=

10
11 − q3

,

which gives u ≤ 5 for q3 ≤ 9, and u = 10 for q3 = 10. Since 5 < ū < 7, there
is no solution in this case.

When y2 = 1
5 , we have y3 = −y1 − y2 = 3

10 . The horizontal line y = 3
10

intersects D at L( 3
10), and one point on each of 〈0, 1

2〉, 〈0, 1
3〉, 〈1

3 , 1
4〉, and

〈1
3 , 2

7〉. (These are all the edges 〈t1, t2〉 with t1 and t2 on opposite sides of
y = 3

10 .) As above, one can calculate the u-coordinate of the intersection to
show that there is no intersection point on the interval 5 < u < 7. Hence
there is no solution in this case either. �

We now assume that v1 ∈ L, and v2, v3 are not in the interior of hori-
zontal edges. Since α2 = 0, the ending point v2 of γ2 must be a vertex of D.
The following two lemmas determine all knots with this property.

Lemma 3.5. Suppose v1 ∈ L(−1/3), v2 is a vertex of D, and v3 is not in
the interior of a horizontal edge. Then K = K(−1/3,−1/(3 + 1/n), 2/3) for
some odd n �= −1, and ū = 3.

Proof. By Definition 2.2 we have

0 ≤ ē =
∑

e(γi) ≤ 1
3

+ 2 × 1
3
(4 − ū) −

∑
|γi|,

which gives ū ≤ 4.5. Since v2 is vertex and v1 ∈ L(−1/3), ū is an integer,
and ū ≥ 3. Hence ū = 3 or 4. Thus v2 = 〈±1/3〉, 〈±2/3〉, 〈±1/4〉 or 〈±3/4〉.
Since |yi| ≤ 2

3 , we cannot have |y2| = 3/4.
When y2 = −1/3, we have y3 = 2/3, so all the three vi are vertices,

and
∑

e(vi) = 1. Since ē =
∑

e(vi) −
∑ |γi|, by Theorem 2.1 we must have∑ |γi| = 1, so there is one full edge in some γi. Because of symmetry K

is equivalent to K(−1/3,−1/(3 + 1/n), 2/3). Since γ3 is allowable, n �= −1,
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and since K is a knot, n must be odd. This gives the knots listed in the
lemma.

When y2 = 1/3 or −2/3, y3 = 0 or 1, which is not a solution. When
y2 = 2/3 we have y3 = −1/3, which gives the same solution as above.

When y2 = 1
4 , we have y3 = −y1 − y2 = 1

12 . Now v3 lies on the intersec-
tion of y = 1

12 and u = 4, which is a point on the edge 〈0, 1/10〉. We have

0 ≤ 3̄ ≤
∑

e(vi) =
1
3

+ 0 +
(
−2

3

)
< 0,

hence it is not a solution.
When y2 = −1

4 , y3 = 1
3 + 1

4 = 7
12 . One can check that the point of

(u, y) = (4, 7
12) lies on the edge 〈1

2 , 3
5〉. We have β3 = (ū − 2)/(5 − 2) = 1/3.

Since β1 = β2 = 0, by Lemma 2.5 the boundary slope of the surface is δ ≡
2(e− − e+) ≡ ±2β3 = ±2/3 mod 1, hence by Theorem 2.1 we have ē = 2/3.
On the other hand, we have

ē =
∑

e(γi) =
1
3

+ 0 +
(

1
3
(4 − 4) − 1

3

)
= 0.

This contradiction completes the proof of the lemma. �

Lemma 3.6. Suppose v1 ∈ L(−1
2), v2 is a vertex of D, and v3 is not in

the interior of a horizontal edge. Then K and ū are given by one of the
following.

(i) K(−1/2, 1/5, 2/7), ū = 5;

(ii) K(−1/2, 2/5, 1/9), ū = 5;

(iii) K(−1/2, 1/5, 1/(3 + 1/n)), n even, n �= 0, ū = 3;

(iv) K(−1/2, 1/3, 1/(5 + 1/n)), n even, n �= 0, ū = 3.

Proof. Let v2 = 〈y2〉 = 〈p2/q2〉. By definition of e(γi) and Theorem 2.1 we
have

0 ≤ ē =
∑

e(γi) =
(

1
3

+
1
6
ū

)
+ 2 × 1

3
(4 − ū) − |γ2| − |γ3|

= 3 − 1
2
ū − |γ2| − |γ3|,

which gives ū = q2 ≤ 6. We have y2 > 0 since otherwise y3 = −y1 − y2 >
1
2 , so |y1| + |y3| > 1, contradicting Lemma 2.4(2). Similarly we must have
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y2 ≤ 1
2 as otherwise we would have |y1| + |y2| > 1. Moreover, y2 �= 1

2 as other-
wise we would have y3 = −y1 − y2 = 0, contradicting Lemma 2.4(3). There-
fore y2 = 1

3 , 1
4 , 1

5
2
5 , or 1

6 . In each case v3 is uniquely determined by the facts
that u(v3) = ū = q2, and y3 = −y1 − y2. We separate the cases.

Case 1. y2 = 1
3 .

We have ū = 3, and y3 = 1
6 . The point v3 lies on the edge 〈0, 1

5〉, with
β3 = (5 − 3)/(5 − 1) = 1/2, which is the length of the last segment of γ3.
Hence ∑

e(vi) − β3 =
5
6

+
1
3

+
1
3
− 1

2
= 1,

so there is an extra edge, whose ending point is either 〈1/3〉 or 〈1/5〉. Since
K = K(−1

2 , a2/b2, a3/b3) is a knot, the numbers b2 and b3 must be odd.
Combining these, we see that K is equivalent to a knot of type (iii) or (iv)
in the Lemma.

Case 2. y2 = 1
4 .

We have ū = 4 and y3 = −y1 − y2 = 1
4 , so v3 is also at 〈1

4〉. Since∑
e(vi) = (1

3 + 1
6 ū) + 0 + 0 = 1, there is one extra edge. It follows that K =

K(−1
2 , 1

4 , 1/(4 + 1
n)), which is a link of at least two components. Therefore

there is no solution in this case.
Case 3. y2 = 1

5 .
We have ū = 5 and y3 = 1

2 − 1
5 = 3

10 . The vertex v3 lies on the edge
〈1
3 , 2

7〉, and β3 = (7 − 5)/(7 − 3) = 1/2. We have
∑

e(vi) − β3 = (1
3 + 5

6) +
1
3(4 − 5) + 1

3(4 − 5) − 1
2 = 0, so there is no extra edge. The knot is K(−1

2 ,
1
5 , 2

7).
Case 4. y2 = 2

5 .
Then ū = 5 and y3 = 1

10 . The point v3 lies on the edge 〈0, 1
9〉, and β3 =

(9 − 5)/(9 − 1) = 1/2. We have
∑

e(vi) − β3 = (1
3 + 5

6) + 1
3(4 − 5) + 1

3(4 −
5) − 1

2 = 0, so there is no extra edge. The knot is K(−1
2 , 2

5 , 1
9).

Case 5. y2 = 1
6 .

Then ū = 6 and y3 = 1
2 − 1

6 = 1
3 . The point v3 is in the interior of the

horizontal line L(1
3), which contradicts the assumption. Therefore there is

no solution in this case. �

Proposition 3.1. Suppose v1 ∈ L and αi = 0 for i = 2 or 3. Then K is
equivalent to one of the knots listed in Lemma 3.2, 3.5 or 3.6.

Proof. By symmetry we may assume that α2 = 0, so v2 is either a vertex
or in the interior of a horizontal line L(p2/q2). The first case is covered by
Lemmas 3.5 and 3.6. In the second case by Lemmas 3.3 and 3.4 we must have
q2 ≤ 3. Since y2 �= 0, we have q2 ≥ 2. We may now apply Lemma 3.2 unless
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v1 is a vertex of L, which happens only if q2 = 2 and v1 = 〈−1
3〉. If that is the

case, then we may consider the (equivalent) knot K(−p2/q2,−p1/q1,−p3/q3)
instead, which has the property that the ending points of the corresponding
edge paths are (v′1, v′2, v′3), with v′1 ∈ L(−1

2) and v′2 = 〈1
3〉, which has been

covered by Lemma 3.6. �

4. The case that v1 ∈ L(−1
3
) and αi �= 0 for i = 2, 3

In this section we will assume that v1 ∈ L(−1
3), and vi is in the interior of

a non-horizontal edge Ei = 〈pi/qi, ri/si〉 and hence 0 < αi < 1 for i = 2, 3.
We have ū = u(v1) ≥ 3.

Define

βi(u) =
si − u

si − qi
,

e(u) = 3 − 2
3
u − β2(u) − β3(u).

Then e(u) is a linear function of u. Recall that βi = (si − ū)/(si − qi) =
βi(ū). We have

Lemma 4.1. Suppose v1 ∈ L(−1
3), and αi �= 0 for i = 2, 3. Then

(1) 0 ≤ ē ≤ e(ū), and

(2) 3 ≤ ū < 4.5.

Proof. (1) By definition we have

0 ≤ ē =
∑

e(γi) =
1
3

+ 2 ×
(

1
3
(4 − ū)

)
− |γ2| − |γ3|

≤ 3 − 2
3
ū − β2 − β3 = e(ū).

(2) Since vi is in the interior of non-horizontal edge, βi > 0 for i = 2, 3.
Hence the above inequality implies that ū < 4.5. Since v1 ∈ L(−1

3), we have
ū ≥ 3. �

Lemma 4.2. Suppose v1 ∈ L(−1
3), and αi �= 0 for i = 2, 3. Then qi ≤ 3 for

i = 2, 3.

Proof. Since qi ≤ ū, by Lemma 4.1(2) we have qi ≤ 4 for i = 2, 3. If q2 = 4
then by Lemma 4.1(1) we have 4 < ū < 4.5, so β2 = (s2 − ū)/(s2 − 4) ≥ 1/2.
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Therefore e(ū) = 3 − 2
3 ū − β2 − β3 < 0, which is a contradiction to

Lemma 4.1(1). �

Lemma 4.3. Suppose v1 ∈ L(−1
3) and αi �= 0 for i = 2, 3. Then q2 ≤ 2.

Proof. Assume to the contrary that q2 > 2. Then by Lemma 4.2 we must
have q2 = 3. In this case β2(3) = −1, so e(3) = 3 − 2

3(3) − 1 − β3 < 0.
First assume s2 ≥ 5. If s3 ≥ 5 then βi(5) ≥ 0 for i = 2, 3, so e(5) = 3 −

2
3 × 5 − β2(5) − β3(5) < 0, and by linearity we have e(ū) < 0, which is a
contradiction. If s3 = 4 then 3 < ū < 4. Since β2(4) ≥ 1

2 we have e(4) < 3 −
2
34 − β2(4) < 0, which again contradicts the fact that e(ū) ≥ 0.

We may now assume s2 = 4. Then 3 < ū < 4. We have e(3) < 0, and
e(ū) ≥ 0, hence e(4) = 1

3 − β3(4) > 0, i.e., β3(4) = (s3 − 4)/(s3 − q3) < 1
3 .

If q3 = 3 then β3(4) < 1
3 implies that s3 = 4. Since |yi| ≤ 2

3 , E3 �= 〈±2
3 ,

±3
4〉, so we must have E3 = 〈±1

3 ,±1
4〉. Since (q2, s2) = (3, 4), the same is

true for E2, hence 1
4 < |yi| < 1

3 for i = 2, 3. Therefore either y2 + y3 = 0 (if
E2 �= E3), or |y2 + y3| > 1

2 , either case contradicting the fact that y2 + y3 =
−y1 = 1

3 .
If q3 = 2 then since s3 is coprime with q3, s3 �= 4, so we must have s3 ≥ 5.

Thus β3(4) = (s3 − 4)/(s3 − 2) ≥ 1/3, which is a contradiction.
If q3 = 1 then β3(4) = (s3 − 4)/(s3 − 1) < 1/3 implies that s3 = 4 or 5,

so E3 = 〈0,±1
4〉 or 〈0,±1

5〉. As above, E2 = 〈±1
3 ,±1

4〉, and one can check
that there is no solution to the equation y1 + y2 + y3 = 0 in these cases. �

Proposition 4.1. Suppose v1 ∈ L(−1
3), and αi �= 0 for i = 2, 3. Then K is

equivalent to either K(−1/3, 1/5, 1/5) or K(−1/3, 1/4, 1/7), and ū = 3.

Proof. First assume that s2, s3 ≥ 5. Then βi(5) ≥ 0, hence e(5) = 3 − 2
3 ×

5 − β2(5) − β3(5) < 0. By Lemma 4.1 we have

e(3) = 3 − 2
3
× 3 − β2(3) − β3(3) = 1 − β2(3) − β3(3).

Since e(ū) ≥ 0 for some 3 ≤ ū < 5, by linearity we have e(3) ≥ 0. Therefore,
one of the βi, say β2, satisfies

β2(3) =
s2 − 3
s2 − q2

≤ 1
2
.

Since s2 ≥ 5, this is true if and only if (q2, s2) = (1, 5), in which case
β2(3) = 1

2 , hence β3(3) ≤ 1
2 , and the same argument as above shows that
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(q3, s3) = (1, 5). It follows that K = K(−1/3, 1/5, 1/5), and ū = 3 because
e(ū) < 0 if ū > 3.

Now assume s2 = 4. Then 3 ≤ ū < 4. Since q2 is coprime with s2 and
q2 < 3 by Lemma 4.3, we must have q2 = 1, so (q2, s2) = (1, 4). Since |y2| ≤
2
3 , E2 �= 〈±1,±3

4〉. Therefore we must have E2 = 〈0,±1
4〉.

Suppose E2 = 〈0,−1
4〉. Then −E1 − E2 coincides with the edge 〈1

2 , 3
5〉

on 3 ≤ u ≤ 4, so E3 = 〈1
2 , 3

5〉 if there is a solution. By Example 2.1 and
Definition 2.2 we have

ē =
∑

e(γi) ≤
∑

e(vi) − β3 =
1
3

+ 0 +
1
3
(4 − ū) − 5 − ū

5 − 2
= 0.

On the other hand, since E2 goes upward and E3 downward when traveling
from right to left, we have e− ≡ β3 and e+ ≡ β2 mod 1, hence by Lemma 2.5
the boundary slope of the surface δ satisfies

δ ≡ 2(e− − e+) ≡ 2(β3 − β2) = 2
(

5 − ū

5 − 2
− 4 − ū

4 − 1

)
=

2
3
.

It follows from Theorem 2.1 that ē = 2
3 , which is a contradiction. Therefore,

there is no solution in this case.
Now assume E2 = 〈0, 1

4〉. Then y2 = x/3, and y3 = −y1 − y2 = (1 − x)/3.
One can check that when ū = 3, v3 is on the edge 〈0, 1

7〉, in which case we
have ē = 0, and K = K(−1

3 , 1
4 , 1

7). We need to show that there is no solution
when ū > 3.

The line segment y = (1 − x)/3 is below the line y = 1 − x, hence from
figure 1 we see that y3 is on an edge E3 = 〈0, 1/s3〉 for some s3. Since the
line segment has negative slope, and since it intersects 〈0, 1

7〉 at u = 3, we
must have s3 > 7 when u > 3. By definition we have

ē =
∑

e(γi) =
1
3

+ 0 +
(

1
3
(4 − ū) − s3 − ū

s3 − 1

)
.

For s3 > 7, the right hand side is negative for ū = 3 and 4, hence by linearity
it is negative for all 3 ≤ ū ≤ 4. By Theorem 2.1 there is no solution in this
case. �

5. The case that v1 ∈ L(−1
2
) and αi �= 0, for i = 2, 3

In this section, we will assume that v1 ∈ L(−1
2), and vi is in the interior of a

non-horizontal edge Ei = 〈pi/qi, ri/si〉 and hence 0 < αi < 1 for i = 2, 3. By
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Lemma 2.4 (2) and (3) we must have 0 < yi < 1
2 for i = 2, 3, hence 0 ≤ z ≤ 1

2
when z = pi/qi or ri/si and i = 2, 3.

As before, define ē =
∑

e(γi), and βi(u) = (u − qi)/(si − qi). Let βi =
βi(ū). Define a function

e(u) = 3 − 1
2
u − β2(u) − β3(u).

Note that this is different from the function e(u) defined in Section 4.
Define li = si − qi. Given an edge E in D and a number t, we use t − E

to denote the set of points {t − t′ | t′ ∈ E}.

Lemma 5.1. Suppose v1 ∈ L(−1
2) and αi �= 0 for i = 2, 3. Then

(1)

0 ≤ ē ≤ e(ū) = 3 − 1
2
ū − β2 − β3 = 1 − 1

2
ū + α2 + α3

= 1 − 1
2
ū +

ū − q2

l2
+

ū − q3

l3

=
(

1 − q2

l2
− q3

l3

)
−

(
1
2
− 1

l2
− 1

l3

)
ū

(2) 2 ≤ ū < 6.

Proof. (1) By Theorem 2.1 we have ē =
∑

e(γi) ≥ 0. Since v1 ∈ L(−1
2), by

Definition 2.2 and Example 2.1 we have

ē =
(

1
3

+
1
6
ū

)
+ 2 × 1

3
(4 − ū) − |γ2| − |γ3| ≤ e(ū)

The other equalities are just different expressions of e(ū).
(2) Since v1 ∈ L(−1

2), we have ū ≥ 2. Since vi is in the interior of non-
horizontal edges, we have βi > 0, so 0 ≤ e(ū) < 3 − 1

2 ū, hence ū < 6. �

Lemma 5.2. Suppose v1 ∈ L(−1
2), and αi �= 0 for i = 2, 3. Then qi ≤ 3 for

i = 2, 3.

Proof. Note that qi ≤ ū < 6. If q2 = 5 then ū ∈ [5, 6). We have
e(6) ≤ 3 − 1

2 × 6 = 0, and e(5) = 3 − 5
2 − β2(5) − β3(5) < 0 because β2(5) =

1. Since e(u) is linear, e(ū) < 0, a contradiction. Therefore we may assume
that q2 = 4.
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First assume s2 > 5. We have e(4) = 1 − β2(4) − β3(4) = −β3(4) < 0
and e(ū) ≥ 0. If s3 > 5 then βi(6) ≥ 0, so e(6) ≤ 3 − 1

2 × 6 = 0, which con-
tradicts 4 < ū < 6 and the linearity of e(u). If s3 = 5 then 4 < ū < 5, and
e(5) = 3 − 1

2 × 5 − β2(5) ≤ 0, which again is a contradiction.
Now assume s2 = 5. Then E2 = 〈p2/4, r2/5〉. Since 0 < y2 < 1

2 , we must
have E2 = 〈1

4 , 1
5〉. However, one can check that the interior of the line seg-

ment 1
2 − E2 lies in the interior of the triangle with vertices 〈1

3〉, 〈1
4〉, 〈2

7〉,
hence there is no solution to the equation

∑
yi = 0 for v2 ∈ IntE2. This

contradiction completes the proof of the lemma. �

Lemma 5.3. If v1 ∈ L(−1
2), αi > 0 for i = 2, 3, and q3 ≤ q2 = 3, then

K = K(−1/2, 2/5, 1/7) and ū = 4, or K(−1/2, 1/5, 2/7) and 3 < ū < 5.

Proof. Since y2 ∈ (0, 1
2), we must have E2 = 〈1/3, r2/s2〉. From figure 1 we

see that r2/s2 ≥ 1
4 , hence y2 > 1

4 , and y3 = −y1 − y2 < 1
4 . Since q3 ≤ 3 and

y3 < 1/4, from figure 1, we see that p3/q3 = 0, so E3 = 〈0, 1/s3〉 for some
s3 ≥ 4. As before, put li = si − qi.

Since y1 = −1
2 and y3 = −y1 − y2 = 1

2 − y2, we see that v3 lies on the
intersection of E3 and 1

2 − E2. When E2 = 〈1/3, 1/4〉, one can check that
the interior of the line segment 1/2 − E2 lies in the interior of the triangle
〈0, 1/4, 1/5〉. Therefore there is no solution in this case.

When E2 = 〈1/3, 2/5〉, we have the following calculation.

y2 =
1
3

+
1
2

(
x − 2

3

)
=

x

2
,

y3 =
1
l3

x and

y3 = −y1 − y2 =
1
2
− y2 =

1
2
− x

2
, hence

x =
l3

l3 + 2
,

ū =
1

1 − x
=

l3 + 2
2

.

Since v2 ∈ 〈1/3, 2/5〉 and is not a vertex, we have 3 < ū < 5, so the above
gives 4 < l3 < 8. Since K(−1/2, 2/5, 1/s3) is a knot, s3 must be odd. There-
fore the only possibility is that s3 = 7, in which case l3 = 6, ū = 4, and the
knot is K(−1/2, 2/5, 1/7).

When E2 = 〈1/3, 2/7〉, 1/2 − E2 lies on the edges 〈0, 1/5〉 and 〈1/5, 2/9〉.
Since q3 ≤ 3, we must have E3 = 〈0, 1/5〉. Note that l2 = l3 and the slopes of
these edges add up to zero. Therefore by Lemma 2.5 all solution surfaces on
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these edges have the same boundary slope. We have K = K(−1/2, 1/5, 2/7),
and 3 < ū < 5.

We have s2 �= 6 because s2 is coprime with q2. Thus it remains to con-
sider the case that E2 = 〈1/3, r2/s2〉 for some s2 ≥ 8. It is clear from figure 1
that 1/2 − E2 does not intersect the interior of 〈0, 1/s〉 for s ≤ 4. There-
fore, we may assume that E3 = 〈0, 1/s3〉 for some s3 ≥ 5. We now have
l2 = s2 − q2 ≥ 5 and l3 = s3 − q3 ≥ 4. Since ū > q2 = 3, by Lemma 5.1 we
have

ē ≤
(

1 − q2

l2
− q3

l3

)
+

(
−1

2
+

1
l2

+
1
l3

)
ū

=
(

1 − 3
l2

− 1
l3

)
+ 3

(
−1

2
+

1
l2

+
1
l3

)
+

(
−1

2
+

1
l2

+
1
l3

)
(ū − 3)

=
(
−1

2
+

2
l3

)
+

(
−1

2
+

1
l2

+
1
l3

)
(ū − 3)

≤
(
−1

2
+

2
4

)
+

(
−1

2
+

1
5

+
1
4

)
(ū − 3) < 0.

This contradicts Theorem 2.1. Therefore, there is no solution in this case. �

Lemma 5.4. Suppose v1 ∈ L(−1
2), αi > 0 for i = 2, 3, and q3 ≤ q2 = 2.

Then K = K(−1
2 , 1

3 , 1
7), and ū = 5

2 .

Proof. The minimum value of y2 on edges of type 〈1/2, r2/s2〉 is achieved
at the vertex 〈1/3〉 on 〈1

2 , 1
3〉. If q3 = 2 then y2 + y3 ≥ 2/3 > y1, so there is

no solution to
∑

yi = 0. Therefore we must have q3 = 1. By the remark at
the beginning of the section we have y2 < 1/2, so E2 = 〈1/2, r2/s2〉 for some
r2/s2 < 1/2, and E3 = 〈0, 1/s3〉.

We have the following calculation.

y2 =
1
2
− 1

l2

(
x − 1

2

)
,

y3 =
1
l3

x and

y3 =
1
2
− y2 =

1
l2

(
x − 1

2

)
, hence

x =
l3

2(l3 − l2)
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ū =
1

1 − x
=

2(l3 − l2)
l3 − 2l2

= 2 +
2l2

l3 − 2l2
,

α2 =
ū − q2

l2
=

ū − 2
l2

=
2

l3 − 2l2
,

α3 =
ū − q3

l3
=

ū − 1
l3

=
1

l3 − 2l2
,

0 ≤ ē ≤ e(ū) = 1 − 1
2
ū + α2 + α3 =

3 − l2
l3 − 2l2

.

Since v2 ∈ 〈1/2, r2/s2〉 and is not a vertex, we have ū < s2 = l2 + 2. By the
above formula of ū, this gives 2 + 2l2/(l3 − 2l2) < 2 + l2, hence

(*) l3 − 2l2 > 2.

Note that the slope of E2 is negative and the slope of E3 is positive, so by
Lemma 2.5 the boundary slope δ of the surface satisfies

δ ≡ 2(e− − e+) ≡ 2(β3 − β2) ≡ 2(α2 − α3) =
2

l3 − 2l2
�≡ 0 mod 1.

By Theorem 2.1 this means that 1
2 ≤ ē < 1, hence

e(ū) =
3 − l2

l3 − 2l2
=

1
2
× 3 − l2

(l3/2) − l2
≥ ē ≥ 1

2
.

By (*) we have (l3/2) − l2 > 0, so the above inequality gives

l3 ≤ 6.

Together with (*), this implies that (l2, l3) = (1, 5) or (1, 6). By definition
e(ū) − ē equals the number of full edges in ∪e(γi). In both cases e(ū) < 1,
so there are no full edges. In the first case we have K = K(−1/2, 1/3, 1/6),
which is not a knot. In the second case we have ū = 2.5, s2 = 3, and s3 = 7,
hence the knot is K = K(−1/2, 1/3, 1/7). This solution gives the well-known
37/2 toroidal surgery on K(−1/2, 1/3, 1/7). �

Lemma 5.5. Suppose v1 ∈ L(−1
2), αi > 0, and Ei = 〈0, 1/si〉 for i = 2, 3.

Then

K = K(−1/(2 + 1/n), 1/3, 1/3), n odd, n �= −1, ū = 2; or

K = K(−1/2, 1/3, 1/(3 + 1/n)), n even, n �= 0, ū = 2.
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Proof. Since vi is in the interior of the edge Ei above, we have yi < 1/si,
so

∑
yi = 0 has no solution if si ≥ 4 for i = 2, 3. Also since v1 ∈ L(−1

2), we
have ū ≥ 2, hence si > 2. Therefore we may assume that s2 = 3 and s3 ≥ 3.
We have

y2 + y3 =
x

l2
+

x

l3
=

(
1
l2

+
1
l3

)
x =

1
2

= −y1,

x =
l2l3

2(l2 + l3)
,

ū =
1

1 − x
=

2(l2 + l3)
2(l2 + l3) − l2l3

,

α2 =
ū − q2

l2
=

l3
2(l2 + l3) − l2l3

,

α3 =
ū − q3

l3
=

l2
2(l2 + l3) − l2l3

,

α2 + α3 =
1
2
ū,

ē ≡ e(ū) = 1 − 1
2
ū + α2 + α3 = 1.

Since both E2 and E3 have positive slope, e− ≡ β2 + β3 ≡ −(α2 + α3)
mod 1; by Lemmas 2.11 the boundary slope of the surface satisfies δ ≡
2(e− − e+) ≡ −2(α2 + α3) = −ū. Since ē ≡ 0 mod 1, by Theorem 2.1
δ = −ū must be an integer slope, and ē = 0. Since v1 ∈ L(−1

2) and v2 is
in the interior of 〈0, 1/3〉, we have 2 ≤ ū < 3, hence ū = 2. From the formula
of ū above we have l2 = l3 = 2. Also

0 = ē = e(ū) −
∑

(|γi| − βi) = 1 −
∑

(|γi| − βi).

Hence there is an extra edge, which may end at either 〈1
2〉 or 〈1

3〉. Therefore
K is one of the following knots.

K

(
− 1

2 + 1/n
,
1
3
,
1
3

)
, n odd, and n �= −1;

K

(
−1

2
,
1
3
,

1
3 + 1/n

)
, n even, n �= 0.

The extra conditions on n is to guarantee that γi are allowable, and K is a
knot. �

Proposition 5.1. If v1 ∈ L(−1
2) and αi > 0 for i = 2, 3, then K is one of

the knots in Lemma 5.3, 5.4 or 5.5.
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Proof. Because of symmetry we may assume q2 ≥ q3 ≥ 1. By Lemma 5.2 we
have q2 ≤ 3, so q2 = 3, 2 or 1, which are covered by Lemmas 5.3, 5.4 and
5.5, respectively. �

6. No horizontal edges

In this section, we study the case that no vi is on a horizontal edge. As
before, let Ei = 〈pi/qi, ri/si〉. By Lemma 2.4(4) we may assume that v1 is
in the interior of a non-horizontal edge in the graph G shown in figure 4,
hence 1 < ū < 3 and ū �= 2. Since qi ≤ ū, we have qi ≤ 2 for all i.

Similar to the previous sections, we define

βi(u) =
si − u

si − qi
,

αi(u) =
u − qi

si − qi
,

e(u) = 4 − u −
∑

βi(u) = 1 − u +
∑

αi(u).

Since no vi is in the interior of a horizontal edge, by Definition 2.2 we have

ē =
∑

e(γi) = (4 − ū) −
∑

|γi|(6.1)

≤ 4 − ū −
∑

βi = 1 − ū +
∑

αi = e(ū).

Note also that e(ū) − ē is a nonnegative integer, which equals the number
of full edges in ∪γi.

Let δ be the boundary slope of F (γ1, γ2, γ3). Then

δ ≡ 2(e− − e+) ≡ −2
∑

sign(ri/si − pi/qi)αi mod 1.

Lemma 6.1. Suppose v1 ∈ G − L. If qi = 2, then si = 3.

Proof. Assume to the contrary that q2 = 2 and s2 > 3. We have E2 = 〈±1/2,
r2/s2〉. From figure 1 we see that any point (x, y2) in the interior of E2

satisfies x/2 < |y2| < x.
First assume that s3 = 3. Denote by ±Q = 〈0,±1

3〉 ∪ 〈±1
2 ,±1

3〉 ∪ 〈±1
2 ,

±2
3〉. Note that any point (x, y) on ±Q satisfies x/2 ≤ |y| ≤ x.

Since ū > q2 = 2, we have s1 = 3, so v1 ∈ G − L implies that v1 ∈ −Q.
We assumed s3 = 3 and by Lemma 2.4 we have |y3| ≤ 2

3 , hence v3 ∈ ±Q.
Thus x/2 ≤ |yi| ≤ x for i = 1, 3. This implies that if y3 < 0 then −y1 − y3 ≥
(x/2) + (x/2) = x, and if y3 < 0 then | − y1 − y3| ≤ x − x/2 = x/2, either
case contradicting the fact that y2 = −y1 − y3 satisfies x/2 < |y2| < x.
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We may now assume that s3 > 3. Consider the function e(u) = 1 − u +∑
αi(u), where αi(u) = (u − qi)/(si − qi). By (6.1) we have e(ū) ≥ ē ≥ 0.
When u = 2 we have α1(2) ≤ 1

2 , α2(2) = 0 because q2 = 2, and α3(2) ≤ 1
3

because s3 ≥ 4, hence e(2) = (1 − 2) +
∑

αi(u) < 0.
Now calculate e(3). Since s2 is coprime with q2 = 2 and s2 > 3, we have

s2 ≥ 5. Hence α2(3) ≤ 1
3 . Also, α3(3) ≤ 2

3 because s3 > 3, and α1(3) ≤ 1.
Hence e(3) = (1 − 3) +

∑
αi(3) ≤ 0. By the linearity of e(u) we have ē ≤

e(ū) < 0 because 2 = q2 < ū < s1 = 3. This contradicts Theorem 2.1. �

Lemma 6.2. Suppose v1 ∈ Int〈−1
2 ,−2

3〉, and |y1| > y2 ≥ y3 > 0. Then
ū = 2.5, and K = K(−2/3, 1/3, 1/4).

Proof. The equation for E1 is y1 = −x. By Lemma 2.4(2) we have |y1| +
|y2| ≤ 1, hence y2 ≤ 1 − x. Since y2 + y3 = −y1 and y2 ≥ y3, we have y2 ≥
1
2(−y1) = 1

2x. From figure 1 we see that E2 = 〈1
2 , 1

3〉 or 〈0, 1
3〉.

If E2 = 〈0, 1
3〉 then y3 = −y1 − y2 = x − x/2 = x/2 = y2, so E3 = E2. In

this case E1 = −E2 − E3, so there are infinitely many solutions, all giving
the same slope. We have α1 = ū − 2, α2 = α3 = (ū − 1)/2, hence

ē ≤ e(ū) = 1 − ū +
∑

αi = ū − 2 < 1.

Therefore there are no extra edges, hence K = K(−2
3 , 1

3 , 1
3). Since this is a

link of two components. there is no solution in this case.
Now assume E2 = 〈1

2 , 1
3〉. Then y3 = −y1 − y2 = x − (1 − x) = 2x − 1 <

1
3 because x < 2

3 . Hence from figure 1 we see that E3 = 〈0, 1/s3〉 for some
s3 ≥ 3. Define li = si − qi. We have the following calculation.

− y1 − y2 = 2x − 1 =
x

l3
= y3,

x =
1

2 − 1/l3
=

l3
2l3 − 1

,

ū =
1

1 − x
= 2 +

1
l3 − 1

,

α1 =
ū − 2

l1
=

1
l3 − 1

,

α2 =
ū − 2

l2
=

1
l3 − 1

,

α3 =
ū − 1

l3
=

1
l3 − 1

,

0 ≤ ē ≤ e(ū) = 1 − ū +
∑

αi = −1 +
2

l3 − 1
.
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This gives l3 = 2 or 3. When l3 = 2, ū = 3, which is a contradiction because
ū < 3. When l3 = 3, we have ū = 2.5 and ē = 0, so there is no extra edge,
hence K = K(r1/s2, r2/s2, r3/s3) = K(−2/3, 1/3, 1/4). �

Lemma 6.3. Suppose v1 ∈ Int〈−1/2,−1/3〉, and |y1| > y2 ≥ y3 > 0. Then
K = K(−1/3, 1/3, 1/7) and ū = 2.5.

Proof. Since −y1 > y2 ≥ y3 > 0, E2 and E3 must be below the edge E1 =
〈1
2 , 1

3〉, hence we must have Ei = 〈0, 1/si〉 for i = 2, 3. We have the following
calculation.

∑
yi = (x − 1) + x/l2 + x/l3 = 0,

x =
1

(1/l2) + (1/l3) + 1
,

ū =
1

1 − x
= 1 +

l2l3
l2 + l3

,

α1 =
ū − 2

l1
= ū − 2 =

l2l3
l2 + l3

− 1,

α2 =
ū − 1

l2
=

l3
l2 + l3

,

α3 =
ū − 1

l3
=

l2
l2 + l3

,

δ ≡ 2(−α1 − α2 − α3) ≡ −2l2l3
l2 + l3

≡ −2ū,

0 ≤ ē ≤ 1 − ū +
∑

αi = 0.

The last inequality gives ē = 0, so by Theorem 2.1 the boundary slope of the
surface must be an integer, hence by Lemma 2.5 we have δ ≡ 2ū ≡ 0 mod 1.
Since 2 < ū < 3, we have ū = 2.5. The only solutions for ū = 1 + l2l3/(l2 +
l3) = 2.5 are (l2, l3) = (2, 6) or (3, 3). Since e = 0, there is no extra edge, so
in the second case we would have K = K(−1/3, 1/4, 1/4), which is not a
knot. Therefore the only solution in this case is K = K(−1/3, 1/3, 1/7) and
ū = 5/2. �

Lemma 6.4. Suppose v1 ∈ G, and |y1| > y2 ≥ y3 > 0. Then v1 /∈ Int〈0,
−1/2〉.

Proof. If v1 ∈ Int〈0,−1/2〉, then |y1| > yi > 0 implies that Ei = 〈0, 1/si〉 for
some si ≥ 3. We have y1 = −x, and yi = x/li for i = 2, 3, hence from the
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equations y1 + y2 + y3 = 0 and x > 0 we have

−1 +
1
l2

+
1
l3

= 0.

Since si ≥ 3, this gives l2 = l3 = 2. Note that α1 = ū − 1, and α2 = α3 =
(ū − 1)/2 < 1/2, hence

ē = 4 − ū −
∑

|γi| ≡ 1 − ū +
∑

αi = α2 + α3 = ū − 1 �≡ 0 mod 1.

By Theorem 2.1 this implies that the boundary slope δ of the surface is not
an integer slope. On the other hand, since E1 has positive slope and E2, E3

have negative slope, by Lemma 2.5 we have

δ ≡ 2(e− − e+) = 2(β2 + β3 − β1) ≡ 2(−α2 − α3 + α1) = 0 mod 1

so δ is an integer slope, which is a contradiction. �

Lemma 6.5. Suppose v1 ∈ Int〈0,−1/3〉, and |y1| > y2 ≥ y3 > 0. Then K =
K(−1/3, 1/4, 1/7) or K(−1/3, 1/5, 1/5), and the boundary slopes are the
same as the pretzel slopes corresponding to the candidate systems in Propo-
sition 2.2.

Proof. Similar to the proof of Lemma 6.4, we have

∑
yi = −1

2
+

1
l2

+
1
l3

= 0,

which gives (l2, l3) = (3, 6) or (4, 4). We have

0 ≤ ē ≤ e(ū) = 1 − ū +
∑

αi(ū) = 1 − ū +
ū − 1

2
+

ū − 1
l2

+
ū − 1

l3
= 0.

Therefore there are no extra edges. The knots are K = K(−1/3, 1/4, 1/7)
and K(−1/3, 1/5, 1/5). The boundary slopes are the same for all ū, which
is also the boundary slope of the candidate system at ū = 1, as given in
Proposition 2.2. �

Lemma 6.6. Suppose v1 ∈ G, and |y1| > y2 ≥ y3 > 0. Then v1 /∈ Int〈−1,
−1

2〉.

Proof. If v1 ∈ Int〈−1,−1
2〉 then 1 < ū < 2, and we have Ei = 〈0, 1/si〉 for

i = 2, 3. If both si > 2 then it is easy to show that |y1| > |y2| + |y3| for
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0 < x < 1
2 , so there is no solution to

∑
yi = 0 when 1 < ū < 2. Hence we

must have s2 = 2, so y1 = −1 + x, y2 = x, and y3 = x/l3. We have the fol-
lowing calculations.

∑
yi = (−1 + x) + x +

x

l3
= 0,

x =
l3

2l3 + 1
,

ū =
1

1 − x
= 2 − 1

l3 + 1
= 2 − 1

s3
,

α1 =
ū − q1

l1
=

(2 − 1/s3) − 1
1

= 1 − 1
s3

,

α2 =
ū − q2

l2
=

(2 − 1/s3) − 1
1

= 1 − 1
s3

,

α3 =
ū − q3

l3
=

(2 − 1/s3) − 1
s3 − 1

=
1
s3

,

δ ≡ 2(−α1 − α2 − α3) =
2
s3

,

ē ≡ e(ū) = 1 − ū +
∑

αi = 1 ≡ 0 mod 1.

By Theorem 2.1, ē ≡ 0 mod 1 implies that δ is an integer slope, hence from
δ ≡ 2/s3 mod 1 and s3 ≥ 2 we see that s3 = 2. Since ē = 1 there is one extra
edge, but since (r1/s1, r2/s2, r3/s3) = (−1/2, 1/2, 1/2) or (−1/2, 1/2, 1/4),
adding one extra edge will make a link of type K(−1/2, 1/2, 1/(2 + 1/n))
or K(−1/2, 1/2, 1/(4 + 1/n)), which has at least two components. Therefore
there is no solution in this case. �

Proposition 6.1. Suppose some vi ∈ G − L, and ū > 1. Then K and ū are
equivalent to one of the pairs in Lemmas 6.2, 6.3 and 6.5.

Proof. Since ū > 1, we must have yj �= 0. Up to permutation and changing
of signs of the parameters of K we may assume that −y1 ≥ |yi| for i = 2, 3.
Before this modification we have some vi ∈ G − L. We need to show that
v1 ∈ G − L after the modification.

The assumption of vi ∈ G − L implies that ū < 3, hence p1/q1 ∈ {0,−1
2 ,

−1}. By Lemma 2.4(2) we have |y1| ≤ 2
3 , so from figure 1 we see that if

p1/q1 = −1 then E1 = 〈−1,−1
2〉, hence v1 ∈ G − L. If p1/q1 = −1

2 then by
Lemma 6.1 we have r1/s1 = −1

3 or −2
3 , so again v1 ∈ G − L. If p1/q1 = 0

and v1 /∈ G − L then from figure 1 and the assumption of |yi| ≤ |y1| we see
that each vj is in 〈0,± 1

sj
〉 for some sj ≥ 4, which contradicts the assumption

that some vi is in G − L before the modification of parameters of K.
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We now have v1 ∈ G − L, and −y1 ≥ |yi| for i = 2, 3. Since ū > 1, no vi

is on the horizontal line L(0) as otherwise the corresponding parameter of K
would be 0, contradicting the assumption that the length of K is 3. Hence
from

∑
yi = 0 we have that |y1| > yi > 0. Permuting the second and third

parameters of K if necessary we may assume y2 ≥ y3. Therefore we have
|y1| > y2 ≥ y3 > 0.

There are only 5 edges in G − L, so E1 must be one of them, which have
been discussed in Lemma 6.2–6.6 respectively. The above discussion shows
that yi satisfy the conditions of the lemmas, hence the result follows from
these lemmas. �

7. The classification

Lemma 7.1. Let K be a Montesinos knot of length 3. Then E(K) contains
a candidate surface F of genus one with boundary slope δ if and only if (K, δ)
is equivalent to one of the pairs listed in Theorem 1.1.

Proof. When ū ≤ 1, the knots are given in Proposition 2.2. When ū > 1, by
Lemma 2.4(4) we may assume that v1 ∈ G. Propositions 3.7, 4.4 and 5.6
covered the case of v1 ∈ L, and Proposition 6.1 covered the case of v1 ∈ G −
L. The list in Theorem 1.1 contains all the knots given in these propositions.
Here are more details.

Parts (1) and (2) of Theorem 1.1 include the knots in Proposition 2.2,
as well as K(−1/3, 1/5, 1/5) and K(−1/3, 1/4, 1/7) in Proposition 4.1 and
Lemma 6.5. Note that the boundary slopes for the last two are the same
as those in the list, but the ū values are different, which is allowed by the
remark before the statement of Theorem 1.1.

Part (3) is given by Lemma 3.2, and part (4) by Lemma 3.5. Parts (5),
(6) and (9) are in Lemma 3.6. Parts (7) and (8) are from Lemma 5.5, Parts
(10) from Lemma 5.3, Parts (11) from Lemma 5.4, Parts (12) from Lemma
6.2, and (13) from Lemma 6.3. Note that the knot K(−1/2, 1/5, 2/7) in
Lemmas 3.6 and 5.3 is included in Parts (5) (with n = 2) because they all
have the same boundary slope. The boundary slopes can be calculated using
the algorithm of Hatcher and Oertel in Lemma 2.5. �

Proof of Theorem 1.1. Most of the work has been done throughout the paper
and summarized in Lemma 7.1, as it was shown that the list in Theorem 1.1
contains all possible (K, δ). It remains to show that the candidate surfaces
in Lemma 7.1 are incompressible in E(K) when K is hyperbolic. Since the
candidate systems are already determined in the proofs of the lemmas and
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the propositions above, it is straightforward to follow the procedure of [4] to
verify the incompressibility of the candidate surface F . For each individual
knot the toroidal slopes can also be verified using the computer program of
Nathan Dunfield [16].

Here are more details. If ū ≥ qi for some i then the path γi is a constant
path, so it follows from [4, Proposition 2.1] that F is incompressible. This
takes care of all the cases except (1), (2), (7), (12) and (13) in Theorem 1.1.
Recall from [4, Page 463] that the r-value of a path is determined by this
rule: Extend the last segment of the path to meet the right-hand border of
the the diagram in a point whose slope has denominator r. (For length 3 knot
we do not have vertical line segments in γi and hence r �= 0.) In this case
by [4, Corollary 2.4] F is incompressible unless the r-value cycle is (1, 1, r3) or
(1, 2, r3). In cases (1) and (2) the r-value cycle is (|q1| − 1, |q2| − 1, |q3| − 1),
so F is incompressible unless |q1| = 2 and |q2| = 3. (|q2| �= 2 since K is a
knot.) By [4, Proposition 2.7] F is incompressible unless the slopes of γ1 is of
opposite sign to those of γ2 and γ3 and r3 = |q3| − 1 = 2 or 4. It follows that
F is incompressible unless K is the non-hyperbolic knot K(−1/2, 1/3, 1/3)
or K(−1/2, 1/3, 1/5), which has been excluded since we assumed that K is
hyperbolic. In case (7) ri �= 1 unless K = K(−1/3, 1/3, 1/3), in which case
the r-cycle is (1, 2, 2). Since the slopes of the three edges are all positive
(the first one is on 〈−1/2,−1/3〉 and the other two are on (〈0/1, , 1/3〉),
by [4, Proposition 2.7] F is incompressible. In case (12) the r-cycle is (1, 1, 3)
and the first two paths are edges of the same slope −1, so F is incompressible
by [4, Proposition 2.6]. In case (13) the r-cycle is (1, 2, 6) and the edges all
have positive slopes, hence again the incompressibility of F follows from [4,
Proposition 2.7]. �

If F is a surface in a three-manifold M , denote by M |F the manifold
obtained by cutting M along F . Similarly, if C is a set of curves on a surface
F then F |C denotes the surface obtained by cutting F along C. All surfaces
in three-manifolds below are assumed compact, connected, orientable, and
properly embedded. Recall that a surface in M is essential if it is incom-
pressible, ∂-incompressible, and is not boundary parallel. Denote by |∂F |
the number of boundary components of F .

Lemma 7.2. Let M be a compact orientable 3-manifold with ∂M = T a
torus. Let F be a genus one separating essential surface in M such that
|∂F | ≤ 4. Let M1, M2 be the components of M |F , and let A be a component
of ∂M1 − F . If F ∪ A is incompressible in M1, then M contains a closed
essential surface.
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Proof. This is due to Gordon, and is true for any number of components
on ∂F . If |∂F | = 2 then by assumption F ∪ A is incompressible and the
result follows, so we assume |∂F | = 4. Let A′ be the annulus on T which
contains A and such that ∂A′ = ∂F − ∂A. Then we can push the part of
F ∪ A near A into the interior of M to obtain a surface F ′ with ∂F ′ = A′,
and then push F ′ ∪ A′ into the interior of M to obtain a closed surface
F ′′. Number the annuli T |∂F successively as A1, . . . , A4, with A = A1. One
can show that M |F ′′ consists of two components M ′′

1 , M ′′
2 , such that M ′′

1

is obtained by gluing T × I to M1 along the annulus A3 and a non-trivial
annulus on T × 0, and M ′′

2 is obtained by gluing a A′ × I to M2, where A′

is an annulus, A′ × 0 identified to A2, and A′ × 1 to A4. An innermost circle
argument shows that if F ∪ A is incompressible then F ′′ is incompressible
in both M ′′

i , hence is incompressible in M . �

Lemma 7.3. Let M be a compact orientable irreducible three-manifold with
∂M = T a torus. Let F be a genus one separating incompressible surface in
M with boundary slope δ, and let F̂ be the corresponding torus in the Dehn
filling manifold M(δ). If (i) M contains no closed incompressible surface,
and (ii) F has at most four boundary components, then F̂ is incompressible
in M(δ).

Proof. Since F is separating, |∂F | = 2 or 4. We assume the latter, as the
proof for the former case is similar and simpler. Let M1, M2 be the com-
ponents of M |F , and let A1, . . . , A4 be the annuli T |∂F , labeled so that
∂M1 = F ∪ A1 ∪ A3.

Since M contains no closed essential surface, each Mi is a handlebody
of genus 3, and by Lemma 7.2 the surface F1 = F ∪ A1 is compressible in
M1. Let D be a compressing disk of F1. If D is separating then since M1 is a
handlebody and ∂M1 − F1 = A3 is connected, we can find a nonseparating
compressing disk in a component of M1|D disjoint from A3. Therefore, we
may assume without loss of generality that D is a nonseparating compressing
disk. It follows that after attaching a two-handle to M1 along A3 the resulting
manifold M ′ has compressible boundary, because D remains a compressing
disk of ∂M ′ in M ′.

We have A1 ⊂ ∂M ′. We want to show that F2 = ∂M ′ − A1 is incompress-
ible in M ′. Consider the surface F3 = F ∪ A3 = ∂M1 − A1. For the same
reason as above, we know that F3 is compressible in M1. By assumption
F3 − A3 = F is incompressible. Therefore, by the Handle Addition Lemma
(see [17] or [18]), we know that after attaching a two-handle to M1 along
A3, the resulting surface F2 = ∂M ′ − A1 is incompressible in M ′.
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We have shown that ∂M ′ is compressible, and ∂M ′ − A1 = F2 is incom-
pressible. Applying the Handle Addition Lemma again, we see that after
attaching a two-handle to A1 the boundary of the resulting manifold M ′′

is incompressible. Note that M ′′ is a component of M(δ)|F̂ , and ∂M ′′ = F̂ .
For the same reason, F̂ is incompressible in the other component of M(δ)|F̂ .
It follows that F̂ is incompressible in M(δ). �

Remark. The above result is similar to a special case of Proposition 2.2.1
of [19]. However, that proposition requires that the number of boundary
components of the surface is minimal among all incompressible surfaces with
the same boundary slope. In our case there is no guarantee that there is no
higher genus surface with fewer boundary components of the same slope.
Lemma 7.3 is probably false if there is no constraint about the number of
components in ∂F .

Proof of Theorem 1.2. If Kδ is toroidal then clearly there is a toroidal incom-
pressible surface in the exterior of K, so by Theorem 1.1 the pair (K, δ) must
be one of those in the list.

To prove the other direction, we would like to show that if (K, δ) is
in the list of Theorem 1.1 then the corresponding toroidal incompressible
surface F = F (γ1, γ2, γ3) gives rise to an incompressible torus F̂ in Kδ. By
Oertel [20], the exterior of K(t1, t2, t3) contains no closed essential surface.
Therefore by Lemma 7.3 it suffices to show that F has at most four boundary
components.

Let mi be the number defined before the statement of Lemma 2.2, and let
n = lcm(m1, m2, m3). Then by Lemma 2.2(3) there is an orientable candi-
date surface F = F (γ1, γ2, γ3) with |∂F | ≤ 2n. Since F is toroidal, by choos-
ing a component of F if necessary we may assume that F is connected, so
it is of genus one. Therefore if n ≤ 2 then by Lemma 7.3 the surface F̂ is an
incompressible torus in Kδ and we are done. By definition mi can be easily
calculated from ū and Ei = 〈pi/qi, ri/si〉, which can be found in the proof
of the corresponding lemma for that (K, δ). We leave it to the reader to
check that mi ≤ 2 for all i in all the cases listed in the theorem, except that
m3 = 4 in case (13). (For each individual knot, one may also use Dunfield’s
program [16] to calculate n = lcm(m1, m2, m3), which is shown as “number
of sheets” in the program.) Therefore Theorem 1.2 follows from Lemma 7.3,
except in Case (13) of Theorem 1.1.

For Case (13), let F ′ = F ′(γ1, γ2, γ3) be the surface in the exterior of
K constructed using the candidate system (γ1, γ2, γ3) given by Lemma 6.3,
such that |∂F ′| = n = 4. By the proof of Lemma 2.2(3) we have F = F ′, or
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its double cover if F ′ is nonorientable. In the first case we have |∂F | = 4
and the result follows from Lemma 7.3. Hence we assume that F̂ is a double
cover of F̂ ′, so F̂ ′ is a Klein bottle in M = Kδ. On the other hand, from
Theorem 1.1 we see that in this case δ = 1, hence H1(Kδ, Z2) = 0, which is
a contradiction because by duality a Z2-homology sphere cannot contain a
Klein bottle. �
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