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Regularity for a log-concave to log-concave mass
transfer problem with near Euclidean cost

MicAH WARREN

If the cost function is not too far from the Euclidean cost, then
the optimal map transporting Gaussians restricted to a ball will
be regular. Similarly, given any cost function which is smooth
in a neighborhood of two points on a manifold, there are small
neighborhoods near each such that a Gaussian restricted to one is
transported smoothly to a Gaussian on the other.

1. Introduction

This note deals with the regularity of the optimal transportation map, when
the distributions under consideration are close to restricted Gaussians. From
the work of Trudinger and Wang [10], regularity holds for arbitrary smooth
distributions on c-convex domains when the cost satisfies the weak Ma—
Trudinger-Wang condition (see [9]). It is established by Loeper [7] that
without a weak MTW (A3w) condition on the cost function, there exist
smooth distributions such that the optimal map between them is not con-
tinuous. However, for the well-mannered distributions that often greet each
other in the streets, the question of when the map is regular is wide open.
Here, we show that there are some restrictive situations in which we can
expect smooth optimal transportation.

We show two results. The first is that when the transportation problem
involves distributions somewhat like the standard Gaussian restricted to the
unit ball, then if the cost function is close enough to the Euclidean distance
squared cost, the map must be regular. As a corollary, given two points
and any cost which is smooth near these points, we can find very focused
Gaussians, restricted to very small balls near the points, so that the optimal
transport is regular.

Our method yields a way to compute precisely how close the cost func-
tion need be to Euclidean, or relatedly, how small the balls must be around
the given points. Recently other perturbative results for regularity of opti-
mal transport have appeared: Delanoé and Ge [5] show regularity for certain
densities on metrics near constant curvature. Caffarelli-Gonzalez-Nguyen [3]

191



192 Micah Warren

obtain perturbation results for cost Euclidean distance raised to powers other
than 2.

The optimal transportation problem is the following. Given probability
volume forms p and p on manifolds M and M, and a cost function c :
M x M — R, find a map T : M — M which minimizes a cost integral,

/M o, T(x)) dp

among all maps T which preserve the volume, i.e.
Tip = p.

To be clear with our conventions, we set up the following Kantorovich

problem: if
J(u,v) = / (—u)dp + / vdp,
M M

the problem is to maximize J over all —u(z)+ v(Z) < ¢(z,z). One also
considers a dual problem: if

I(n) = /MXMC(:,;,:T;) dr

find the minimum of I over all measures 7 on the product space M x M
which have marginals p and p. It is well known (cf [12]) that

sup J(u,v) = inf I(m).
—u(z)+v(z)<c(x,T) mell(p,p)

With this setup in mind we can derive the optimal map 1" from u as follows:
Suppose (29, o) is a point where the equality —u(xo) + v(Zo) = c(xo, To)
occurs. The function

2z, (x) = c(x, To) + u(x)

must have a minimum at zo. Then define the cost exponential T'(zg, Du) =
Zo, provided this is unique (condition (A1l)). If differentiable, from the fact
that zz,(x) is at a minimum we have

(1.1) u; + ¢i(z, T(x, Du)) = 0,

where ¢; refers to differentiation in the first variable. (One can check that
T(z, Du) = Du when c¢(xz,z) = —x - Z). This only depends locally on the
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function u, and clearly requires that Du stay inside the range of D¢(z, -). The
elliptic optimal transportation equation can be derived by taking another
derivative and then a determinant

wij + cij + cisT; =0

det(ugj + cij) = det(—cisT;) = det(—Cig)ﬁ
using the fact that T locally pushes p forward to p, so satisfies
p(T'(z))det DT = p(z).

That ¢;s is nondegenerate is referred to as the (A2) condition. B
Specifically, in this note, let f, f be functions on regions Q,Q C R",
satisfying on 2

(al) IDf| <1,
(a2) 1<6<D*f <2,
(33) ‘Dgf’ S ]-7

and similarly for f on Q.
We define the following mass distributions:

(1.2) m=ec@yq,

(1.3) m=e 1 @xq,

where we may add a constant to f so that both distributions have the same
total mass.

The region  is defined by a function h so that on Q ={h <0}, h
satisfies the same three conditions (al) to (a3) as f, as well as, along the
boundary 0f2

(1.4) Dh| >1/2,

which implies the second fundamental form of the set Q= {h =0} is
bounded by 4. Similarly define an h, Q.
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A solution of the optimal transportation equation for the mass densities
above and a given cost function ¢(z, z) is a function u(x) which satisfies

(1.5) det w;j = e_f(gc)ef(T(x’D“))\ det ¢is(x, T'(x, Du))|,
T(z, Du) (Q) = Q,

where
(1.7) wij = ui(x) + cij(z, T'(x, Du)) = —c T

and T(z, Du) = (T, T?,...,T") C Q is determined by (1.1). The function
u is locally e-convex, which is equivalent to the (degenerate) ellipticity con-
dition

wij(z) + ¢ij(z, T'(x, Du)) > 0.

(Such a solution must also be globally c-convex. In our setting, the classical
notion of convexity is very close, so we do not belabor this point here. See
Lemma 2.3.) We use the following convention: The derivatives of the cost
function in the first variable =z will be 4, j, k, etc. The second variable &
will be denoted by indices p, s, t, etc. Also upper index denotes inverse i.e,
= (ci) 7L

Actually, the solution u of the above equation determines a map 7', which
will be one-to-one (see Lemma 2.3.) This map is a unique solution of the
optimal transportation problem, and the inverse of T' is a solution to the
symmetric optimal problem of transporting the target mass to the source
mass. Note that our conditions are symmetric, so properties which hold for
u also hold for some other function @ which solves a similar equation. Barred
quantities will refer to corresponding quantities for the barred equation.

The cost ¢(x, Z) will satisfy the standard conditions (A1) and (A2) (this
will follow from closeness to Euclidean cost) but not (A3) (see for example [9]
Section 2). We will require further that the derivatives of the cost satisfy
the following assumptions:

(c-al) |(=c = I)|| < e <1/20,

(c—a2) ”ngH S €0 S 1/20,

(c-a3) C(n) (HDch + HD4CH) < e <1/20,
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where C(n) is a dimensional constant, and the derivative norms are with
respect to both barred and unbarred directions. Finally, we will require that
the densities are somewhat close to uniform

(cm-a3) e_f(w)ef(i’)] det c;s| € [A™1, A,

for all z,Z € Q x Q with

(cm-a3b) A< <3’/L2>n

We are now ready to state our result.

Theorem 1.1. Let m,m be the mass densities defined by (1.2) (1.3) with
f, [ satisfying assumptions (al) to (a3) on regions Q, Q whose defining func-
tions also satisfy (al) to (a3). There exists an €y(n) such that if the cost
function satisfies assumptions (c-al) to (c-a3) and (cm-a3) holds, then the
optimal map transporting m to m is reqular.

Remark 1.1. These conditions are nonvacuous. For example, take f, h, f, h
all to be

%|$|2_%7

and the Euclidean cost
c(z,z) = —x - T.

One can check that all the assumptions are satisfied with plenty of room to
perturb any of the problem’s components.

The following theorem will follow by a change of coordinates and rescaling.

Theorem 1.2. Let xg,Zg be two points in manifolds X, X such that near
(z0,Zo) the cost function is smooth and satisfies standard nondegeneracy
conditions (A1) and (A2). Then there exists a \ large depending on the
cost function, so that the optimal map from the Gaussian (after a choice of
coordinates)

—A|z—x0|%/2
€ 0 XBl/k(Z‘o)
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to

—M\2|z—20|?/2
e XBi/x(Z0)

18 smooth.

Remark 1.2. We do not attempt to obtain any sharp results, rather the
convenient smallness assumptions are to minimize crunchiness of the proof.
Inspection of the proof will show that our choice of assumptions are robust.
There is a rather large gap between what is covered here and the coun-
terexamples, and we have no reason to suspect that these results are near
sharp.

Remark 1.3. We would like to obtain a similar result for complete Gaus-
sians, as Caffarelli obtained in the Euclidean case in [2]. In fact, it was an
attempt to generalize the calculation in [2] that led to this result. A limita-
tion of our current method is that we cannot force (cm-a3) to hold on large
regions.

1.1. Proof Heuristic

We will solve the problem by continuity, starting with Euclidean cost,
obtaining second derivative estimates using the approach of Urbas [11] and
Trudinger and Wang [10], making use of the Ma-Trudinger-Wang [9] calcu-
lation together with the calculation of Caffarelli [2]. Making these methods
work in the absence of the MTW condition, we use the following observa-
tion: the bound M on the second derivatives will satisfy the following type
of inequality:

(1.8) SM? —tM™ —1 <.

When t is zero, this bounds M, so M is initially bounded. If ¢ is small it
follows that M (t) lies either on a relatively small compact interval contain-
ing [—1/2,1/2] or on a noncompact interval. The bound M(t) is changing
continuously with ¢, thus the interval it lies in must not change, thus from
the initial bound we may conclude that for all ¢ in some interval of fixed
size, M (t) is bounded.

The quadratic coefficient § in (1.8) (same ¢ as in (a2)) arises when the
target distribution is log-concave, as is the case with Gaussians. This fact is
essential to the proof.
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2. Calculations
Recall the symmetric tensor w (1.7). We use the quantities defined as follows:

W(x) = sz’i ~ maxwy; ~ || TF||,
W(z) = Zwii ~ 1/ minw;;,

Cs > HD3CH C(n),

Cy > HD46H C(n),

1 .
o €2 < —eigig, < Ca €.
2

From (cm-a3) and Newton-McLaurin inequalities, it follows that:

(2.1) W,WznAll/n,

(2.2) W < nnl,z AW
(2.3) W< nnl_QAV‘V’H,
and plugging in (cm-a3b)

(2.4) W, W > 3/2.

Notice that (al), (a2), (c-al), and (c-a3) imply the following inequality for
any vector £ in R™:

(2.5) (Bst - Cpkcksthp> Es&t > 2’6‘2

— 10
Throughout this section we will be assuming we have a smooth solution u
to the Equation (1.5) on §2. Our goal is to prove second derivative estimates.
We make use of a modification of the linearized operator used in [10].
Define

Lv= wijvij - (wijcijscSk — fo(T (2, Du))cSk - cSicsipcpk) Uk

The following has an immediate consequence when maximums occur on
the interior, and is also crucial in the boundary estimates in Section 4. The
proof is a moderately long calculation and follows by the arguments in [9].
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Lemma 2.1. Suppose u (x) is a solution to (1.5). Then

Lwyy = w (e11isT] + i1 Ty + crisa Ty TS — 2ci515TF — cijs TETY)
— fi1 + faTETE — e (cjpr + cjpuTV) (cist + cisoTY)
+ ¢ (cis11 + 2¢isn TV + CisopTLTT) — 1w Oy w;
_ (w Cijs — fs— cips) (—208kclkap + cSkchT,f — cSkckvalep)
+ c115¢° {cmcmpv w”cwv — fm + fTY
+ P (Cipm + CippTr) }

Applying the maximum principle,

Corollary 2.1. If the largest eigenvalue W of w is attained on the interior,
it must satisfy

5
(2.6) @WQ — (Cy+ C3 + C3|Df)) W — | D% f| — C(C3,C4) <0

The next computation is implicit throughout (see [10, Sections 2 to 4]).
We state it for concreteness.

Lemma 2.2. Let v(x) = F(z,T(xz, Du)). Then
Lv= wijFij — 2F; ¢ + FstcSictjwij
+ Fpc® (fi + crsje™ — CkstCSiCtjwij)

- FkCSk (wijcijs fs c Cs%t)

Corollary 2.2. Given conditions (c-al) to (c-a83) and (al), (a2), on the
functions f, f, h, and h, which imply (2.5), we have

Lh > 26W — 1,
LW(T(z, Du)) > 56W — 1.
2.1. Obliqueness

We follow the argument from [10, Section 2]. Defining

v = Dh,
ﬂi = 7ESCSZ'5
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we let
X = —hihsc®F = ~- 0.

From Lemma 2.2 with our assumptions we have
Lx < W(|D?h| + Cs + Cy) + W(|D?h| + C5 + C4) + Cs(n).
Then Corollary 2.2 gives
L{x—Ah—XhoT(z)} <W(5 — 5A) + Wi — 15A) + 215X + C5(n),

which is negative for A reasonably chosen. (Throughout we are using bounds
(2.1) etc, and our initial assumptions.) This function will then have a min-
imum at the boundary, precisely at the point where x achieves a minimum
on the boundary, and at this point we have

{DXfAD(BoT)—ADh}-ﬁSO
2

or
D{X—)\EOT}:T%

for some 7 < .
Now computing (following [10, 2.31-2.33]), using (2.5) and (1.7) with
our other assumptions including (1.4) we conclude

Dy - B = cthy (hkicSkﬁs + hyg (cfk + cf,kﬂp> hs + hchkﬁspﬂp)
= hpiBiBi + ' hyhyhscs® + P hhg TP (hgpe®™ — hse®™ ™ ey
= hpiBiBi +  hihghscs® + by TEP ™ (hyp — hsc™™ Conrp)
1
(2.7) > (6]%0 — C3 > =0
The third term in (2.7) can be expressed as an inner product g of the gra-

dients of the functions h(x) and ho T(z), which are both multiples of the
outward normal, where

g(&v) = (i_zrp — Bscsmcmrp)crkcpafkua.
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Thus

™ -B=Dx-8—AD(hoT)-j3
> §/5 — AhsT? (=) hy
=0/5— Awgg.

Thus from 7 < A,
(2.8) Ax > 6/5 — Awgg.

Using symmetry, we replace all quantities with barred quantities and see
that conditions in our problem do not change, (again see [10] and Lemma
2.3). There is a solution u, known as the c-transpose of u, which satisfies a
barred form of (1.5). In particular,

Wst(T) = st (T) + et (T(Z), Z).

Applying the same arguments, we find that also

(2.9) AX > 0/5 — Ay

Then, using the Urbas formula [11],[10, 2.13]
(B-7)* = wyivjwsp

or

(2.10) X* = Wy wsp,

we have combined (2.8) to (2.10)

(2.11) 0.

> =
X=Tox
Corollary 2.3. The following holds, regarding the angle between 3 and ~

L(B,y) <A <m/2.
2.2. Cost-convexity

Lemma 2.3. Suppose u(x) is a solution to (1.5) on a domain in R™. If
D?u > 2¢pl, and the cost function differs from the Euclidean cost function
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by less than ey in C?, then u is c-convex, and the mapping T(z,u) is one
to one.

Proof. Write the cost as ¢ = —x -y + ¢(x,y), where ¢ is small in C%(Q x

Q). At a point xg, we have Du(xo) = —Dyc (z9, T (x0, Du)) = T(xo, Du) —
Dyd(z0,T(x0)). At another point, x;

(Du(x1) — Du(zg), 1 — o) > 2€0|21 — {L‘0|2.

Now suppose that u is not strictly c-convex. Clearly the issue would have to
be nonlocal, as locally,

D?u+ D?%c > (2¢g — e) I > 0.

Thus we can assume that there is a point zg and a locally supporting cost
function

—¢y,(2) =z - T(x0) — ¢(x, T (20)),

which contacts u from below near zp but touches u (possibly transversely)
at a point x1. It follows that:

<_Dcyo(x1) + Dcyo(x0)7$1 - -7;0> > <Du($1) - Du(:UO)v Ty — $0>7

that is

D@l con |21 — 20|* > 26|21 — 20|,

a contradiction of the smallness of HD2¢H . It follows that u is c-convex.
We have shown that T'(z, Du) is a single-valued map. To show that T'
is one to one, we argue that the same property holds for a solution @ to
a barred version of (1.5). This shows that the solution of the Kantorivich
problem can be seen as a map from barred variable to unbarred as well. It
follows that T is one to one. O

2.3. Boundary estimate

Let

M = max Wee
le|]=1,eeR",zeQ

be the maximum of all eigenvalues of w over all of 2. Throughout this section
we will assume that the maximum occurs on the boundary.
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Recalling (2.3) and Lemma 2.2, we may choose a Cg so that
L(CgM™ /"= — h(T(2, Du)) > 0.
Since h, h both vanish on the boundary, the derivatives must satisfy
Dgh o T(z, Du) < CeMm—2/m=1,

that is

BsT‘isﬁi - Bscsj’wijﬁtcti = wﬁﬁ S CGMn—Q/n—l'

Lemma 2.4. At a point xg on the boundary 082, suppose wee < M for unit
directions e which are tangential to the boundary. If z is any vector in Ty, (2,
then

R 1
Wyy < M|Z|2 + ﬁ<za Vh>2wﬁﬁa

where

vz

5:»3—9,

2
@

and 0 is defined by (2.11).
Proof. Dotting with ~ verifies Z is tangential, thus

0= 0shoT(x, Du) = BSTjsij = —Esciswijéj.

Now
Wyy = Wiz + 2Wzy + Wyy,
but
’y . Z N .
wsy = =i =0,
SO

2
A vz
w §Mz2+<> wW33.
2z |2 ~ B BB
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Now suppose that the maximum tangential derivative wi; = M T happens
at a point xg, where ey is a tangential direction. Define the function

. 1 n—2/n—
n=win — M"[éy ()] - C6@<€1,Vh($)>2M 2/l

+C7 (M +1)(h+hoT),

where
ha(x) ?
€D D@ 1) |
with & a smooth function satisfying £(¢) =t for ¢t > 6/2, and £(t) > 6/4.
Now computing, using Lemma 2.1, (2.2), and Corollary 2.2

é1(z)]* = |e1 —

Ln > 6w} — (Cy + C3) WW? — C(n) — M |L|é; (2)]?|
1 —o/n—
— Cogz|L {ex, VA(x))?| M2/

11
+C7(M +1) {5 (W+w) - <10> }
and using (considering Lemma 2.2)

|L|é1(@)]?| < Cs(W + 1+ W)
}L06<€1,Vhl' 2‘§ 8W—|—1+W),

we may choose
Cr =Cs+ (Cy+ C3) (M + M) ,
so that
Ln>0.
Next we show a lower bound on Dgwi1(zg). First, observe that due to

Lemma 2.4, n has a maximum at xg. It follows from the Hopf maximum
principle that Dn- 3 =wvy -3 > 0. Thus (recalling hi(zg) = 0)

Dgwyi(x0) > MTDgléy|*> + DgCsler, Vh(x))2M—2/m~1
— {Cg+ C4+03)(M+M )} M(Dgh 4+ DghoT)
> —C(n)M* - {Cs + (Cs + C3) (M + M)}
(2.12) x Cg(n )(1+M2” 3/n=1)



204 Micah Warren

Finally we will derive a relation between the maximum M of all eigen-
values of w and for tangential eigenvalues MT. Go to the point where the
maximum of all eigenvalues for w happens. (Again, in this section we assume
this happens along the boundary.) We diagonalize w = diag(M, Ao, ... \,)
with respect to some coordinates e;. ..., e,, choosing e; - v > 0. Now

wpg = (B €1)M + (B e2)*Xa + ... (B en)*An < Co(n)M™ /"L,
thus
(2.13) (8- e1)? < Co(n)M 1L

It follows that there is a Cjo9 depending on Cg(n) and A, (recall Corollary
2.3) such that if M > Cjp, then

1
|4<57 61) - 7T/2’ < 5(71—/2 - A)a
in particular
1
L(y.e1) 2 5(v/2 - A).

Thus the length of projection of the maximum eigenvector of w onto the
tangent plane is at least some value o M depending on A. So we may assume
that either M < Cyg, or the maximum tangential value M1 satisfies M >
oM.

Proposition 2.1. Suppose that the global maximum for eigenvalues of w is
attained along the boundary. Then if M > Cig, M must satisfy

M? — (04 + 03) M < Ch.
Proof. Differentiating h o T'(x, Du) twice tangentially,

O11h o T(z, Du)) = hyT§) + ha T TE = —(Vho T, S(01,01))
=h, (—cpkwn,k — PP o115 W + cpkcklscsmwm1>
+ l_zp (cpacSkcasl - cpacs’“casvc”mwmle) W1
+ BstcSiwilctiwjl

as in [9, 4.11], with S denoting the second fundamental form of the bound-
ary of Q. Now using —hpcpkwlLk = w18, (2.12) and the discussion in the
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previous paragraph (where o is defined) we conclude that if M > C,

SoM? — C(n)M" — {Cs + (Cy + C3) (M + M)} Cs(n) M*"=3/m=1 — C5 M2
< CﬁMn—Z/n—l.

Using Young’s inequality to clean up the expression, we have

(2.14) M? — (Cy+ C3) M™ < .

3. Proof of Theorem 1.1

We now go through the alternatives and make our choice of constants, in
order to bound w and consequently D?u.
First, if the maximum happens in the interior, then (2.6)

(3.1) M? — (04 + 03) M < Chs.

If not, then either (2.14)

(3.2) M? — (04 + 03) Mt < (Ch1
or
(3.3) M < Cho,

by the discussion surrounding (2.13).
So we simply must choose (Cy 4+ C3) small enough, say

(Cy + C3) < e,

so that the noncompact region defined by (3.1) does not intersect the com-
pact regions defined by (3.2) and (3.3), similarly for the noncompact region
defined by (3.2). Further, in order to have c-convexity, we must assume that
the conditions of Lemma 2.3 are satisfied. The upper bounds in the above
alternatives provide lower bounds on the Hessian, so we choose C3 small
enough so that Lemma 2.3 is satisfied.

Now by the theory of Delanoe [4], Caffarelli [1] and Urbas [11], we have
a classical solution to the problem for Euclidean cost

O(w,y) =—x-y

in Euclidean space.
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We use the method of continuity. Openness is provided by Theorem 17.6
in [6], where we set

G : C**(Q) x [0,1] — C%*(Q) x CH (99)
with
In det [uij + cg-) (z, T® (x,Du)} + f(x) — F(TO(x, Du))

I e [ 10w KO, D

where the cost function is changing from Euclidean to c as
W =1 -t +te
and T defined by
Dy (2, T® (2, Du)) + Du = 0.

Our initial solution wug is smooth , so it satisfies the above estimates (3.1,
etc) with C3Cy =0. These bounds change continuously with ¢ so D?u
must stay in the compact components of (3.1) to (3.3). As is standard
for this problem, we cite [8] to obtain the C%“ estimates. By [6, Theo-
rem 17.6], we have openness in ¢, and the estimates give us closeness as long
as ‘D4c(t)‘ , ‘D?’c(t)’ < g¢. This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

First we employ a change of coordinates (here we use (A2)), so that
Cis($0aj0) = —I.

Proof. Then, on a product of very small balls By 5 (xo) X By/)(Zo) we have

1

T 2<_5i. <C 2
02 |€’ s —C gzgs_ 2’6‘ ;

for some Cy near 1, and ‘D?’c{ , |D4c‘ < C which may be large but finite.

We now rescale and consider the following problem on B;(0) x By (0):

let B
N (4. 7) = A2 (Q Q)
(y,y) (3%
be the cost function, and let the distributions to be transported be Gaus-

sians, satisfying (al-3) on B;(0), B1(0).
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This cost function ¢® now satisfies the conditions in our first theorem,
as we see that choosing A large enough will make the third and fourth
derivatives arbitrarily small. The first derivatives are perhaps quite large,
but we are free to subtract a linear cost without changing properties of the
solution.

It follows by Theorem 1.1 that the solution to this rescaled optimal trans-
portation problem is smooth. However, the coordinate change and “change
of currency” do not change the underlying optimal transportation problem.
Thus, we also have smoothness for the solution of the problem sending

_ o~ Nla—aol?/2

m XBl/A ($0)
to
_ N\2|a_7 |2
m = e A ‘I xO‘ /ZXBI/)\(:EO).
This completes the proof. O
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