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Convergence of the parabolic complex

Monge–Ampère equation on compact

Hermitian manifolds

Matt Gill

We prove C∞ convergence for suitably normalized solutions of the
parabolic complex Monge–Ampère equation on compact Hermitian
manifolds. This provides a parabolic proof of a recent result of
Tosatti and Weinkove.

1. Introduction

Let (M, g) be a compact Hermitian manifold of complex dimension n and
ω be the real (1, 1) form ω =

√−1
∑

i,j gij̄ dz
i ∧ dzj̄ . Let F be a smooth

function on M . We consider the parabolic complex Monge–Ampère equation

(1.1)
∂ϕ

∂t
= log

det (gij̄ + ∂i∂j̄ϕ)
det gij̄

− F, gij̄ + ∂i∂j̄ϕ > 0,

with initial condition ϕ(x, 0) = 0.
The study of this type of Monge–Ampère equation originated in proving

the Calabi conjecture. The proof of the conjecture reduced to assuming that
ω is Kähler and finding a unique solution to the elliptic Monge–Ampère
equation

(1.2) log
det (gij̄ + ∂i∂j̄ϕ)

det gij̄

= F, gij̄ + ∂i∂j̄ϕ > 0.

Calabi showed that if a solution to (1.2) exists, it is unique up to adding a
constant to ϕ [3]. Yau used the continuity method to show that if

∫

M
eFωn =

∫

M
ωn,

then (1.2) admits a smooth solution [29]. The proof of Yau required a priori
C∞ estimates for ϕ.
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Cao used Yau’s estimates to show that in the Kähler case, (1.1) has a
smooth solution for all time that converges to the unique solution of (1.2) [4].

Since not every complex manifold admits a Kähler metric, one can nat-
urally study the Monge–Ampère Equations (1.1) and (1.2) on a general
Hermitian manifold. Fu and Yau discussed physical motivation for studying
non-Kähler metrics in a recent paper [11].

Cherrier studied (1.2) in the general Hermitian setting in the eight-
ies, and showed that in complex dimension 2 or when ω is balanced (i.e.,
d(ωn−1) = 0), there exists a unique normalization of F such that (1.2) has
a unique solution [7]. Precisely, Cherrier proved that under the above con-
ditions, given a smooth function F on M , there exists a unique real number
b and a unique function ϕ solving the Monge–Ampère equation

(1.3) log
det(gij̄ + ∂i∂j̄ϕ)

det gij̄

= F + b, gij̄ + ∂i∂j̄ϕ > 0,

such that
∫
M ϕ ωn = 0.

Recently, Guan and Li proved that (1.2) has a solution on a Hermitian
manifold with the added condition

∂∂̄ωk = 0,

for k = 1, 2. They applied this result to finding geodesics in the space of
Hermitian metrics. Related work can be found in [2, 5, 6, 9, 14, 15, 19–21].

Tosatti and Weinkove gave an alternate proof of Cherrier’s result in [25].
In a very recent paper [26], they showed that the balanced condition is not
necessary and the result holds on a general Hermitian manifold. Dinew and
Kolodziej studied (1.2) in the Hermitian setting with weaker conditions on
the regularity of F [8].

In this paper, we prove the following theorem.

Theorem 1.1. Let (M, g) be a compact Hermitian manifold of complex
dimension n with Vol(M) =

∫
ωn = 1. Let F be a smooth function on M .

There exists a smooth solution ϕ to the parabolic complex Monge–Ampère
Equation (1.1) for all time. Let

(1.4) ϕ̃ = ϕ−
∫

M
ϕ ωn.

Then ϕ̃ converges in C∞ to a smooth function ϕ̃∞. Moreover, there exists
a unique real number b such that the pair (b, ϕ̃∞) is the unique solution
to (1.3).
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We remark that the main theorem gives a parabolic proof of the result
due to Tosatti and Weinkove in [26].

The flow (1.1) could be considered as an analogue to Kähler–Ricci flow
for Hermitian manifolds. In the special case that −√−1∂∂̄ log det g =√−1∂∂̄F (such an F always exists under the topological condition cBC

1

(M) = 0, e.g.) then taking
√−1∂∂̄ of the flow (1.1) yields

∂ω′

∂t
=

√−1∂∂̄ log det g′

with initial condition ω′(0) = ω. In general, the right-hand side is the first
Chern form, but if we assume Kähler, it becomes −Ric(ω′).

When (M, g) is Kähler, Székelyhidi and Tosatti showed that a weak
plurisubharmonic solution to (1.2) is smooth using the parabolic flow (1.1)
[24]. Their result suggests that the flow could be used to prove a similar result
in the Hermitian case. In a recent paper [23], Streets and Tian consider
a different parabolic flow on Hermitian manifolds and suggest geometric
applications for the flow.

We now give an outline of the proof of the main theorem and discuss
how it differs from previous results. In Sections 2 through 5, we build up
theorems that eventually show that ϕ is smooth. Like in Yau’s proof, we
derive lower-order estimates and then apply Schauder estimates to attain
higher regularity for the solution.

In Section 2, we use the maximum principle to show that the time deriva-
tive of ϕ is uniformly bounded. We define the normalization

ϕ̃ = ϕ−
∫

M
ϕ ωn.

We chose to assume that the volume of M is one to simplify the notation
of this normalization and the following calculations. Then using the zeroth-
order estimate from [26], we prove that ϕ̃ is uniformly bounded.

Section 3 contains a proof of the second-order estimate. Specifically, we
derive that

trgg
′ ≤ C1eC2(supM×[0,T ) ϕ̃−infM×[0,T ) ϕ̃)(1.5)

× e

(

e
A(supM×[0,T ) ϕ̃−infM×[0,T ) ϕ̃)−e

A(supM×[0,T ) ϕ̃−ϕ̃)
)

,

where [0, T ) is the maximum interval of existence for ϕ and C1, C2 and A
are uniform constants. This estimate is not as sharp as the estimate

trgg
′ ≤ Ce

(
eA(supM ϕ−infM ϕ)−eA(supM ϕ−ϕ)

)

,
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from Guan and Li or the estimate

trgg
′ ≤ CeA(ϕ−infM ϕ)

from Tosatti and Weinkove in the case n = 2 or ω balanced. Cherrier also
produced a different estimate. These estimates are from the elliptic case, but
they suggest that (1.5) could be improved. The proof of (1.5) follows along
the method of Tosatti and Weinkove in [25], but there are extra terms to
control that arrive in the parabolic case.

In Section 5, we derive a Hölder estimate for the time-dependent metric
g′
ij̄

. This estimate provides higher regularity using a method of Evans [10]
and Krylov [16]. To prove the Hölder estimate, we apply a theorem of Lieber-
man [17], a parabolic analogue of an inequality from Trudinger [27]. The
method follows closely with the proof of the analogous estimate in [25], but
differs in controlling the extra terms that arise from the time dependence
of ϕ.

We show that ϕ is smooth and also prove the long-time existence of the
flow (1.1) in Section 5. The proof uses a standard bootstrapping argument.

Section 6 uses analogues of lemmas from Li and Yau [18] to prove a
Harnack inequality for the equation

∂u

∂t
= g′ij̄∂i∂j̄u,

where g′ij̄∂i∂j̄ is the complex Laplacian with respect to g′. This differs from
the equation

(

�− q(x, t) − ∂

∂t

)

u(x, t) = 0

considered by Li and Yau, where � is the Laplace–Beltrami operator.
In Section 7, we apply these lemmas to show that time derivative of ϕ̃

decays exponentially. Precisely, we show that
∣
∣
∣
∣
∂ϕ̃

∂t

∣
∣
∣
∣ ≤ Ce−ηt,

for some η > 0. From here we show that ϕ̃ converges to a smooth function
ϕ̃∞ as t tends to infinity. In fact, the convergence occurs in C∞ and ϕ̃∞ is
part of the unique pair (b, ϕ̃∞) solving the elliptic Monge–Ampère equation

log
det(gij̄ + ∂i∂j̄ϕ̃∞)

det gij̄

= F + b,
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where

b =
∫

M

(

log
det(gij̄ + ∂i∂j̄ϕ̃∞)

det gij̄

− F

)

ωn.

This provides an alternate proof of the main theorem in [26].

2. Preliminary estimates

By standard parabolic theory, there exists a unique smooth solution ϕ to
(1.1) on a maximal-time interval [0, T ), where 0 < T ≤ ∞.

We show that the time derivatives of ϕ and its normalization ϕ̃ are
bounded. This fact will be used in the second-order estimate.

Theorem 2.1. For ϕ a solution of (1.1) and ϕ̃ as in (1.4),

(2.1)
∣
∣
∣
∣
∂ϕ

∂t

∣
∣
∣
∣ ≤ C,

∣
∣
∣
∣
∂ϕ̃

∂t

∣
∣
∣
∣ ≤ C,

where C depends only on the initial data.

Proof. Differentiating (1.1) with respect to t gives

(2.2)
∂ϕt

∂t
= g′ij̄∂i∂j̄ϕt,

where ϕt = ∂ϕ
∂t . So by the maximum principle,

(2.3)
∣
∣
∣
∣
∂ϕ

∂t
(x, t)

∣
∣
∣
∣ ≤ C sup

x∈M

∣
∣
∣
∣
∂ϕ

∂t
(x, 0)

∣
∣
∣
∣ .

From the definition of ϕ̃,

(2.4)
∣
∣
∣
∣
∂ϕ̃

∂t

∣
∣
∣
∣ ≤

∣
∣
∣
∣
∂ϕ

∂t

∣
∣
∣
∣+
∫ ∣
∣
∣
∣
∂ϕ

∂t

∣
∣
∣
∣ω

n ≤ 2C.
�

We show that ϕ̃ is bounded in M × [0, T ) using the main theorem of [26].

Theorem 2.2. For ϕ a solution to (1.1) and ϕ̃ the normalized solution,
there exists a uniform constant C such that

sup
M×[0,T )

|ϕ̃| ≤ C,

where [0, T ) is the maximum interval of existence for ϕ.
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Proof. We can rearrange (1.1) to

(2.5) log
det g′

ij̄

det gij̄

= F − ∂ϕ

∂t
.

Since
∣
∣
∣
∂ϕ
∂t

∣
∣
∣ is bounded by the previous theorem, this is equivalent to the

complex Monge–Ampère equation of the main theorem in [26]. This implies
that supM ϕ(., t) − infM ϕ(., t) ≤ C for some C depending only on (M, g)
and F .

Fix (x, t) in M × [0, T ). Since
∫
M ϕ̃ ωn = 0, there exists (y, t) such that

ϕ̃(y, t) = 0. Then

(2.6) |ϕ̃(x, t)| = |ϕ̃(x, t) − ϕ̃(y, t)| = |ϕ(x, t) − ϕ(y, t)| ≤ C.

Thus ϕ̃ is a bounded function on M × [0, T ). �

3. The second-order estimate

In this section, � = gij̄∂i∂j̄ will denote the complex Laplacian corresponding
to g. Similarly, write �′ = g′ij̄∂i∂j̄ for the complex Laplacian for the time
dependent metric g′. We prove an estimate on trgg

′ = gij̄g′
ij̄

= n+ �ϕ̃.

Theorem 3.1. For ϕ a solution to (1.1) and ϕ̃ the normalized solution,
we have the following estimate

trgg
′ ≤ C1eC2(supM×[0,T ) ϕ̃−infM×[0,T ) ϕ̃)

× e

(

e
A(supM×[0,T ) ϕ̃−infM×[0,T ) ϕ̃)−e

A(supM×[0,T ) ϕ̃−ϕ̃)
)

,

where [0, T ) is the maximum interval of existence for ϕ and C1, C2, and A
are uniform constants. Hence, there exists a uniform constant C such that
trgg

′ ≤ C and also

1
C
g ≤ g′ ≤ Cg.

Proof. This proof follows along with the notation and method featured in
[25]. For brevity we omit some of the calculations and refer the reader to
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[12, 25]. Let E1 and E2 denote error terms of the form

|E1| ≤ C1trg′g,

|E2| ≤ C2(trg′g)(trgg
′),

where C1 and C2 are constants depending only on the initial data. We call
such a constant depending only on (M, g) and supM F a uniform constant.
We remark that by the flow Equation (1.1) and estimate (2.1), an error term
of type E1 is also of type E2 and a uniform constant is of type E1. In general,
C will denote a uniform constant whose definition may change from line to
line. For a function ϕ on M , we write ϕi for the ordinary derivative

ϕi = ∂iϕ.

Similarly, ϕt will denote the time derivative of ϕ. If f is a function on M ,
we write ∂f for the vector of ordinary derivatives of f .

We define the quantity

(3.1) Q = log trgg
′ + eA(supM×[0,T ) ϕ̃−ϕ̃).

We note that the form of Q differs here than in [25], Yau’s estimate [29] and
Aubin’s estimate [1]. They consider a quantity of the form log trgg

′ −Aϕ.
The exponential in the definition of Q helps to control a difficult term in
the analysis.

Fix t′ ∈ [0, T ). Then let (x0, t0) be the point in M × [0, t′] where Q
attains its maximum. Notice that if t0 = 0 the result is immediate, so we
assume t0 > 0. To start the proof, we need to perform a change of coordi-
nates made possible by the following lemma from [12].

Lemma 3.1. There exists a holomorphic coordinate system centered at x0

such that for all i and j,

(3.2) gij̄(x0) = δij , ∂jgīi(x0) = 0,

and also such that the matrix ϕij̄(x0, t0) is diagonal.

Applying �′ − ∂
∂t to Q,

(

�′ − ∂

∂t

)

Q =
�′trgg

′

trgg′
− |∂trgg

′|2g′

(trgg′)2
− �(∂ϕ/∂t)

trgg′
+A

∂ϕ̃

∂t
eA(supM×[0,T ) ϕ̃−ϕ̃)

(3.3)

+ �′eA(supM×[0,T ) ϕ̃−ϕ̃).(3.4)
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First, we will control the first and third terms in (3.3) simultaneously. We
apply the complex Laplacian � to the complex Monge–Ampère equation

�∂ϕ

∂t
= −gkl̄g′pj̄g′iq̄∂kg

′
pq̄∂l̄g

′
ij̄ + gkl̄g′ij̄∂k∂l̄g

′
ij̄ + gkl̄gpj̄giq̄∂kgpq̄∂l̄gij̄(3.5)

− gkl̄gij̄∂k∂l̄gij̄ −�F
=
∑

i,k

g′īiϕīikk̄ −
∑

i,j,k

g′īig′jj̄∂kg
′
ij̄∂k̄g

′
jī + E1.

For the first term in (3.3), following a calculation in [25] (see Equation (2.6)
in [25]) gives:

(3.6) �′trgg
′ =

∑

i,k

g′īiϕīikk̄ − 2Re

⎛

⎝
∑

i,j,k

g′īi∂īgjk̄ϕkj̄i

⎞

⎠+ E2.

We will now handle the 2Re
(∑

i,j,k g
′īi∂īgjk̄ϕkj̄i

)
term in (3.6) using a trick

from [12]. Using Lemma 3.2, at the point (x0, t0),

(3.7)
∑

i,j,k

g′īi∂īgjk̄ϕkj̄i =
∑

i

∑

j �=k

g′īi∂īgjk̄∂kg
′
ij̄ + E1.

Hence,
∣
∣
∣
∣
∣
∣
2Re

⎛

⎝
∑

i,j,k

g′īi∂īgjk̄ϕkj̄i

⎞

⎠

∣
∣
∣
∣
∣
∣
≤
∑

i

∑

j �=k

g′īig′jj̄∂kg
′
ij̄∂k̄g

′
jī(3.8)

+
∑

i

∑

j �=k

g′īig′jj̄∂īgjk̄∂igkj̄ + E1

≤
∑

i

∑

j �=k

g′īig′jj̄∂kg
′
ij̄∂k̄g

′
jī + E2.

Putting together (3.5), (3.6), and (3.8) gives

(3.9) �′trgg
′ −�dϕ

dt
≥
∑

i,j

g′īig′jj̄∂jg
′
ij̄∂j̄g

′
jī + E2.

Now we will control the
|∂trgg′|2

g′
(trgg′)2 term in (3.3). By Lemma 3.2 we have

at (x0, t0),

(3.10) ∂itrgg
′ = ∂i�ϕ = ∂i

∑

j

ϕjj̄ =
∑

j

∂jϕij̄ =
∑

j

∂jg
′
ij̄ −

∑

j

∂jgij̄ .
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So

|∂trgg
′|2g′

trgg′
=

1
trgg′

∑

i,j,k

g′īi∂jg
′
ij̄∂k̄g

′
kī −

2
trgg′

Re

⎛

⎝
∑

i,j,k

g′īi∂jgij̄∂k̄g
′
kī

⎞

⎠+ E1.

(3.11)

As in Yau’s second-order estimate, we use Cauchy–Schwarz on the first term
in (3.11) (see [25] Equation (2.15) for the exact calculation).

(3.12)
1

trgg′
∑

i,j,k

g′īi∂jg
′
ij̄∂k̄g

′
kī ≤

∑

i,j

g′īig′jj̄∂jg
′
ij̄∂j̄g

′
jī.

To deal with the second term in (3.11), since (x0, t0) is the maximum point
of Q, ∂īQ = 0 implies

(3.13)
1

trgg′
∑

k

∂īg
′
kk̄ = A∂īϕeA(supM×[0,T ) ϕ̃−ϕ̃).

Using Equations (3.13) and (3.10) we can bound the difficult term
∣
∣
∣
∣
∣
∣

2
trgg′

Re

⎛

⎝
∑

i,j,k

g′īi∂jgij̄∂k̄g
′
kī

⎞

⎠

∣
∣
∣
∣
∣
∣

(3.14)

=

∣
∣
∣
∣
∣
∣

A

trgg′
eA(supM×[0,T ) ϕ̃−ϕ̃)2Re

⎛

⎝
∑

i,j,k

g′īi∂jgij̄∂īϕ

⎞

⎠

∣
∣
∣
∣
∣
∣

+ E1

≤ A2|∂ϕ|2g′eA(supM×[0,T ) ϕ̃−ϕ̃) +
C(trg′g)
(trgg′)2

eA(supM×[0,T ) ϕ̃−ϕ̃) + E1

≤ A2|∂ϕ|2g′eA(supM×[0,T ) ϕ̃−ϕ̃) + C(trg′g)eA(supM×[0,T ) ϕ̃−ϕ̃) + E1,

where for the last inequality we used the fact that trgg
′ is bounded from

below away from zero by the flow Equation (1.1) and estimate (2.1).
Plugging (3.12) and (3.14) into (3.11) gives

|∂trgg
′|2g′

(trgg′)2
≤ 1

(trgg′)2
∑

i,j

g′īig′jj̄∂jg
′
ij̄∂j̄g

′
jī +A2|∂ϕ|2g′eA(supM×[0,T ) ϕ̃−ϕ̃)

(3.15)

+ C(trg′g)eA(supM×[0,T ) ϕ̃−ϕ̃) + E1.
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Combining (3.9) and (3.15) with (3.3) at the point (x0, t0), we obtain the
inequality

0 ≥ 1
trgg′

⎛

⎝
∑

i,j

g′īig′jj̄∂jg
′
ij̄∂j̄g

′
jī + E2

⎞

⎠− 1
trgg′

∑

i,j

g′īig′jj̄∂jg
′
ij̄∂j̄g

′
jī

(3.16)

−A2|∂ϕ|2g′eA(supM×[0,T ) ϕ̃−ϕ̃) − trg′geA(supM×[0,T ) ϕ̃−ϕ̃) + E1

+A
∂ϕ̃

∂t
eA(supM×[0,T ) ϕ̃−ϕ̃) +

(
−An+Atrg′g +A2 |∂ϕ|2g′

)
eA(supM×[0,T ) ϕ̃−ϕ̃)

≥ −A(C + n)eA(supM×[0,T ) ϕ̃−ϕ̃) + (A− 1)trg′geA(supM×[0,T ) ϕ̃−ϕ̃) − C1trg′g

≥ −A(C + n)eA(supM×[0,T ) ϕ̃−ϕ̃) + (A− 1 − C1) trg′g.

Taking A large enough so that

(A− 1 − C1) > 0

implies that at (x0, t0),

(3.17) trg′g(x0, t0) ≤ CeA(supM×[0,T ) ϕ̃−infM×[0,T ) ϕ̃).

Then

trgg
′(x0, t0) ≤ 1

(n− 1)!
(trg′g)n−1 det g′

det g
(3.18)

=
1

(n− 1)!
(trg′g)n−1 eF− ∂ϕ

∂t

≤ CeA(n−1)(supM×[0,T ) ϕ̃−infM×[0,T ) ϕ̃).

For all (x, t) in M × [0, t′]

log trgg
′(x, t) + eA(supM×[0,T ) ϕ̃−ϕ̃(x,t)) ≤ log

(
CeA(n−1)(supM×[0,T ) ϕ̃−infM×[0,T ) ϕ̃)

)(3.19)

+ eA(supM×[0,T ) ϕ̃−infM×[0,T ) ϕ̃)

trgg
′ ≤ C1eC2(supM×[0,T ) ϕ̃−infM×[0,T ) ϕ̃)(3.20)

× e

(

e
A(supM×[0,T ) ϕ̃−infM×[0,T ) ϕ̃)−e

A(supM×[0,T ) ϕ̃−ϕ̃)
)

. �
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4. The Hölder estimate for the metric

The estimate in this section is local, so it suffices to work in a domain in C
n.

To fix some notation, define the parabolic distance function between two
points (x, t1) and (y, t2) in C

n × [0, T ) to be |(x, t1) − (y, t2)| = max(|x−
y|, |t1 − t2|1/2).

For a domain Ω ∈ C
n × [0, T ) and a real number α ∈ (0, 1), define for a

function ϕ on C
n × [0, T ),

[ϕ]α,(x0,t0) = sup
(x,t)∈Ω\{(x0,t0)}

|ϕ(x, t) − ϕ(x0, t0)|
|(x, t) − (x0, t0)|α

and

(4.1) [ϕ]α,Ω = sup
(x,t)∈Ω

[ϕ]α,(x,t).

We will show that

[g′ij̄ ]α,Ω ≤ C,

for an appropriate choice of Ω. The smoothness of ϕ and ϕ̃ will follow. Given
the Hölder bound for the metric and the second-order estimate for ϕ̃, we
can differentiate the flow and apply Schauder estimates to achieve higher
regularity.

Theorem 4.1. Let ϕ be a solution to the flow (1.1) and g′
ij̄

= gij̄ + ϕij̄.
Fix ε > 0. Then there exists α ∈ (0, 1) and a constant C depending only on
the initial data and ε such that

(4.2) [g′ij̄ ]α,Ω ≤ C,

where Ω = M × [ε, T ).

We apply a method due to Evans [10] and Krylov [16]. The proof itself
is essentially contained in [17] and [13], but only in the case where the man-
ifold is R

n. Hence, we produce a self-contained proof in the notation of this
problem. The method of this proof follows closely with the analogous esti-
mate in [22, 25]. The main issue is applying the correct Harnack inequality
to get the estimate.

Proof. Let B ∈ C
n be an open ball about the origin. Fix a point t0 ∈ [ε, T ).

To prove (4.2) it suffices to show that for sufficiently small R > 0 there exists
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a uniform C and δ > 0 such that

n∑

i=1

oscQ(R)(ϕγiγ̄i
) + oscQ(R)(ϕt) ≤ CRδ,

where {γi} is a basis for C
n and Q(R) is the parabolic cylinder

Q(R) = {(x, t) ∈ B × [0, T )||x| ≤ R, t0 −R2 ≤ t ≤ t0}.

We rewrite the flow as

(4.3)
∂ϕ

∂t
= log det g′ij̄ +H,

where H = − log det gij̄ − F . We define the operator Φ on a matrix A by

Φ(A) = log detA,

then (4.3) becomes

(4.4)
∂ϕ

∂t
= Φ(g′) +H.

By the concavity of Φ, for all (x, t1) and (y, t2) in B × [0, T ),

∑ ∂Φ
∂aij̄

(g′(y, t2))
(
g′ij̄(x, t1) − g′ij̄(y, t2)

)

≥ ∂ϕ

∂t
(x, t1) − ∂ϕ

∂t
(y, t2) −H(x) +H(y).

The mean value theorem applied to H shows that

∂ϕ

∂t
(x, t1) − ∂ϕ

∂t
(y, t2) +

∑ ∂Φ
∂aij̄

(g′(y, t2))
(
g′ij̄(y, t2) − g′ij̄(x, t1)

)
(4.5)

≤ C|x− y|.

Now we must recall a lemma from linear algebra.

Lemma 4.1. There exists a finite number N of unit vectors γν = (γν1, . . . ,
γνn) ∈ C

n and real-valued functions βν on B × [0, T ), for ν = 1, 2, . . . , N
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with

(i) 0 < C1 ≤ βν ≤ C2(4.6)
(ii) γ1, . . . , γN containing an orthonormal basis of C

n

such that

∂Φ
∂aij̄

(
g′(y, t2)

)
=

N∑

ν=1

βν(y, t2)γνiγνj .

We define for ν = 1, . . . , N ,

wν = ∂γν
∂γ̄ν

ϕ =
n∑

i,j=1

γνiγνjϕij̄ .

We write w0 = −∂ϕ
∂t and β0 = 1. Then using the linear algebra lemma, (4.5)

can be rewritten as

(4.7)
N∑

ν=0

βν(y, t2) (wν(y, t2) − wν(x, t1)) ≤ C|x− y|.

Letting γ be an arbitrary unit vector in C
n, we differentiate the flow (1.1)

along γ and γ̄:

∂ϕγγ̄

∂t
=

∂2Φ
∂aij̄∂akl̄

(g′)g′ij̄γg
′
kl̄γ̄ +

∂Φ
∂aij̄

(g′)g′ij̄γγ̄ +Hγγ̄(4.8)

≤ g′ij̄g′ij̄γγ̄ +Hγγ̄ ,

where on the last line we used the concavity of Φ and the fact that ∂Φ
∂aij̄

(g′) =
g′ij̄ . Applying ∂

∂t to (4.4) gives

(4.9)
∂ϕt

∂t
= g′ij̄ϕij̄t.

From (4.8) and (4.9) we have a bounded function h (depending on g′ij̄ which
is bounded by Theorem 3.1) such that

(4.10) −∂wν

∂t
+ g′ij̄∂i∂j̄wν ≥ h.
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Recall that t0 is a fixed point in [ε, T ). Pick R > 0 small enough such
that t0 − 5R2 > t0/2. We define another parabolic cylinder

Θ(R) = {(x, t) ∈ B × [0, T )||x| < R, t0 − 5R2 ≤ t ≤ t0 − 4R2}.

For s = 1, 2 and ν = 0, 1, . . . , N , let

Msν = sup
Q(sR)

wν , msν = inf
Q(sR)

wν ,

and

ψ(sR) =
N∑

ν=0

(Msν −msν) .

We let l be an integer such that 0 ≤ l ≤ N and v = M2l − wl. To continue
we need Theorem 7.37 from [17]. We say that v ∈W 2,1

2n+1 if vx, vij , vij̄ , vīj̄ ,
and vt are in L2n+1. We restate the theorem as follows.

Lemma 4.2. Suppose that v(x, t) ∈W 2,1
2n+1 satisfies

−∂v
∂t

+ g′ij̄∂i∂j̄v ≤ f

and v ≥ 0 on Q(4R). Then there exists a constant C and a p > 0 depending
only on the bounds of g′ij̄ and the eigenvalues of g′ij̄ such that

1
R2n+2

(∫

Θ(R)
vp

)1/p

≤ C

(

inf
Q(R)

v +R2n/2n+1||f ||n+1

)

.

Since v satisfies −∂v
∂t + g′ij̄∂i∂j̄v ≤ −h, we can apply the Harnack

inequality to obtain

(4.11)
1

R2n+2

(∫

Θ(R)
(M2l − wl)

p

)1/p

≤ C
(
M2l −Ml +R2n/2n+1

)
.

For every (x, t1) and (y, t2) in Q(2R), (4.7) gives

βl(y, t2) (wl(y, t2) − wl(x, t1)) ≤ CR+
∑

ν �=l

βν (wν(x, t1) − wν(y, t2)) .
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The definition of m2l allows us to choose (x, t1) in Q(2R) such that
wl(x, t1) ≤ m2l + ε. Since ε is arbitrary,

wl(y, t2) −m2l ≤ CR+ C2

∑

ν �=l

(M2ν − wν(y, t2)) .

After integrating over Θ(R) and applying (4.11), we have

1
R2n+2

(∫

Θ(R)
(wl −m2l)

p

)1/p

(4.12)

≤ 1
R2n+2

⎛

⎝
∫

Θ(R)

⎛

⎝CR+ C2

∑

ν �=l

(M2ν − wν)

⎞

⎠

p⎞

⎠

1/p

≤ C3R+ C4

∑

ν �=l

1
R2n+2

(∫

Θ(R)
(M2ν − wν)p

)1/p

≤ C5

∑

ν �=l

(M2ν −Mν) + C6R
2n/2n+1

where on the last line we used the fact that R < 1 is small. Adding (4.11)
and (4.12) yields

M2l −m2l ≤ C7

N∑

ν=0

(M2ν −Mν) + C8R
2n/2n+1(4.13)

≤ C7

N∑

ν=0

(M2ν −Mν +mν −m2ν) + C8R
2n/2n+1

= C7 (ψ(2R) − ψ(R)) + C8R
2n/2n+1.

Summing over l shows that

ψ(2R) ≤ C9 (ψ(2R) − ψ(R)) + C10R
2n/2n+1

and thus for some 0 < λ < 1,

ψ(R) ≤ λψ(2R) + C11R
2n/2n+1.

Applying a standard iteration argument (see Chapter 8 in [13]) shows that

ψ(R) ≤ CRδ,

for some δ > 0, completing the proof. �
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5. Long-time existence and smoothness of the
normalized solution

In this section, we show that the solution ϕ and its normalization ϕ̃ are
smooth and exist for all time, hence proving part of the main theorem. The
proof uses a standard bootstrapping argument.

Theorem 5.1. Let (M, g) be a Hermitian manifold and F a smooth func-
tion on M . Let ϕ be a solution to the flow

∂ϕ

∂t
= log

det(gij̄ + ϕij̄)
det(gij̄)

− F,

and let ϕ̃ = ϕ− ∫M ϕ ωn. Then there are uniform C∞ estimates for ϕ̃ on
[0, T ). Moreover, T = ∞.

Proof. Differentiating the flow with respect to zk gives

(5.1)
∂ϕk

∂t
= g′ij̄∂i∂j̄ϕk − Fk − ∂

∂zk
log det gij̄ .

The second-order estimate implies that the above equation is uniformly
parabolic. Theorem 4.1 shows that the coefficients in the above equation
are Hölder continuous with exponent α. Using the Schauder estimate (see
Theorem 4.9 in [17], for example) gives a uniform parabolic C2+α bound on
ϕk. Similarly, one obtains a uniform parabolic C2+α estimate for ϕk̄.

But the better differentiability of ϕ allows us to differentiate the flow
again and obtain a uniformly parabolic equation with Hölder continuous
coefficients. The Schauder estimate will give a uniform parabolic C2+α esti-
mate on ϕkl, ϕkl̄, and ϕk̄l̄. Repeated application shows that ϕ̃ is uniformly
bounded in C∞. Hence ϕ̃ and thus ϕ are smooth. We note that ϕ is not
necessarily bounded in C0. The above iterations only provide regularity for
the derivatives of ϕ.

To see that T = ∞, suppose that for T <∞, [0, T ) is the maximal inter-
val for the existence of the solution. Since ϕ̃ is smooth, we can apply short
time existence to extend the flow for ϕ̃ to [0, T + ε), a contradiction. �

6. The Harnack inequality

We begin this section by proving lemmas analogous to those of Li and Yau
[18] for the equation ∂u

∂t = g′ij̄∂i∂j̄u for a positive function u on a Hermitian
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manifold (see [28] for the proof of these lemmas in the Kähler case). The
lemmas lead to a Harnack inequality, which in turn shows that the time
derivative of ϕ̃ decays exponentially. This allows us to prove the convergence
of ϕ̃ as t tends to infinity.

In this section, we again use the notation ut = ∂u
∂t and ui = ∂iu for the

ordinary derivatives of a function u on M .
Let u be a positive function on M . Consider the heat-type equation

ut = g′ij̄uij̄ ,

where g′
ij̄

denotes the time dependent metric gij̄ + ϕij̄ . Define ϕ̃ = ϕ−
∫
M ϕωn.

Define f = log u and F = t(|∂f |2 − αft) where 1 < α < 2. We remark
that this F is different from the one in Equation (1.1). Then

g′ij̄fij̄ − ft = −|∂f |2,

where ∂f is the vector containing the ordinary derivatives of f and

|∂f |2 = g′ij̄∂if∂j̄f.

Also write

〈X,Y 〉 = g′ij̄XiYj̄

for the inner product of two vectors X and Y with respect to g′
ij̄

.
We now prove an estimate that will be useful in applying the maximum

principle to F .

Lemma 6.1. There exist constants C1 and C2 depending only on the bounds
of the metric g′ such that for t > 0,

g′kl̄Fkl̄ − Ft ≥ t

2n
(|∂f |2 − ft

)2 − 2Re 〈∂f, ∂F 〉 − (|∂f |2 − αft

)

− C1t|∂f |2 − C2t.

Proof. First calculate F = −tg′ij̄fij̄ − t(α− 1)ft. Then

(6.1) (g′ij̄fij̄)t =
1
t2
F − 1

t
Ft − (α− 1)ftt,
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and

Ft = |∂f |2 − αft + t

(

g′ij̄ftifj̄ + g′ij̄fiftj̄ +
(
∂

∂t
g′ij̄
)

fifj̄ − αftt

)

(6.2)

= |∂f |2 − αft + 2tRe 〈∂f, ∂(ft)〉 + t

(
∂

∂t
g′ij̄
)

fifj̄ − αtftt.

We calculate g′kl̄Fkl̄ to get the desired estimate.

g′kl̄Fkl̄ = tg′kl̄
[ (
g′ij̄
)

kl̄
fifj̄ +

(
g′ij̄
)

k
fil̄fj̄ +

(
g′ij̄
)

k
fifj̄ l̄(6.3)

+
(
g′ij̄
)

l̄
fikfj̄ + g′ij̄fikl̄fj̄ + g′ij̄fikfj̄ l̄

+
(
g′ij̄
)

l̄
fifj̄k + g′ij̄fil̄fj̄k + g′ij̄fifj̄kl̄ − αftkl̄

]
.

Now we control all of the above terms using the bounds on the metric
obtained in Theorem 3.1 and the higher-order bounds from Theorem 5.1.
For the first term of (6.3),

∣
∣
∣tg′kl̄

(
g′ij̄
)

kl̄
fifj̄

∣
∣
∣ ≤ C1t|∂f |2.

Let ε > 0. We bound the second and third terms of (6.3) with the inequalities

∣
∣
∣tg′kl̄

(
g′ij̄
)

k
fil̄fj̄

∣
∣
∣ ≤ t

ε
|∂f |2 + tε|∂∂̄f |2

and
∣
∣
∣tg′kl̄

(
g′ij̄
)

k
fifj̄ l̄

∣
∣
∣ ≤ t

ε
|∂f |2 + tε|D2f |2.

where

|∂∂̄f |2 = g′kl̄g′ij̄fil̄fj̄k, |D2f |2 = g′kl̄g′ij̄fikfj̄ l̄.

Term six is equal to t|D2f |2 and term eight equals t|∂∂̄f |2. The fifth and
ninth terms of (6.3) combine to give

tg′kl̄g′ij̄fikl̄fj̄ + tg′kl̄g′ij̄fifj̄kl̄ = 2tRe
〈
∂f, ∂(g′kl̄fkl̄)

〉
− tg′ij̄

(
g′kl̄
)

i
fkl̄fj̄

(6.4)

− tg′ij̄
(
g′kl̄
)

j̄
fifkl̄

≥ 2tRe
〈
∂f, ∂(g′kl̄fkl̄)

〉
− t

ε
|∂f |2 − tε|∂∂̄f |2
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We use the definition of F to show

tg′kl̄g′ij̄fikl̄fj̄ + tg′kl̄g′ij̄fifj̄kl̄(6.5)

≥ −2Re 〈∂f, ∂F 〉 − 2t(α− 1)Re 〈∂f, ∂ (ft)〉 − t

ε
|∂f |2 − tε|∂∂̄f |2.

Applying Equation (6.2) to (6.5) gives

tg′kl̄g′ij̄fikl̄fj̄ + tg′kl̄g′ij̄fifj̄kl̄

≥ −2Re 〈∂f, ∂F 〉 − (α− 1)Ft + (α− 1)
(|∂f |2 − αft

)

+ t(α− 1)
(
∂

∂t
g′ij̄
)

fifj̄ − tα(α− 1)ftt − t

ε
|∂f |2 − tε|∂∂̄f |2

≥ −2Re 〈∂f, ∂F 〉 − (α− 1)Ft + (α− 1)
(|∂f |2 − αft

)

− C2t|∂f |2 − tα(α− 1)ftt − t

ε
|∂f |2 − tε|∂∂̄f |2.

The final term of (6.3) becomes, using (6.1)

−αtg′kl̄ftkl̄ = αt

(
∂

∂t
g′kl̄

)

fkl̄ − αt
∂

∂t

(
g′kl̄fkl̄

)

≥ −Ct
ε

− tε|∂∂̄f |2 − α

t
F + αFt + tα(α− 1)ftt.

We put all of the above in to (6.3), which shows that

g′kl̄Fkl̄ ≥ Ft − 2Re 〈∂f, ∂F 〉 − (|∂f |2 − αft

)
+ t(1 − 4ε)|∂∂̄f |2

+ t(1 − 2ε)|D2f |2 − t

(

C1 + C2 +
6
ε

)

|∂f |2 − Ct

ε
.

Taking ε sufficiently small and applying the arithmetic–geometric mean
inequality

|∂∂̄f |2 ≥ 1
n

(
g′kl̄fkl̄

)2
=

1
n

(|∂f |2 − ft

)2
,

we see that

g′kl̄Fkl̄ − Ft ≥ t

2n
(|∂f |2 − ft

)2 − 2Re 〈∂f, ∂F 〉 − (|∂f |2 − αft

)

− Ct|∂f |2 − Ct.
�

Using the previous lemma, we derive an estimate which will be used to
prove the Harnack inequality.
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Lemma 6.2. There exist constants C1 and C2 depending only on the bounds
of the metric g′ such that for t > 0,

|∂f |2 − αft ≤ C1 +
C2

t
.

Proof. Fix T > 0 and let (x0, t0) in M × [0, T ] be where F attains its max-
imum. Note that we can take t0 > 0. Then at (x0, t0), from the previous
lemma,

(6.6)
t0
2n
(|∂f |2 − ft

)2 − (|∂f |2 − αft

) ≤ C1t0|∂f |2 + C2t0.

First, we assume that ft(x0, t0) ≥ 0, then the α in the above inequality can
be dropped to give

t0
2n
(|∂f |2 − ft

)2 − (|∂f |2 − ft

) ≤ C1t0|∂f |2 + C2t0.

We factor the above to obtain

1
2n
(|∂f |2 − ft

)
(

|∂f |2 − ft − 2n
t0

)

≤ C1|∂f |2 + C2.

Hence,

|∂f |2 − ft ≤ C3|∂f | + C4 +
C5

t0
.

There exists a constant C6 such that

C3|∂f | ≤
(

1 − 1
α

)

|∂f |2 + C6.

We plug this in to the previous inequality, showing that

(6.7)
1
α
|∂f |2 − ft ≤ C7 +

C5

t0
.

At the point (x0, t0), we have

F (x0, t0) = t0
(|∂f |2(x0, t0) − αft(x0, t0)

) ≤ C8t0 + C5.

Hence for all x in M ,

F (x, T ) ≤ F (x0, t0)
≤ C8t0 + C5

≤ C8T + C5

completing the proof for this case.
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Now we consider the case where ft(x0, t0) < 0. Using (6.6) at the point
(x0, t0),

t0
2n

|∂f |4 − |∂f |2 ≤ C1t0|∂f |2 + C2t0 − αft.

We factor the above to obtain

|∂f |2
(

1
2n

|∂f |2 − 1
t0

− C1

)

≤ C2 − α

t0
ft.

Hence,

(6.8) |∂f |2 ≤ C3 +
C4

t0
− 1

2
ft.

We use (6.6) again and the condition that ft(x0, t0) < 0 to see that

t0
2n
f2

t + αft ≤ C1t0|∂f |2 + |∂f |2 + C2t0.

By factoring the above, we show that

1
2n

(−ft)
(

−ft − 2nα
t0

)

≤ C1|∂f |2 +
1
t0
|∂f |2 + C2.

And so

(6.9) −ft ≤ C5 +
C6

t0
+

1
2
|∂f |2.

We plug (6.9) into (6.8), arriving at

|∂f |2 ≤ C3 +
C4

t0
+
C5

2
+
C6

2t0
+

1
4
|∂f |2.

This provides the following estimate for |∂f |2:

(6.10) |∂f |2 ≤ C7 +
C8

t0
.

Similarly, we can show that

(6.11) −αft ≤ C9 +
C10

t0
.

We add (6.10) and (6.11) to obtain the estimate

|∂f |2 − αft ≤ C11 +
C12

t0
.
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Repeating the argument after (6.7) completes this case and hence the
proof. �

We use the previous lemma to derive a Harnack inequality similar to
that of Li and Yau in the case of a Hermitian manifold.

Lemma 6.3. For 0 < t1 < t2,

sup
x∈M

u(x, t1) ≤ inf
x∈M

u(x, t2)
(
t2
t1

)C2

exp
(

C3

t2 − t1
+ C1(t2 − t1)

)

,

where C1, C2 and C3 are constants depending only on the bounds of the
metric g′.

Proof. Let x, y ∈M , and define γ to be the minimal geodesic (with respect to
the initial metric gij̄) with γ(0) = y and γ(1) = x. Define a path ζ : [0, 1] →
M × [t1, t2] by ζ(s) = (γ(s), (1 − s)t2 + st1). Then using Lemma 6.2,

log
u(x, t1)
u(y, t2)

=
∫ 1

0

d

ds
f(ζ(s)) ds(6.12)

=
∫ 1

0
(〈γ̇, 2∂f〉 − (t2 − t1)ft) ds

≤
∫ 1

0
− t2 − t1

α

(

|∂f | − α|γ̇|
(t2 − t1)

)2

+
α|γ̇|2

(t2 − t1)

+ C1(t2 − t1) + C2
t2 − t1
t

ds

≤
∫ 1

0

C19

t2 − t1
+ C17(t2 − t1) + C18

t2 − t1
t

ds

=
C3

t2 − t1
+ C1(t2 − t1) + C2 log

(
t2
t1

)

.

Exponentiating both sides completes the proof. �

7. Convergence of the flow

With the Harnack inequality, we complete the proof of the main theorem by
showing the convergence of ϕ̃ (cf. [4]).



Parabolic complex Monge–Ampère equation 299

Proof. Define u = ∂ϕ
∂t . Then

∂u

∂t
= g′ij̄∂i∂j̄u.

Let m be a positive integer and define

ξm(x, t) = sup
y∈M

u(y,m− 1) − u(x,m− 1 + t),

ψm(x, t) = u(x,m− 1 + t) − inf
y∈M

u(y,m− 1).

These functions satisfy the heat-type equations

∂ξm
∂t

= g′ij̄(m− 1 + t)∂i∂j̄ξm,

∂ψm

∂t
= g′ij̄(m− 1 + t)∂i∂j̄ψm.

First consider the case where u(x,m− 1) is not constant. Then ξm is
positive for some x in M at time t = 0. By the maximum principle, ξm must
be positive for all x in M when t > 0. Similarly, ψm is positive everywhere
when t > 0. Hence, we can apply Lemma (6.3) with t1 = 1

2 and t2 = 1 to
obtain

sup
x∈M

u(x,m− 1)− inf
x∈M

u

(

x,m− 1
2

)

≤C

(

sup
x∈M

u(x,m− 1)− sup
x∈M

u(x,m)
)

,

sup
x∈M

u

(

x,m− 1
2

)

− inf
x∈M

u (x,m− 1)≤C

(

inf
x∈M

u(x,m)− inf
x∈M

u(x,m− 1)
)

.

We define the oscillation θ(t) = supx∈M u(x, t) − infx∈M u(x, t). Adding the
above inequalities gives

θ(m− 1) + θ

(

m− 1
2

)

≤ C (θ(m− 1) − θ(m)) .

Rearranging and setting δ = C−1
C < 1 yields

θ(m) ≤ δθ(m− 1).

By induction,

θ(t) ≤ Ce−ηt,

where η = − log δ. Note that if u(x,m− 1) is constant, this inequality is still
true.



300 Matt Gill

Fix (x, t) in M × [0,∞). Since
∫

M

∂ϕ̃

∂t
ωn = 0,

there exists a point y in M such that ∂ϕ̃
∂t (y, t) = 0.

∣
∣
∣
∣
∂ϕ̃

∂t
(x, t)

∣
∣
∣
∣ =

∣
∣
∣
∣
∂ϕ̃

∂t
(x, t) − ∂ϕ̃

∂t
(y, t)

∣
∣
∣
∣(7.1)

=
∣
∣
∣
∣
∂ϕ

∂t
(x, t) − ∂ϕ

∂t
(y, t)

∣
∣
∣
∣

≤ Ce−ηt.

Consider the quantity Q2 = ϕ̃+ C
η e−ηt. Then by construction,

∂Q2

∂t
≤ 0.

Since Q2 is bounded and monotonically decreasing, it tends to a limit as
t→ ∞, call it ϕ̃∞. But

lim
t→∞ ϕ̃ = lim

t→∞Q2 − lim
t→∞

C

η
e−ηt = ϕ̃∞.

To show that the convergence of ϕ̃ to ϕ̃∞ is actually C∞, suppose not. Then
there exists a time sequence tm → ∞ such that for some ε > 0 and some
integer k,

(7.2) ‖ϕ̃(x, tm) − ϕ̃∞‖Ck > ε, ∀m.

However, since ϕ̃ is bounded in C∞ there exists a subsequence tmj
→ ∞

such that ϕ̃(x, tmj
) → ϕ̃′∞ as j → ∞ for some smooth function ϕ̃′∞. By (7.2),

ϕ̃′∞ �= ϕ̃∞. This is a contradiction, since ϕ̃→ ϕ̃∞ pointwise. Hence the con-
vergence of ϕ̃ to ϕ̃∞ is C∞.

We observe that ϕ̃ solves the parabolic flow

∂ϕ̃

∂t
= log

det(gij̄ + ∂i∂j̄ϕ̃)
det gij̄

− F −
∫

M

∂ϕ

∂t
ωn.

Taking t to infinity, we see that ϕ̃∞ solves the elliptic Monge–Ampère equa-
tion

log
det(gij̄ + ∂i∂j̄ϕ̃∞)

det gij̄

= F + b,
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where

b =
∫

M

(

log
det(gij̄ + ∂i∂j̄ϕ̃∞)

det gij̄

− F

)

ωn.

This combined with Theorem 5.1 completes the proof of the main theorem,
and also provides a parabolic proof of the main theorem in [26]. �
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