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The pointed flat compactness theorem

for locally integral currents

Urs Lang and Stefan Wenger

Recently, a new embedding/compactness theorem for integral cur-
rents in a sequence of metric spaces has been established by the
second author. We present a version of this result for locally inte-
gral currents in a sequence of pointed metric spaces. To this end
we introduce another variant of the Ambrosio–Kirchheim theory
of currents in metric spaces, including currents with finite mass in
bounded sets.

1. Introduction

In the recent article [10], the second-named author proved a new compact-
ness theorem that combines features of two other powerful results: Gromov’s
theorem for uniformly compact families of metric spaces [6] and the com-
pactness theorem for integral currents from geometric measure theory [4].
When applied to a sequence Mn of compact, connected and oriented Rie-
mannian m-manifolds1, the theorem says that if the diameters, the volumes
and the volumes of the boundaries are uniformly bounded, then there exists
a subsequence Mnj

, a complete metric space Z, and isometric (i.e., distance
preserving) embeddings ϕj : Mnj

↪→ Z such that the images ϕj(Mnj
), viewed

as integral currents ϕj#[Mnj
], converge in the flat topology to an inte-

gral current T in Z. Here the terms “integral current” and “flat topology”
are understood in the sense of the metric theory of currents introduced
by Ambrosio–Kirchheim [1]. In case the Mn have no boundary, there is a
stronger conclusion: As j → ∞, the filling volume of the cycles T − ϕj#[Mnj

]
tends to zero, i.e., they bound (m+ 1)-currents with smaller and smaller
mass. The general formulation of the theorem refers to sequences of inte-
gral currents Tn in complete metric spaces Xn. The purpose of the present
article is to provide a “pointed version” of this result for locally integral
currents, akin to Gromov’s embedding/compactness theorem for pointed
metric spaces [6].

1In this paper, the term “manifold” allows for boundaries.

159



160 Urs Lang & Stefan Wenger

The metric currents of [1] have finite mass by definition and are therefore
not suited for the envisaged pointed compactness theorem. In [7], the first-
named author presented a theory of general metric currents with locally
compact supports, comprising currents T with locally finite mass, whose
measure ‖T‖ is a Radon measure. However, this setup does again not fit
our purpose, as the local compactness may fail to persist in the limit. We
therefore develop yet another variation of the theory of currents in a metric
space Z. This will be the content of Section 2. Here we just briefly explain the
notation needed for the statement of the main results, which will be proved
in Section 3. The abelian group of m-dimensional locally integral currents
in Z will be denoted by ILoc,m(Z). The measure ‖T‖ associated with an
element T is finite on bounded sets and furthermore concentrated on some
countably m-rectifiable set. We point out that throughout this article the
subscript “Loc” — with a capital letter — refers to a finiteness property on
all bounded subsets, not only suitable point neighborhoods. The support in
Z and boundary of a current T ∈ ILoc,m(Z) will be denoted by sptT and
∂T ; the latter is an element of ILoc,m−1(Z). For instance, every connected
and oriented Riemannian m-manifold M that is complete as a metric space
induces a current [M ] ∈ ILoc,m(M) with spt[M ] = M and ∂[M ] = [∂M ]. The
push-forward ϕ#T of T ∈ ILoc,m(Z) is defined and belongs to ILoc,m(Z ′)
whenever ϕ maps sptT into Z ′ such that preimages of bounded sets are
bounded and ϕ is Lipschitz on bounded subsets of sptT . The boundary of
ϕ#T equals ϕ#(∂T ). We say that a sequence (Tj) in ILoc,m(Z) converges
in the local flat topology to a current T ∈ ILoc,m(Z) if for every bounded
closed set B ⊂ Z there is a sequence (Sj) in ILoc,m+1(Z) such that

(‖T − Tj − ∂Sj‖ + ‖Sj‖)(B) → 0;

in other words, T − Tj can be expressed as Rj + ∂Sj , with Rj ∈ ILoc,m(Z)
and Sj ∈ ILoc,m+1(Z), such that (‖Rj‖ + ‖Sj‖)(B) → 0. Then ∂Tj → ∂T in
the local flat topology of ILoc,m−1(Z).

Given a metric space X and x0 ∈ X, we denote by B(x0, r) := {x ∈ X :
d(x0, x) ≤ r} the closed ball of radius r at x0.

The main result of this article is the following pointed version of [10,
Theorem 1.2]. The proof uses the same decomposition techniques and will
be given in Section 3.1.

Theorem 1.1. Let (Xn) be a sequence of complete metric spaces, xn ∈ Xn,
and let Tn ∈ ILoc,m(Xn), m ≥ 1. Suppose that for every r > 0,

sup
n

[‖Tn‖(B(xn, r)) + ‖∂Tn‖(B(xn, r))] <∞.



Pointed flat compactness theorem 161

Then there exist a subsequence (nj), a complete metric space Z with basepoint
z0, and isometric embeddings ϕj : Xnj

↪→ Z such that ϕj(xnj
) → z0 and

(ϕj#Tnj
) converges in the local flat topology to some T ∈ ILoc,m(Z).

Similarly as in [10], a somewhat stronger conclusion holds if ∂Tn = 0 for
all n, or, more generally, if for every r > 0, spt(∂Tn) ∩B(xn, r) = ∅ for all but
finitely many n. Then, for every bounded set B ⊂ Z, spt(∂(ϕj#Tnj

))∩B= ∅
for almost all j, in particular ∂T = 0. In this situation, T − ϕj#Tnj

→ 0 in
the “local filling sense:” For every bounded closed set B ⊂ Z there is a
sequence (S′

j) in ILoc,m+1(Z) such that spt(T − ϕj#Tnj
− ∂S′

j) ∩B = ∅ for
almost all j, and

‖S′
j‖(B) → 0.

This will be discussed in Section 3.2.
The next result shows that the limit given by Theorem 1.1 is uniquely

determined by the subsequence (nj), up to a pointed isometry.

Proposition 1.1. Let (Xn) be a sequence of complete metric spaces, xn ∈
Xn, and let Tn ∈ ILoc,m(Xn). Suppose there exist two complete metric spaces
Z, Z ′ with basepoints z0, z′0 and isometric embeddings ϕn : Xn ↪→ Z, ϕ′

n :
Xn ↪→ Z ′ such that ϕn(xn) → z0, ϕ′

n(xn) → z′0, (ϕn#Tn) converges in the
local flat topology to T ∈ ILoc,m(Z), and (ϕ′

n#Tn) converges in the local flat
topology to T ′ ∈ ILoc,m(Z ′). Then there is an isometry ψ : {z0} ∪ sptT →
{z′0} ∪ sptT ′ with ψ(z0) = z′0 and ψ#T = T ′.

This will be proved in Section 3.3. See [10, Theorem 1.3] for the analog
in the bounded case.

Finally, in Section 3.4, we shall discuss the following proposition, relat-
ing the above results to other types of pointed limits. Compare [10, Proposi-
tion 2.2]. Here it suffices to assume that ϕn#Tn → T weakly, i.e., pointwise as
functionals. Convergence in the local flat topology implies weak convergence,
and the reverse implication holds under mild additional assumptions; cf. [9].

Proposition 1.2. For n ∈ N = {1, 2, . . . }, let Xn be a complete metric
space, xn ∈ Xn, and let Tn ∈ ILoc,m(Xn). Suppose there exists a complete
metric space Z with basepoint z0 and isometric embeddings ϕn : Xn ↪→ Z
such that ϕn(xn) → z0 and (ϕn#Tn) converges weakly to T ∈ ILoc,m(Z).

(i) For every non-principal ultrafilter ω on N, there is an isometric embed-
ding of {z0} ∪ sptT into the ultralimit (Xω, xω) = limω(Xn, xn) that
maps z0 to xω.
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(ii) If (Xn, xn) converges in the pointed Gromov–Hausdorff sense to a
pointed proper metric space (Y, y0), then there is an isometric
embedding of {z0} ∪ sptT into Y that maps z0 to y0.

The metric approach to currents, originally proposed by De Giorgi [5],
employs (m+ 1)-tuples of real-valued functions as a substitute for differen-
tial m-forms. If the underlying metric space possesses a smooth structure,
the m-form fdπ1 ∧ · · · ∧ dπm is represented by the tuple (f, π1, . . . , πm). In
the theory of currents of finite mass presented in [1], for a complete metric
space Z, the tuples consist of Lipschitz functions on Z, and the first entry
is bounded in addition. An m-dimensional current is then an (m+ 1)-linear
functional on

Lipb(Z) × [Lip(Z)]m

satisfying a set of further conditions, depending on the class of currents
under consideration. In the theory of local metric currents exposed in [7],
the underlying metric space is at first assumed to be locally compact, and
the test tuples are taken in

Lipc(Z) × [Liploc(Z)]m,

i.e., the first function is Lipschitz with compact support and the remaining
ones are locally Lipschitz (where “local” now has the standard meaning).
A natural extension of the theory then includes currents with locally com-
pact support in an arbitrary metric space Z. The “boundedly finite” theory
of metric currents discussed here uses “forms” in

LipB(Z) × [LipLoc(Z)]m,

where LipB(Z) refers to Lipschitz functions with bounded support and
LipLoc(Z) to functions that are Lipschitz on bounded sets. If Z is proper,
i.e., bounded closed subsets of Z are compact, the difference to the approach
in [7] disappears. We discuss the fundamentals of the theory in detail, so that
no prior knowledge of [1] or [7] is required. However, some of the more pro-
found results, such as the boundary rectifiability and closure theorems, will
be deduced from their analogs in [1].

2. Metric currents with finite mass on bounded sets

Let Z and Z ′ be metric spaces. We denote by Lip(Z,Z ′) the set of all
Lipschitz maps from Z to Z ′ and by LipLoc(Z,Z ′) the set of all maps
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from Z to Z ′ that are Lipschitz continuous on bounded subsets of Z. We
write Lip(Z) and LipLoc(Z) for the vector spaces Lip(Z,R) and LipLoc(Z,R),
respectively. Note that the latter is an algebra. Furthermore, Lipb(Z) denotes
the algebra of bounded real-valued Lipschitz functions on Z and LipB(Z)
the subalgebra of functions with bounded support. The Lipschitz constant
of a function f is denoted by Lip(f).

2.1. Metric functionals

We first consider real-valued functions on the space of (m+ 1)-tuples
LipB(Z) × [LipLoc(Z)]m, where m ≥ 0. A typical such tuple will be denoted
by (f, π1, . . . , πm), and we may use (f, π) as a shorthand. In case m = 0,
LipB(Z) × [LipLoc(Z)]m should be read as LipB(Z) and (f, π) as f . Let now

T : LipB(Z) × [LipLoc(Z)]m → R

be given. For any tuple (g, τ) := (g, τ1, . . . , τl)∈ [LipLoc(Z)]l+1 with 0≤ l≤m,
we define a function T (g, τ) : LipB(Z) × [LipLoc(Z)]m−l → R by

T (g, τ) (f, π1, . . . , πm−l) := T (fg, τ1, . . . , τl, π1, . . . , πm−l)

and call it the restriction of T to (g, τ). For any map ϕ ∈ LipLoc(Z,Z ′) with
the property that ϕ−1(A) is bounded for every bounded set A ⊂ Z ′, we
define a function ϕ#T : LipB(Z ′) × [LipLoc(Z ′)]m → R by

ϕ#T (f, π1, . . . , πm) := T (f ◦ ϕ, π1 ◦ ϕ, . . . , πm ◦ ϕ)

and call it the push-forward under ϕ of T .

Definition 2.1. A function T : LipB(Z) × [LipLoc(Z)]m → R, m ≥ 0, is
called an m-dimensional metric functional on Z if the following properties
hold:

(i) T is multilinear;

(ii) T is continuous in the following sense: If πi, π
j
i ∈ LipLoc(Z), πji → πi

pointwise everywhere as j → ∞ and supi,j Lip(πji |A) <∞ for every
bounded set A ⊂ Z, then

T (f, πj1, . . . , π
j
m) → T (f, π1, . . . , πm);

(iii) T is local in the following sense: If there exist i and δ > 0 such that πi
is constant on {z : d(z, spt f) ≤ δ}, then T (f, π1, . . . , πm) = 0.
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A 0-dimensional metric functional on Z is just a linear functional on
LipB(Z). It is not difficult to verify that restrictions and push-forwards
of metric functionals are metric functionals. To check property (iii) for
ϕ#T , observe that since ϕ is Lipschitz on tubular neighborhoods of the
bounded set spt(f ◦ ϕ), for every δ′ > 0 there is a δ > 0 such that ϕ maps
{z : d(z, spt(f ◦ ϕ)) ≤ δ} into {z′ : d(z′, spt f) ≤ δ′}. As a consequence of the
defining conditions of a metric functional, the locality property also holds
in a strict form:

Lemma 2.1. If some πi is constant on spt f , then T (f, π1, . . . , πm) = 0.

Proof. Suppose first that πi|spt f = 0 for some i. For j ∈ N, define βj : R → R

so that βj(s) = max{0, s− j−1} for s ≥ 0 and βj(s) = min{0, s+ j−1} for
s ≤ 0. Note that βj is 1-Lipschitz. As j → ∞, βj ◦ πi converges pointwise
to πi. It thus follows from the continuity property of T that

T (f, π1, . . . , πm) = lim
j→∞

T (f, π1, . . . , πi−1, βj ◦ πi, πi+1, . . . , πm).

Furthermore, since πi|spt f = 0 and πi is Lipschitz on tubular neighborhoods
of the bounded set spt f , for every j there is a δj > 0 such that |πi(z)| ≤ j−1

whenever d(z, spt f) ≤ δj . Then (βj ◦ πi)(z) = 0 for all such z, thus the above
equality and the locality of T imply T (f, π1, . . . , πm) = 0.

To conclude the proof in the general case, note that by (i) and (iii),
adding a constant to one of π1, . . . , πm does not change the value T (f,
π1, . . . , πm). �

Now let T be a metric functional of dimension m ≥ 1 on Z. We define
its boundary ∂T : LipB(Z) × [LipLoc(Z)]m−1 → R by

∂T (f, π1, . . . , πm−1) := T (σ, f, π1, . . . , πm−1),

where σ ∈ LipB(Z) is any function satisfying σ|spt f = 1. If σ′ is another
such function, then f vanishes on {σ �= σ′} and hence on spt(σ − σ′), so
T (σ − σ′, f, π1, . . . , πm−1) = 0 by the above lemma. Hence ∂T is well defined.
Clearly ∂T satisfies properties (i) and (ii) of Definition 2.1. To verify (iii),
suppose that for some i ∈ {1, . . . ,m− 1}, πi is constant on a tubular neigh-
borhood of spt f . Then it is possible to choose σ ∈ LipB(Z) with σ|spt f = 1
such that πi is constant on some tubular neighborhood of sptσ and hence
∂T (f, π1, . . . , πm−1) = T (σ, f, π1, . . . , πm−1) = 0 by the locality of T . Thus
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∂T is an (m− 1)-dimensional metric functional. It is easy to check that

ϕ#(∂T ) = ∂(ϕ#T ).

Furthermore, if m ≥ 2, then

∂(∂T ) = 0.

To see this, let (f, π) := (f, π1, . . . , πm−2) ∈ LipB(Z) × [LipLoc(Z)]m−2 and
choose �, σ, τ ∈ LipB(Z) such that �|spt f = 1, σ|spt � = 1, and τ |sptσ = 1, in
particular σ|spt f = 1. By definition,

∂(∂T )(f, π) = ∂T (σ, f, π) = T (τ, σ, f, π).

Now f vanishes on {τ �= �} and hence on spt(τ − �). It follows that
T (τ, σ, f, π) = T (�, σ, f, π), and this last term is zero since σ|spt � = 1.

Proposition 2.1. Every metric functional of dimension m ≥ 2 on Z is
alternating in the m arguments π1, . . . , πm ∈ LipLoc(Z).

Proof. This is shown by the same argument as in the proofs of
[1, Theorem 3.5] and [7, Proposition 2.4]. �

2.2. Mass

We now introduce the mass of a multilinear functional and then discuss
metric functionals with finite mass on bounded sets. The local mass bound
implies a stronger continuity property that involves the first argument of
the functional. This leads to further properties, justifying the use of the
term “current.” In [1], the measure associated with a current of finite mass
is concentrated on a σ-compact set. We bring this property into play at an
early stage (cf. Proposition 2.2), as a substitute for the local compactness
underlying the approach of [7].

We denote by Lip1(Z) ⊂ Lip(Z) the set of all 1-Lipschitz functions. For
every multilinear function T : LipB(Z) × [LipLoc(Z)]m → R and every open
set V ⊂ Z we define the mass of T in V as the possibly infinite quantity

MV (T ) := sup
∑

λ∈Λ

T (fλ, πλ),

where the supremum is taken over all finite families ((fλ, πλ))λ∈Λ such
that (fλ, πλ) = (fλ, πλ,1, . . . , πλ,m) ∈ LipB(Z) × [Lip1(Z)]m, spt fλ ⊂ V , and
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∑
λ∈Λ |fλ| ≤ 1. In case m = 0,

MV (T ) = sup{T (f) : f ∈ LipB(Z), spt f ⊂ V, |f | ≤ 1}.

If a sequence (Tn) of such multilinear functions converges pointwise on
LipB(Z) × [LipLoc(Z)]m to a multilinear function T , then clearly

MV (T ) ≤ lim inf
n→∞ MV (Tn),

for every open set V ⊂ Z, i.e., MV is lower semicontinuous. Pointwise
convergence of multilinear functions will be referred to as weak convergence.
We write M(T ) := MZ(T ) for the total mass. We now define a set function
‖T‖ : 2Z → [0,∞] by

‖T‖(A) := inf{MV (T ) : V ⊂ Z is open, A ⊂ V }.

If A is open, then obviously ‖T‖(A) = MA(T ). For two multilinear functions
T, T ′ : LipB(Z) × [LipLoc(Z)]m → R and r ∈ R we have

‖T + T ′‖ ≤ ‖T‖ + ‖T ′‖, ‖rT‖ = |r| ‖T‖.

Under a suitable σ-compactness assumption, ‖T‖ turns out to be an outer
measure.

Proposition 2.2. Let T : LipB(Z) × [LipLoc(Z)]m → R be a multilinear
function, m ≥ 0, and suppose that for every bounded open set U ⊂ Z and
every ε > 0 there is a compact set C ⊂ U such that MU\C(T ) < ε. Then ‖T‖
is a Borel regular outer measure that is concentrated on some σ-compact set.

Proof. It is clear that ‖T‖(∅) = 0 and that ‖T‖ is monotone. To show that
‖T‖ is σ-subadditive, let first V1, V2, . . . ⊂ Z be open, and put V :=

⋃∞
k=1 Vk.

Suppose ((fλ, πλ))λ∈Λ is a finite family as in the definition of MV (T ). Choose
a bounded open neighborhood U ⊂ Z of A :=

⋃
λ∈Λ spt fλ, let ε > 0, and let

C ⊂ U be a compact set with MU\C(T ) < ε. Put K := C ∩A and V0 :=
Z \K. We have K ⊂ ⋃∞

k=1 Vk, thus by the compactness of K there is an
index N such that

⋃N
k=1 Vk contains K. Furthermore, using the compactness

ofK again, we see that the covering (Vk)k=0,...,N of Z has a positive Lebesgue
number. Then there exists a partition of unity (�k)k=0,...,N on Z such that
�k : Z → [0, 1] is Lipschitz and spt �k ⊂ Vk for k = 0, . . . , N . For every λ ∈ Λ
we have spt(�0fλ) ⊂ V0 ∩A ⊂ U \ C and spt(�kfλ) ⊂ Vk for k = 1, . . . , N ;
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moreover
∑

λ∈Λ |�kfλ| ≤ 1 for k = 0, . . . , N . We obtain

∑

λ∈Λ

T (fλ, πλ) =
N∑

k=0

∑

λ∈Λ

T (�kfλ, πλ) ≤ MU\C(T ) +
N∑

k=1

MVk
(T )

< ε+
N∑

k=1

‖T‖(Vk).

It follows that ‖T‖(V ) ≤ ∑∞
k=1 ‖T‖(Vk), and the same inequality for arbi-

trary sets V1, V2, . . . is an immediate consequence. Thus ‖T‖ is an outer
measure. Whenever A,B ⊂ Z with d(A,B) := inf{d(x, y) : x ∈ A, y ∈ B} >
0, then clearly ‖T‖(A ∪B) = ‖T‖(A) + ‖T‖(B). Hence, by Carathéodory’s
criterion, every Borel set is ‖T‖-measurable, and by the definition of ‖T‖
every set A ⊂ Z is contained in aGδ set B with ‖T‖(B) = ‖T‖(A). Thus ‖T‖
is Borel regular. Writing Z as the union of countably many bounded open
sets Ui and choosing a σ-compact set Σi ⊂ Ui with ‖T‖(Ui \ Σi) = 0 in each,
we conclude that ‖T‖(Z \ Σ) = 0 for Σ :=

⋃
i Σi, i.e., ‖T‖ is concentrated

on the σ-compact set Σ. �

For a multilinear function T satisfying the assumption of Proposition 2.2,
we define the support of T as the closed set

sptT := spt ‖T‖ = {z ∈ Z : ‖T‖(B(z, r)) > 0 ∀r > 0}.

If Σ is a σ-compact set with ‖T‖(Z \ Σ) = 0, then Σ \ sptT is contained in
the union of countably many open balls with measure zero, thus

(2.1) ‖T‖(Z \ sptT ) = 0,

i.e., ‖T‖ is concentrated on sptT .
Now we return to metric functionals.

Definition 2.2. For m ≥ 0, we denote by MLoc,m(Z) the vector space
of all m-dimensional metric functionals T on Z (Definition 2.1) with the
property that for every bounded open set U ⊂ Z and every ε > 0 there is a
compact set C ⊂ U such that MU (T ) <∞ and MU\C(T ) < ε. Elements of
MLoc,m(Z) will be called metric currents with locally finite mass.

By Proposition 2.2, for every T ∈ MLoc,m(Z), ‖T‖ is a Borel regular
outer measure that is concentrated on some σ-compact set. The next result
shows how ‖T‖ controls T . We denote by BZ the σ-algebra of Borel subsets
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of Z. By a Borel measure on Z we mean a σ-additive function on BZ with
values in [0,∞].

Proposition 2.3. Suppose that T ∈ MLoc,m(Z). Then

(2.2) |T (f, π1, . . . , πm)| ≤
m∏

i=1

Lip(πi|spt f )
∫

Z
|f | d‖T‖

for all (f, π1, . . . , πm) ∈ LipB(Z) × [LipLoc(Z)]m. Furthermore, if μ is a
Borel measure on Z such that μ is finite on bounded sets and this inequality
holds with μ in place of ‖T‖, then ‖T‖ ≤ μ on BZ .

Proof. We start with the case m = 0. Let f ∈ LipB(Z). There is no loss of
generality in assuming f ≥ 0. For any number s ≥ 0, put fs := min{f, s}.
Whenever 0 ≤ s < t, we have 0≤ ft− fs≤ t− s and hence |T (ft) − T (fs)| =
|T (ft − fs)| ≤ ‖T‖(V ) (t− s) for every open set V containing the bounded
set spt(ft − fs) = {f > s}; therefore

|T (ft) − T (fs)| ≤ ‖T‖({f > s}) (t− s).

It follows that s �→ T (fs) is Lipschitz with constant ≤ ‖T‖(spt f), hence
almost everywhere differentiable, and |(d/ds)T (fs)| ≤ ‖T‖({f > s}) when-
ever the derivative exists. Since T (f) =

∫ ∞
0 (d/ds)T (fs) ds, we conclude that

|T (f)| ≤
∫ ∞

0

∣∣∣∣
d

ds
T (fs)

∣∣∣∣ ds ≤
∫ ∞

0
‖T‖({f > s}) ds =

∫

Z
f d‖T‖.

This shows (2.2) in case m = 0. Now assume m ≥ 1. Let first (f, π) ∈
LipB(Z) × [Lip1(Z)]m, and consider the 0-dimensional metric functional
Tπ := T (1, π). Clearly ‖Tπ‖ ≤ ‖T‖, thus Tπ ∈ MLoc, 0(Z), and

|T (f, π)| = |Tπ(f)| ≤
∫

Z
|f | d‖Tπ‖ ≤

∫

Z
|f | d‖T‖.

For a general (f, π) ∈ LipB(Z) × [LipLoc(Z)]m, there exists π̄ ∈ [Lip(Z)]m

such that π̄ = π on spt f and Lip(π̄i) = Lip(πi|spt f ) for i = 1, . . . ,m. Then
T (f, π) = T (f, π̄) by Lemma 2.1, and (2.2) follows.

As for the second assertion of the proposition, given such a measure μ, we
have μ(B) = inf{μ(V ) : V ⊂ Z is open, B ⊂ V } for every Borel set B ⊂ Z
and MV (T ) ≤ μ(V ) for every open set V ⊂ Z. This gives the result. �

Some basic examples of currents with locally finite mass are given as fol-
lows. Suppose Z is a Lebesgue measurable subset of R

m with Lm(∂Z) = 0,
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and θ : Z → R is an Lm-measurable function such that
∫
Z∩U |θ| dLm <∞

for every bounded open set U ⊂ R
m. Then one obtains a current [θ] ∈

MLoc,m(Z) by defining

(2.3) [θ](f, π) :=
∫

Z
θf det(∇π) dLm

for all (f, π) ∈ LipB(Z) × [LipLoc(Z)]m (cf. [1, Example 3.2] or [7, Proposi-
tion 2.6]). It is not difficult to check that MV ([θ]) =

∫
V |θ| dLm for every

relatively open set V ⊂ Z.
We conclude this section with some remarks regarding completeness of

Z. We did not impose a general completeness assumption on the underlying
metric space, simply because this is not needed for the development of the
theory. (The corresponding assumption in [1] could equally well be avoided
by some minor modifications.) However, the following simple example shows
that some care is needed with incomplete spaces. Let Z := (−∞, 0) ⊂ R and
T := [1] ∈ MLoc, 1(Z), thus

T (f, π) =
∫ 0

−∞
f(s)π′(s) ds

for (f, π) ∈ LipB(Z) × LipLoc(Z). As a “constant” current, T should have no
boundary in Z; however, ∂T is the non-zero metric functional on Z satisfying

∂T (f) = lim
s→0−

f(s)

for f ∈ LipB(Z). (By contrast, the definitions from [7] would give ∂T =
0.) Furthermore M(∂T ) = 1, yet ∂T �∈ MLoc, 0(Z) as ‖∂T‖(C) = 0 for every
compact set C ⊂ Z. Note that ‖∂T‖ is not σ-subadditive in this case, and
there is obviously no good definition of the support of ∂T in Z. Compare
also (2.15) in this regard, where Z is a proper Lipschitz manifold.

2.3. Extension to Borel functions

We denote by B∞
Loc(Z) the algebra of all real-valued Borel functions on Z

that are bounded on bounded sets, and by B∞(Z) and B∞
B (Z) the subalge-

bras of bounded Borel functions and bounded Borel functions with bounded
support, respectively.
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Due to (2.2), every T ∈ MLoc,m(Z) naturally extends to a function

T : B∞
B (Z) × [LipLoc(Z)]m → R.

In fact, whenever f ∈ B∞
B (Z) and N is a bounded neighborhood of spt f ,

there is a sequence (fk) in LipB(Z) such that spt fk ⊂ N for all k and
fk → f in L1(‖T‖). By (2.2), (T (fk, π)) is a Cauchy sequence for every
π ∈ [LipLoc(Z)]m, and T (f, π) is declared as its limit, which is independent of
the choice ofN and (fk). It is not difficult to show that the extended function
T satisfies the three conditions of Definition 2.1 as well as inequality (2.2)
with B∞

B (Z) in place of LipB(Z). The generalized inequality (2.2) also sub-
sumes the strict locality property of Lemma 2.1 for f ∈ B∞

B (Z). Further-
more, the extended functional is jointly continuous in all arguments in the
following sense: If (f, π), (f j , πj) ∈ B∞

B (Z) × [LipLoc(Z)]m, (f j , πj) → (f, π)
pointwise everywhere as j → ∞, supj ‖f j‖∞ <∞,

⋃
j spt f j is bounded, and

supi,j Lip(πji |A) <∞ for every bounded set A ⊂ Z, then

(2.4) T (f j , πj) → T (f, π)

(cf. [7, Theorem 4.4]). Due to (2.1) and the generalized inequality (2.2), the
extended functional has the property that

(2.5) T (f, π) = T (f ′, π′),

whenever f = f ′ and π = π′ on sptT . From this it follows that T may be
viewed as an element of MLoc,m(Y ) for any set Y ⊂ Z containing sptT
(cf. [7, Proposition 3.3]). In particular, the push-forward ϕ#T is still defined
whenever ϕ : D → Z ′ is a map defined on a set D ⊃ sptT such that ϕ|sptT ∈
LipLoc(sptT,Z ′) and ϕ−1(A) ∩ sptT is bounded for every bounded set
A ⊂ Z ′.

The proof of the following product rule relies on the joint continuity
property (2.4).

Proposition 2.4. Let T ∈ MLoc,m(Z), m ≥ 1. For all f ∈ B∞
B (Z) and

g, h, π2, . . . , πm ∈ LipLoc(Z),

T (f, gh, π2, . . . , πm) = T (fg, h, π2, . . . , πm) + T (fh, g, π2, . . . , πm).

Proof. This is shown as in [7, Proposition 2.4]. �
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Let now T ∈ MLoc,m(Z) and (g, τ) ∈ B∞
Loc(Z) × [LipLoc(Z)]l with 0 ≤

l ≤ m. In view of the above extension, the restriction formula

T (g, τ)(f, π) = T (fg, τ, π)

for (f, π) ∈ LipB(Z) × [LipLoc(Z)]m−l remains meaningful and defines an
(m− l)-dimensional metric functional T (g, τ). In fact, whenever V ⊂ Z
is an open set such that τj |V is Lipschitz for j = 1, . . . , l, inequality (2.2) for
the extended functional T gives

MV (T (g, τ)) ≤
l∏

j=1

Lip(τj |V )
∫

V
|g| d‖T‖,

which implies in particular that T (g, τ) ∈ MLoc,m−l(Z). When l = 1 and
τ = τ1 is Lipschitz, this yields

(2.6) ‖T (1, τ)‖(A) ≤ Lip(τ) ‖T‖(A)

for every set A ⊂ Z. When l = 0, since ‖T‖(U) <∞ and g|U is bounded for
every bounded set U , it follows that

(2.7) ‖T g‖(B) ≤
∫

B
|g| d‖T‖

for every Borel set B ⊂ Z. For the characteristic function 1A of a Borel
set A ⊂ Z, we write T 1A as T A. Then ‖T A‖(B) ≤ ‖T‖(A ∩B) =
(‖T‖ A)(B) for every Borel set B ⊂ Z. In fact, since the same inequality
holds for the complement Ac, using the finiteness of ‖T‖ on bounded sets
and the identity T = T A+ T Ac one easily concludes that

(2.8) ‖T A‖ = ‖T‖ A

on BZ .
Let again T ∈ MLoc,m(Z), and let ϕ ∈ LipLoc(Z,Z ′) be such that ϕ−1(A)

is bounded whenever A ⊂ Z ′ is. If V ⊂ Z ′ is an open set such that ϕ|ϕ−1(V )

is λ-Lipschitz, (2.2) yields

MV (ϕ#T ) ≤ λm ‖T‖(ϕ−1(V )) = λm (ϕ#‖T‖)(V ).

Given a bounded open set U ′ ⊂ Z ′ and ε > 0, there is a compact set C ⊂
U := ϕ−1(U ′) such that ‖T‖(U \ C) < ε; hence C ′ := ϕ(C) is a compact
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subset of U ′ with (ϕ#‖T‖)(U ′ \ C ′) < ε. It follows that ϕ#T ∈ MLoc,m(Z ′).
Moreover, if ϕ is Lipschitz, then MV (ϕ#T ) ≤ Lip(ϕ)m (ϕ#‖T‖)(V ) for every
open set V ⊂ Z ′, and since ϕ#‖T‖ is finite on bounded sets we have (ϕ#‖T‖)
(B)= inf{(ϕ#‖T‖)(V ) : V ⊂Z ′ is open,B⊂V } for every Borel set B⊂Z ′, so

‖ϕ#T‖ ≤ Lip(ϕ)m ϕ#‖T‖

on BZ′ . We further note that the equation

(2.9) ϕ#T (f, π) = T (f ◦ ϕ, π ◦ ϕ)

remains valid for (f, π) ∈ B∞
B (Z ′) × [LipLoc(Z ′)]m. To see this, choose a

sequence (fk) in LipB(Z ′) such that
⋃
k spt fk is bounded and fk → f in

L1(ϕ#‖T‖), i.e., fk ◦ ϕ→ f ◦ ϕ in L1(‖T‖). Then fk → f in L1(‖ϕ#T‖) as
well, and the result follows from inequality (2.2) for the extended function-
als ϕ#T and T . Finally, we remark that if (g, τ) ∈ B∞

Loc(Z
′) × [LipLoc(Z ′)]l,

0 ≤ l ≤ m, then (g ◦ ϕ, τ ◦ ϕ) ∈ B∞
Loc(Z) × [LipLoc(Z)]l and

ϕ#(T (g ◦ ϕ, τ ◦ ϕ)) = (ϕ#T ) (g, τ),

as is easily checked by means of (2.9). In particular,

(2.10) ϕ#(T ϕ−1(B)) = (ϕ#T ) B

for every Borel set B ⊂ Z ′.

2.4. Locally normal currents

We now introduce the chain complex of locally normal currents.

Definition 2.3. For m ≥ 1 we denote by NLoc,m(Z) the vector space
of all T ∈ MLoc,m(Z) with ∂T ∈ MLoc,m−1(Z), and we put NLoc, 0(Z) :=
MLoc, 0(Z). Elements of NLoc,m(Z) will be called locally normal currents.

Let m ≥ 1 and g ∈ LipLoc(Z), and suppose first that T ∈ MLoc,m(Z).
For (f, π) ∈ LipB(Z) × [LipLoc(Z)]m−1 and σ ∈ LipB(Z) with σ|spt f = 1,
Proposition 2.4 gives T (σ, fg, π) = T (σg, f, π) + T (f, g, π), which corres-
ponds to the identity

(2.11) (∂T ) g = ∂(T g) + T (1, g)

of (m− 1)-dimensional metric functionals. Since T (1, g)∈MLoc,m−1(Z), it
follows that (∂T ) g ∈MLoc,m−1(Z) if and only if ∂(T g)∈MLoc,m−1(Z).
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Now let T ∈ NLoc,m(Z). Then (∂T ) g ∈ MLoc,m−1(Z) and hence T g ∈
NLoc,m(Z). Furthermore, if g is Lipschitz, combining (2.11) with (2.6) and
(2.7) we see that

‖∂(T g)‖(B) ≤ Lip(g) ‖T‖(B) +
∫

B
|g| d‖∂T‖

for every Borel set B ⊂ Z. Push-forwards of locally normal currents are
locally normal. The following simple criterion will be useful:

Lemma 2.2. Suppose T : LipB(Z) × [LipLoc(Z)]m → R is a function, (σi)
is a sequence in LipB(Z) such that every bounded set A ⊂ Z is contained
in {σi = 1} for some i, and T σi ∈ NLoc,m(Z) for every i. Then T ∈
NLoc,m(Z).

Proof. It is easily checked that T is a metric functional and that MV (T ) =
MV (T σi) whenever V is a bounded open set and σi|V = 1. Thus T ∈
MLoc,m(Z). Moreover, in case m ≥ 1, ∂T (f, π) = ∂(T σi)(f, π) whenever
(f, π) ∈ LipB(Z) × [LipLoc(Z)]m−1 and σi|spt f = 1, hence also MV (∂T ) =
MV (∂(T σi)). �

2.5. Relation to Ambrosio–Kirchheim currents

We now discuss the relation to the theory of Ambrosio–Kirchheim. We briefly
recall that a current T ∈ Mm(Z) in the sense of [1] is a multilinear function
T : Lipb(Z) × [Lip(Z)]m → R such that

(2.12) T (f, πj) → T (f, π),

whenever πj → π pointwise with supi,j Lip(πji ) <∞; furthermore, by assum-
ption, there exists a finite Borel measure μ on Z such that

(2.13) |T (f, π)| ≤
m∏

i=1

Lip(πi|spt f )
∫

Z
|f | dμ

for all (f, π) ∈ Lipb(Z) × [Lip(Z)]m (in particular T (f, π) = 0 if some πi is
constant on spt f). There is a least Borel measure with this property, denoted
‖T‖, and there exists a σ-compact set Σ ⊂ Z such that ‖T‖(Z \ Σ) = 0
(cf. Lemma 2.9 in [1] and the remark thereafter; note also that the proof of
this lemma requires completeness of the underlying metric space). As above,
M(T ) := ‖T‖(Z), sptT := spt ‖T‖, and ‖T‖(Z \ sptT ) = 0. For m ≥ 1, the
functional ∂T is defined by ∂T (f, π1, . . . , πm−1) = T (1, f, π1, . . . , πm−1),
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Nm(Z) := {T ∈ Mm(Z) : ∂T ∈ Mm−1(Z)}, and N0(Z) := M0(Z). Every
T ∈ Mm(Z) extends to a multilinear function T : B∞(Z) × [Lip(Z)]m → R

such that (2.12) and (2.13) still hold for f ∈ B∞(Z). Given T ∈ Mm(Z),
(g, τ) ∈ B∞(Z) × [Lip(Z)]l with 0 ≤ l ≤ m, and ϕ ∈ Lip(Z,Z ′), the restric-
tion T (g, τ) ∈ Mm−l(Z) and the push-forward ϕ#T ∈ Mm(Z ′) are defined
in the same way as in our case.

Let now T ∈ MLoc,m(Z) and g ∈ B∞
B (Z). Since the support of g is

bounded, the formula
T g (f, π) = T (fg, π)

remains meaningful for (f, π) ∈ Lipb(Z) × [Lip(Z)]m. Thus, the restriction
T g ∈ MLoc,m(Z) may as well be viewed as a function on Lipb(Z) ×
[Lip(Z)]m, which we denote Tg for the moment. It is easily checked that Tg is
an element of Mm(Z): Clearly Tg is multilinear and satisfies (2.12); further-
more, by (2.7), ‖T g‖ is concentrated on the bounded set spt g, it thus fol-
lows from Proposition 2.3 for T g that (2.13) holds for Tg and that ‖Tg‖ =
‖T g‖ on BZ . In case m ≥ 1 and g ∈ LipB(Z), when T g ∈ NLoc,m(Z),
we have Tg ∈ Nm(Z) and ‖∂(Tg)‖ = ‖∂(T g)‖. To see this, choose σ ∈
LipB(Z) with σ|spt g = 1; then (∂(T g))σ ∈ Mm−1(Z) and ‖(∂(T g))σ‖ =
‖∂(T g) σ‖, and it is not difficult to verify that (∂(T g))σ = ∂(Tg) and
∂(T g) σ = ∂(T g). From now on we write again T g instead of Tg; an
expression like T g ∈ Mm(Z) will indicate that a function on Lipb(Z) ×
[Lip(Z)]m is understood.

We show next that every T ∈ MLoc,m(Z) with finite mass determines
an Ambrosio–Kirchheim current T ′ ∈ Mm(Z).

Proposition 2.5. Let T ∈ MLoc,m(Z) with M(T ) <∞. Then there exists
T ′ ∈ Mm(Z) such that, whenever (σn) is a sequence in LipB(Z) such that
|σn| ≤ 1 and σn → 1 uniformly on bounded sets, the restrictions T σn ∈
Mm(Z) converge in mass to T ′.

Proof. Let A ⊂ Z be a bounded Borel set, and let 0 < ε < 1. Suppose � ∈
LipB(Z), |�| ≤ 2, and |�| ≤ ε on A. Using (2.7) we obtain

M(T �) = ‖T �‖(Z) ≤
∫

Z
|�| d‖T‖ ≤ ε‖T‖(A) + 2‖T‖(Ac).

In particular, if ‖T‖(Ac) ≤ ε‖T‖(Z) and if σ, σ′ ∈ LipB(Z) are such that
|σ|, |σ′| ≤ 1 and σ|A, σ′|A ≥ 1 − ε, then

M(T σ − T σ′) = M(T (σ − σ′)) ≤ 3ε‖T‖(Z).

Since Mm(Z) is M-complete, the result follows. �
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Conversely, given an Ambrosio–Kirchheim current T ′ ∈ Mm(Z), one
obtains a well-defined element T ∈ MLoc,m(Z) by putting

T (f, π) := T ′(f, π′)

for (f, π) ∈ LipB(Z) × [LipLoc(Z)]m and any π′ ∈ [Lip(Z)]m with π′i|spt f =
πi|spt f ; moreover ‖T‖ = ‖T ′‖ on BZ . In case m ≥ 1, it follows that
∂T (f, π) = ∂T ′(f, π′) whenever (f, π) ∈ LipB(Z) × [LipLoc(Z)]m−1 and π′ ∈
[Lip(Z)]m−1 with π′i|spt f = πi|spt f . In particular, if T ′ ∈ Nm(Z), then T ∈
NLoc,m(Z) and ‖∂T‖ = ‖∂T ′‖ on BZ .

2.6. Slices

Let T ∈ NLoc,m(Z),m ≥ 1, and let � ∈ LipLoc(Z). For every r ∈ R, we define
the (m− 1)-dimensional metric functional

〈T, �, r〉 := ∂(T {� ≤ r}) − (∂T ) {� ≤ r},

called the (right-handed) slice of T at r, with respect to �. For every g ∈
LipLoc(Z), the slice of T g ∈ NLoc,m(Z) at r is given by

(2.14) 〈T g, �, r〉 = 〈T, �, r〉 g.

To see this, put Tr := T {� ≤ r} ∈ MLoc,m(Z) and (∂T )r := (∂T ) {� ≤
r} ∈ MLoc,m−1(Z), so that 〈T, �, r〉 g = (∂Tr) g − (∂T )r g. By (2.11),

∂((T g) {� ≤ r}) = ∂(Tr g) = (∂Tr) g − Tr (1, g)

and ∂(T g) = (∂T ) g − T (1, g), hence

(∂(T g)) {� ≤ r} = (∂T )r g − Tr (1, g),

and (2.14) follows. As in the theories in [1] and [7] we have:

Theorem 2.1. Let T ∈ NLoc,m(Z), m ≥ 1, and let � ∈ Lip(Z). Then for
almost every r ∈ R the slice 〈T, �, r〉 is a locally normal current with

spt〈T, �, r〉 ⊂ {� = r} ∩ sptT.

Moreover, for every Borel set A ⊂ Z and for −∞ < r0 < r1 <∞,
∫ r1

r0

‖〈T, �, r〉‖(A) dr ≤ Lip(�) ‖T‖(A ∩ {r0 < � < r1}).
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Proof. We choose a sequence (σi) in LipB(Z) such that every bounded set
A ⊂ Z is contained in {σi = 1} for some i. For every i, Ti := T σi ∈ Nm(Z),
and sptTi ⊂ sptT . Applying the slicing theorem [1, Theorem 5.6] to each Ti,
we conclude that there is a set N ⊂ R of measure zero such that for every
r ∈ R \N ,

〈Ti, �, r〉 = ∂(Ti {� ≤ r}) − (∂Ti) {� ≤ r} ∈ Nm−1(Z)

for all i, spt(〈Ti, �, r〉) ⊂ {� = r} ∩ sptTi, and
∫ r1

r0

‖〈Ti, �, r〉‖(A) dr ≤ Lip(�)‖Ti‖(A ∩ {r0 < � < r1})

for every Borel set A ⊂ Z and for −∞ < r0 < r1 <∞. Now we view 〈Ti, �, r〉
as an element of NLoc,m−1(Z). It follows from (2.14) that 〈T, �, r〉 σi and
〈Ti, �, r〉 agree as functions on LipB(Z) × [LipLoc(Z)]m−1. Thus, for every r ∈
R \N , 〈T, �, r〉 is a metric functional with the property that 〈T, �, r〉 σi ∈
NLoc,m−1(Z) for all i. Therefore, 〈T, �, r〉 ∈ NLoc,m−1(Z) by Lemma 2.2. If
A ⊂ Z is a bounded Borel set and i is such that σi|A = 1, then

‖〈T, �, r〉‖(A) = ‖〈T, �, r〉 σi‖(A) = ‖〈Ti, �, r〉‖(A)

and ‖Ti‖(A) = ‖T‖(A). We conclude that ‖〈T, �, r〉‖ is concentrated on
{� = r} ∩ sptT and that the claimed inequality holds for bounded Borel
sets, hence also for arbitrary Borel sets A ⊂ Z. �

2.7. Locally integer rectifiable and integral currents

We call a subset of Z a compact m-rectifiable set if it is the union of finitely
many sets of the form λ(K) where K ⊂ R

m is compact and λ ∈ Lip(K,Z).
A compact 0-rectifiable set is just a finite set. For condition (ii) below we
recall the basic examples of currents defined in (2.3).

Definition 2.4. For m ≥ 0, we denote by ILoc,m(Z) the set of all
m-dimensional metric functionals on Z with the following two properties:

(i) For every bounded open set U ⊂ Z and every ε > 0 there is a compact
m-rectifiable set C ⊂ U such that MU (Z) <∞ and MU\C(T ) < ε, in
particular T ∈ MLoc,m(Z);

(ii) for every bounded Borel set B ⊂ Z and every π ∈ Lip(Z,Rm) there
exists θ ∈ L1(Rm,Z) such that π#(T B) = [θ].

Elements of ILoc,m(Z) are called locally integer rectifiable currents.
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By (i), T ∈ MLoc,m(Z), and ‖T‖ is concentrated on the union of count-
ably many sets of the form λ(K) as above. Conversely, if T ∈ MLoc,m(Z)
and ‖T‖ is concentrated on such a union, then clearly T satisfies (i). In (ii),
π#(T B) is defined as an element of MLoc,m(Rm) according to the remark
after (2.5), in fact

π#(T B)(f, g) = T (1B(f ◦ π), g ◦ π)

for every (f, g) ∈ B∞
B (Rm) × [LipLoc(Rm)]m. We also remark that it suf-

fices to verify condition (ii) for bounded open sets B ⊂ Z, cf. the proof
of [7, Lemma 7.3]. In case m = 0, an element T ∈ ILoc, 0(Z) is just a func-
tion T : LipB(Z) → R of the following form: There exist a set E ⊂ Z and a
function θ : E → Z such that every bounded subset of E is finite and

T (f) =
∑

z∈E
θ(z)f(z)

for every f ∈ LipB(Z). Clearly ILoc,m(Z) forms an additive abelian group.
Let T ∈ ILoc,m(Z). If ϕ ∈ LipLoc(Z,Z ′) is such that ϕ−1(A) is bounded
whenever A ⊂ Z ′ is, then ϕ#T ∈ ILoc,m(Z ′); this uses (2.10) and the fact
that π# ◦ ϕ# = (π ◦ ϕ)#. If A ⊂ Z is a Borel set, then obviously T A ∈
ILoc,m(Z).

Proposition 2.6. If a current T ∈ MLoc,m(Z) satisfies condition (ii) of
Definition 2.4 with L1(Rm) in place of L1(Rm,Z), then ‖T‖ is absolutely
continuous with respect to H m.

Proof. It suffices to show that ‖T‖(C) = 0 for every bounded closed set
C ⊂ Z with H m(C) = 0. Suppose to the contrary that there is such a set
C with ‖T‖(C) > 0. By (2.8), M(T C) > 0, hence there exists (f, π) ∈
LipB(Z) × [Lip(Z)]m such that T (1Cf, π) = T C (f, π) �= 0. Approximat-
ing f by simple functions, and using the continuity of the extended functional
in the first argument, we find a closed set B ⊂ C such that T (1B, π) �= 0.
Since Lm(π(B)) = 0, there is a bounded Borel setN ⊂ R

m such that π(B) ⊂
N and Lm(N) = 0. Now

T (1B, π) = T (1B(1N ◦ π), π) = π#(T B)(1N , id) = [θ](1N , id)

for some θ ∈ L1(Rm). Since Lm(N) = 0, [θ](1N , id) = 0, a contradiction.
�

We now introduce the chain complex of locally integral currents.
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Definition 2.5. For m ≥ 1 we denote by ILoc,m(Z) the abelian group of all
T ∈ ILoc,m(Z) with ∂T ∈ ILoc,m−1(Z), and we put ILoc, 0(Z) := ILoc, 0(Z).
Elements of ILoc,m(Z) will be called locally integral currents.

In particular, locally integral currents are locally normal. In fact, Theo-
rem 2.2 below will show that ILoc,m(Z) = ILoc,m(Z) ∩ NLoc,m(Z). In anal-
ogy with Lemma 2.2 we have:

Lemma 2.3. Suppose T ∈ MLoc,m(Z), (Ai) is a sequence of bounded Borel
subsets of Z such that every bounded set A ⊂ Z is contained in some Ai,
and T Ai ∈ ILoc,m(Z) for every i. Then T ∈ ILoc,m(Z).

Proof. It is easily checked that T ∈ ILoc,m(Z). Moreover, in case m ≥ 1, it
follows from the strict locality of the extended functional T that
∂T (f, π) = ∂(T Ai)(f, π) whenever (f, π) ∈ LipB(Z) × [LipLoc(Z)]m−1 and
{f �= 0} ⊂ Ai, and this yields ∂T ∈ ILoc,m−1(Z). �

Next, we deduce the Boundary Rectifiability Theorem for locally integer
rectifiable currents from the corresponding result in [1]. We denote by Im(Z)
and Im(Z) the spaces of integer rectifiable and integral currents in Z, as
defined in [1, Definition 4.2].

Theorem 2.2. If T ∈ ILoc,m(Z), m ≥ 1, and ∂T ∈ MLoc,m−1(Z), then
∂T ∈ ILoc,m−1(Z), i.e., T ∈ ILoc,m(Z).

Proof. Note that T ∈ NLoc,m(Z). Let � be the distance function to a fixed
point z0 ∈ Z, choose a sequence 0 < r1 < r2 < · · · → ∞ such that 〈T, �, ri〉 ∈
NLoc,m−1(Z) for all i, and put Ai := B(z0, ri). Then ∂(T Ai) = 〈T, �, ri〉 +
(∂T ) Ai ∈ MLoc,m−1(Z), thus T Ai ∈ ILoc,m(Z) ∩ NLoc,m(Z). Now we
view T Ai as an element of Nm(Z). Then clearly T Ai also belongs to
Im(Z). By [1, Theorem 8.6], ∂(T Ai) ∈ Im−1(Z). Interpreting ∂(T Ai)
again as element of MLoc,m−1(Z), we conclude that ∂(T Ai) ∈
ILoc,m−1(Z). As this holds for every Ai, we have T ∈ ILoc,m(Z) by
Lemma 2.3. �

As a consequence, one obtains the following supplement to Theorem 2.1:
Whenever T ∈ ILoc,m(Z),m ≥ 1, � ∈ LipLoc(Z), and 〈T, �, r〉 ∈ NLoc,m−1(Z)
for some r ∈ R, then ∂(T {� ≤ r}) ∈ MLoc,m−1(Z), hence

T {� ≤ r} ∈ ILoc,m(Z)

and 〈T, �, r〉 ∈ ILoc,m−1(Z).
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Finally, we deduce the Closure Theorem for locally integral currents from
the corresponding result in [1].

Theorem 2.3. Suppose m ≥ 1, and (Tn) is a sequence in ILoc,m(Z) that
converges weakly to some T ∈ NLoc,m(Z), with

sup
n

[‖Tn‖(A) + ‖∂Tn‖(A)] <∞

for every bounded Borel set A ⊂ Z. Then T ∈ ILoc,m(Z).

Proof. Let � be the distance function to a fixed point z0 ∈ Z. As in the
proofs of [1, Proposition 8.3] and [7, Proposition 6.6] one shows that for
almost every r > 0 there exists a subsequence (n(k)) such that 〈Tn(k), �, r〉 ∈
NLoc,m−1(Z) for all k,

sup
k

M(〈Tn(k), �, r〉) <∞,

and Tn(k) A→ T A weakly, where A := B(z0, r). It follows that Tn(k)

A ∈ ILoc,m(Z) and

sup
k

[M(Tn(k) A) + M(∂(Tn(k) A))] <∞.

In addition, for almost every r ∈ R, 〈T, �, r〉 ∈ NLoc,m−1(Z) and hence T
A ∈ NLoc,m(Z). Now we interpret Tn(k) A and T A as elements of Im(Z)
and Nm(Z), respectively. By [1, Theorem 8.5], T A ∈ Im(Z), hence T A ∈
ILoc,m(Z) as a function on LipB(Z) × [LipLoc(Z)]m. In view of Lemma 2.3,
the result follows. �

2.8. Manifolds as currents

Every connected and oriented Riemannian manifold M that is complete as
a metric space gives rise to a locally integral current [M ] in M of the same
dimension. The same is true for proper, oriented Lipschitz manifolds, as
we show now. Recall that a metric space Z is an m-dimensional Lipschitz
manifold if it can be covered by charts (Uα, ϕα) where Uα ⊂ Z is open and
ϕα is a bi-Lipschitz map from Uα onto a relatively open subset of Hα :=
{λα ≥ 0}, for some linear function λα : R

m → R. If m ≥ 1, the boundary
∂Z is the (m− 1)-dimensional Lipschitz manifold consisting of all z ∈ Z
such that ϕα(z) ∈ ∂Hα for some α. A Lipschitz manifold Z of dimension
m ≥ 1 is said to be orientable if it admits an atlas {(Uα, ϕα)}α∈A such that
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det(∇(ϕα ◦ ϕ−1
β )) > 0 almost everywhere on ϕβ(Uα ∩ Uβ), for all α, β ∈ A.

An orientation is a maximal such atlas. If m ≥ 2, then an orientation on Z
induces an orientation on ∂Z.

Let now Z be a proper, oriented, m-dimensional Lipschitz manifold.
Choose a locally finite (hence countable) atlas {(Uα, ϕα)}α∈A of positively
oriented charts. Let furthermore (�α) be a locally Lipschitz partition of unity
on Z with spt �α ⊂ Uα. For (f, π) ∈ LipB(Z) × [LipLoc(Z)]m we define

[Z](f, π) :=
∑

α∈A
(ϕ−1

α )#[�α ◦ ϕ−1
α ](f, π)

=
∑

α∈A

∫

ϕα(Uα)
((�αf) ◦ ϕ−1

α ) det
(∇(π ◦ ϕ−1

α )
)
dLm.

Since spt f is compact and the chosen atlas locally finite, only finitely many
terms in these sums are non-zero. Furthermore we clearly have [Z] ∈
MLoc,m(Z) because (ϕ−1

α )#[�α ◦ ϕ−1
α ] ∈ MLoc,m(Z) for every α and because

the atlas is locally finite. It follows from the lemma below that [Z] ∈
ILoc,m(Z) and that [Z] is independent of the particular choices of atlas
and partition of unity.

Lemma 2.4. Let (U,ψ) be a positively oriented chart of Z, and let g ∈
B∞

Loc(Z) with spt g ⊂ U . Then

[Z] g = ψ−1
# [g ◦ ψ−1].

Proof. For (f, π) ∈ LipB(ψ(U)) × [LipLoc(ψ(U))]m, we have

ψ#([Z] g)(f, π) =
∑

α∈A

∫

ϕα(Uα∩U)
((�αg) ◦ ϕ−1

α )(f ◦ ψ ◦ ϕ−1
α )

× det
(∇(π ◦ ψ ◦ ϕ−1

α )
)
dLm

=
∑

α∈A

∫

ψ(Uα∩U)
((�αg) ◦ ψ−1)f det(∇π) dLm

= [g ◦ ψ−1](f, π).

This proves the lemma. �

We now show that if m ≥ 2, then

(2.15) ∂[Z] = [∂Z].
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Let (f, π) ∈ LipB(Z) × [LipLoc(Z)]m−1, and choose σα ∈ LipB(Z) such that
sptσα ⊂ Uα and σα = 1 on spt(�αf). Then

∂[Z](f, π) =
∑

α∈A
∂[Z](�αf, π) =

∑

α∈A
[Z](σα, �αf, π).

Furthermore, by Lemma 2.4 and Stokes’ theorem, generalized to Lipschitz
functions by bounded smooth approximation,

[Z](σα, �αf, π) =
∫

ϕα(Uα)
det

(∇((�αf) ◦ ϕ−1
α , π ◦ ϕ−1

α )
)
dLm

=
∫

ϕα(Uα)
d((�αf) ◦ ϕ−1

α ) ∧ d(π1 ◦ ϕ−1
α ) ∧ . . . ∧ d(πm−1 ◦ ϕ−1

α )

=
∫

∂Hα∩ϕα(Uα)
((�αf) ◦ ϕ−1

α ) d(π1 ◦ ϕ−1
α ) ∧ . . . ∧ d(πm−1 ◦ ϕ−1

α ).

This gives (2.15). In particular, if m ≥ 2, [Z] is a locally integral current,
and it is not difficult to check that this is also true when m = 1.

3. Proofs of the main results

3.1. The pointed compactness theorem

We now turn to our main result, Theorem 1.1, whose proof relies on the argu-
ments of [10]. The proposition below summarizes some key facts established
in Lemma 5.1 and the first part of the proof of Theorem 1.2 in that paper.
For n ∈ N, let Xn be a complete metric space with basepoint xn, and let
m ∈ N. Replacing Xn by l∞(Xn) if necessary, we may assume by [8, Corol-
lary 1.3] that for k ≥ 1, Xn admits an isoperimetric inequality of Euclidean
type for Ik(Xn) with constant Dk. This means that for every R ∈ Ik(Xn)
with ∂R = 0 there exists S ∈ Ik+1(Xn) with ∂S = R such that

M(S) ≤ DkM(R)(k+1)/k.

In fact, this inequality will only be used for k = 1, . . . ,m. Furthermore,
since every closed ball in l∞(Xn) is a 1-Lipschitz retract, we may assume
that sptS ⊂ B whenever sptR is contained in some fixed closed ball B ⊂
Xn. Now, fix integers 1 = j1 < j2 < j3 < . . . and positive numbers 1

2 > δ1 >
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δ2 > . . . such that

Δ :=
∞∑

i=1

δi <∞.

Recall that a sequence of compact metric spaces Kn is said to be uni-
formly compact if the diameters are uniformly bounded and if for every ε > 0
there is N(ε) ∈ N such that every Kn can be covered by N(ε) open balls of
radius ε.

Proposition 3.1. Let R,C > 0 and suppose that for every n ∈ N, Tn ∈
Im(Xn) satisfies sptTn ⊂ B(xn, R) and

M(Tn) + M(∂Tn) ≤ C.

Then there exist currents T 1
n , . . . , T

jn+1
n , U1

n, . . . , U
jn+1
n ∈ Im(Xn) with sup-

port in B(xn, R) such that

Tn = T 1
n + · · · + T jn+1

n + U1
n + · · · + U jn+1

n

and the following properties hold for a suitable constant Λ > 0 only depend-
ing on C,Δ, Dk and m:

(i) sptT in and sptU in are compact whenever i ≤ jn; furthermore, for each i
the sequence (sptT in ∪ sptU in), where n is such that jn ≥ i, is uniformly
compact;

(ii) ∂T 2
n = · · · = ∂T jn+1

n = 0, and ∂T 1
n = 0 in case m ≥ 2;

jn+1∑

i=1

M(T in) < Λ;

if m = 1 then U1
n = · · · = U jn+1

n = 0, and if m ≥ 2 then

jn+1∑

i=1

M(U in) + M(∂U in) < Λ;

(iii) for 1 ≤ L ≤ jn − 1, the cycle TL+1
n + · · · + T jn+1

n bounds an element of
Im+1(Xn) with mass less than ΛδL, and M(UL+1

n ) + · · · + M(U jn+1
n ) <

Λ
∑∞

i=L δi.
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For the proof of Theorem 1.1 we further recall the definition of flat norm
F (T ) of an integral current T ∈ Im(Z):

F (T ) := inf{M(U) + M(S) : T = U + ∂S, U ∈ Im(Z), S ∈ Im+1(Z)}.

A sequence (Tn) in Im(Z) converges in the flat topology to a current T ∈
Im(Z) if F (T − Tn) → 0.

Proof of Theorem 1.1. Choose numbers 0 < R1 < R2 < · · · → ∞ such that,
after passing to a subsequence, we have Tn B(xn, Rr) ∈ Im(Xn) and

sup
n

[M(Tn B(xn, Rr)) + M(∂(Tn B(xn, Rr)))] <∞

for r ∈ N. Existence of such a sequence (Rr) follows from Theorem 2.1
together with Fatou’s Lemma, and the remark after Theorem 2.2. Set R0 :=
0, and define Ar,n := B(xn, Rr) \B(xn, Rr−1) and

Tr,n := Tn Ar,n

for r, n ∈ N; clearly Tr,n ∈ Im(Xn) and

sup
n

[M(Tr,n) + M(∂Tr,n)] <∞.

Let T 1
r,n, . . . , T

jn+1
r,n , U1

r,n, . . . , U
jn+1
r,n ∈ Im(Xn) be currents as in Proposition 3.1

for Tr,n and Rr. For n, s ∈ N, define closed sets

Bs
n :=

s⋃

r=1

min{s,jn}⋃

i=1

({xn} ∪ sptT ir,n ∪ sptU ir,n)

and note that B1
n ⊂ B2

n ⊂ · · · ⊂ Xn. According to part (i) of Proposition 3.1,
for each s, the sequence (Bs

n) is uniformly compact. By [10, Proposition 5.2],
after passage to a subsequence, there exist isometric embeddings ϕn : Xn ↪→
Z and compact subsets Y 1 ⊂ Y 2 ⊂ · · · ⊂ Z, for some complete metric space
Z, such that

ϕn(Bs
n) ⊂ Y s

for all n and s. Since ϕn(xn) ∈ Y 1 for all n, we may arrange, by passing
to a further subsequence, that ϕn(xn) converges to some z0 ∈ Y 1. Clearly,
ϕn#U

i
r,n and ϕn#T

i
r,n are supported in Y s, whenever i ≤ min{s, jn} and r ≤

s. Moreover, for fixed r and i, it follows from part (ii) of Proposition 3.1 that
M(ϕn#T

i
r,n) and M(ϕn#U

i
r,n) + M(∂(ϕn#U

i
r,n)) are uniformly bounded and
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∂(ϕn#T
i
r,n) is either zero or, in case m = 1 and i = 1, equal to ϕn#(∂Tr,n).

We may therefore assume by the compactness and closure theorems in [1],
after passing to a subsequence, that for every r and i there exist T ir , U

i
r ∈

Im(Z) such that

ϕn#T
i
r,n → T ir , ϕn#U

i
r,n → U ir

weakly as n→ ∞. According to [9], replacing Z by l∞(Z) if necessary, we
may as well assume that the convergence is with respect to the flat topology.
Due to the lower semicontinuity of mass and assertion (ii) of Proposition 3.1,
we obtain that

∞∑

i=1

[M(T ir) + M(U ir) + M(∂U ir)] <∞

and hence T̄r :=
∑∞

i=1(T
i
r + U ir) ∈ Im(Z). Using part (iii) of Proposition 3.1,

one shows as in the last part of the proof of [10, Theorem 1.2] that, for
every r,

(3.1) F (T̄r − ϕn#Tr,n) → 0

as n→ ∞. In particular, it follows that spt T̄r ⊂ {z ∈ Z : Rr−1 ≤ d(z0, z) ≤
Rr}.

Now we view Tn,r and T̄r as elements of ILoc,m(Xn) and ILoc,m(Z),
respectively. We define a function T on LipB(Z) × [LipLoc(Z)]m by

T (f, π) :=
∞∑

r=1

T̄r(f, π),

where all but finitely many summands are zero because spt T̄r ∩ spt f = ∅
for sufficiently large r. It is easily checked that T ∈ ILoc,m(Z). To show that
ϕn#Tn → T in the local flat topology, let B ⊂ Z be a bounded closed set,
and choose s ∈ N so that T̄ s := T̄1 + · · · + T̄s satisfies ‖T − T̄ s‖(B) = 0, and
also ‖ϕn#(Tn − Tn B(xn, Rs))‖(B) = 0. It follows from (3.1) that there
exist Un ∈ ILoc,m(Z) and Sn ∈ ILoc,m+1(Z) such that

T̄ s − ϕn#(Tn B(xn, Rs)) = Un + ∂Sn

and M(Un) + M(Sn) → 0. Now

‖T − ϕn#Tn − ∂Sn‖(B) = ‖T̄ s − ϕn#(Tn B(xn, Rs)) − ∂Sn‖(B),
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hence (‖T − ϕn#Tn − ∂Sn‖ + ‖Sn‖)(B) = (‖Un‖ + ‖Sn‖)(B) → 0. This
concludes the proof. �

3.2. Local filling convergence

We now justify the remark on local filling after the statement of Theorem 1.1.
Replacing Z by l∞(Z) if necessary, we may assume that Z admits isoperi-
metric inequalities of Euclidean type for Ik(Z), k ≥ 1. (As before, this will
only be used for k = 1, . . . ,m.) A consequence is the following useful fact,
variations of which play a crucial role in the arguments of [8–10].

Lemma 3.1. For k = 1, . . . ,m+ 1, there are constants ck such that, when-
ever S ∈ Ik(Z) and M(S) < δk for some δ > 0, there exists S′ ∈ Ik(Z) with
∂S′ = ∂S, M(S′) < δk, and d(x, spt(∂S′)) < ckδ for all x ∈ sptS′.

Proof. For k ≥ 2, see [8, Lemma 3.4]. For k = 1, a part of the argument is
still valid. Given S ∈ I1(Z) with M(S) < δ and a constant Q > 1, one gets a
current S′ ∈ I1(Z) with ∂S′ = ∂S and M(S′) < δ that is quasi-minimizing in
the following sense: If x ∈ sptS′, 0 < r < d(x, spt(∂S′)), and S′ B(x, r) ∈
I1(Z), then

M(S′ B(x, r)) ≤ QM(Y )

for every Y ∈ I1(Z) with ∂Y = ∂(S′ B(x, r)). Since x ∈ sptS′, this shows
in particular that the slice 〈S′, �, r〉 = ∂(S′ B(x, r)) ∈ I0(Z) with respect
to the distance function � = d(x, ·) is non-zero, so that M(〈S′, �, r〉) ≥ 2.
Integration from 0 to d(x, spt(∂S′)) gives 2d(x, spt(∂S′)) ≤ M(S′), hence
d(x, spt(∂S′)) < δ/2. �

Suppose now that (Tj) is sequence in ILoc,m(Z) that converges in the
local flat topology to 0, and suppose that for every bounded set B ⊂ Z,
spt(∂Tj) ∩B = ∅ for all but finitely many j. We want to show that then
Tj → 0 in the following sense: For every bounded closed set B ⊂ Z there is
a sequence (S′

j) in ILoc,m+1(Z) such that spt(Tj − ∂S′
j) ∩B = ∅ for all but

finitely many j, and ‖S′
j‖(B) → 0. This is an immediate consequence of the

next result. We denote by Ur(A) the open r-neighborhood of a set A ⊂ Z.

Proposition 3.2. There is a constant c > 0 such that the following holds.
Suppose T ∈ ILoc,m(Z), B ⊂ Z is a bounded closed set, δ > 0, and S ∈
ILoc,m+1(Z) satisfies ‖T − ∂S‖(B) < δm and ‖S‖(B) < δm+1. Then there
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exists S′ ∈ ILoc,m+1(Z) such that

‖T − ∂S′‖(B) < δm, M(S′) < cδm+1,

spt(T − ∂S′) ⊂ Ucδ(spt(∂T ) ∪ (Z \B)) and sptS′ ⊂ Ucδ(sptT ∪ (Z \B)).

Proof. Assume B �= ∅. Put R := T − ∂S, and fix s > 0 such that
‖R‖(Us(B)) < δm and ‖S‖(Us(B)) < δm+1. Let � be the distance function
to B. There is an r ∈ (0, s) such that, for Br := {� ≤ r}, we have T Br,
(∂S) Br ∈ Im(Z) and S Br ∈ Im+1(Z). Then R Br ∈ Im(Z) and
M(R Br) < δm. By Lemma 3.1, there exists R′ ∈ Im(Z) such that ∂R′ =
∂(R Br), M(R′) < δm, and d(x, spt(∂R′)) < cmδ for all x ∈ sptR′. Note
that spt(∂R′) ⊂ spt(∂T ) ∪ (Z \B). Since R Br −R′ is a cycle with mass
< 2δm, the isoperimetric inequality of Euclidean type provides a current Q ∈
Im+1(Z) with ∂Q = R Br −R′ and M(Q) < 2(m+1)/mDmδ

m+1, for some
constant Dm. Then S Br +Q ∈ Im+1(Z), and M(S Br +Q) < (c′δ)m+1

for some constant c′. Using the above lemma again, we find S′ ∈ Im+1(Z)
such that ∂S′ = ∂(S Br +Q), M(S′) < (c′δ)m+1, and d(x, spt(∂S′)) <
cm+1c

′δ for all x ∈ sptS′. Note that ∂S′ = ∂(S Br) +R Br −R′ =
〈S, �, r〉 + T Br −R′, so T − ∂S′ = R′ + T (Z \Br) − 〈S, �, r〉. Now
‖T − ∂S′‖(B) = ‖R′‖(B) < δm, and the result follows. �

3.3. Uniqueness

We proceed to the discussion of Proposition 1.1. We use a similar argument
as in [10, Theorem 6.1].

Proof of Proposition 1.1. For each n, define the metric space Zn by gluing Z
and Z ′ along ϕn(Xn) and ϕ′

n(Xn). Denote by �n : Z ↪→ Zn and �′n : Z ′ ↪→ Zn
the natural isometric inclusions. Note that

�n ◦ ϕn = �′n ◦ ϕ′
n

for all n. Put A := {z0} ∪ sptT and A′ := {z′0} ∪ sptT ′. Choose compact
sets C1 ⊂ C2 ⊂ · · · ⊂ A and C ′

1 ⊂ C ′
2 ⊂ · · · ⊂ A′ with z0 ∈ C1 and z′0 ∈ C ′

1

such that ‖T‖(A \ ⋃
Ci) = 0 and ‖T ′‖(A \ ⋃

C ′
i) = 0. Clearly,

⋃
Ci is dense

in A and
⋃
C ′
i is dense in A′. Define

Bi
n := �n(Ci) ∪ �′n(C ′

i)

and note that B1
n ⊂ B2

n ⊂ · · · ⊂ Zn. Since ϕn(xn) → z0 and ϕ′
n(xn) → z′0,

it follows that dZn
(�n(z0), �′n(z′0)) → 0 as n→ ∞. For fixed i, the sequence
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(Bi
n) is uniformly compact. By [10, Proposition 5.2], we may assume, after

passing to a suitable subsequence, that there exist a complete metric space
Z ′′, isometric embeddings σn : Zn ↪→ Z ′′, and compact subsets Y 1 ⊂ Y 2 ⊂
· · · ⊂ Z ′′ such that

σn(Bi
n) ⊂ Y i

for all n and i. Consider the isometric embeddings τn := σn ◦ �n : Z ↪→ Z ′′

and τ ′n := σn ◦ �′n : Z ′ ↪→ Z ′′. Since τn(Ci) ⊂ Y i, we may assume, after pass-
ing to a subsequence, that τn|A converges pointwise to an isometric embed-
ding τ : A ↪→ Z ′′, uniformly on each Ci. Analogously, we may assume that
τ ′n|A′ converges pointwise to an isometric embedding τ ′ : A′ ↪→ Z ′′, uniformly
on each C ′

i. Since dZ′′(τn(z0), τ ′n(z′0)) = dZn
(�n(z0), �′n(z′0)) → 0, we have

τ(z0) = τ ′(z′0).

It is not difficult to show that τn#T → τ#T and τ ′n#T
′ → τ ′#T

′ weakly in
Z ′′. We claim that also τn#T − τ ′n#T

′ → 0 weakly. Then it follows that

τ#T − τ ′#T
′ = (τ#T − τn#T ) + (τn#T − τ ′n#T

′) + (τ ′n#T
′ − τ ′#T

′) → 0

and thus τ#T = τ ′#T
′. Consequently, τ(sptT ) = spt(τ#T ) = spt(τ ′#T

′) =
τ ′(sptT ′), and ψ := τ ′−1 ◦ τ : (A, z0) → (A′, z′0) is a pointed isometry with
ψ#T = T ′.

To prove τn#T − τ ′n#T
′ → 0, let first B′′ ⊂ Z ′′ be a bounded closed set,

and choose a bounded closed set B ⊂ Z with τ−1
n (B′′) ⊂ B for all n; note

that τn(z0) → τ(z0). Since ϕn#Tn → T in the local flat topology, there is a
sequence (Sn) in ILoc,m+1(Z) such that (‖T − ϕn#Tn − ∂Sn‖ + ‖Sn‖)(B) →
0, hence

(‖τn#(T − ϕn#Tn) − ∂(τn#Sn)‖ + ‖τn#Sn‖)(B′′)
≤ (‖T − ϕn#Tn − ∂Sn‖ + ‖Sn‖)(τ−1

n (B′′)) → 0.

This shows that τn#(T −ϕn#Tn)→ 0 in the local flat topology of
ILoc,m+1(Z ′′) and thus weakly. Analogously, τ ′n#(T ′ − ϕ′

n#Tn) → 0 weakly.
Since τn ◦ ϕn = τ ′n ◦ ϕ′

n, we have

τn#T − τ ′n#T
′ = τn#(T − ϕn#Tn) + τ ′n#(ϕ′

n#Tn − T ′),

and the claim follows. �
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3.4. Ultralimits and Gromov–Hausdorff limits

It remains to prove Proposition 1.2. For the definitions of ultralimits and
Gromov–Hausdorff limits of sequences of pointed metric spaces we refer
to [2, Chapter I.5] and [3, Section 8.1], respectively.

Proof of Proposition 1.2. For every z ∈ sptT we choose a sequence (yn(z))
with yn(z) ∈ sptTn such that ϕn(yn(z)) → z. This is clearly possible since
ϕn#Tn → T weakly and spt(ϕn#Tn) ⊂ ϕn(sptTn). We have

(3.2) dXn
(xn, yn(z)) = dZ(ϕn(xn), ϕn(yn(z))) → dZ(z0, z);

furthermore, if y′n ∈ sptTn and ϕn(y′n) → z′ ∈ sptT , then

(3.3) dXn
(yn(z), y′n) = dZ(ϕn(yn(z)), ϕn(y′n)) → dZ(z, z′).

It follows that there is a well-defined isometric embedding ψ : {z0} ∪ sptT →
(Xω, xω) that maps z to the equivalence class [(yn(z))] of (yn(z)) and z0 to
[(xn)] = xω. This proves (i).

For part (ii), since sptT is separable and Y is proper, it suffices to
show that for every finite set F ⊂ sptT there is an isometric embedding
f : {z0} ∪ F → Y that maps z0 to y0. For every z ∈ F , choose a sequence
(yn(z)) as above, and let En := {xn} ∪ {yn(z) : z ∈ F}. Due to (3.2), there
is an r > 0 such that En ⊂ B(xn, r) for every n. Hence, by the definition of
pointed Gromov–Hausdorff convergence, there are maps fn : En → Y such
that fn(xn) = y0 and

max
u,v∈En

|dY (fn(u), fn(v)) − dXn
(u, v)| → 0

as n→ ∞. Since Y is proper, we may assume that fn(yn(z)) converges to
some ȳ(z) ∈ Y , for every z ∈ F . Then dXn

(xn, yn(z)) → dY (y0, ȳ(z)) and
dXn

(yn(z), yn(z′)) → dY (ȳ(z), ȳ(z′)) for all z, z′ ∈ F . Thus, in view of (3.2)
and (3.3), we get an isometric embedding f : {z0} ∪ F → Y such that f(z0) =
y0 and f(z) = ȳ(z) for z ∈ F . �

Regarding the second part of Proposition 1.2, note also that if a sequence
of proper metric spaces (Xn, xn) converges to a complete metric space (Y, y0)
in the pointed Gromov–Hausdorff sense, then clearly every bounded subset
of Y is totally bounded and hence Y is proper.
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