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The odd Chern character and index

localization formulae

Daniel Cibotaru

We describe geometric representatives for the generators of the
cohomology ring of a model of the classifying space for the func-
tor K−1. The class corresponding to the degree one generator is
closely related to the spectral flow of a one-parameter family of self-
adjoint, Fredholm operators. We use intersection theory to derive
localization formulae that express the cohomological index of a
higher dimensional family of such operators as the Poincare dual
of an explicit 0-cycle in the parameter space. We derive, under cer-
tain conditions, an equality that relates the cohomological index
to the variation of the family of kernels.

1. Introduction

The motivation behind this article was three-fold. On one hand we had
in mind to generalize to infinite dimensions the results of [18] in which
the author builds certain geometrical representatives for the “fundamen-
tal” cohomology classes of the finite unitary group. On the other hand, we
wanted to explain the new results in the context of “classical” index the-
ory. The emphasis is on families of self-adjoint, Fredholm operators, hence
complex, odd K-theory. We learned from [7] that this problem was posed
by I. Singer [27] in the mid-1980s. Lastly, we sought to derive certain index
theoretic consequences coming from the explicit description of the geometri-
cal objects used to define the cohomology classes. These consequences have
as their guiding example the related interpretations of the spectral flow
as an isomorphism between the set of integers and K−1(S1) on one hand,
and as a count with sign of the 0-eigenvalues of a generic S1-family of self-
adjoint, Fredholm operators, on the other. The case of even K-theory has
been treated in various forms in several works [16, 24], while the odd case,
which requires, if not a different paradigm, at least different objects and
approach has not appeared in the literature, in our knowledge.

The technique of analytic currents of Hardt, used by Nicolaescu in [18]
to build homology classes is not available in the infinite-dimensional context.
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Instead, inspired by [14], we were led to use sheaf cohomology which pro-
vides an ideal framework for dealing with stratified objects. The constraints
imposed by working in infinite dimensions had the beneficial effect of forc-
ing us to develop a better understanding of certain processes that pertain
to symplectic topology (see Section 4).

There are many models for the classifying space of K−1, the most well
known being certain subgroups of the unitary group of operators acting on
a complex, separable Hilbert space H, subgroups introduced by Palais [23].
It turns out that a more convenient class of classifying spaces is one that has
a symplectic flavor. Concretely, we fix a Hilbert space H and we investigate
the grassmannian Lag of hermitian lagrangian subspaces of Ĥ := H ⊕H.
These are closed subspaces L ⊂ Ĥ that satisfy JL = L⊥, where J is the
obvious extra complex structure on Ĥ.

The space Lag is a real, Banach manifold and we extend to infinite
dimensions a result of Arnold (see Th. 3.1) which gives a canonical diffeo-
morphism between the full unitary group and the full Lagrangian Grass-
mannian.

The Lagrangian Grassmannian Lag contains a distinguished open set
Lag−, consisting of Lagrangian subspaces which are Fredholm pairs with
the vertical space H− := 0⊕H. We use symplectic techniques to prove that
it has the homotopy type of U(∞) (see Th. 4.2). In fact, the same proof can
be used to show that the Lagrangian Grassmannian Lag−K whose projection
on the vertical axis is compact (or trace class, etc.), is classifying for K−1.
This Lagrangian Grassmannian corresponds via Arnold’s isomorphisms to
the Palais group of unitary operators of type 1 + compact (or 1 + trace class,
etc.) and hence we get a new proof for the results of Palais [23].

Working with Lagrangians has the added bonus that it provides an ele-
gant way for dealing with closed, self-adjoint, unbounded1 operators simply
because the graph of such an operator is Lagrangian. This observation leads
to a natural connection with a different classifying space, a certain connected
component, BFred∗, of the space of bounded, self-adjoint, Fredholm opera-
tors, introduced by Atiyah and Singer in [3]. This opens the gates for dealing
with the second problem: the connection with index theory. In fact, one can
use Nicolaescu’s results to prove that the graph inclusion BFred∗ ↪→ Lag−,
which takes an operator to its graph, is a weak homotopy equivalence. The
advantage that Lag− has over the Atiyah–Singer classifying space is that it
allows one to work freely with unbounded operators. Moreover, it enlarges

1Unbounded means, as usual, possibly unbounded.
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the class of families of operators one can take into account, because the con-
tinuity of the graphs is a weaker requirement than the notion of continuity
in the Atiyah–Singer classifying space, namely the one requiring that the
family of zeroth order operators naturally associated to the initial family be
continuous — the so-called Riesz continuity (see Section 10).

The differential topology of Lag− is very rich and can be understood in
great detail. By fixing a complete, decreasing flag on the vertical Lagrangian,

H− ⊃W1 ⊃W2 ⊃ · · ·

we get a decreasing filtration of Lag− with open subsets LagWi consisting
of clean Lagrangians.

LagWi := {L ∈ Lag− | L ∩Wi = {0} and L+Wi closed}.

We prove that each of these open sets is the total space of an infinite-
dimensional vector bundle over a finite dimensional Lagrangian Grassman-
nian, hence by Arnold’s theorem, over a finite dimensional unitary group.
The natural projection of this bundle has a symplectic description: it is given
by a symplectic reduction process. In fact, this result holds more generally
for the finite codimensional submanifolds of Lag−

LagWi

k := {L ∈ Lag− | dimL ∩Wi = k, and L+Wi closed}

with the only difference that the base space of the fibration is a product of
finite unitary group with an infinite complex Grassmannian (see Proposition
4.3, Th. 4.1 and Cor. 4.1).

Things get even better. The complement Zi+1 of each LagWi have a
simple description in terms of incidence relations which brings to mind the
Schubert varieties of the complex Grassmannian,

Zi+1 := {L | dimL ∩Wi ≥ 1}.

In fact, Zi+1 ⊂ Lag− admits a stratification Zi+1 = F0 ⊃ F2 such that the
top stratum Zi+1 = F0 \ F2 is a finite codimensional, naturally cooriented
submanifold of Lag−, and Zi+1 does not have singularities in codimension
one, i.e., F1 = F2. It turns out that these conditions are enough to induce a
cohomology class [Zi+1] ∈ H2i+1(Lag−,Z). On the other hand, every coho-
mology class in Lag− is uniquely determined by its restrictions to the finite
unitary groups U(n) which come with natural inclusions (induced by the flag
and Arnold’s theorem) to Lag−. It turns out that the classes [Zi] pull-back
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to some canonical generators xi ∈ H2i−1(U(n),Z) of the cohomology ring of
U(n), generators apriori defined as transgression classes. Concretely,

xi :=
∫

S1

ci(En),

where En → S1 × U(n) is a certain canonical rank n complex vector bundle
(see Th. 6.1).

We exploited this fact to relate Zi to the cohomological index of a family
of self-adjoint, Fredholm operators. We arrived at the following result.

Theorem 1.1. The 2k − 1-th component of the cohomological index of a
continuous family of unbounded, self-adjoint, Fredholm operators
F : M → SFred is a rational multiple of the geometric class (Γ̃ ◦ F )∗[Zk]
where Γ̃ : SFred→ Lag− is the (switched) graph map. In fact, the following
relation holds:

ch2k−1[F ] =
(−1)k−1

(k − 1)!
(Γ̃ ◦ F )∗[Zk].

As an application to the previous result, we consider generic families of
self-adjoint, Fredholm operators parametrized by a closed, odd-dimensional
manifold and we give an explicit expression for the Poincaré dual of the
top cohomology class obtained by pulling back the relevant geometric class
via the classifying map. These are the localization formulae for which the
spectral flow corresponds to the degree one cohomology class. The typical
result is the following

Theorem 1.2. Let M be a closed, oriented manifold of dimension 2k − 1,
let F : M → SFred be a smooth family of self-adjoint, Fredholm operators
and let W ⊂ H be a codimension k − 1 subspace such that F is in gen-
eral position with respect to W . Denote by MW the set MW := {p ∈M |
dim Ker (F (p)) ∩W = 1}. Then

PD ch2k−1([F ]) =
(−1)k−1

(k − 1)!

∑
p∈MW

εpp,

where PD means Poincaré dual and εp is the sign of a certain (2p− 1)×
(2p− 1) determinant.

In order to find εp we needed a concrete description of the normal bundle
of the Schubert cell Zk, description from which the coorientability of Zk can
be easily deduced.
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A different type of localization formula is possible. If the parameter man-
ifold has dimension three, then in generic conditions, the top cohomology
class is related to the chern class of the line bundle of kernels, which lives
over a closed, oriented two-dimensional submanifold.

Proposition 1.1. Let M be a closed, oriented manifold of dimension 3
and let T : M → SFred be a generic family. Then M1 := {m ∈M |dim Ker
Tm = 1} is a closed, cooriented surface. Let γ ⊂M1 ×H be the tautological
line bundle over M1 with fiber γm = KerTm. Then

∫
M
T ∗[Z2] =

∫
M1

c1(γ∗).

For what generic means check Definition 10.5 and Lemma 10.2.
The results presented here are based on the author’s dissertation [8] to

which we refer several times in this paper, especially when dealing with cer-
tain results whose proofs would have clouded our main line of presentation.

Several people encouraged me to write this paper. First and foremost,
my gratitude goes to Liviu Nicolaescu, my thesis advisor, who has been not
only a guide and a source of inspiration but also a friend. My heartfelt thanks
go to those people who manifested interest for this work among them being
Nigel Higson, Stephan Stolz, Steve Rosenberg, Stuart Ambler and Florin
Dumitrescu. This paper is dedicated to my parents for all their love and
support.

2. The Lagrangian Grassmannian

We start by introducing the main object of study, the space of lagrangian
subspaces of a fixed complex Hilbert space endowed with an additional com-
plex structure. In this section, we summarize basic definitions and properties
of this space, most of them fairly standard. A fair body of work has been
carried out dealing with spaces that carry the name of Lagrangian Grass-
mannian, ever since Arnold introduced the notion in 1967 in [1]. However,
in the infinite-dimensional, complex context, there are not so many places
where one can find a detailed study of these spaces. We mention here the
work of Booss–Bavnbek and Zhu [6] and of Kirk and Lesch [15]. While there
is a certain overlap with each of these papers, we preferred, for the con-
venience of both the reader and the writer to present the results that we
needed later on with their proofs included. A standard reference for the basic
definitions concerning self-adjoint operators on a Hilbert space is [25].
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Definition 2.1. Let H be a separable, complex Hilbert space and let Ĥ =
H ⊕H. We denote by H+ (resp. H−) the space H ⊕ 0 (resp. 0⊕H) and
call it the horizontal subspace (resp. the vertical subspace).

Notation: We will use the letters B, U, resp. Sym for bounded, resp. uni-
tary, resp. bounded, self-adjoint operators. We will refer in brackets to the
Hilbert space on which these operators act.

Let JĤ → Ĥ be the unitary operator which has the block decomposition
relative Ĥ = H ⊕H

J =
(

0 1
−1 0

)
.

Notice that J satisfies J = −J∗ = −J−1.

Definition 2.2. A complex subspace L ⊂ Ĥ is called Lagrangian if JL =
L⊥. The (hermitian) Lagrangian Grassmannian, Lag(Ĥ, J) or simply Lag
is the set of all lagrangian subspaces of Ĥ.

Remark 2.1. Notice that JL = L⊥ implies that L is closed since L⊥ is
always closed and J is unitary.

Remark 2.2. The alternative use of the adjective “Hermitian” is related to
the fact that the notion of a Lagrangian Grassmannian of a complex vector
space already appears in the literature, e.g. in [10]. The underlying structure
in [10] is a non-degenerate, skew symmetric, bilinear form ω. The symplectic
structure in our case, ω := 〈J(·), ·〉 is sesquilinear and hence skew symmetric
in the hermitian sense, i.e., 〈J(x), y〉 = −〈J(y), x〉. As a consequence, our
Lag is only a real manifold.

Example 2.1. (i) Each one of the two subspaces H± is a lagrangian
subspace and JH± = H∓.

(ii) Let T : D(T ) ⊂ H → H be a closed self-adjoint operator, bounded or
unbounded T : D(T ) ⊂ H → H. We will carefully distinguish between
the graph of T

ΓT := {(v, Tv) | v ∈ D(T )}

and the switched graph of T :

Γ̃T := {(Tw,w) | w ∈ D(T )}.

They are both Lagrangian subspaces in Ĥ.
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The Lagrangian Grassmannian is naturally endowed with a topology
as follows. To each Lagrangian L one associates the orthogonal projection
PL ∈ B(Ĥ) such that RanPL = L. The condition that L is a Lagrangian
translates into the obvious relation

JPL = PJLJ = P⊥
L J = (1− PL)J.

If RL := 2PL − 1 denotes the reflection in L then L is Lagrangian if and
only if

JRL = −RLJ.

Conversely, if R is an orthogonal reflection that anticommutes with J then
Ker (I −R) is a lagrangian subspace. We therefore get a bijection

Lag ↔ {R ∈ B(Ĥ) | R2 = 1, R = R∗, RJ = −JR}

and so Lag inherits a topology as a subset of B(Ĥ).
The following result is straightforward and therefore we omit the proof.

Lemma 2.1. (a) If L is a Lagrangian and S ∈ Sym (L) is a self-adjoint
operator then the graph of JS : L→ L⊥ is a Lagrangian as well.

(b) For a fixed Lagrangian L, if L1 is both Lagrangian and the graph of an
operator T : L→ L⊥ then T has to be of the type JS with S ∈ Sym(L)
self-adjoint.

It is a well-known fact that, in the finite dimensional case the sets Sym
(L) are mapped to open subsets of Lag around L, turning the Lagrangian
Grassmannian into a manifold. The situation in the infinite-dimensional case
is identical. The following will make our life easier.

Proposition 2.1. Let L be an Lagrangian space, L ∈ Lag. The following
are equivalent:

(a) L is the graph of an operator JA : L0 → L⊥
0 where A ∈ Sym(L0).

(b) L ∩ L⊥
0 = {0} and L+ L⊥

0 is closed.

(b′) Ĥ = L⊕ L⊥
0 .

(b′′) Ĥ = L+ L⊥
0 .

(c) RL +RL0 is invertible.
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Proof. (a) ⇒ (b) Clearly if L is the graph of an operator L0 → L⊥
0 then L

is a linear complement of L⊥
0 .

(b) ⇒ (b′) ⇒ (b′′) ⇒ (b). We have the following equality:

(L+ L⊥
0 )⊥ = L⊥ ∩ L0 = J(L ∩ L⊥

0 ) = {0}.

and this proves that (b) ⇒ (b′). Clearly (b′) implies (b′′) and (b′′) implies (b)
because if z ∈ L ∩ L⊥

0 then Jz ⊥ L and Jz ⊥ L0 and so z = 0.
(b) ⇒ (c) It is easy to check that

Ker (PL − PL⊥
0
) = L ∩ L⊥

0 ⊕ L⊥ ∩ L0 = {0}.

The injectivity now follows from RL +RL0 = RL −RL⊥
0

= 2(PL − PL⊥
0
).

Part (b′) gives also Ĥ = L⊥ ⊕ L0. This implies that

Range (RL −RL⊥
0
) = Range (PL − PL⊥

0
) = L+ L⊥

0 = Ĥ,

which proves surjectivity.
(c) ⇒ (a) We show that the restriction to L of the projection onto L0, PL0 |L
is an isomorphism. First KerPL0 |L = L ∩ L⊥

0 and since Ker (RL +RL0) =
L ∩ L⊥

0 ⊕ L⊥ ∩ L0 one concludes that L ∩ L⊥
0 = {0}.

Surjectivity boils down to showing that the adjoint (PL0 |L)∗ is bounded
below [5]. But (PL0 |L)∗ is nothing else but PL|L0 .

For x ∈ L0 one has the following string of equalities

‖PL|L0(x)‖ = ‖PLPL0(x)‖ = 1/4‖(RL + 1)(RL0 + 1)(x)‖
= 1/4‖(RL +RL0 −RL0 + 1)(RL0 + 1)(x)‖
= 1/4‖(RL +RL0)(RL0 + 1)(x)‖
= 1/2‖(RL +RL0)PL0(x)‖ = 1/2‖(RL +RL0)(x)‖.

The lower bound follows from the invertibility of RL +RL0 .
It is clear that L is the graph of an operator T : L0 → L⊥

0 , T = PL⊥
0

∣∣
L
◦

(PL0 |L)−1. This operator has to be of the type JA with A ∈ Sym(L0) by
part b) in the previous lemma. �

Corollary 2.1. The set {L ∈ Lag | L is the graph of an operator L0 → L⊥
0 }

is an open neighborhood around L0.

Proof. The invertibility of RL +RL0 is an open condition. �
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Definition 2.3. For a fixed lagrangian L, the map AL : Sym(L) → Lag
which associates to an operator S the graph of JS is called the Arnold chart
around L. We will sometimes use the same notation, AL to denote the image
of this map in Lag.

The following is now obvious.

Proposition 2.2. The Arnold charts AL turn the Lagrangian Grassman-
nian Lag into a Banach manifold modeled on the space of bounded, self-
adjoint operators Sym (H).

Let us a give an application of what we did so far. We will need this
computation later.

Lemma 2.2. Let P : Lag → Sym (Ĥ) be the map that associates to the
lagrangian L the orthogonal projection onto L, PL . The differential dLP :
Sym (L) → Sym (Ĥ) is given by the following expression relative Ĥ =
L⊕ L⊥

dLP (Ṡ) =
(

0 ṠJ−1
L

JLṠ 0

)
=

(
0 −ṠJ
JṠ 0

)
,

where JL : L→ L⊥ is the restriction of J to L.

Proof. We need an expression for the projection PΓJS
onto the graph JS :

L→ L⊥. That comes down to finding v in the equations
{
a = v − SJ−1w,

b = JSv + w,

where a, v ∈ L and b, w ∈ L⊥. We get

v = (1 + S2)−1(a+ SJ−1b),

so that the projection has the block decomposition relative L⊕ L⊥

(2.1) PΓJS
=

(
(1 + S2)−1 (1 + S2)−1SJ−1

J(1 + S2)−1S J(1 + S2)−1S2J−1

)
.

Differentiating this at S = 0 we notice that the diagonal blocks vanish since
we deal with even functions of S and so the product rule delivers the
result. �
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The space Lag is not very interesting from a homotopy point of view
and in the next section we will see that it is contractible. To get something
non-trivial we restrict our attention to the subspace of vertical, Fredholm
lagrangians which we now define.

Definition 2.4. A pair of Lagrangians (L1, L2) is called a Fredholm pair if
the following two conditions hold

dim(L1 ∩ L2) <∞ and L1 + L2 is closed.

The Grassmannian of vertical, Fredholm Lagrangians is

Lag− := {L ∈ Lag | (L,H−) is a Fredholm pair}.

Remark 2.3. If T : D(T ) → H is a a closed, self-adjoint, Fredholm oper-
ator then only its switched graph is a vertical, Fredholm lagrangian.

Our objects are primarily lagrangian subspaces. There is a related notion
of a Fredholm pair when talking about orthogonal projections. We summa-
rize here the main relations between the two notions. One can find the
detailed proofs in the work of Avron et al.[4].

Definition 2.5. (a) A pair of orthogonal projections P and Q in a sep-
arable Hilbert space H is said to be a Fredholm pair if the linear
operator

QP : RanP → RanQ

is Fredholm.

(b) A pair of closed subspaces U and V of H is said to be a Fredholm pair
if

dimU ∩ V <∞, dimU⊥ ∩ V ⊥ <∞ and U + V closed.

(c) Two subspaces U and V are said to form a commensurate Fredholm
pair if PU − PV is a compact operator.

When U and V are Lagrangian subspaces the middle condition in the
definition of a Fredholm pair is superfluous.



The odd Chern character and index localization formulae 219

Proposition 2.3. Let (P,Q) be a pair of projections. Then the following
statements are equivalent:

(a) The pair (P,Q) is a Fredholm pair.

(b) The pair (Q,P ) is a Fredholm pair.

(c) The operators P −Q± 1 are Fredholm.

(d) The pairs of subspaces (RanP,KerQ) = (RanP,RanQ⊥) and (RanQ,
KerP ) = (RanQ,RanP⊥) are Fredholm pairs.

Proof. See Proposition 3.1 and Theory 3.4 (a) in [4]. �

Proposition 2.4. Suppose (U, V ) is a Fredholm pair of closed subspaces
and that W is another subspace commensurate with V . Then the pairs
(V ⊥,W ) and (U,W ) are Fredholm pairs.

Proof. This follows from the previous proposition and Theorem 3.4 (c) in
[4]. �

Let P±|L be the orthogonal projections on H± restricted to the
Lagrangian L and PL|H± be the projection on L restricted to H±. The
following is just a corollary of the previous propositions.

Corollary 2.2. The set of vertical, Fredholm Lagrangians, Lag−, coincides
with the set

{L ∈ Lag | P+|L is Fredholm of index 0}.

3. Arnold’s theorem

In this section, we generalize a result by Arnold ([2], see also [18]) to infinite
dimensions. In his article, Arnold showed that the finite Lagrangian Grass-
mannian Lag(N) ⊂ Gr(N, 2N) is diffeomorphic to the unitary group U(N).
A similar result appears in [15].

We introduce now the main suspects. Consider the ∓i eigenspaces of J ,
Ker (J ± i) and let

Iso−+ := Iso (Ker (J + i),Ker (J − i)).

To each Lagrangian L we associate the restriction to Ker (J + i) of the reflec-
tion RL. Since RL anticommutes with J we get a well-defined reflection map

R−+ : Lag → Iso−+, R−+(L) = RL

∣∣
Ker (J+i)

.
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On the other hand, to each isomorphism α ∈ Iso−+ we can associate its
graph Γα which is a subspace of Ĥ. It is, in fact, a Lagrangian. Indeed

w ∈ JΓα ⇔ w = J(αv + v) = −iαv + iv = z − α∗z ∈ Γ̃−α∗

for some v ∈ Ker (J + i), with z = −iuv ∈ Ker (J − i). It is standard that
the switched graph Γ̃−α∗ is the orthogonal complement of Γα. Therefore, we
get a second well-defined graph map

Γ : Iso−+ → Lag, Γ(α) = Γα.

Lemma 3.1. Let L ⊂ Ĥ be a Lagrangian. Then the following maps are
canonical isomorphisms of Hilbert spaces:

φ±(L) : L→ Ker (J ± i), φ±(L)(v) = 1/
√

2(v ± iJv)

Proof. The injectivity is straightforward. For surjectivity, let w ∈ Ker (J + i)
be written as

w = v + v⊥, v ∈ L and v⊥ ∈ L⊥.

Then Jw = −iw implies that Jv = −iv⊥ and so v⊥ = iJv. �
Notation: When there is no possibility for confusion we will use φ± :=
φ±(L).

The previous lemma identifies in a canonical way Iso−+ with the set of
unitary operators U(L) via

α→ φ−1
− αφ+ =: Uα.

The graph, Γα, is expressed in terms of the unitary operator Uα as the
set

Γα = {(1 + UT )v + iJ(1− UT )v | v ∈ L}.

Definition 3.1. Let L be a Lagrangian. The associated Cayley graph map
is the following application:

CL : U(L) → Lag

CL(U) := Γ(φ− ◦ U ◦ φ−1
+ ) = Ran{L � v �→ (1 + U)v + iJ(1− U)v ∈ Ĥ}.

We have the following generalization of a result of Arnold [2].
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Theorem 3.1. (a) The reflection map, R−+ : Lag → Iso−+ and the
graph map Γ : Iso−+ → Lag are inverse to each other.

(b) For every Lagrangian L, the Cayley graph map, CL : U(L) → Lag is a
diffeomorphism of real Banach manifolds.

(c) The restriction of the Cayley graph map induces a diffeomorphism of
the following open subsets of U(L), resp. Lag.

U−1(L) := {U ∈ U(L) | 1 + U is Fredholm }
and

Lag− (L) := {L1 ∈ Lag | (L1, L) is a Fredholm pair}.
Proof. (a) Notice that the operator from Ĥ which relative to the decompo-
sition Ĥ = Ker (J + i)⊕Ker (J − i), has the expression

(
0 α∗

α 0

)

is an orthogonal reflection whose eigenvalue 1-eigenspace is Γα. Hence
R−+Γ(α) = α.

In order to prove that Γ ◦R−+ = id it suffices to show only that Γ ◦
R−+(L) ⊂ L. Take v ∈ Ker (J + i). Then

Γ(R−(L)) � v +RL(v) = 2PL(v) ∈ L.
(b) By part (a) the map is a bijection. We prove differentiability. Fix a

Lagrangian L and let Sym(L) � S → ΓJS ∈ Lag be the Arnold chart cen-
tered at L. Then using (2.1) we get the following expression for the reflection
RΓJS

relative to Ĥ = L⊕ L⊥

RΓJS
= 2PΓJS

− 1 =
(

(1− S2)(1 + S2)−1 2S(1 + S2)−1J−1

2JS(1 + S2)−1 −J(1− S2)(1 + S2)−1J−1

)
.

which is differentiable function of S. Since R−+ = P i ◦R∣∣
Ker (J+i)

, where P i

is the projection on the i-eigenspace of J , we conclude that R−+ is smooth
and therefore its inverse Γ is smooth and so is CL.

(c) Fix the Lagrangian L := H+. Let C+ = CH+ Since the Fredholm
property is an open condition it follows that U−1 is open in U(H).

By standard spectral theory, the Fredholm property of 1 + U implies that
Ker (1 + U) = C(U) ∩H− is finite dimensional and also that −1 /∈
σ(U |Ker (1+U)⊥).
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We can now factor out Ker(1 + U). To that end, let H̆ = Ker (1 + U)⊥,
and H̆± be the horizontal/vertical copy of H̆ in H̆ ⊕ H̆ and Ŭ = U |H̆ . Since
1 + Ŭ is invertible, the Cayley graph of Ŭ is in the Arnold chart of H̆+ and
so C(Ŭ) + H̆− is closed by Proposition 2.1. On the other hand

C(U) +H− = C(Ŭ) + H̆− + Ker (1 + U),

where Ker (1 + U) ⊂ H− is finite dimensional and this proves that C(U) +
H− is closed.

Conversely, let L ∩H− be finite dimensional and L+H− be closed.
If we let L̆ and H̆− be the orthogonal complements of L ∩H− in L and
H−, respectively, these two spaces are Lagrangians in JH̆− ⊕ H̆− whose
intersection is empty, and whose sum is closed. Their sum is closed because
of the relation

L̆+ H̆ = (L ∩H−)⊥,

where the orthogonal complement is taken in L+H−.
By Lemma 2.1, L̆ is in the Arnold chart of JH̆−, hence L̆ = ΓS with

S : JH̆− → JH̆− self-adjoint. We get L = C(U) where U is the extension
by −1 on J(L ∩H−) of the Cayley transform of S. It is clear that 1 + U is
Fredholm. �
Notation: Whenever we have a map or object depending on a Lagrangian,
a sub/superscript ± indicates that the lagrangian is H±.

Our main interest is in Lag− so we will state the theorem in this case
separately.

Corollary 3.1. The Cayley graph map C+ : U(H) → Lag

C+(U) := Ran{H � v → ((1 + U)v,−i(1− U)v) ∈ H ⊕H}

induces a diffeomorphism between U−1 and Lag−.

Proof. This is just the case L = H+ in Theory 3.1. The reason for −i in the
second component is that under the canonical identifications H = H+ and
H = H−, J

∣∣
H+ acts as minus the identity. �

Remark 3.1. We chose the name Cayley graph map because the compo-
sition

C−1
+ ◦ Γ̃ : Sym(H) → U(H), A→ (A− i)(A+ i)−1

is the well-known Cayley transform. Notice that A = 0 corresponds to −Id.
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Remark 3.2. Our choice of the reflection map, R−+ to go from Ker (J + i)
to Ker (J − i) rather then the other way was dictated by orientation consid-
erations.

In the case H = C we wanted the composition

C−1
+ ◦ Γ̃ : Sym(C) → S1 \ {1}, A→ (A− i)(A+ i)−1

to be an orientation preserving diffeomorphism, where S1 is given the coun-
terclockwise orientation.

For each Lagrangian L, we introduce the change of basis isomorphism

(*) ΦL : L⊕ L⊥ → Ker (J + i)⊕Ker (J − i), ΦL =
(
φ+ 0
0 φ− ◦ J−1

)
.

where J−1 : L⊥ → L is the inverse of the restriction J : L→ L⊥. Notice that
ΦL diagonalizes J relative to the decomposition Ĥ = L⊕ L⊥, i.e.,

Φ−1
L JΦL =

( −i 0
0 i

)
.

Lemma 3.2. Let U ∈ U(L) be a unitary map. Then the reflection in the
Lagrangian LU := CL(U) has the following expression relative Ĥ = L⊕ L⊥

RLU
= ΦL

(
0 U∗J−1

JU 0

)
Φ−1

L .

Proof. Let αU : Ker (J + i) → Ker (J − i) be the isomorphism that corre-
sponds to CL(U), in other words αU = φ−Uφ−1

+ . Then

RLU
=

(
0 α∗

U

αU 0

)
=

(
φ+ 0
0 φ−

)(
0 U∗

U 0

)(
φ−1

+ 0
0 φ−1

−

)
.

The claim follows from the expression for ΦL. �

Using the previous lemma we get a different characterization of Lag−.

Corollary 3.2. The space of vertical, Fredholm Lagrangians has the fol-
lowing characterization Lag− = {L ∈ Lag | RL +RH+ is Fredholm}.
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Proof. If U is the operator L is coming from via the Cayley graph map then

RL +R+ = Φ+

(
0 (1 + U)∗J−1

J(1 + U) 0

)
Φ−1

+ .

Clearly, RL +R+ is Fredholm if and only if 1 + U is Fredholm. �

Corollary 3.3. The Cayley graph map, C takes the Arnold chart around
U0 bijectively onto the Arnold chart around L0 := C(U0).

Proof. Let T := U + U0, LU := C(U). Then

RLU
+RL0 = Φ+

(
0 −T ∗

−T 0

)
Φ−1

+ .

is invertible if and only if T is invertible and hence by Proposition 2.1 we
get C+(U) ∈ AL0 if and only if T is invertible. �

Corollary 3.4. Let M be a differentiable manifold and F : M → Lag be
a map. Then F is differentiable if and only if R ◦ F is differentiable where
R : Lag → B(Ĥ) associates to every Lagrangian L its reflection.

Proof. Clearly F is differentiable if and only if F1 := C−1
+ ◦ F : M → U(H+)

is differentiable. Now R ◦ C+ : U(H) → B(Ĥ) has the following expression

R ◦ C+(U) = Φ+

(
0 −U∗

−U 0

)
Φ−1

+ .

So F1 is differentiable if and only if R ◦ C+ ◦ F1 is differentiable. �
A closer look at the Cayley graph map suggests a useful reformulation

of Theorem 3.1. Notice that the group of unitary operators

UJ(Ĥ) := {U ∈ U(Ĥ) | UJ = JU}

acts on Lag. Theorem 3.1 says that given two Lagrangians L1 and L2

there exists a canonical U � ∈ UJ(Ĥ) such that U �L1 = L2. Indeed, let U :=
C−1

L1
(L2). Then the operator

(3.1) Ũ : L1 → L2, Ũ(v) = 1/2((1 + U)v + iJ(1− U)v))

is a Hilbert space isomorphism. Define U � ∈ U(Ĥ), by U � := Ũ ⊕ JŨJ−1.
Relative to the decomposition Ĥ = L⊕ L⊥ this automorphism has the
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expression:

U � =
1
2

(
1 + U −i(1− U)J−1

iJ(1− U) J(1 + U)J−1

)
= ΦL

(
1 0
0 JUJ−1

)
Φ−1

L .

Theorem 3.2. (a) For a fixed Lagrangian L, the following map is a dif-
feomorphism of real Banach manifolds

CL : U(L) �→ Lag, CL(U) = OL(U)L,

where

OL : U(L) �→ U(Ĥ), U �→ ΦL

(
1 0
0 JUJ−1

)
Φ−1

L .

The block decomposition is relative to Ĥ = L⊕ L⊥.

(b) The map OL has the expression:

OL(U) =
(

1 0
0 φ−Uφ−1

−

)

relative to the decomposition Ĥ = Ker (J + i)⊕Ker (J − i). Hence the
image of OL depends only on J .

(c) The bundle Uτ ⊂ Lag×B(Ĥ) over Lag whose fiber over a Lagrangian
L consists of unitary operators U ∈ U(L) is canonically trivializable
and the map:

O : Uτ → U(Ĥ), O(L,U) := OL(U)

is differentiable.

Proof. (a) The job is done by Theorem 3.1.
(b) Straightforward.
(c) Let us notice that the tautological bundle τ ⊂ Lag×Ĥ, τ :=

{(L, v) | v ∈ L} over Lag is naturally trivializable. A natural trivialization
is given as follows. For every Lagrangian L, let UL := C−1

+ (L) be the unitary
operator on H+ corresponding to L via the Cayley graph map. Then the
following map is a trivialization of the tautological bundle:

α : τ → Lag×H+, α(L, v) = (L, (O+(UL))−1 (v))

since both C−1
+ and O+ are differentiable. It is straightforward that Uτ is

naturally trivializable.
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In order to show that O is differentiable it is enough to prove that the
map

Φ : Lag → U(Ĥ), L→ ΦL

is differentiable. Since O+ and C+ are differentiable, the following identity
proves this claim:

Φ(C+(U)) = O+(U)Φ+ =
1√
2

(
1 −U
−i −iU

)
, ∀U ∈ U(H+),

where the decomposition is relative Ĥ = H ⊕H. �

Remark 3.3. Part (b) of the Theorem is saying that the image of O is only
“half” of UJ(Ĥ) which consists of unitary operators with diagonal block
decomposition relative Ĥ = Ker (J + i)⊕Ker (J − i). One consequence is
that UJ(Ĥ) acts transitively on Lag. Let us notice that UJ(Ĥ) is a subgroup
of the symplectic group, i.e., the invertible operators X ∈ GL(Ĥ) satisfying
X∗JX = J . This bigger group also acts transitively and differentiably on
Lag (see Prop 4.5 in [8]).

Remark 3.4. It is not hard to see that the canonical unitary operators
Ũ(L1, L2) defined at (3.1) satisfy the relation

U(L2, L3) ◦ U(L1, L2) = U(L1, L3).

In fact, if τ ⊂ Lag×Ĥ is the tautological bundle over Lag, which, as we saw
before, is trivializable, then the collection of unitary operators Ũ represents
the parallel transport for the pull-back to τ of the trivial connection on the
trivial bundle Lag×Ĥ.

The main object of study is Lag−. However, all the results stated here
hold for other infinite Lagrangian Grassmannians. Let I ⊂ K ⊂ B be a non-
trivial, two-sided ideal of bounded(compact) operators, ideal endowed with
a topology at least as strong as the norm topology [26] (examples are trace
class operators with the trace norm or Hilbert–Schmidt operators, etc.). The
Palais unitary group, UI, introduced in [23], is UI := U ∩ (1 + I). Notice that
UI ⊂ U−1 since the only essential spectral value of U ∈ UI is 1. If we let

LagI := C+(UI)
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be the corresponding space of Lagrangians, it is not hard to see that (com-
pare with Corollary 2.2)

LagI = {L ∈ Lag(H) | P+|L is Fredholm of index 0 and P−|L ∈ I}

where P−|L ∈ I means that P−|L is a compact operator and its singular
values satisfy the same boundedness condition as the one that describes I.

Lemma 3.3. Let T : D(T ) ⊂ H → H be a self-adjoint, Fredholm operator.
Then the switched graph Γ̃T belongs to LagI if and only if the resolvent
RT (λ) belongs to I for some λ /∈ σ(T ).

Proof. Let U := C−1
+ (Γ̃T ) be the unitary operator that corresponds to T in

Theorem 3.1 Then X := 1− U is bounded and induces a bijection X : H →
D(T ). If we endow D(T ) with the norm

〈v, w〉D(T ) := 〈X−1v,X−1w〉H , ∀v, w ∈ D(T )

(which is nothing else but the graph norm) then T : D(T ) → H is a bounded
operator and

T = iX−1(2−X).

Hence 1− U = X = 2i(T + i)−1 = 2iRT (−i), which proves the claim. �

The space LagI is also a real Banach manifold modeled on the space of
bounded, self-adjoint operators S ∈ I.

4. Symplectic reduction

In this section, we describe the symplectic reduction process that we will
need further on. While other people have written about and used (linear)
symplectic reduction (see for example [15, 19, 21]) we will need in section
8 a generalized version (see definition 4.6) of this process that we develop
here. As a byproduct, we get in 4.1 a description of symplectic reduction as
the projection map of a natural vector bundle.

We conclude this section with an application of symplectic reduction. We
show in Theorem 4.2 that Lag− is classifying for K−1-theory. This result,
with a different proof, first appears in [15].

Definition 4.1. An isotropic subspace of the pair (Ĥ, J) is a closed sub-
space W ⊆ Ĥ such that W ⊂ Λ for some Lagrangian Λ.
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The space Wω := (JW )⊥ is called the annihilator of W . Notice that

W ⊂ Λ = (JΛ)⊥ ⊂Wω.

The orthogonal complement of W in Wω, denoted HW is called the (sym-
plectically) reduced space of Ĥ.

Remark 4.1. The Hilbert space HW is the orthogonal complement of
W ⊕ JW in Ĥ and hence it is J-invariant. Notice also that

dim Ker (i± J |HW
) =

1
2

dimHW = dimW⊥
Λ ,

where W⊥
Λ is the orthogonal complement of W in Λ. The dimension could

be infinite.

Definition 4.2. The isotropic space W is called cofinite if HW is finite
dimensional. The codimension of W is half of the dimension of HW .

Definition 4.3. Let W be a fixed, cofinite, isotropic space and k a non-
negative integer. A lagrangian L is called k-clean with respect to W (or just
clean if k = 0) if it belongs to the set:

LagW
k := {L ∈ Lag | dimL ∩W = k and L+W is closed}.

Let LagW :=
⋃

k LagW
k be the space of Lagrangians which are Fredholm

pairs with W .

If W = L0 is a Lagrangian itself, then LagW = AL⊥
0
.

Proposition 4.1. Let W be a cofinite, isotropic space.

(a) Let L ∈ LagW
k for some integer k ≥ 0. Then PHW

(L ∩Wω) is a
Lagrangian subspace of HW where PHW

is the orthogonal projection
onto HW .

(b) Let L ∈ LagW
0 . Then there exists a Lagrangian L0 ⊃W such that

L+ L0 = Ĥ. Hence L ∈ AL⊥
0
⊂ LagW

0 and therefore LagW
0 is open in

Lag.

Proof. (a) Note first that dimL ∩Wω <∞ since KerPHW

∣∣
L∩W ω = L ∩W .

Let W⊥ be the orthogonal complement of W in Ĥ. We have L⊥ ∩W⊥ =
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J(L ∩Wω) so that L⊥ ∩W⊥ is finite dimensional as well. This implies that
L⊥ ∩W⊥ +H⊥

W is closed.
Let � := PHW

(L ∩Wω) and let �′ be the orthogonal complement of � in
HW . Notice that

� = (L+W ) ∩HW

and so

�′ = HW∩
(
L⊥ ∩W⊥ +H⊥

W

)
= HW ∩ J(

L ∩Wω +H⊥
W

)
= J

(
HW ∩ (L ∩Wω +H⊥

W )
)

= JPHW
(L ∩Wω) = J�

which proves that � is a lagrangian in HW .
(b) Let L0 := J�+W where, as before, � := PHW

(L ∩Wω). Then L0 is
a Lagrangian since

L⊥
0 = (J�+W )⊥ = J�⊥ ∩W⊥ = (�+W + JW ) ∩W⊥

= (�+ JW ) ∩W⊥ = �+ JW = JL0.

On the other hand, L+ L0 is closed and L ∩ L0 = {0}. We will prove this
last claim. Take z = x+ y ∈ (J�+W ) ∩ L, with x ∈ J� ⊂ HW and y ∈W .
Then z ∈ L ∩Wω = L ∩ (HW ⊕W ) which also means that x = PHW

(z) ∈ �
and since x ∈ J� we conclude that x = 0 and therefore z = y ∈ L ∩W = {0}.

In order to show thatAL⊥
0
⊂ LagW

0 notice that if L̃ ∈ AL⊥
0

then L ∩W ⊂
L̃ ∩ L0 = {0}. On the other hand (L̃, L0) is a Fredholm pair and L0 and W
are commensurate; hence by Proposition 2.4 L̃+W is closed. �

Definition 4.4. Let W be a cofinite, isotropic space. The map

RW : LagW → Lag(HW ), L �→ PHW
(L ∩Wω)

is called the symplectic reduction with W .

The symplectic reduction map so defined is not continuous. However, its
restriction to each LagW

k is. In order not to overload the notations we will
use the same symbol RW also for the restriction maps. We have

Proposition 4.2. The symplectic reduction is a differentiable map RW :
LagW

0 → Lag(HW ). In fact, if L0 ⊃W is a Lagrangian and W⊥ is the
orthogonal complement of W in L0, then R(AL⊥

0
) = AJW⊥ and in these

Arnold coordinates, symplectic reduction is the linear map R(T ) = PW⊥

TPJW⊥, i.e., projection onto the JW⊥ ×W⊥ block, for every T : L⊥
0 → L0.



230 Daniel Cibotaru

Proof. Let T : L⊥
0 → L0 be an operator such that as a map JW ⊕ JW⊥ →

W ⊕W⊥ has the block decomposition:

T =
(
T1 T2

T3 T4

)
.

It is an easy exercise to show that RW (ΓT ) = ΓT4 ⊂ JW⊥ ⊕W⊥. �

We want to show that R is a differentiable map when restricted to LagW
k

as well. But first we need to prove that LagW
k is a differentiable manifold.

From now on we will consider that W ⊂ H− is a subspace of the verti-
cal lagrangian of codimension c, therefore cofinite, isotropic. Notice that
LagW

k ⊂ Lag− for all non-negative integers k and, in fact, Proposition 2.4
implies that

Lag− =
⋃
k≥0

LagW
k = LagW .

Lemma 4.1. For every Lagrangian L ∈ LagW
k the intersection L ∩Wω has

dimension equal to k + c = dimL ∩W + 1/2 dimHW . Moreover L ∩Wω

decomposes orthogonally as

L ∩Wω = L ∩W⊕(
L ∩ (V ⊥ ⊕HW )

)
,

where V ⊥ is the orthogonal complement of V := L ∩W in W .

Proof. The image of the projection PHW
: L ∩Wω → HW has dimension

equal to 1/2 dimHW and the kernel is just L ∩W . The two spaces that
appear in the sum are orthogonal and subsets of L ∩Wω. It is enough to
prove that L ∩ (V ⊥ ⊕HW ) has dimension p. It is not hard to see that

L ∩ (V ⊥ ⊕HW ) = L∩(
J(L ∩W )⊕ V ⊥ ⊕HW

)
=: L ∩Wω

L ,

where WL := J(L ∩W )⊕ V ⊥ is an isotropic space, clean with L and such
that HWL

= HW . Hence PHW
: L ∩Wω

L → HW is injective and the image is
a lagrangian in HW , which has dimension c. �

Definition 4.5. For every Lagrangian L ∈ LagW
k , let V := L ∩W , V ⊥ be

the orthogonal complement of V in W and let � be the symplectic reduc-
tion of L with W . The space LW := �⊕ V ⊕ JV ⊥ is called the associated
Lagrangian or simply the associate.
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Proposition 4.3. (a) For any L ∈ LagW
k , the associated Lagrangian,

LW , is in LagW
k . Moreover, every L ∈ LagW

k is in the Arnold chart of
its associate and it is given by the graph of JS where S ∈ Sym(LW )
has the block decomposition:

⎛
⎝ 0 0 S∗

2

0 0 0
S2 0 S4

⎞
⎠ .

(b) Let W = V ⊕ V ⊥ be an orthogonal decomposition of W such that V is
k-dimensional and let � ⊂ HW be a Lagrangian. Then �⊕ V ⊕ JV ⊥ ∈
LagW

k and the set LagW
k ∩A�⊕V ⊕JV ⊥ is described in this Arnold chart

by linear equations. More precisely, given S ∈ Sym(�⊕ V ⊕ JV ⊥) then
ΓJS ∈ LagW

k if and only if its V × V and V × � blocks of S are zero.

(c) The space LagW
k is a submanifold of Lag− of real codimension k2 + 2ck

and the symplectic reduction map:

R : LagW
k → Lag(HW ), L→ RangePHW

|L∩W ω

is differentiable.

Proof. (a) The fact that the associated Lagrangian is indeed a Lagrangian
is straightforward. Now LW ∩W = V , hence clearly LW is in LagW

k .
For the second claim, notice that (L, V ⊥) is a Fredholm pair and V ⊥

and L⊥
W ar commensurable, so (L,L⊥

W ) is a Fredholm pair. Moreover, the
intersection L ∩ L⊥

W is trivial. Indeed let

x = a + b + c
L J� JV V ⊥ .

Then b ∈ L⊥ and so b = 0. From x = a+ c it follows that x ∈ L ∩Wω and
a = PHW

(x) ∈ � so a = 0. This implies x = c ∈ L ∩ V ⊥ = {0}.
For the last part notice that if L is the graph of an operator JS : LW →

L⊥
W then JS|L∩LW

= 0. Indeed

JSv = PL⊥
W
◦ (PLW

|L)−1v = PL⊥
W
v = 0, ∀v ∈ L ∩ LW .

On the other hand, V ⊂ L ∩ LW . This and the self-adjointness imply that
the middle row and column of S are zero. The vanishing of the top, left
block follows from the following considerations. The symplectic reduction of
any lagrangian L̃ with WL := JV ⊕ V ⊥ in the Arnold chart of LW is just
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the graph of the �× � block of the self-adjoint operator on LW that gives
L̃. But the operator �→ � whose graph � is of course the zero operator.
We implicitly used the fact that � = RWL

(L) = RW (L) which can be easily
checked.

(b) Clearly �⊕ V ⊕ JV ⊥ ∈ LagW
k .

Now, every lagrangian in the Arnold chart A�⊕V ⊕JV ⊥ is just the graph
of an operator JS where S ∈ Sym (�⊕ V ⊕ JV ⊥). So S has a block decom-
position

S =

⎛
⎝ S�,� SV,� SJV ⊥,�

S�,V SV,V SJV ⊥,V

S�,JV ⊥ SV,JV ⊥ SJV ⊥,JV ⊥

⎞
⎠ .

The condition v + JSv ∈W where v = (v1, v2, v3) ∈ �⊕ V ⊕ JV ⊥
implies that the sum

v1 + v2 + v3 + (JS�,�v1 + JSV,�v2 + JSJV ⊥,�v3)
� V JV ⊥ J�

+ (JS�,V v1 + JSV,V v2 + JSJV ⊥,V v3) + (JS�,JV ⊥v1 + JSV,JV ⊥v2 + JSJV ⊥,JV ⊥v3)

JV V ⊥

is in V ⊕ V ⊥. Since �⊕ J�⊕ JV ⊕ JV ⊥ ⊥ V ⊕ V ⊥ we get

v1 = v3 = (JS�,�v1 + JSV,�v2 + JSJV ⊥,�v3) = (JS�,V v1 + JSV,V v2

+JSJV ⊥,V v3) = 0

and

v2 + (JS�,JV ⊥v1 + JSV,JV ⊥v2 + JSJV ⊥,JV ⊥v3) ∈ V ⊕ V ⊥.

We conclude that in order for v + JSv to be in W one must have v2 ∈
KerT where T := (SV,�, SV,V ) : V → �⊕ V . Also ΓJS ∩W is the graph of
the restriction (JSV,JV ⊥ |Ker T ). The only way the graph of JSV,JV ⊥ |Ker T

can have dimension equal to the dimension of V is if KerT = V , i.e.,

(SV,�, SV,V ) = 0.

Hence the intersectionA�⊕V ⊕JV ⊥ ∩ LagW
k consists of graphs of operators

whose V × V , V × � and �× V blocks are zero.
(c) Every Lagrangian L ∈ LagW

k is in the Arnold chart of its associate
which is of the type required by part (b). In these charts LagW

k is described
by linear equations and one can very fast see that the codimension is the
one indicated.
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In the Arnold chart of �⊕ V ⊕ JV ⊥ the symplectic reduction with W
of any lagrangian L̃ ∈ LagW

k is the graph of the projection onto the �× �
block of the operator that gives L̃ and the differentiability follows. �

We will use the symplectic reduction process to shed some light on the
diffeomorphism type of LagW

k .

Definition 4.6. Let Gr(k,W ) denote the Grassmannian of k-dimensional
subspaces of W . The generalized reduction is the map:

G : LagW
k → Lag(HW )×Gr(k,W ),
L→ (RW (L), L ∩W ).

Notice that for k = 0 the generalized reduction coincides with the sym-
plectic reduction. We will see that the generalized reduction is a vector
bundle projection. First let us notice that G comes with a natural section
called the associate section namely

S : Lag(HW )×Gr(k,W ) → LagW
k , (�, V ) → �⊕ V ⊕ JV ⊥.

Every associate Lagrangian lies on this section.

Theorem 4.1. (a) The restriction to the associate section of the tangent
space of LagW

k , T LagW
k

∣∣
S
, can be naturally identified with the vector

subbundle of T Lag−
∣∣
S

whose fiber at �⊕ V ⊕ JV ⊥ consists of self-
adjoint operators S ∈ Sym(�⊕ V ⊕ JV ⊥) with block decomposition:

S =

⎛
⎝ S1 0 S∗

2

0 0 S∗
3

S2 S3 S4

⎞
⎠ .

(b) The generalized reduction map is differentiable. Moreover (Ker dG)
∣∣
S

can be identified with the vector subbundle of T LagW
k

∣∣
S

whose fiber at
�⊕ V ⊕ JV ⊥ consists of self-adjoint operators S ∈ Sym(�⊕ V ⊕ JV ⊥)
with block decomposition.

(4.1) S =

⎛
⎝ 0 0 S∗

2

0 0 0
S2 0 S4

⎞
⎠ .
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(c) The natural map

N : (Ker dG)
∣∣
S
→ LagW

k , N(�⊕ V ⊕ JV ⊥, S) = ΓJS

is a diffeomorphism that makes the diagram commutative

(Ker dG)
∣∣
S

N ��

����������������
LagW

k

G

����������������

Lag(HW )×Gr(k,W )

.

(d) The space LagW
k is diffeomorphic to Lag(HW )× (τ⊥)p ⊕ Sym(τ⊥)

where τ⊥ is the tautological quotient bundle over Gr(k,W ).

Proof. (a) This is obvious since, as in the proof of Proposition 4.3, in the
charts centered at L = �⊕ V ⊕ JV ⊥, the manifold LagW

k can be described
exactly as the set of those self-adjoint operators with the claimed block
decomposition.

(b) In what concerns differentiability, we only have to prove that the
second component, G2, is differentiable. For that we look again at the proof
of Lemma 4.3 where we saw that in the Arnold chart A�⊕V ⊕JV ⊥ the inter-
section ΓJS ∩W is just ΓJSV,JV ⊥ for every S ∈ LagW

k .
The second claim is obvious when one works in the Arnold charts cen-

tered at L = �⊕ V ⊕ JV ⊥ since then dLG is just the projection on the �× �
and V × JV ⊥ blocks.

(c) We construct an inverse for N. To every L ∈ LagW
k we associate the

Lagrangian LW := �⊕ V ⊕ JV ⊥ where V = L ∩W and � is the symplectic
reduction with W . By part (a) of the previous proposition, in the Arnold
chart centered at LW , the lagrangian L is the graph ΓJS of an operator S
of type:

S =

⎛
⎝ 0 0 S∗

2

0 0 0
S2 0 S4

⎞
⎠ .

The inverse of N takes L ∈ LagW
k to the Lagrangian LW and the operator

S that gives L in the Arnold chart of LW . By part (b) this is well-defined.
(d) At (b) and (c) we have identified the fiber of LagW

k over LagHW
×

Gr(k,W ) at (�, V ) with the vector space Hom(�, JV ⊥)⊕ Sym (JV ⊥). We
know that the tautological bundle over LagW

k is naturally trivializable so the
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bundle with fiber Hom(�, JV ⊥) over LagHW
×Gr(k,W ) is naturally isomor-

phic with the bundle Hom(W⊥, JV ⊥) where the lagrangianW⊥ ∈ Lag(HW )
is just the orthogonal complement of W in H−. A choice of a basis on W⊥

identifies Hom(W⊥, JV ⊥) with (τ⊥)p. �

It is worth having the case k = 0 of the previous results stated explicitly

Corollary 4.1. The symplectic reduction map R : LagW
0 → Lag(HW )

together with the associated 0-section

S : Lag(HW ) → LagW
0 , � �→ �⊕ JW

is diffeomorphic with the vector bundle Ker dR
∣∣
S
→ Lag(HW ).

As an application to symplectic reduction we give a geometric proof of
the following important result which first appears in [15].

Theorem 4.2 Kirk–Lesch. The spaces Lag− and Lag−I are weak homo-
topy equivalent to U(∞).

Proof. The proof is no different for Lag− than for Lag−I and is based on the
fact that the symplectic reduction map is a vector bundle. In the case of
Lag−I the operators 4.1 are from the ideal I.

We start by fixing a complete decreasing flag of finite codimensional
subspaces of H−.

H− = W0 ⊃W1 ⊃W2 ⊃ . . . .

Notice that LagWi ⊂ LagWi+1 is an inclusion of open subsets of Lag for all
i and that ⋃

i≥0

LagWi = Lag− .

Indeed the “⊂” inclusion follows by noticing that dim L ∩H− ≤ codim
Wi = i and L+H− = L+Wi +W⊥

i is closed since the orthogonal comple-
ment W⊥

i finite dimensional. The “⊃” inclusion is a consequence of the
observation that the intersection of the decreasing sequence L ∩Wi is zero
and of Proposition 2.4 applied to the commensurate pair (H−,Wi) and the
Fredholm pair (L,H−).

If we can prove that for a fixed k there exists an n big enough such that
the pair (Lag−,LagWn) is k-connected than we are done because LagWn is
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homotopy equivalent with Lag(HWn
) which is diffeomorphic by Theorem 3.1

with U(n). This will imply that the induced map

U(∞) → Lag(∞) := lim
n

Lag(HWn
) �−→ lim

n
LagWn = Lag−

is a weak homotopy equivalence where the first map is induced by the Cayley
graph map C : U(n) → Lag(HWn

).
We have of course that LagWn = Lag− \{L | dimL ∩Wn ≥ 1} and the

set Zn+1 := {L | dimL ∩Wn ≥ 1} is a finite codimensional stratified subset
of Lag− whose top stratum, LagWn

1 , has codimension 2n+ 1. We therefore
fix n > 1/2(k − 1) and show the induced map on homotopy groups

πi(LagWn) �→ πi(Lag−), ∀i ≤ k

is an isomorphism.
Every continuous map σ : Sk → Lag− is contained in an open set LagWN

for someN > n big enough so one can deform it to a map Sk→Lag(HWN
) ↪→

Lag− simply by composing with the symplectic reduction which is a defor-
mation retract. The new map σ1 : Sk → Lag(HWN

) can be deformed into
a smooth map and can also be put into transversal position with Zn+1 ∩
Lag(HWN

) which is a Whitney stratified set (see Remark 5.5) of codimen-
sion 2n+ 1 in the finite-dimensional manifold Lag(HWN

). But for k < 2n+ 1
this means that there is no intersection and hence the resulting map σ2 has
its image in LagWn . This proves the surjectivity of the map on homotopy
groups.

The injectivity follows by noting that every map I × Sk → Lag− can be
deformed to a map I × Sk → LagWn by the same type of argument as before
for 2n > k.

The same proof works for Lag−I . �

Remark 4.2. In the case of the unitary group, symplectic reduction has a
nice explicit description as an algebraic map (see [8], Section 2.5).

5. Schubert cells and varieties

The topological structure of the vertical Lagrangian Grassmanian, Lag− is
intimately connected with the structure of the finite Lagrangian Grassma-
nians which are nothing else but the classical unitary groups. A detailed
topological study of these spaces has been undertaken by Nicolaescu in [18].
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In that paper, the author shows that the Poincaré duals of the genera-
tors of the cohomology group of U(n) can be represented by integral cur-
rents supported by semialgebraic varieties. That approach is not available in
this infinite-dimensional context. However, we have on our side symplectic
reduction which translates most of the problems into their finite-dimensional
counterpart.

In the proof of Th. 4.2 we introduced a complete, decreasing flag of
finite-codimensional subspaces

W : H− =: W0 ⊃W1 ⊃W2 ⊃ . . . .

We now fix an orthonormal basis {f1, f2, . . .} of H− such that W⊥
n =

〈f1, f2, . . . , fn〉 and we set ei := Jfi.
To every k-tuple of positive integers I = {i1 < i2 < . . . < ik} we asso-

ciate the following vector subspaces of Ĥ.

FI = 〈fi | i ∈ I〉, FIc = 〈fi | i ∈ Ic〉 and H+
I = FI ⊕ JFIc

Definition 5.1. Let I = {i1 < i2 < . . . < ik} be a k-tuple of positive inte-
gers. Set i0 := 0 and ik+1 := ∞. The weight of the k-tuple is the integer:

NI :=
∑
i∈I

(2i− 1)

The Schubert cell of type I denoted ZI is a subset of Lag− defined by
the following incidence relations with respect to the fixed flag

ZI = {L ∈ Lag− | dim L ∩Wj = k − p, ∀ 0 ≤ p ≤ k, ∀ j such that
ip ≤ j < ip+1}

Remark 5.1. One way to look at the incidence relations is by thinking
that the k-tuple (i1, i2, . . . , ik) records the “nodes” in the flag where the
dimension of the intersection with the lagrangian L drops by one. �

Remark 5.2. Notice that the orthogonal complement W⊥
n of Wn in H−

is naturally a lagrangian in HWn
:= W⊥

n ⊕ JW⊥
n and W⊥

n ⊂ HWn
will play

the role of the vertical subspace. The flag W0 = H− ⊃W1 ⊃W2 induces a
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complete, decreasing flag of W⊥
n :

W̃0 := W⊥
n ⊃ W̃1 := W1/Wn ⊃ . . . ⊃ W̃n := Wn/Wn = {0}

We let ZI(n) be the Schubert cell in Lag(HWn
) described by the same inci-

dence relations as the sets ZI above with W̃i replacing Wi and H+
I (n) be

the space corresponding to H+
I . �

The following description of Schubert cells proves that they are actually
Banach spaces when regarded in the right charts.

Proposition 5.1. The Schubert cell ZI is a vector subspace of codimension
NI in the Arnold chart AH+

I
. More precisely, ΓJA ∈ AH+

I
∩ ZI if and only

if the bounded self-adjoint operator satisfies the linear equations

〈Afi, fj〉 = 0, ∀ j ≤ i, i, j ∈ I,
〈Afi, ej〉 = 0, ∀ j ≤ i, i ∈ I, j ∈ Ic.

Proof. We will show first that ZI ⊂ AH+
I
. Let L ∈ ZI . Notice that (L,H−

I )
is a Fredholm pair by Proposition 2.4 since H−

I is commensurate with H−.
We will show that L ∩H−

I = {0} thus proving that L = ΓJA ∈ AH+
I

with
A ∈ SymH+

I .
Let us remark that L ∩ FIc = {0} because otherwise the dimension of

L ∩Wj would drop at “nodes” other than i1, i2, . . . ik, (take v =
∑

j∈Ic ajfj ∈
L ∩ FIc with p = min {j ∈ Ic | aj �= 0} then v ∈ L ∩Wp−1 \ L ∩Wp). This is
saying that L ∩H− is the graph of an operator T : FI → FIc .

To see that L ∩H−
I = {0}, let x = v1 + v2 ∈ L ∩ JFI ⊕ FIc . Then Jx ∈

L⊥ and so 〈Jx,w + Tw〉 = 0, for all w ∈ FI . This implies

〈Jv1, w〉 = 0, ∀ w ∈ FI .

We get v1 = 0 and so x = v2 ∈ L ∩ FIc = 0, thus finishing the proof that
L = ΓJA ∈ AH+

I
.

Let now A ∈ Sym (H+
I ) such that ΓJA ∈ ZI and let

A =
(
A1 A2

A3 A4

)

be the block decomposition of A relative to H+
I = FI ⊕ JFIc .

One checks immediately that the intersection ΓJA ∩H− is just the graph
of the restriction JA3|Ker A1 which has the same dimension as KerA1 ⊂ FI .
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Since FI has dimension k, one concludes that

dim ΓJA ∩H− = k ⇐⇒ A1 = 0⇐⇒ 〈Afi, fj〉 = 0, ∀ j ≤ i, i, j ∈ I.

To prove the rest of the relations, i.e., 〈Afi, ej〉 = 0, ∀i ∈ I, j ∈ Ic, j ≤ i
we observe first that

ΓJA ∩H− = ΓJA3 and 〈Afi, ej〉 = −〈JA3fi, fj〉.

The graph of JA3 = T : FI → FIc satisfies the incidence relations if and only
if the required coefficients vanish, otherwise we would have dimension drops
at the wrong places again. �

Remark 5.3. For every two-sided symmetrically normed ideal I we can
define ZI(I) = ZI ∩ Lag−I . Since the next results are true for ZI , as well as
for ZI(I) making only the minimal changes, we choose to work with ZI to
keep the indices to a minimum.

Notice that ZI ⊂ LagWn for all n ≥ max {i | i ∈ I} so we could look at
the symplectic reduction of ZI . We record the obvious:

Lemma 5.1. For n ≥ max {i | i ∈ I} the symplectic reduction R : LagWn →
Lag(HW ) takes ZI ⊂ LagWn to ZI(n). The stronger R−1(ZI(n)) = ZI is also
true.

Proof. For n ≥ max {i | i ∈ I} we have that FI ⊂W⊥
n and soAH+

I
⊂ LagWn .

The reduction with Wn of the Arnold chart centered at H+
I is the Arnold

chart centered at H+
I (n). The reduction in the Arnold chart being just the

projection, the lemma easily follows. �

Definition 5.2. For every k-tuple I = {i1, i2, . . . , ik} the Schubert variety
is the closure of ZI in Lag−, denoted ZI .

Lemma 5.2. The Schubert variety ZI can be described by the following
incidence relations:

ZI = {L ∈ Lag− | dim L ∩Wj ≥ k − p, ∀ 0 ≤ p ≤ k, ∀ j such that
ip ≤ j < ip+1 where i0 = 0, ik+1 = ∞ and ip ∈ I, ∀ 1 ≤ p ≤ k}.
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Proof. The fact that the closure is included in the right-hand side is a con-
sequence of the upper semi-continuity of the functions:

L→ dimL ∩Wj , ∀j ≥ 0.

Conversely, let us notice that for n big enough we have the following
obvious equalities LagWn ∩ZI = cln(ZI) = R−1(ZI(n)) where cln(ZI) is the
closure of ZI in LagWn . Now, a lagrangian that satisfies the incidence rela-
tions in the lemma is in some LagWn and its reduced space will satisfy the
same incidence relations with respect to the flag W̃ ⊃ W̃1 ⊃ . . . ⊃ W̃n. But
this means it is in ZI(n), since the finite version of the lemma is true by
results from [18], namely Prop. 4.3, 4.4 and 4.6. �

Remark 5.4. The Schubert variety ZI is not included in any of the clean
sets LagWn . However, the intersection has a very simple description: ZI ∩
LagWn = R−1(ZI(n)).

We can now describe the strata in the Schubert variety ZI . Notice first
that if ZJ ⊂ ZI then |J | ≥ |I| since |J | = dimL ∩H− for every L ∈ ZJ . Say
J = {j1 < j2 < · · · < jl} and I = {i1 < i2 < · · · < ik} with l ≥ k. We deduce
that i1 ≤ jl−k+1 since jl−k+1 records the node where the dimension of the
intersection of L ∈ ZJ with the flag drops to k − 1 and similarly is ≤ jl−k+s

for all 1 ≤ s ≤ k. We record this:

Lemma 5.3. (a) If ZJ ⊂ ZI then |J | = l ≥ k = |I| and is ≤ jl−k+s for
all 1 ≤ s ≤ k.

(b) If ZJ ⊂ ZI has codimension NI + 1 in Lag− where NI =
∑

i∈I(2i− 1)
is the codimension of ZI in Lag− then |J | = k + 1, j1 = 1 and js+1 =
is for all 1 ≤ s ≤ k.

Corollary 5.1. The fundamental Schubert variety Zn can be described by
the simple incidence relation:

Zn = {L | dim (L ∩Wn−1) ≥ 1}.

Proof. Let J = {j1, . . . , jl}, L ∈ ZJ and ZJ ⊂ Zn. The previous lemma tells
us that jl ≥ n and so the node where the dimension of the intersection of L
with the flag drops to 0 is bigger than n− 1. This proves the “⊂” inclusion.
The other inclusion is obvious. �
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The previous corollary is key to dealing with the singularities in codi-
mension 1 of Zn. It says that the following inclusions hold:

Zn ⊂ LagWn−1

1 ⊂ Zn = LagWn−1

1 .

In other words, we can find a new stratification of Zn in which the top
stratum is LagWn−1

1 and there aren’t any singularities in codimension 1.
We will do this in more detail in Section 8. One can play the same game
with the Schubert varieties ZI . Indeed, let I := {i1 < i2 < · · · < ik} and let
JI := I − i1 + 1 be two k-tuples of positive integers. For every set J with
|J | = k (not necessarily of the previous type) and every complete, decreasing
flag W =: V0 ⊃ V1 ⊃ · · · of a finite codimensional, isotropic space W define

SchW
J := {V ∈ Gr(k,W ) | dimL ∩ Vs = k − p, ∀0 ≤ p ≤ k, such that

jp ≤ s < jp+1}

to be the “standard” Schubert cell in Gr(k,W ) of complex codimension∑
p jp − p. Let

LagW
I := (G2)−1(SchW

JI )

be a subset of Lag−, where G2 is the second component of the symplectic
reduction. Clearly LagW

I is a manifold. Moreover, the following inclusions
hold:

ZI ⊂ LagWi1−1

I ⊂ ZI ,

where the flag in Wi1−1 is, obviously, Wi1 ⊃Wi1+1 ⊃ . . . . The manifolds
LagW

I are the top strata in a stratification of ZI without singularities in
codimension 1.

Remark 5.5. In the proof of Theorem 4.2 we claimed that Zn+1(N) is a
Whitney stratified subset of Lag(HWN

) of codimension 2n+ 1, whereN > n.
The codimension assertion follows from noting that Zn+1(N) is the closure
of LagWn

1 which has codimension 2n+ 1. The fact that the stratification is
Whitney is because Zn+1(N) is a semi-algebraic orbit of a certain subgroup
of the symplectic group (see Section 3 in [18]).

6. The cohomology ring and geometrical representatives

Our plan is to define geometrical representatives for certain cohomology
classes of Lag−. For the infinite-dimensional framework, we are dealing with
the sheaf theoretic methods are very general and efficient. In the case of Lag−
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one could, in principle, use some ad-hoc method to define these cohomology
classes without appeal to sheaf theory. However, we prefer to summarize in
an appendix the general principles which can be of use in other situations.

Notice that by fixing a decreasing flag:

H− ⊃W1 ⊃W2 · · · ,

we have canonical inclusions

Lag(HWn
) ↪→ Lag(HWn+1) ↪→ Lag− .

Proposition 6.1. (a) The inclusion map

i : Lag(HWn
) ↪→ Lag−, L→ L+ JWn

induces an isomorphism of cohomology groups

Hq(Lag−,Z) � Hq(Lag(HWn
),Z)

for q ≤ 2n− 1.

(b) Let I be an indexing set. Suppose zi ∈ H∗(Lag−,Z) with i ∈ I are
cohomology classes such that for each n the set of pull-backs zi(n) ∈
H∗(Lag(HWn

),Z) generate the cohomology ring of Lag(HWn
). Then

(zi)i∈I generate the cohomology ring of Lag−.

Proof. (a) By Corollary 4.1 we have that the inclusion induces a homotopy
equivalence of Lag(HWn

) with LagWn = Lag− \Zn+1.
On the other hand, Zn+1 is a stratified subset whose top stratum has

codimension 2n+ 1 hence by the extension property, see Propositions A.2
and A.4, the natural map

Hq(Lag−) → Hq(Lag− \Zn+1)

is an isomorphism.
(b) It follows from (a). �

Remark 6.1. From now on we will identify Lag(HWn
) with the unitary

group U(n) via the Cayley graph map. Technically speaking, we only have
a canonical isomorphism between Lag(HWn

) and U(JW⊥
n ) (where JW⊥

n is
the horizontal subspace of HWn

) given by the Arnold theorem and an identi-
fication of U(JW⊥

n ) with U(n) via a non-canonical unitary map JW⊥
n � C

n.
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From a cohomological point of view it does not matter what this non-
canonical unitary map is since any other choice will induce the same iso-
morphism

H∗(U(JW⊥
n )) � H∗(U(n)),

simply because every unitary map on a vector space is homotopic to the
identity. �

Following [18], the groups U(n) have canonically defined cohomology
classes xi ∈ H2i−1(U(n),Z). On the product S1 × U(n) there is a rank n
(universal) complex vector bundle En. The bundle is obtained by modding
out a Z-action on the Z-equivariant bundle

R× U(n)× C
n → R× U(n).

The action on the total space is given by

k(t, U, v) := (t+ k, U, Ukv), ∀(t, U, v) ∈ R× U(n)× C
n, k ∈ Z,

whereas on the base space, Z acts in the obvious way on the R component.
The classes xi are transgressions of the Chern classes of En, i.e.,

xi(n) :=
∫

S1

ci(En)

The classes xi(n) ∈ H2i−1(U(n)), 1 ≤ i ≤ n, generate the cohomology ring
of U(n), i.e.,

H∗(U(n),Z) � Λ(x1, . . . , xn).

Notice that via the canonical inclusion

S1 × U(n) ↪→ S1 × U(n+ 1)

the bundle En+1 pulls-back to give a bundle isomorphic to En ⊕ C. There-
fore, the class xi(n+ 1) pulls back to xi(n).

This compatibility with the natural inclusions of the classes xi(n)
prompts the following definition.

Definition 6.1. The fundamental transgression classes on Lag− are the
unique cohomology classes zi ∈ H2i−1(Lag−) that pull-back to the classes
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xi(n) ∈ H2i−1(U(n)) via the induced map

U(n) � � i �� Lag− , xi(n) = i∗(zi),

where i is the composition of the natural inclusion Lag(n) ↪→ Lag− with the
Cayley graph diffeomorphism.

For every set of positive integers I = {i1, . . . , ik}, define the product class
zI ∈ HNI (Lag−) to be the cup product of fundamental transgression classes:

zI = zi1 ∧ zi2 ∧ . . . ∧ zik
.

We now turn to the Schubert varieties ZI . In Appendix A, we describe
how one can define a cohomology class when dealing with a cooriented,
stratified space without singularities in codimension 1. We summarize the
main definitions and procedures.

Definition 6.2. Let X be a Banach manifold. A quasi-submanifold of X of
codimension c is a closed subset F ⊂ X together with a decreasing filtration
by closed subsets

F : F = F 0 ⊃ F 1 ⊃ F 2 ⊃ F 3 ⊂ · · ·

such that the following hold.

(i) F 1 = F 2.

(ii) The strata Sk = F k \ F k+1, are submanifolds of X of codimension
k + c.

The quasi-submanifold is called coorientable if S0 is coorientable. A
coorientation of a quasi-submanifold is then a coorientation of its top
stratum.

The main ingredients to define a cohomology class out of a coorientable
quasi-submanifold are:

• A Thom isomorphism of the top dimensional stratum S0, which is a
submanifold and closed subset of X \ F 2.

H0(S0) � Hc(X \ F 2, X \ F 0).

This depends on the choice of a coorientation.
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• An extension isomorphism in cohomology, over the singular stratum
F 2, which exists because F 2 has codimension at least two bigger than
S0.

Hc(X) → Hc(X \ F 2).

The cohomology class determined by the triple (F,F , ω) is the image of
1 ∈ H0(S0) via the composition:

H0(S0) � Hc(X \ F 2, X \ F 0) → Hc(X \ F 2) � Hc(X)

and is denoted [F, ω]. Although this class depends on the stratification F
(see Remark A.4) we will not make this fact explicit in the notation.

Notation: Z◦
I := ZI ∪ ZI∪1, ∂ZI := ZI \ Z◦

I .

Definition 6.3. The standard filtration on ZI is the following filtration.

F 0 := ZI ; F 1 = F 2 := ∂ZI ; F k :=
⋃

ZJ⊂ZI

NJ≥NI+k

ZJ .

Theorem 6.1. The standard stratification on the Schubert variety ZI turns
it into a coorientable quasi-submanifold of Lag− of codimension NI . There
exists a canonical choice of a coorientation ωI on the top stratum such that
the following equality of cohomology classes holds

[ZI , ωI ] = zI .

Before we go into the proof, a short digression on the results of [18] is
necessary. In that article, Nicolaescu uses the theory of analytic currents
to build out of the finite-dimensional Schubert variety, ZI(n) ⊂ Lag(n),
endowed with an orientation, a homology class. He shows that this class
is Poincare dual to the class xI(n) ∈ HNI (Lag(n)).

We summarize the main results:

Proposition 6.2. The sets ZI(n)◦ are orientable, smooth, subanalytic man-
ifolds of codimension NI in Lag(n).

Proof. See [18], Lemma 5.7. Alternatively, ZI(n)◦ is open in the mani-
fold LagWi1−1

I (n) (see the end of the previous section). In the next section
we prove, via a different method, the fact that LagWk

1 ⊃ Z◦
k is naturally

cooriented. �
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Proposition 6.3. The closed set ZI(n) with the canonical orientation ωI

is an analytical cycle and so it defines a homology class in Hn2−NI
(U(n))

which is Poincare dual to xI(n).

Proof. See [18], Theorem 6.1. �
Proof of Theorem 6.1: We consider n ≥ 1/2(NI + 1) and we look at the
symplectic reduction Rn : LagWn → Lag(HWn

). We have n ≥ max {i ∈ I}
and so Z◦

I ⊂ LagWn . By Lemma 5.1 we have that R−1
n (Z◦

I (n)) = Z◦
I . Since

Rn is a vector bundle, the normal bundle to Z◦
I is canonically isomorphic

with the pull-back via Rn of the normal bundle of ZI(n)◦. Hence it induces
an orientation. With this coorientation on ZI we get a cohomology class
[ZI , ωI ] ∈ HNI (Lag−). By Proposition 6.1 this class is uniquely determined
by its restriction to Lag(HWn

).
Now, the inclusion map i : Lag(HWn

) ↪→ Lag− is transversal to ZI and
the following set equality holds:

i−1(ZI) = ZI(n).

To see why it is transversal notice that the image of i is the zero section, i.e.,
S(Lag(HWn

)), of the symplectic reduction. It is therefore enough to prove
the transversality of S(Lag(HWn

)) with ZI ∩ LagWn (which is a stratified
set with a finite number of strata). This is true because of Lemma 5.1.

By Proposition A.5 we have

i∗([ZI , ωI ]) = [ZI(n), ωI(n)] ∈ HNI (Lag(HWn
)).

By Nicolaescu’s results the class on the right equals xI(N). Since in Lag−

there is another class that restricts to xI(N), namely zI we get the desired
equality. �

Remark 6.2. In the proof of the previous theorem we used Nicolaescu’s
results in a form slightly different than stated in Proposition 6.3. We used
the cohomology class represented by a stratified set together with an induced
coorientation. It is clear that an coorientation on ZI(n)◦ induces a orienta-
tion on the same space by the normal-bundle-first convention. An oriented
quasi-submanifold C determines a homology class which is Poincaré dual to
the cohomology class induced by the same quasi-submanifold. Moreover, as
shown by Hardt [11, 12], there exists an isomorphism of the Borel–Moore
homology groups of X with the analytic currents homology that takes the
geometric class determined by the quasi-submanifold C to the current C
induces.
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Definition 6.4. The triple composed of the Schubert variety ZI with the
standard filtration and the coorientation ωI is called the Schubert cocycle
or the geometric representative of zI . The cohomology class it represents is
denoted [ZI , ωI ].

We consider now families of vertical, Fredholm Lagrangians.

Definition 6.5. A map F : M → Lag− is said to be (standard) transversal
to ZI if it is transversal to every stratum in the standard stratification.

Lemma 6.1. Any smooth family F : M → Lag− can be deformed by a
smooth homotopy to a family transversal to Zk.

Proof. Since M is compact, transversality with ZI means actually transver-
sality of the reduced family with ZI for n big enough. Transversality with
Whitney stratified spaces is an open, dense condition in the space of all
smooth maps G : M → Lag(n). �

Proposition 6.4. Let M be a closed oriented manifold and let F : M →
Lag− be a family transversal to ZI . Then F−1(ZI) is quasi-submanifold of
M with a naturally induced coorientation F ∗ωI and

[F−1(ZI), F ∗ωI ] = F ∗[ZI , ωI ].

Proof. This is just Proposition A.5. The pull-back of the normal bundle
to Z◦

I is naturally isomorphic with the normal bundle to F−1(Z◦
I ) and the

coorientation F ∗ωI is the one induced via this isomorphism. �
In the infinite-dimensional context, Poincaré Duality does not make

sense. Instead we aim for an expression of Poincaré Duality for families of
lagrangians parametrized by a closed, oriented manifold M . In Appendix A,
we show that when the manifold M is compact then any oriented quasi-
submanifold F ⊂M of dimension d determines a homology class �F � ∈
Hd(M) which is Poincaré dual to the cohomology class [F ] ∈ Hn−d(M)
induced by the obvious coorientation. Combining this with the previous
proposition we get.

Theorem 6.2. Let F : M → Lag− be a smooth map from an oriented,
closed manifold M of dimension n to Lag−. Suppose F is transversal to
ZI . Then the preimage F−1(ZI) has a naturally induced orientation and so
it defines a homology class �F−1(ZI)� ∈ Hn−NI

(M) which is Poincaré dual
to the class F ∗[ZI ].
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7. The odd Chern character

Let M be a finite, CW-complex, hence compact. The Chern character is a
ring homomorphism:

ch : K0(M) → Heven(M,Q).

The suspension isomorphism, which is actually taken to be the definition of
K−1, helps us extend the Chern character to the odd component:

K̃−1(M)

ch
��

Σ
K̃0(ΣM)

ch
��

H̃odd(M,Q)
Σ �� H̃even(ΣM,Q)

It is well known that U(∞) is a classifying space for K−1. Hence, every ele-
ment in K̃−1(M) can be represented by the homotopy class of a (pointed)
map f : M → U(∞). Let [f ] ∈ K−1(M) be the element this map represents.
Then Σf : ΣM → ΣU(∞) represents an element in K̃0(ΣM) which corre-
sponds to f via the suspension isomorphism. The previous commutative
diagram can be written as

(7.1) Σ ◦ ch [f ] = ch ([Σf ]).

A short digression is necessary at this point. The space ΣU(∞) comes
with a principal U(∞)-bundle Ŭ , namely the one obtained via the clutch-
ing map given by the identity. More precisely, one starts with the trivial
U(∞) bundle over [0, 1]× U(∞) and identifies (0, U, g) with (1, U, Ug) for
all (U, g) ∈ U(∞)× U(∞). This is an old acquaintance of ours. Indeed the
pull-back of this bundle to ΣU(n) is nothing else but the frame bundle asso-
ciated to the vector bundle En, which we considered in Section 6.

Another way of looking at these bundles is via the periodicity map (see
[22], pp. 224–225)

ΣU(n) → Gr(n, 2n) ↪→ Gr(n,∞) � BU(n),

where the first map is given explicitly as follows:

[0, π]× U(n) → Gr(n, 2n), (t, U)→ cos t
(

1 0
0 −1

)
− sin t

(
0 U−1

U 0

)
.
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The right-hand side is an involution of C
n ⊕ C

n. The bundle En is the
pull-back of the universal U(n)vector bundle EU(n). In the same way Ŭ
comes from the universal U(∞)-bundle over BU(∞).

Now every continuous map f : M → U(∞) defined on a compact set M
is homotopy equivalent with a map (which we denote by the same paper)
f : M → U(n). The class [f ] ∈ K−1(M) or the class [Σf ] ∈ K̃0(ΣM) can be
represented by the bundle (Σf)∗En (which determines a stable isomorphism
class). Using equation (7.1) we get that

(7.2) ch [f ] = Σ−1 ch((Σf)∗En)) = Σ−1((Σf)∗ chEn).

The inverse of the suspension isomorphism Σ is easy to describe. It is
the composition

H̃even(ΣM,Z) π∗
�� H̃even(S1 ×M,Z)

/dt �� Heven−1(M,Z),

where π : S1 ×M → ΣM stands for the projection and /dt stands for the
slant product with the fundamental class of S1. So

Σ−1((Σf)∗ chEn) = (π∗(Σf)∗ chEn)/dt = ((Σf ◦ π)∗ chEn)/dt(7.3)
= ((idS1 × f)∗ chEn)/dt = f∗(chEn/dt).

The class chEn/dt ∈ Hodd(U(n),Q) is called the transgression class of the
Chern character. Of course, one can do slant product componentwise and
get, for each positive integer k a class:

chτ
2k−1 := ch2k (En)/dt ∈ H2k−1(U(n),Q).

There is nothing special about the Chern character. The same transgression
process can be applied to any characteristic class of En, in particular to
the Chern classes and we have already done this in Section 6 where we
denoted those classes by xi. We use a different notation now which is more
appropriate to this context,

cτ2k−1 := ck(En)/dt ∈ H2k−1(U(n),Z).

There is a very simple relation between chτ
2k−1 and cτ2k−1:

Lemma 7.1.

chτ
2k−1 =

(−1)k−1

(k − 1)!
cτ2k−1.
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Proof. First of all, ch2k (En) ∈ H̃2k(S1 × U(n),Q) is a polynomial in the
variables c1(En), . . . , ck(En) and the coefficient of ck(En) is (−1)k−1/(k −
1)!. On the other hand, every element in H2k(S1 × U(n),Z) is a sum:

z = x+Dt ∧ y,

where x ∈ H2k(U(n),Z), y ∈ H2k(U(n),Z) and Dt ∈ H1(S1,Z) satisfies
Dt(dt) = 1. We claim that for every characteristic class of En its
H2k(U(n),Z) component vanishes. Indeed the class x is the pull-back of z
via the inclusion {1} × U(n) → S1 × U(n) and the claim follows by noticing
that the pull-back of the bundle E is trivial over U(n).

We conclude that the cup product of any two characteristic classes of
En is zero and so we have

ch2k (En) =
(−1)k−1

(k − 1)!
ck(En),

which after taking the slant product gives the identity we were after. �

Suppose now that M is a closed, oriented manifold and f : M → Lag−.
Theorem 6.1 is saying that the pull-back f∗xk = f∗[Zk, ωk]. On the other
hand, by the previous lemma, relations (7.2), (7.3) and Proposition 6.4 we
have the following result:

Proposition 7.1. Let M be a closed manifold and let f : M → Lag− be a
smooth map transversal to Zk. The following holds:

ch2k−1([f ]) =
(−1)k−1

(k − 1)!
f∗[Zk, ωk] =

(−1)k−1

(k − 1)!
[f−1(Zk), f∗ωk]. �

We will give now a first application to what we said so far. Let us take
M := S2N−1 in the previous proposition. Notice that we have a map

ΠN : π2N−1(Lag−) → Z, ΠN ([f : S2N−1 → Lag−]) =
∫

S2N−1

f∗[ZN , ωN ].

Using Bott divisibility (see Th. IV.1.4 in [17]) and Bott periodicity argu-
ments (such as Th. 24.5.3 in [13]) one can show that the following result
holds

Theorem 7.1. The map ΠN is injective and the image is the subgroup
(n− 1)!Z.
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Corollary 7.1. The homotopy type of a map f : S2N−1 → Lag− is deter-
mined by the integer ∫

S2N−1

f∗[ZN , ωN ],

which is always divisible by (N − 1)!. If f is transversal to ZN then this
integer is the total intersection number of f and ZN .

Remark 7.1. Any map f : S2N−1 → Lag− can be deformed to a map
S2N−1 → Lag(N). After identifying Lag(N) with U(N) one gets a map
Lag(N) → S2N−1 coming from the fibration p : U(N) → S2N−1. The degree
of the composition p ◦ f : S2N−1 → S2N−1 is exactly the integer from the
corollary.

8. The normal bundle

The main goal of this paper is to give concrete local intersection formulae
for Theorem 6.2 in the particular case of the fundamental Schubert classes
[Zk, ωk]. To that end we need a good description of the normal bundle of the
top stratum of Zk, i.e., Z◦

k , in Lag−. It turns out that it is more convenient
to work with the submanifold LagWk−1

1 ⊃ Z◦
k . Hence, we will use a different

stratification in which the top stratum is LagWk−1

1 . A legitimate question is
then what role does the filtration play in the definition of the cohomology
class determined by a quasi-submanifold? In the appendix A of [8] we showed
that if a quasi-submanifold W comes with two different filtrations (W,F )
and (W,G), which have common refinement (W,H), where by refinement we
understand that H2 ⊂ F 2 ∪G2 and the coorientation on W \H2 restricts
to the coorientations of W \ F 2 and W \G2 then they define the same coho-
mology class. It is possible that any two filtrations of a quasi-submanifold
have a common refinement. However, we could not prove that.

Definition 8.1. The non-standard stratification on Zk:

Zk := F0 ⊃ F2 ⊃ F3 ⊃

has as its top stratum the manifold F0 \ F2 := LagWk−1

1 , while the other
strata, Fi \ Fi+1 are unions of ZJ ⊂ Zk \ LagWk−1

1 each of which has codi-
mension (2k − 1) + i in Lag−.

A function F : M → Lag− is (non-standard) transversal to Zk if it is
transversal to every stratum in the non-standard stratification.
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In this section, we aim to give a concrete description for a splitting of the
differential of the inclusion LagW

k whereW ⊂ H− is finite codimensional. We
have a canonical choice of this splitting in the charts along the zero section
as Theorem 4.1 shows. We prove that a similar results holds everywhere.

Definition 8.2. Let j : E → F be an injective morphism of vector bundles
over a smooth Banach manifold X. An algebraic complement G of E is a
vector bundle over X that splits j. This means that there exists an injective
morphism k : G→ F such that

F = E ⊕G.

Notation: Let F : X1 → X2 be a smooth immersion of Banach manifolds.
An algebraic complement of the tangent bundle TX1 is denoted by NX1.

Lemma 8.1. Let F : X1 → X2 be a smooth immersion of Banach mani-
folds. Then every algebraic complement of TX1 is naturally isomorphic with
the normal bundle νX1.

Proof. The natural projection NX1 → νX1 is an isomorphism. �
The following two results help us generalize the results of Theorem 4.1.

Lemma 8.2. Let L0 and L ∈ Lag− be two lagrangians such that L ∈ AL0

(2.3). Then the differential at L of the transition map between the Arnold
chart centered at L0 and the Arnold chart centered at L is the map:

dL : Sym (L0) → Sym (L) dL(Ṡ) = PL|L0 ◦ Ṡ ◦ PL0 |L.

Proof. Let L1 ∈ AL0 ∩ AL. This means that L1 can be described both as
ΓJX where X ∈ Sym (L0) and ΓJS where S ∈ Sym (L). It is not hard to see
what S should be.

JS = PL⊥ ◦ (I, JX) ◦ [PL ◦ (I, JX)]−1.

The image of the map (I, JX) : L0 → Ĥ gives the Lagrangian L1 and the
inverse of PL ◦ (I, JX) is a well-defined operator L→ L1 since L1 is in AL.
We consider the function:

F : Sym (L0) → Sym (L), F (X) = −JPL⊥ ◦ (I, JX) ◦ [PL ◦ (I, JX)]−1.

Notice that for X0 = −JPL⊥
0
◦ (PL0 |L)−1 we have F (X0) = 0 since X0 ∈

Sym (L0) is the self-adjoint operator such that L = ΓJX0 . The differential of
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F at X0 is

dX0F (Ṡ) = −JPL⊥ ◦ (0, JṠ) ◦ [PL ◦ (I, JX0)]−1 − JPL⊥ ◦ (I, JX0) ◦ [. . .]

= −JPL⊥ ◦ (0, JṠ) ◦ [PL ◦ (I, JX0)]−1.

The reason for the cancelation of the second term is that the image of
(I, JX0) is in L. It is easy to see that [PL ◦ (I, JX0)]−1 = PL0 |L, the restric-
tion to L of the projection onto L0. Also since PJL(Jv) = JPL(v) for any
lagrangian L and for any v ∈ Ĥ, we get that −JPL⊥ ◦ (0, JṠ) = PL ◦ Ṡ. So

dX0F (Ṡ) = PL|L0 ◦ Ṡ ◦ PL0 |L
and this is our dL. �

It is convenient to have another description of the differential of the tran-
sition map. To this end, let us recall that Theorem 3.1 provides a canonical
unitary isomorphism:

Ũ : L0 → L, Ũ(v) := 1/2[(1 + U)v + iJ(1− U)v], ∀ v ∈ L0,

where U ∈ U(L0) is the Cayley transform of the self-adjoint operator X0 ∈
Sym(L0) that gives L as a graph of JX0 : L0 → L⊥

0 . Notice first that the
projection PL|L0 has a description in terms of the same self-adjoint operator
X0. The orthogonal L⊥ is the switched graph of −(JX0)∗ = X0J . So in order
to find the projection PL|L0 in terms of X0 one needs to solve the system

{
a = v +X0Jw,

0 = JX0v + w,

where a, v ∈ L0 and w ∈ L⊥
0 . This is easy and one gets

v = (1 +X2
0 )−1(a),

which yields the expression for the projection:

PL|L0(a) = (1 +X2
0 )−1(a) + JX0(1 +X2

0 )−1(a).

We now plug in
X0 = i(1 + U)−1(1− U)

to conclude that
PL|L0(a) = 1/2 Ũ((1 + U∗)(a)).

Since PL0 |L = (PL|L0)
∗ we have just proved the following result:
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Lemma 8.3. Let L0 and L be two Lagrangians such that L ∈ AL0, let U =
C−1

L0
(L) and let Ũ be the canonical unitary isomorphism Ũ : L0 → L as in

Theorem 3.2. Then the differential dL in Lemma 8.2 can be written as:

dL(Ṡ) = 1/4 Ũ(1 + U∗)Ṡ(1 + U)Ũ∗.

Proposition 8.1. (a) Every Lagrangian L ∈ LagW
k has an orthogonal

decomposition L = �⊕ L ∩W ⊕ Λ where � is the orthogonal comple-
ment of L ∩W in L ∩Wω and Λ is the orthogonal complement of L ∩
Wω in L. Then the space of operators S ∈ Sym (L with block decom-
position

(8.1) S =

⎛
⎝ 0 S∗

1 0
S1 S2 0
0 0 0

⎞
⎠

is an algebraic complement of TL LagW
k .

(b) The algebraic complement of T Lag− |LagW
k

described above is a finite
dimensional, orientable bundle. If k = 1, it has a natural orientation.

Proof. (a) The claim is clearly true for any associate Lagrangian LW by
Lemma 4.3. We want to use the transition maps between two different Arnold
charts at L, namely the one given by LW and the one centered at L to show
that the claim is true in general.

Let �0 := RW L be the symplectic reduction of L with W . So LW =
�0 ⊕ L ∩W ⊕ JV ⊥ where V ⊥ is the orthogonal complement of V := L ∩W
in W .

By definition �0 = PHW
(�). We are looking for a relation between � and

�0 in terms of the unitary isomorphism U where U ∈ U(LW ) is the Cayley
transform of the self-adjoint operator X ∈ Sym(LW ) whose graph is L, i.e.,

L = ΓJX , X = i
1− U
1 + U

and U =
i−X
i +X

.

Let �̃ := Ũ−1(�) ⊂ LW . We claim that

(i +X)�0 = �̃.

Indeed, we use first Lemma 4.3 to conclude that � is the graph of the restric-
tion JX

∣∣
�0

. Now Ũ : LW → L has the following expression:

Ũv = 1/2[(1 + U)v + iJ(1− U)v].
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which implies that

2Ũ(1 + U)−1w = w + JXw, ∀w ∈ LW .

We deduce that
2Ũ(1 + U)−1�0 = �,

which can be rewritten as

(8.2) 2(1 + U)−1�0 = �̃ or − i(i +X)�0 = �̃

and that proves the claim.
Let Λ̃ := Ũ∗Λ. Since Ũ

∣∣
L∩W

= id we deduce that Ũ∗ takes the decom-
position L = �⊕ L ∩W ⊕ Λ to an orthogonal decomposition LW = �̃⊕ L ∩
W ⊕ Λ̃, where Λ̃ := ŨΛ. The operators S ∈ Sym (L) with block decompo-
sition (8.1) go via conjugation by Ũ to operators S̃ ∈ Sym (LW ) with the
same type of block decomposition relative LW = �̃⊕ L ∩W ⊕ Λ̃.

In order to finish the proof we notice that Lemma 8.3 implies, due to
dimension constraints, that the only thing one needs to prove is that the
equation in B ∈ Sym (LW ) and S ∈ Sym (LW )

(8.3) 1/4(1 + U∗)B(1 + U) = S

has only the trivial solution B = 0, S = 0, where

B =

⎛
⎝ B1 0 B∗

2

0 0 B∗
3

B2 B3 B4

⎞
⎠ and S =

⎛
⎝ 0 S∗

1 0
S1 S2 0
0 0 0

⎞
⎠ .

Notice that the block decomposition of B is relative to LW = �0 ⊕ L ∩W ⊕
JV ⊥ and the decomposition of S is relative to LW = �̃⊕ L ∩W ⊕ Λ̃. Notice
that (8.3) can be written as

B = −(i−X)S(i +X).

This is the same thing as

〈Bv,w〉 = −〈(i−X)S(i +X)v, w〉 = 〈S(i +X)v, (i +X)w〉, ∀v, w ∈ LW .

We take first v ∈ �0 and w ∈ L ∩W . Relation (8.2) and X = 0 on L ∩W
imply

0 = −i〈S(i +X)v, w〉 = −i〈S1(i +X)v, w〉.
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We conclude that S1 ≡ 0. Similarly taking v, w ∈ L ∩W , we get S2 ≡ 0,
which finishes the proof.

(b) Let us notice that we have two tautological bundles over LagW
k

namely ϑ, resp. ϑω whose fiber at L consists of L ∩W , resp. L ∩Wω.

ϑ ↪→ LagW
k ×W

↓ ↓
ϑω ↪→ LagW

k ×Wω

.

We have of course that ϑ is a subbundle of ϑω and if we let θ be the orthog-
onal complement of ϑ in ϑω, then the bundle described in the statement is
Sym (ϑ)⊕Hom (θ, ϑ). Hence it is the direct sum of a complex bundle, always
naturally oriented and the bundle of self-adjoint endomorphisms associated
to a complex bundle. But this last one is up to isomorphism the bundle
associated to the principal bundle of unitary frames via the adjoint action
of the unitary group on its Lie algebra. This is clearly orientable.

In the case k = 1, ϑ is a line bundle and Sym (ϑ) is oriented by the
identity operator. �

9. Local intersection numbers

We are now ready for doing intersection theory on Lag−. In this section,
M will be a closed, oriented manifold of fixed dimension 2k − 1. This is
the codimension of the Schubert variety Zk. We consider on Zk the non-
standard stratification. Let F : M → Lag− be a smooth map. We will call
such a map a (smooth, compact) family of lagrangians.

By Proposition 8.1, the inclusion of tangent bundles T LagWk−1

1 ↪→
T Lag− has an algebraic complement N LagWk−1

1 which is naturally oriented
as follows.

Let L ∈ LagWk−1

1 , V := L ∩Wk−1 and � be the orthogonal complement
of L ∩Wk−1 in L ∩Wω

k−1. The algebraic complement to TL LagWk−1

1 is the
vector subspace of Sym (L) of operators coming from

Sym(V )⊕Hom(�, V ).

The space V is one-dimensional and so Sym(V ) is a one-dimensional real
vector space, naturally oriented by the identity map. Concretely a non-
zero operator A ∈ Sym(V ) is positively oriented if the following number is
positive:

〈Av, v〉 for some v ∈ L ∩Wk−1.
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The canonical orientation on Hom(�, V ) is given by the following data. Let v
be a unit vector in V and {λ1, λ2, . . . , λk−1} be a complex orthonormal basis
for �. We say that a basis T1, . . . T2k−2 is positively oriented for Hom(�, V )
if the following determinant is positive:
∣∣∣∣∣∣∣∣

Re〈T1λ1, v〉 Im〈T1λ1, v〉 . . . Re〈T1λk−1, v〉 Im〈T1λk−1, v〉
Re〈T2λ1, v〉 Im〈T2λ1, v〉 . . . Re〈T2λk−1, v〉 Im〈T2λk−1, v〉

. . . . . . . . . . . . . . .
Re〈T2k−2λ1, v〉 Im〈T2k−2λ1, v〉 . . . Re〈T2k−2λk−1, v〉 Im〈T2k−2λk−1, v〉

∣∣∣∣∣∣∣∣
.

One can check that the orientation does not depend on the choice of v or of
the basis {λ1, λ2, . . . , λk−1}.

The following is straightforward:

Lemma 9.1. Let T ∈ Sym(L) be a self-adjoint operator. Let v ∈ V be a unit
complex number. Then the Sym(V )⊕Hom(�, V ) block of S is the operator

x �→ 〈Tx, v〉v, ∀x ∈ �⊕ V.

This lemma and the previous observations prompt the following defini-
tion:

Definition 9.1. Let F : M → Lag− be an oriented family of lagrangians
of dimension 2k − 1 transversal to Zk with the non-standard stratification
and let p ∈ F−1(Zk) = F−1(LagWk−1(1)) be a point in M .

Let {ε1, . . . ε2k−1} be an oriented basis for M at p, v be a unit vector in
F (p) ∩Wk−1 and {λ1, λ2, . . . , λk−1} be a unitary basis of �(p), the orthogonal
complement of F (p) ∩Wk−1 in F (p) ∩Wω

k−1.
The intersection number at p of F and Zk, denoted �(M ∩ Zk)p is the

sign of the determinant
(9.1)∣∣∣∣∣∣∣∣

〈dpF (ε1)v, v〉 Re〈dpF (ε1)λ1, v〉 . . . Im〈dpF (ε1)λk−1, v〉
〈dpF (ε2)v, v〉 Re〈dpF (ε2)λ1, v〉 . . . Im〈dpF (ε2)λk−1, v〉

. . . . . . . . . . . .
〈dpF (ε2k−1)v, v〉 Re〈dpF (ε2k−1)λ1, v〉 . . . Im〈dpF (ε2k−1)λk−1, v〉

∣∣∣∣∣∣∣∣
.

It is remarkable that a similar formula holds when one replaces the
differential of F by the differential of the associated projections.

Lemma 9.2. Let F : M → Lag− be a smooth family of Lagrangians trans-
versal to Zk and let P : Lag− → B(Ĥ) be the smooth map that takes a
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Lagrangian to its orthogonal projection. Denote by PF : M → B(Ĥ) the com-
position −JP ◦ F . The intersection number �(M ∩ Zk)p is equal to the sign
of the determinant 9.1 where one replaces the differential of F with the dif-
ferential of PF everywhere.

Proof. By Lemma 2.2 we have

dP (Ṡ) =
(

0 ṠJ−1
L

JLṠ 0

)

and so (−JdLP )|Sym(L) = idSym(L). Since all the vectors v, λ1, . . . , λk−1

belong to L := F (p) the proposition follows. �

The intersection numbers for k = 1 have received a particular attention,
especially in the real case.

Definition 9.2. For every family F : S1 → Lag−, transversal to Z1 the
intersection number ∑

p∈F−1(Z1)

�(M ∩ Z1)p

is called the Maslov index.

Proposition 9.1. The Maslov index is a homotopy invariant that provides
an isomorphism:

π1(Lag−) � Z

Proof. This is obvious in light of the fact that the Maslov index is the eval-
uation over S1 of the pull-back of the cohomology class [Z1, ω1]. �

The top stratum of Z1 in the non-standard stratification, LagH−
1 has a

particular nice structure that allows one to derive a different type of formula.
Notice first that we have the following set equalities:

Z≥k :=
⋃
i≥k

Zi = G−1(P(Wk−1)) = LagH−
1 ∩LagWk−1

1 ,

where G is the generalized reduction G : LagH−
1 → P(H−). This implies in

particular that Z≥k is a smooth manifold of codimension 2k − 2 in LagH−
1 .



The odd Chern character and index localization formulae 259

Definition 9.3. A smooth 2k − 1 dimensional family F : M → Lag− is
strongly transversal to Zk if the following conditions hold:

• F is transversal to Zk.

• F is transversal to Z1.

• F−1(Z1) = F−1(LagH−
1 ), i.e., dimF (m) ∩H− ≤ 1 for all m ∈M .

Remark 9.1. The first and the third conditions of strong transversal-
ity imply that F−1(Zk) = F−1(Z≥k). Indeed, the first condition implies
that F−1(Zk) = F−1(LagWk−1

1 ), whereas the third implies that F−1(Zk) ⊂
F−1(LagH−

1 ).

Remark 9.2. Every smooth family can be deformed to a family that sat-
isfies the first two transversality conditions. However, the third condition
of strong transversality is not amenable to perturbations, since there are
topological obstructions to achieving that. An example is a family for which
the cohomology class F ∗[Z{1,2}, ω{1,2}] is non-trivial.

Things are good when k = 2.

Lemma 9.3. Let dimM = 3. Any family F : M3 → Lag− can be deformed
to a strongly transversal family to Z2.

Proof. First deform the family to a map transversal to Z2 and then move it
off

⋃
k≥2 Z1,k which has codimension 4 and has the property that

⋃
k≥2 Z1,k =

LagW1
1 \LagH−

1 . �

Proposition 9.2. Let M be an oriented, closed manifold of dimension 2k −
1 and let F : M → Lag− be a family, strongly transversal to Zk. Then M1 :=
{m ∈M | dimF (m) ∩H− = 1} is a closed, cooriented submanifold of M of
dimension 2k − 2. Let γ ⊂M1 × P(H−) be the tautological bundle over M1

with fiber γm := L ∩H−. Then
∫

M
F ∗[Zk, ωk] =

∫
M1

c1(γ∗)k−1.

Proof. Notice that M1 = F−1(LagH−
1 ). The fact that M1 is a cooriented

submanifold of M of codimension 1 follows from the second condition of
strong transversality and the fact that LagH−

1 is a cooriented submanifold
of Lag− of codimension 1. It therefore inherits the coorientation of LagH−

1
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in Lag−. It is closed because it is the preimage of Z1 by the third condition
of strong transversality.

We have the following commutative diagram

F−1(Zk)� �

��

F �� Z≥k
G ��

� �

��

P(Wk−1)� �

��
M1

� �

��

F |M1 �� LagH−
1

G ��
� �

��

P(H−)

M
F �� Lag−

.

The local intersection number of M and Z≥k in Lag− at a point m ∈M
is the local intersection number of M1 and LagH−

1 at m ∈M , which is the
local intersection number of G ◦ F |M1 with P(Wk−1) at m ∈M .

Let τ∗ be the dual to the tautological bundle of P(H−). Then the
Poincaré dual of P(Wk−1) in P(H−) is c1(τ∗)k−1 where c1 is the first Chern
class of τ∗. The total intersection number of M1 and P(Wk−1) is the eval-
uation of the pull-back of the Poincaré dual to P(Wk−1) on M1. The next
equality finishes the proof

γ = (G ◦ F |M1)∗(τ). �

10. Intersection formulae for families of operators

The motivating example for this paper was Nicolaescu’s Theorem 3.14 from
[21] which is saying, roughly, that the spectral flow of a generic path of Dirac
operators equals the Maslov index of an appropriate path of lagrangians.
The spectral flow can be defined more generally for a family F of self-
adjoint, Fredholm operators parametrized by a compact manifold M to be
the first component of the odd Chern character applied to the K−1(M)
class determined by F . For every path α : S1 →M in M this class can be
integrated over the path to give an integer which is what is regularly called
the spectral flow of a path of operators. When the path is generic this integer
is a count with sign of the 0-eigenvalues (assumed simple) of the operators
on the path. Now, it is not true that every family of self-adjoint, Fredholm
operators gives rise to aK−1 class. In fact, Atiyah and Singer [3] showed that
a classifying space for K−1 is the space of bounded, self-adjoint, Fredholm
operators having both positive and negative essential spectra. The important
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word here is bounded. The typical way of passing from unbounded operators
to bounded operators is via functional calculus as we now describe:

Definition 10.1. Let SFred denote the set of all closed, densely defined,
self-adjoint, Fredholm operators on H, let BFred be the space of bounded,
self-adjoint, Fredholm operators onH and let BFred∗⊂BFred be the Atiyah–
Singer classifying space. The map

Ri : SFred→ BFred, Ri(T ) := T
(√

1 + T 2
)−1

called the Riesz map is an injection. The topology induced by Ri on SFred
is called the Riesz topology.

On the other hand, there is another injective map, the switched graph

Γ̃ : SFred→ Lag−,

through which SFred is endowed with another topology called the gap topol-
ogy. Nicolaescu proved the following in [20, Lemma 1.2, Prop. 3.1 and
Th. 3.3].

Proposition 10.1. Every Riesz continuous family of operators F : M →
SFred is also gap continuous.

Theorem 10.1. The graph map Γ̃ : BFred∗ → Lag− is a weak homotopy
equivalence and for every Riesz continuous family F : M → SFred the fam-
ilies of Lagrangians Γ̃ ◦ F and Γ̃ ◦ Ri ◦F are homotopic.

These results are saying that the “old” analytic index a la Atiyah–Singer
is the same as the “new” index, defined using Lag−. Therefore we make the
following definition.

Definition 10.2. Let F : M → SFred be a family of self-adjoint, Fredholm
operators. Then F is continuous if Γ̃ ◦ F is gap continuous. The analytic
index of a continuous family of self-adjoint, Fredholom operators is the
homotopy class of the map Γ̃ ◦ F : M → Lag− and is denoted by [F ]. The
cohomological index of F is the class ch[F ] ∈ Hodd(M,Q).

Theorem 10.2. The 2k − 1 component of the cohomological index of a
continuous family of operators F : M → SFred is a rational multiple of the
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geometric class (Γ̃ ◦ F )∗[Zk, ωk]. In fact, the following relation holds:

ch2k−1[F ] =
(−1)k−1

(k − 1)!
(Γ̃ ◦ F )∗[Zk, ωk].

Proof. This is a rephrasing of Proposition 7.1. �

Before we proceed let us mention the following useful criterion for decid-
ing gap continuity and, more generally, gap differentiability. The proof can
be found in [8, Theorem 4.6].

Theorem 10.3. Let (Tx)x∈Rn : D(Tx) ⊂ H → H be a family of densely-
defined, closed, self-adjoint, Fredholm operators. Let H0 := D(T0) and sup-
pose H0 comes equipped with an inner product such that:

(1) the inclusion H0 → H is bounded and

(2) the operator T0 : H0 → H is bounded.

Suppose there exists a differentiable family of bounded, invertible operators
U : R

n → GL(H) such that

(a) U∗
x(H0) = D(Tx);

(b) the new family of operators T̃x := UxTxU
∗
x is a differentiable family of

bounded operators in B(H0, H).

Then the family of switched graphs associated to (Tx)x∈Rn is differentiable
at T0 in Lag−.

The localization part in the title was motivated by the interpretation of
the spectral flow as ch1[F ] ∈ H1(M,Z). Classically, the spectral flow asso-
ciates to a generic loop (or more generally to a path) of self-adjoint operators
an integer, which is a count with sign of the 0-eigenvalues of the family of
operators. To be more precise, if λ1, . . . λk : S1 → R are the eigencurves that
take the value 0 eventually2, then the spectral flow is the sum

∑
t0 | λi(t0)=0

sgn λ̇i(t0).

2We are also assuming that these eigencurves exist and 0 is a simple eigenvalue
for the uninvertible operators, conditions that justify the word generic.
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If the family F of operators is bounded and differentiable then one can check
that

λ̇(t0) = 〈Ḟt0v0, v0〉,
where v0 is a unit eigenvector for the 0-eigenvalue of Ft0 . It is easy to see
that the spectral flow is the degree of the 0-cycle whose Poincaré dual is
ch1[F ]. Indeed this degree is, in transversal conditions the total intersection
number of Γ̃ ◦ F with Z1. We can ask what is a similar interpretation in
terms of eigenvalues and eigenspaces for ch2k−1[F ] where k is a positive
integer. Based on Proposition 7.1 we will rephrase this problem as follows:

“Give localization formulae for the Poincaré dual of F ∗[Zk−1,
ωk−1] ∈ H2k−1(M,Z), where F : M → SFred is a gap differen-
tiable family of operators parametrized by an oriented manifold
of dimension 2k − 1.”

We are aiming, of course, for intersection formulae in generic conditions,
which in our case means transversality.

Let W be a codimension k − 1 subspace of H−. We consider the associ-
ated 2k − 1 codimensional cocycle whose underlying space is the following
Schubert variety:

ZW = {L ∈ Lag− | dimL ∩W ≥ 1}.

Definition 10.3. A smooth family F : M → SFred is said to be in general
position with respect to W if Γ̃ ◦ F is transversal to the Schubert variety
ZW with the non-standard stratification.

If M has complementary dimension to ZW , i.e., dimM = 2k − 1, the
condition to be in general position with respect to W implies that there are
only a finite number of points p ∈M such that

(10.1) dim Γ̃F (p) ∩W = 1.

This means that

dim Ker (F (p)) ∩W = 1.

Notation: Let F : M → SFred be a smooth family in general position with
respect to W . For every p ∈M such that dim Ker (F (p)) ∩W = 1 denote
by εp ∈ {±1} the intersection number at p of Γ̃ ◦ F with ẐW := LagW

1 =
{L | dimL ∩W = 1} ⊂ ZW .
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Theorem 10.4. Let M be a closed oriented manifold of dimension 2k −
1, let F : M → SFred be a smooth family of self-adjoint, Fredholm oper-
ators and let W ⊂ H be a codimension k − 1 subspace such that F is in
general position with respect to W . Denote by MW the set MW := {p ∈
M | dim Ker (F (p)) ∩W = 1}. Then

PD ch2k−1([F ]) =
(−1)k−1

(k − 1)!

∑
p∈MW

εpp,

where PD means Poincaré dual.

Proof. This is a restatement of Theorem 6.2 using Proposition 7.1. �

Our main goal in this section is to give a formula for the intersection
numbers εp. This is a local problem. We restrict our attention to bounded
operators although similar formulae hold for nice families of unbounded
operators, such as the families that we called affine in [8] (see Section 4.1).
The reason for which these formulas are available is that we can make sense
of what the differential of a family of operators means.

Let B be the unit ball in R
2k−1 and let T : B → Sym(H) be a family

of bounded, self-adjoint, Fredholm operators, differentiable at zero. Let us
notice that if T0 ∈ Sym(H) is a bounded self-adjoint, Fredholm operator,
the projection P−

0 : Γ̃T0 → H− is a Banach space isomorphism.
The next result relates the operator differential to the graph differential.

Lemma 10.1. The family of switched graphs (Γ̃Tx
)x∈B is differentiable at

zero. Moreover, for every unit vector v ∈ R
n, the following equality holds

between the graph and the operator partial derivatives of the family at 0

P−
0 ◦

∂Γ̃
∂v

∣∣∣
0
◦ (P−

0 )−1 = (1 + T 2
0 )−1 ◦ ∂T

∂v

∣∣∣
0

∈ Sym(H).

Here P−
0 is the projection of the switched graph of T0 onto H−.

Proof. For differentiability one can suppose without loss of generality that
the operators are invertible. Then the family of inverses is differentiable,
which implies that the family of switched graphs is differentiable.

For ‖x‖ small the switched graph of Tx is in the Arnold chart of Γ̃T0 .
Therefore, it is the graph of an operator JSx : Γ̃T0 → J Γ̃T0 , where Sx ∈
Sym (Γ̃T0). We fix such an x. We are looking for an expression for P−

0 Sx

(P−
0 )−1 as an operator on H.
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For every vector v ∈ H, we have a decomposition:

(Txv, v) = (T0z, z) + J(T0y, y) = (T0z + y, z − T0y).

It is not hard to see that

y = (1 + T 2
0 )−1(Tx − T0)v,

v = (1 + T0Tx)−1(1 + T 2
0 )z.

The last relation makes sense, since 1 + T0Tx approaches the invertible oper-
ator 1 + T 2

0 . The operator P−
0 Sx(P−

0 )−1 : H → H is nothing else but the
correspondence z → y hence the expression:

P−
0 Sx(P−

0 )−1 = (1 + T 2
0 )−1(Tx − T0)(1 + T0Tx)−1(1 + T 2

0 ).

Differentiating this expression with respect to x finishes the proof. �

In order not always to repeat ourselves, we make the following:

Definition 10.4. A smooth family of bounded, self-adjoint, Fredholm oper-
ators F : B → Sym(H) is called localized at 0 with respect to W if the fol-
lowing two conditions hold:

• F is in general position with respect to W ;

• (Γ̃ ◦ F )−1(ẐW ) = {0}.

The fact that the switched graph of F (0) is in ZW implies that 1 ≤
dim KerF (0) ≤ k by Corollary 4.1.

We treat first a particular, non-generic case, because the formula looks
quite simple in this case.

Proposition 10.2. Let F : B → BFred be a family of bounded, self-adjoint,
Fredholm operators localized at 0 with respect to W . Suppose that dim Ker
F (0) = k. Let φ ∈ KerF (0) ∩W be a unit vector, let φ⊥ be the orthogonal
complement of 〈φ〉 in KerF (0) and let {ψ1, . . . ψk−1} be an orthonormal
basis of φ⊥.
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The intersection number, ε0, is given by the sign of the determinant:
∣∣∣∣∣∣∣∣

〈∂1Fφ, φ〉 Re〈∂1Fψ1, φ〉 . . . Im〈∂1Fψk−1, φ〉
〈∂2Fφ, φ〉 Re〈∂2Fψ1, φ〉 . . . Im〈∂2Fψk−1, φ〉

. . . . . . . . . . . .
〈∂2k−1Fφ, φ〉 Re〈∂2k−1Fψ1, φ〉 . . . Im〈∂2k−1Fψk−1, φ〉

∣∣∣∣∣∣∣∣
,

where ∂iF is the partial derivative of F at zero in the ith coordinate direction
of R

2k−1.

Proof. Since dim KerF (0) = k we get that

Γ̃JF (0) ∩Wω = Γ̃JF (0) ∩H− = KerF (0)

and so the vectors λ1 = ψ1, . . . , λk−1 = ψk−1 in the definition of the inter-
section number 9.1 can all be taken to be from KerF (0).

Let F̃ := Γ̃ ◦ F . The claim that proves the lemma is

〈d0F̃ (x)ψ, φ〉 = 〈d0F (x)(0)ψ, φ〉,

for every unit vector x and every ψ ∈ 〈{φ, ψ1, . . . , ψk−1}〉. In order to prove
the claim let P−

0 be the projection of Γ̃F (0) onto H− and let w := (1 +
F 2

0 )−1 ◦ d0F (x)g. Then

(P−
0 )−1 ◦ (1 + F 2

0 )−1 ◦ d0F (x) ◦ P−
0 (0, g) = (F0w,w).

Therefore, by using Lemma 10.1 we get

〈d0F̃ (x)g, φ〉 = 〈(F0w,w), (0, φ)〉 = 〈w, φ〉.

Then

〈w, φ〉 = 〈d0F (x)g, (1 + F 2
0 )−1φ〉 = 〈d0F (x)g, φ〉.

The last equality holds because φ ∈ KerF0. �

In the case k = 2, the intersection numbers still have a quite simple
description. Suppose for now that B is the three dimensional ball.

Proposition 10.3. Let T : B → BFred be a family of bounded, self-adjoint,
Fredholm operators. Let e ∈ H be a vector and suppose that T is localized at
0 with respect to 〈e〉⊥. Let 0 �= φ be a generator of KerT0 ∩ 〈e〉⊥. Then only
one of the two situations is possible
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I dim KerT0 = 1, in which case we let ψ be a non-zero vector satisfying
the following two relations:

(10.2)

{
〈φ, ψ〉 = 0,
T0ψ = e.

II dim KerT0 = 2, in which case we let ψ ∈ KerT0 be a non-zero vector
such that ψ ⊥ φ.

The intersection number of T with Ze⊥ is given by the sign of the determi-
nant ∣∣∣∣∣∣

〈∂1Tφ, φ〉 Re〈∂1Tψ, φ〉 Im〈∂1Tψ, φ〉
〈∂2Tφ, φ〉 Re〈∂2Tψ, φ〉 Im〈∂2Tψ, φ〉
〈∂3Tφ, φ〉 Re〈∂3Tψ, φ〉 Im〈∂3Tψ, φ〉

∣∣∣∣∣∣
t=0

,

where ∂iT is the directional derivative of T in the ith coordinate direction
of R

3.

Proof. Let W = 〈e〉⊥. The intersection of the switched graph of T0 with Wω

is two-dimensional. Hence the kernel of T is either one or two-dimensional.
One vector in the intersection Γ̃T ∩Wω is (0, φ). If the kernel of T0 is two-
dimensional, then Γ̃T0 ∩Wω = KerT0 and so the second vector in the inter-
section formulae is a generator of the orthogonal complement in KerT0 of
〈φ〉.

If dim KerT0 = 1, the condition (T0α, α) ∈Wω imposes that T0α = ae
for some constant a. We are looking for a solution when a �= 0, otherwise α
is a multiple of φ. The projection of 1

aα onto KerT0
⊥ is an element of W⊥ ⊂

Wω and a generator of the orthogonal complement of KerT0 in Γ̃T0 ∩Wω.
It satisfies the two conditions required from ψ.

The fact that one can replace the partial derivatives of the switched
graphs in the g1 = (Tψ, ψ) direction by the partial derivatives of T in the ψ
direction is a computation exactly as in Proposition 10.2. �

We state now the general case.

Proposition 10.4. Let W ⊂ H be a k − 1 codimensional subspace and let
T : B → BFred be a family of bounded, self-adjoint, Fredholm operators local-
ized at 0 with respect to W . Suppose that dim KerT0 = p ≤ k. Let φ be a
generator of KerT0 ∩W and let φ1, . . . , φp−1 be a basis of the orthogonal
complement of φ in KerT0.

The space WT := W ∩ RanT0 has dimension k − p. Let ψ1, . . . , ψk−p be
an orthonormal basis of P

∣∣∣
(Ker T )⊥

T0
−1(WT ).
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Then the intersection number of T with ZW is the sign of the determi-
nant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈∂1Tφ, φ〉 〈∂2Tφ, φ〉 . . . 〈∂2k−1Tφ, φ〉
Re〈∂1Tφ1, φ〉 Re〈∂2Tφ1, φ〉 . . . Re〈∂2k−1Tφ1, φ〉

. . . . . . . . . . . .
Im〈∂1Tφp−1, φ〉 Im〈∂2Tφp−1, φ〉 . . . Im〈∂2k−1Tφp−1, φ〉
Re〈∂1Tψ1, φ〉 Re〈∂2Tψ1, φ〉 . . . Re〈∂2k−1Tψ1, φ〉

. . . . . . . . . . . .
Im〈∂1Tψk−p, φ〉 Im〈∂2Tψk−p, φ〉 . . . Im〈∂2k−1Tψk−p, φ〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
t=0

.

Proof. One only needs to make sense of what the orthogonal complement of
KerT0 ∩W in Γ̃T ∩Wω is. �

We close this section with a reformulation of Proposition 9.2 in terms of
operators. We make the following definition based on Definition 9.3:

Definition 10.5. A smooth family T : M → SFred of bounded self-adjoint,
Fredholm operators is called strongly transversal to Zk, if Γ̃ ◦ T is strongly
transversal to Zk

Lemma 10.2. Let dimM = 3. Any smooth family T : M → BFred can be
deformed to a strongly transversal family to Z2.

Proof. This is just proof of Lemma 9.3 with the addition that one has to
make sure that in the course of the deformation one stays inside BFred. This
is true because the map Γ̃ : BFred→ Lag− is open. �

Proposition 10.5. Let M be a closed, oriented manifold of dimension 2k −
1 and let T : M → SFred be a strongly transversal family to Zk. Then M1 :=
{m ∈M | dim KerTm = 1} is a closed, cooriented manifold. Let γ ⊂M1 ×
H be the tautological line bundle over M1 with fiber γm = KerTm. Then

∫
M
T ∗[Zk, ωk] =

∫
M1

c1(γ∗)k.

Proof. This is just Proposition 9.2 formulated in terms of operators. �
We describe the coorientation of M1 in concrete terms. Let m ∈M1

and v ∈ TmM \ TmM
1 be a vector. The vector v is said to be positively

oriented if given a curve α : (−ε, ε) →M such that α ∩M1 = m = α(0) and
α′(0) = v, the curve of operators T ◦ α has local spectral flow equal to +1,
i.e., sgn 〈 d

dt(T ◦ α)
∣∣
t=0

v, v〉 = +.
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Appendix A Representatives of cohomology classes in
Banach manifolds

We describe in this appendix how certain stratified spaces in a Banach man-
ifold define cohomology classes. We will work with sheaf cohomology groups
and our presentation is inspired from the work of Iversen [14].

Let X be a metric Banach manifold. Because of paracompactness the
sheaf cohomology groups are isomorphic with the Cech cohomology groups.
Also, because X is locally contractible, one has an isomorphism between
the sheaf cohomology groups with coefficients in the constant sheaf Z and
singular cohomology with Z coefficients.

(A.1) H∗(X,Z) � H∗
sing(X,Z).

Let us recall now the definition of the local cohomology groups.

Definition A.1. Let C ⊂ X be a closed subset and let F be a sheaf on X.
Then to F one associates a new sheaf FC on X with supports in C defined
as follows:

FC(U) := {s ∈ F(U) | supp s ∈ U ∩ C}, ∀ U ⊂ X open.

The pth local cohomology group of C in X with values in the sheaf F is the
pth right derived functor

Hp
C(X,F) := Rp(Γ(FC)),

where Γ is the global section functor.

Remark A.1. Notice that the local cohomology groups Hp
C(X,F) fit into

a long exact sequence:

(A.2) → Hp
C(X,F)→ Hp(X,F) → Hp(X \ C, j∗F) → Hp+1

C (X,F) →,

where j : X \ C → X is the natural inclusion. In the case of the constant
sheaf, F = Z and when the spaces involved, X and X \ C are locally con-
tractible then

H∗
C(X,Z) ∼= H∗

sing(X,X \ C,Z),

because of the naturality of the isomorphism A.1.
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From now on we will work only with the constant sheaf Z, which we will
not include in the notation.

One important property of local cohomology is the excision exact sequ-
ence [14, Prop. II.9.5]:

Proposition A.1. Let C1 ⊃ C2 be two closed subsets of the topological
space X. Then one has the following long exact sequence:

(A.3) → Hk
C2

(X) → Hk
C1

(X) → Hk
C1\C2

(X \ C2) → Hk+1
C2

(X) →

Remark A.2. When C1 and C2 are locally contractible then the previous
sequence corresponds to the long exact sequence in singular cohomology
associated to the triple (X,X \ C1, X \ C2).

For any closed subset C, we denote by Hk
C the sheaf on X associated to

the presheaf H̃k
C such that for any open set U ⊂ X we have

Γ(U ∩ C, H̃k
C) = Hk

C∩U (U).

Remark A.3. An equivalent way to define the sheaf Hk
C is as the kth

right-derived functor of the left exact functor

−C : sheaves on X → sheaves on X, F → FC

evaluated on the constant sheaf Z, i.e., Hk
C = Rk(−C)

∣∣
F=Z

.

Notice that the sheaf Hk
C has support on C and because of that we have:

H∗(X,Hk
C) � H∗(C, i−1Hk

C),

where i : C ↪→ X is the natural inclusion.

Definition A.2. The closed space C is said to have homological codimen-
sion in X at least c if and only if Hk

C = 0, ∀k < c. We write this as

codimh
X C ≥ c.

The Grothendieck spectral sequence for local cohomology (see [9, Rem-
ark 2.3.16]) whose E2 term is

Ep,k
2 = Hp(X,Hk

C) = Rp(Γ) ◦Rk(−C)
∣∣
F=Z

converges to Hp+k
C (X) = Rp+k(Γ ◦ −C). An immediate consequence is
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Proposition A.2 (extension property). If codimh
X(S) ≥ c, then for any

q < c− 1 the restriction map

Hq(X) → Hq(X \ S)

is an isomorphism. More generally, if C ⊃ S is a closed subset of X then

Hq
C(X) → Hq

C\S(X \ S)

is an isomorphism. We refer to any of this isomorphisms as extension
across S.

Proof. The E2 term in the Grothendieck spectral sequence vanishes on the
first c− 1 rows, which implies the vanishing of Hq

S(X) for q ≤ c− 1. The
long exact sequences A.2 and A.1 complete the proof. �

Definition A.3. A (topological) submanifold of codimension c of X is a
subset Y such that for every point y ∈ Y there exist an open neighborhood
N ⊂ X with the property that the pair (N,N ∩ Y ) is homeomorphic with
a pair (Rc ×B, 0×B) where B is a Banach vector space.

We clearly have that a submanifold C of codimension c, which is also
closed as a subset has homological codimension at least c, since in this case
the sheaf local cohomology is isomorphic with singular local cohomology.
Moreover, the sheaf Hc

C is locally isomorphic to the constant sheaf Z. We
say that Hc

C is the coorientation sheaf of C ↪→ X and we will denote it by
ΩC . The submanifold is called coorientable if the sheaf ΩC is isomorphic to
the constant sheaf Z. A coorientation is a choice of an isomorphism Z → ΩC

and is uniquely determined by an element ωC ∈ H0(C,ΩC) which, viewed
as a section of ΩC , has the property that ωC(w) generates the stalk ΩC(w)
for any w ∈ C.

Proposition A.3 (Thom isomorphism). Let C ↪→ X be a cooriented sub-
manifold of codimension c. There exists an isomorphism

TC : H∗(C,ΩC) → H∗
C(X)[c] := H∗+c

C (X).

Proof. This is an immediate consequence of the Grothendieck spectral sequ-
ence since for a submanifold C

Ep,k
2 = Hp(X,Hk

C) =

{
0, k �= c

Hp(C,ΩC), k = c.

converges to Hp+k
C (X) and therefore Hp(C,ΩC) � Hp+k

C (X). �



272 Daniel Cibotaru

Definition A.4. A stratified subspace of codimension c of a Banach mani-
fold X is a pair (C,F ), where C is a closed subset endowed with a filtration

F : C = F0 ⊃ F1 ⊃ F2 ⊃ · · ·

with closed sets Fi ⊂ X such that the stratum Fi \ Fi+1 is a submanifold
of codimension c+ i or is the empty set. The set C is called coorientable
(cooriented) if the top stratum F0 \ F1 is coorientable (cooriented).

Proposition A.4. Every stratified set (C,F ) of codimension c has homo-
logical codimension codimh

X(C) ≥ c.

Proof. It is enough to show that given w ∈ F 0

Hk
F0

(U) = 0, ∀ k ≤ c,

for all small open neighborhoods U of w. But for U open small enough,
U ∩ F 0 is a stratified space with a finite stratification because there exists
an n such that w ∈ Fn \ Fn+1 and U ∩ Fn+1 = ∅ . So without restriction of
the generality we can suppose that the stratification is finite, i.e., Fn+1 = ∅.
There exists a maximal N < n+ 1 such that FN is a nonempty, closed sub-
manifold of codimension c+N in X. Therefore, FN is normally non-singular
and so it has homological codimension at least c+N . We use induction on
the number of strata to prove codimh

X C = 0. Suppose we have proved that
codimh

X F 1 ≥ c+ 1. Then in the excision exact sequence:

Hk
F1

(U) → Hk
F0

(U) → Hk
F0\F1

(U \ F1) → Hk+1
F1

(U)

the first and the last group are zero for all k < c. On the other hand, F0 \
F1 is a submanifold of codimension c in U \ F1 and so Hk

F0\F1
(U \ F1) =

Hk
F0

(U) = 0, for all k < c and this finishes the proof. �

Definition A.5. A stratified set (C,F ) is called quasi-submanifold if
F1 = F2.

Proposition A.5. A cooriented quasi-submanifold of codimension c, (C,F ,
ωC) naturally determines a cohomology class

[C,F , ωC ] ∈ Hc(X).

If Y is another Banach manifold and g : Y → X is a differentiable map
transversal to C, meaning that g is transversal to every stratum Fi \ Fi+1
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then (g−1(C), g−1(F ), g∗ωC) is a cooriented quasi-submanifold of codimen-
sion c and

[g−1(C), g−1F , g∗ωC)] = g∗[(C,F , ωC)].

Proof. Let us denote by S the top stratum S := F0 \ F2. It is a closed sub-
manifold of X \ F2. The class [C,F , ωC ] ∈ Hc(X,Z) is the image of the
coorientation class ωS ∈ H0(S,ΩS) via the following sequence of maps:

H0(S,ΩS) � Hc
S(X \ F2) → Hc(X \ F2) � Hc(X),

where the first map is the Thom isomorphism and the last is the extension
across F2.

The second part of the proposition follows from the naturality of the
Grothendieck spectral sequence. �

Remark A.4. It is important to keep in mind that, the class [C,F , ω]
depends on the stratification F . If C has three quasi-submanifold stratifica-
tions F ,G,H such that F is a “refinement” of the two, i.e., G2, H2 ⊂ F2,
then the classes determined by the three stratifications coincide. However,
it is not clear that any two stratifications have a common refinement.

When the ambient manifold is finite dimensional then one can speak
about duality and the “correct” dual space for local cohomology is Borel–
Moore homology. For the general definition of Borel–Moore homology see
Chapter IX in [14].

Remark A.5. The Borel–Moore homology group of a compact space M is
isomorphic with its singular homology. When the locally compact space M
has a “nice” compactification M , e.g., when (M,M \M) is a CW-pair then

HBM
i (M) := Hi(M,M \M).

Let M be an oriented manifold of dimension n. Then any oriented quasi-
submanifold F of dimension d defines a Borel–Moore homology �F � ∈ HBM

d

(M) class as follows. The top stratum S := F \ F 2 determines a fundamental
class �S� ∈ HBM

d (S). Then the long exact sequence (see IX.2 in [14])

→ HBM
d (F2) → HBM

d (F ) → HBM
d (S) → HBM

d−1(F2) → ∀ p,

where the first and the last groups are zero (because a similar exact sequence
and a quick induction proves that the Borel–Moore homology of a stratified
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space vanishes in degree bigger than the dimension, since that is true for a
manifold), implies that the middle map

j : HBM
d (F ) → HBM

d (S)

is an isomorphism. Now j−1�S� ∈ HBM
d (S) can be pushed forward via

HBM
d (F ) → HBM

d (M)

to a class �F � ∈ HBM
d (M).

One of the most important features of Borel–Moore homology is that
it appears in the Poincaré–Verdier Duality theorem (see Th. 4.7, Ch. IX.4
in [14]).

Hp(M) � HBM
n−p(M), ∀ 0 ≤ p ≤ n.

The isomorphism is given by capping with the fundamental class �M�. More-
over via this isomorphism the cohomology class [F ] ∈ Hn−d(M) determined
by a cooriented quasi-submanifold F goes to the homology class �F � ∈
HBM

d (M) determined by the same quasi-submanifold with the induced ori-
entation (see Ch. X.4 in [14]).
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