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Ricci curvature and convergence of Lipschitz
functions

SHOUHEI HONDA

We give the definition of a convergence of the differentials of Lip-
schitz functions with respect to the measured Gromov-Hausdorff
topology and several properties of the convergence.

1. Introduction

Let {(M;,m;)}ien be a sequence of pointed n-dimensional complete
Riemannian manifolds (n > 2) with Ricy,, > —(n — 1), and (Y, y, v) a pointed
proper metric space (i.e., every bounded subset of Y is relatively compact)
with a Radon measure v on Y satisfying that (M;, m;,vol) converges to
(Y, y,v) with respect to the measured Gromov—Hausdorff topology. Here vol
is the renormalized Riemannian volume of (M, m;): vol = vol/vol By (m;).
Fix R > 0, a sequence { f }1<i<oo of Lipschitz functions f; on Br(m;) = {w €
M;;w;m; < R}, and a Lipschitz function f, on Br(y) with sup,; Lipf; < oc.
Here w, m; is the distance between w and m;, Lipf; is the Lipschitz constant
of f;. Then we say that f; converges to foo on Bgr(y) if fi(zi) = foo(Zoo)
for every z; € Br(m;) and every zo € Bpg(y) satisfying that z; converges
t0 Too. See Section 2 for these precise definitions. Assume that f; converges
to feo on Bg(y), below.

The purpose of this paper is to give a definition: the differentials df;
of fi converges to the differential dfsc of fs in this setting. In order to
give the definition below, we shall recall celebrated works on limit spaces of
Riemannian manifolds by Cheeger—Colding. By [1] and [6], it is known that
the cotangent bundle 7*Y of Y exists. We remark that each fiber T;Y is a
finite-dimensional real vector space with canonical inner product (-, -)(w) for
a.e. w € Y, and that every Lipschitz function g on Br(y) has the canonical
differential section: dg(w) € T,Y for a.e. w € Br(y). See Section 4 in [1] and
Section 6 in [6] for the details.
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We shall give the definition of a convergence of the differentials of Lips-
chitz functions (see Definition 4.4):

Definition 1.1 Convergence of the differentials of Lipschitz fun-
ctions. We say that df; converges to dfs, on Bpr(y) if for every e > 0,
every Too € Br(y), every zo, € Y, every sequence {x;}i<i<oo Of points x; €
Bpr(m;) satisfying that x; converges to oo, and every sequence {z; }1<i<oo
of points z; € M; satisfying that z; converges to z.., there exists » > 0 such
that

lim sup (dr,_,dfsc)dv| <e

1—00

1
(drs,, dfi>dm_qu/fat (7c)

1

and

1 1
li . |dvol < ———— |2
1?:%;113 vol By (z;) /Bt(l’z) dfifdyol < V(B (20)) /B,,(xoo) ldfec"dv - ¢

for every 0 < ¢t < r. Here r,, is the distance function from z;: ., (w) = Z;, w.

Roughly speaking, this convergence: df; — dfw, implies “Hy 2 (or Hyp)-
convergence with respect to the measured Gromov—Hausdorff topology”. See
Theorem 1.1 and Remark 4.5. If df; converges to dfs, on Bgr(y), then we
denote it by (fi,dfi) = (foo,dfsc) on Br(y). Assume (fi, dfi) — (foo, dfeo)
and (g;,dg;) — (9oo, dgoo) on Br(y) below.

In the paper, we will study several properties of the convergence and
give their applications. For example, we will show the following in Section 4:

Theorem 1.1. Let {F;}i<i<oo be a sequence of continuous functions on
R. Assume that F; converges to Fo, with respect to the compact uniformly
topology. Then, we have

lim E((dfi,dgi>)d\m1:/ Foo({df oo, dgoo) )dv.
t700 J Br(m:) Br(y)
Especially, if foo = goo, then
lim Fi(|df; — dgi|)dvol = Fuo(0)v(Br(y))-

11— 00 BR (mz)

See Corollary 4.4 for the proof. We will also show the following in
Section 4:
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Theorem 1.2. Let {h;}i<icco be a sequence of harmonic functions h; on
Bgr(m;), and hoo a Lipschitz function on Br(y). Assume that sup; Lip h;
< oo and that h; converges to hoo on Br(y). Then we have (h;,dh;) —
(homdhoo) on BR(:‘/)

We remark that in Theorem 1.2, h is a harmonic function on Br(y),
proved in [11] by Ding. We will give an alternative proof of it in Section 4.
See Corollary 4.7.

The organization of this paper is as follows:

In the next section, we will recall several important notions and propeties
of metric spaces, Riemannian manifolds and their limit spaces. Most of state-
ments in Section 2 do not have the proof, we will give a reference for them
only.

In Section 3, we will show several results about rectifiability of limit
spaces of Riemannian manifolds. See Theorems 3.1 and 3.4. It is important
that their functions in these theorems which give a rectifiability of limit
spaces, are distance functions. As a corollary of them, we will give an explicit
geometric formula for the radial derivative of Lipschitz functions from a given
point. See Theorem 3.3. These results are used in Section 4 essentially.

In Section 4, we will give two-definitions of pointwise convergence of
L*°-functions with respect to the measured Gromov—Hausdorff topology, and
give the definition of a convergence of the differentials of Lipschitz functions
again via the definitions of convergence of L°°-functions. We will also give
several properties of the convergence. The main properties are Theorems
4.1, 4.2 and Corollary 4.5.

Finally, we shall introduce several applications of this paper. In [24],
we will give an application of this Section 4 to a study of harmonic func-
tions with polynomial growth on asymptotic cones of non-negatively Ricci-
curved manifolds having Fuclidean volume growth. For example, we will
show that a space of harmonic functions on asymptotic cones with polyno-
mial growth of a fixed rate is a finite-dimensional vector space. We can regard
it as asymptotic cones version of the conjecture [9, Conjecture 0.1] by Yau
[39, 40]. Moreover, in [24], we will give “Laplacian comparison theorems on
limit spaces of Riemannian manifolds” by using several results given in Sec-
tion 4, and show a stability of lower bounds on Ricci curavture with respect
to the Gromov—Hausdorff topology as a corollary of them. In [25], we will
also give a geometric application by using several results in this Section
4, to limit spaces of Riemannian manifolds with Ricci curvature bounded
below.
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2. Background

Our aim in this section is to give several notation, important notions and
properties for metric measure spaces and manifolds. For a positive number
€ > 0 and real numbers a, b, we use the following notations:

a=bte<=la—b|<e

We denote by W(ey,e€g,...,€x;c1,¢2,...,¢) (more simply, ¥) some positive
function on RI;O x R satisfying

lim  W(ep,eg,...,ex;¢1,¢0,...,¢) =0
€1,€2,...,6,—0
for each fixed real numbers ¢y, ¢, . . ., ¢;. We often denote by C'(c1, ca, ..., ¢p)
some positive constant depending only on fixed real numbers ¢y, ca, ..., .

2.1. Metric measure spaces

For a metric space Z, a point z € Z and positive numbers r, R with » < R,
we use the following notations: B,(z) = {z € Z;z,Z <r}, B,(2) = {z € Z;
zZ, 2 <r},0B,(z) ={x € Z;Z,x =r}. Here y, 7 is the distance between y
and z, we often denote the distance by dz(y,x). For every subset A of
Z, we also put B,.(A) ={z € Z; A,w <r} and B,(A) ={z € Z; A,x <r}.
For z € Z, we define a 1-Lipschitz function 7, on Z by r,(w) = Z,w. For a
Lipschitz function f on Z and a point z € Z, which is not isolated in Z, we
put

lipf(z) = liminf ( sup

r=0 \eeB,(\{z}  T:Z
Lipf(z) = limsup sup M .
r—0 z€B,(2)\{z} T,z

If z is an isolated point in Z, then we put lipf(z) = Lipf(z) = 0. We also
denote the Lipschitz constant of f by Lipf. We remark that for every subset
A of Z and every Lipschitz function f on A, there exists a Lipschitz function
f* on Z such that f*|4 = f and Lipf* = Lipf. See for instance (8.2) in [2].

We say that Z is proper if every bounded subset of Z is relatively
compact. We also say that Z is a geodesic space if for every x1,x9 € Z,
there exists an isometric embedding v from [0, Z1, 2] to Z such that v(0) =
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x1,7(T1, T2) = x2. 7 is called a minimal geodesic from x; to xy. For a proper
geodesic space W and a point w in W, we put C, = {z € W;w,z+ 2z, % >
w,z for every x € W\ {z}} (if W is a single point, then we put C,, = ),
and call it the cut locus of W at w.

For a proper metric space Z and a Radon measure v on Z, we say
that the pair (Z,v) is a metric measure space in this paper. For a metric
measure space (Z,v), a point z in Z and a non-negative integer k, we say
that v is Ahlfors k-regular at z if there exist r > 0 and C > 1 such that
C~! < v(By(2))/tF < C for every 0 < t < r. We shall introduce the notion
of v-rectifiability for metric measure spaces by Cheeger—Colding. See [6,
Definition 5.3] and [6, Theorem 5.7]. See also [12]. For metric spaces X1, Xo,
a positive number § with § < 1, and a bijection map f from X; to Xo, we
say that f is (14 6)-bi-Lipschitz to X if f and f~! are (1 + §)-Lipschitz
maps.

Definition 2.1 Rectifiability for a Borel subset of metric measure
spaces. For a metric measure space (Z,v) and a Borel subset A of Z, we say
that A is v-rectifiable if there exists a positive integer m, a collection of Borel
subsets {C;}i<k<mien of A, and a collection of bi-Lipschitz embedding
maps {¢p; : Cr; — Rk};w such that the following properties hold:

Lov(A\ Ukz Ci,i) =0
2. v is Ahlfors k-regular at each z € Cj ;.

3. For every k, x € |J;cy Ck,i and every 0 < 6 < 1, there exists C}; such
that € Cj; and that the map ¢y, ; is (1 £ J)-bi-Lipschitz to the image

Dk,i(Chyi)-

Remark 2.1. The third (1 + §)-bi-Lipschitz condition in the above defini-
tion is important. Actually, the existence of the canonical inner product of
the cotangent bundle of Ricci limit spaces follows from this property. See
condition (zi7) of page 60 of [6] and Section 6 in [6].

2.2. Gromov—Hausdorff convergence

For compact metric spaces X1, Xo, we denote the Gromov—Hausdorff dis-
tance between X and X9 by dan (X1, X2). See [17] for the definition. On the
other hand, for compact metric spaces X1, Xs, a positive number ¢ > 0 and
amap ¢ from X; to Xo, we say that ¢ is an e-Gromov-Hausdorff approxima-
tion if X9 = B.(Image¢) and |7,y — ¢(z), ¢(y)| < € for every x,y € X;. For
a sequence of compact metric spaces {X; }1<i<oo, We say that X; converges to
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Xoo if don (X, Xoo) converges to 0. Then we denote it by X; — Xoo. Sim-
ilarly, for pointed compact metric spaces (X1, 1), (X2, x2), we can define
the pointed Gromov-Hausdorff distance dau((X1,1), (X2, 22)). Moreover,
for a sequence of pointed proper geodesic spaces {(Z;, zi) }1<i<oo, We say that
(Zi, zi) converges to (Zso, 200) if there exist sequences {¢;}i, {R;}; of posi-
tive numbers, and {¢; }; of Borel maps ¢; from (Bg,(z;), z;) to (BRr,(200), Z00)
such that ¢, — 0, R; — 00 as i — 00, BR,(2s0) C B, (Image¢;) and |a, 3 —
¢i(a), 9i(B)| < ¢ for every a, 8 € Bp,(x;). We denote it by (Z;, z;) (@)
(Zso, 200), or more simply, (Z;,2;) — (Zoo, 200)- 1t is easy to check that
(Zi, 2;) — (Zoo, 200) if and only if dau((Br(2:), 2i), (Br(200), 200)) — 0 for
every R > 0. For a sequence {z;}i1<i<co Of points z; € Z;, we say that z;

converges to T if x; € Bpr,(2z;) and ¢;(x;), Tso — 0. Then, we denote it by
Ty — To-

Let (Zi, zi) — (Zoo, 200). For a sequence {A;}1<i<oo Of subsets A; of Z;
with sup; z;, A; < oo, we say that A; is included by Aso asymptotically if for
every € > 0, there exists ig such that ¢;(A;) C Be(Ax) for every i > ig. Then
we denote it by limsup{L A; C As (if Ao =0, then limsup{il A; C
A, implies A; =) for every sufficiently large 4). Similarly, we also say
that As is included by A; asymptotically if for every e > 0, there exists
ip such that As, C Be(¢i(4;)) for every i > ig. Then we denote it by A, C
liminf$1L 0 A;. Let Oy C liminfSIL C;. For a sequence {f;}1<i<oo Of Lips-
chitz functions f; on C; with sup; Lip f; < oo, we say that fo is a restriction
of fi asymptotically if lim; oo fr(i)(Wn(i)) = foo(w) for every w € Ci, every

subsequence {n(i)}; of N, and every wy,;y € Cp;y With ¢y, (wyey), w — 0.
Let limsup;_,., D; C Do and assume that Do, is compact. For a sequence
{9i}1<i<oo of Lipschitz function g; on D; with sup; Lip g; < oo, we say that
goo 18 an extension of g; asymptotically if lim; oo gp(i)(Wn(i)) = goo(w) for
every w € Dy, every subsequence {n(i)}; of N, and every wy,; € Dy, ;) with
¢n(z) (wn(z)>7 w — 0.

For a sequence {K;}i<i<oo Of compact subsets K; of Z;, we say that
(Ziy ziy, K;) converges t0 (Zoo, Zoo, Koo) if limsupl-G_I){oo K; C Koo and Ko C

lim infgloo K; hold. Then we denote it by (Z;, z;, K;) (@1 Fye) (Zoos Zooy Koo),
or more simply, (Z;, zi, K;) — (Zoo, 200, Koo ), o8 K; — K.

Let  (Zi, 2, Ki) — (Zoo, 200, Koo). For  sequences  {fl}i<i<oos- -,
{fF}1<i<co of Lipschitz functions f! on K; with sup, ;(Lipf! + | f!|1~) < o0,
we say that (Z;,z;, Ki, f1,..., fF) converges to (Zoo, 200, Kooy flos -+ -5 fE)
if f!. is an extension of {f'}; asymptotically for every I. We denote it by
(Ziy 2, Kiy 1y fF) = (Zoo, Zoos Kooy f&y -+, fE), or more simply, f! —

70 00

fL, for every I. Then it is easy to check that lim; . |f! — f. o bil (k) = 0.
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It is not difficult to check the following proposition:

Proposition 2.1. Let {(Z;, z;) }1<i<oo be a sequence of pointed proper geod-
esic spaces, A a set and {A?}AEA a collection of bounded subsets of Z; for
every 1 < i < co. Assume that (Z;,z;) converges to (Zoo, 200), A2, is com-
pact for every X € A and that lim supiG_I,{oo Af‘ C A}, for every A € A. Then,
we have limsupSL Maea A2 CMyen 45 and lim supSL (A4;\ B (z))
Ao \ Br(xoo) for every r >0 and every sequence {x;}; of points z; in Z;
with T; — Too.

We shall recall a fundamental covering lemma for proper metric spaces.
See Chapter 1 in [38] for the proof.

Proposition 2.2. Let X be a proper metric space, A a subset of X, A a
set, {zx}ren a collection of points in X and {r)}xean a collection of positive
numbers. Assume that for every x € A and every € > 0, there exists A € A
such that x € B, (z)) and diam B, (v)) < €. Then, there exists a countable
subset A1 of A such that the following properties hold:

L. {B,, (xx)}nen, are pairwise disjoint collection.

2. We have

A\ U B, | Ba(aa)

A2€A, AEA\A-

for every finite subset Ay of Ay.

We shall recall the definition of measured Gromov—Hausdorff conver-
gence. Let (Z;, 2;) — (Zoo, 200). For a sequence {v;}i<i<oo of Radon mea-
sures v; on Z;, we say that (Z;, z;,v;) converges to (Zoo, Zoos Vo) With
respect to the measured Gromov-Hausdorff topology if lim; oo v;(By(x;)) =
Voo (Br(To)) for every r > 0 and every sequence {z; }; of points x; in Z; with
T — Too. See also [13]. Then we denote it by (Z;, zi, Vi) — (Zoo, Zoos Voo)-
The next proposition is used many times in this paper. We skip the proof
because it is not difficult to check it by using Proposition 2.2.

Proposition 2.3. Let {(Z;, zi,vi) }1<i<oo be a sequence of pointed proper
geodesic spaces with Radon measures, and {A;}1<i<oo a sequence of Borel
subsets A; of Z;. Assume that vi(B1(z;)) = 1, Ao is compact, (Z;, z;, v;) —

(Zooy Zoo0y Voo ), lim Supgloo A; C Ay and that for every R > 0 there exists
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k = K(R) > 1 such that v;(Bar(x;)) <2%v;(By(x;)) for every 0< r< R, every
1 <1i < oo and every x; € Z;. Then we have

lim sup v; (Az) < Voo (Aoo)

i—00
We shall give a proof of the following proposition:

Proposition 2.4. Let {(Z;, zi,vi) hi<i<oo be a sequence of pointed proper

geodesic spaces with Radon measures. Assume that v;(B1(z;)) = 1 for every 1,
’i?Rh k3

diam Z, > 0, (Z;, zi, v;) (#e,Rpc) (Zoos Zoo, Vo), and that for every R >0,

there exists k = k(R) > 1 such that v;(Bay(z;)) < 2%v;i(By(x;)) for every

0<r<R,everyl <i< oo and every x; € Z;. Then, we have

lim sup |0i(By (i) = Voo (Br(¢i(xi)))| = 0

100 1. € Br(2:),0<r<R

for every R > 1.

Proof. It is easy to check that rad Z, > 0. Here rad X = inf,, cx(sup, cx
T1,22) for a metric space X. Put k = k(100R). Let 7 > 0 with 7 < rad Z.
Then, there exists N such that for every N < i < oo and every w € Z;, there
exists 1 € Z; such that w,w = 7. Since Bs(w) C B,15(w) \ Br_s(w) for
every 0 < § < 7, by [10, Lemma 3.3], there exists 7 < 7 such that v;(B(w))
< U (t; k, R)vi(Bior(w)) for every N <i < oo, every w € Z; and every 0 <
t < 7. Fix € > 0. Then, there exist Ny € N and 0 < r; < min{R, 7,¢,1}
such that v;(Bs(z)) < € for every N; <1i < oo, every 0 < s <7 and every
z € Br(z). Let {zj}1<j<1 C Br(zo) and {t;},_;; C [0, R] satisfying that
Bp(2o0) € U~y Ber, () and [0, R] € U’ Ber, (t;). Let 2;(i) € Br(z;) with
x;(i) — x;. There exists Na > Ny such that [v; (B, (2;(i))) — veo(Bt; (25))] <
€ for every i > No, every 1 < j <! and every 1 gi <. Fix z € Br(zeo)
and s € [r1, R]. Let j € {1,...,1} and j € {1,...,I} satisfying that z,7; <
erp and |s — ;| < er;. Then, by [10, Lemma 3.3], we have |vo(Bs(2)) —
UOO(Bt; (@5))] < Voo(Bstser, (2)) = Voo (Bs—ser, (2)) W (€; £, R, T) Voo (BR(200))
On the other hand, for a sequence {z(7) }; of points z(¢) in Br(z;) with z(i) —
2, [0 (Bo(2(0) — (B, (23 0))] < 01(Bo 10, () — 0i( Bo10n, (2(3))) <
U(e; k, R, T)vi(Br(zi)) < V(e K, R, T)vso (Br(2c0)) for every i > Na. Thus,
we have |v;(Bs(2(1))) — voo(Bs(2))| < U(€; K, R, T)Uoo (Br(2x0)) for every i >
Ns. Therefore, we have the assertion. Il
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2.3. Riemannian manifolds and their limit spaces

For a real number K and a pointed proper geodesic space (Y,y), in this
paper, we say that (Y, y) is a (n, K)-Ricci limit space if there exist sequences
of real numbers {K;};, and of pointed n-dimensional complete Rieman-
nian manifolds {(M;, m;)}; with Ricys, > K;(n — 1) such that K; — K and
(M;,m;) — (Y,y). Similarly, for a pointed proper geodesic space with Radon
measure (Y,y,v), we also say that (Y,y,v) is a (n, K)-Ricci limit space
(of {(M;, m;,vol)}; ) if (M;, m;,vol) — (Y, y,v) as above. More simply, for a
(n, —1)-Ricci limit space (Y,y) (or (Y,y,v)), we say that (Y,y) is a Ricci
limit space. See for instance Section 4.1 in [34]. We shall fix a Ricci limit
space (Y,y,v) in this subsection and give a very short review of structure
theory of Ricci limit spaces developed by Cheeger—Colding, Colding, below.
See [3-6, 8] for the details.

For pointed proper geodesic spaces (Z, z) and (X, x), we say that (Z, z)
is a tangent cone of X at x if there exists a sequence of positive num-
bers {r;}; such that r; — 0 and (X, z,7; 'dx) — (Z, 2). For k > 1, we put
Ri(Y) = {r € Y; All tangent cones at x are isometric to R¥} and call
it the k-dimensional regular set. More simply, we shall denote it by Ry.
We also put R =J;<p<,, Rr and call it the regular set. Then we have
v(Y\R) =0. See [4, Theorem 2.1] for the proof. For §,r >0 and 0 <
a < 1,weput (Rg)s, = {z € Y;dau((Bs(z),z), (Bs(0x),0%)) < ds for every
0<s<r} and (Ria)r = {z € Yideu((Bs(z),z), (Bs(0g),0r)) < stte for
every 0 < s <r}. Here 0, € R¥. We remark that (Ry)s, and (Ry.a)- are
closed, (5-¢ (Ur>0(Rk)5,r) = Ry. We also put Ri;o = U,<0(Risa)r By [4,
Theorem 3.23] and [4, Theorem 4.6], there exists 0 < a(n) < 1 such that
V(Ri \ Riza(n)) = 0 and that v is Ahlfors k-regular at every point in Ry.q(n)
for every k.

On the other hand, it is known that Y is v-rectifiable. See [6, Theorem
5.5] and [6, Theorem 5.7]. Thus, by Section 6 in [6] or Section 4 in [2],
the cotangent bundle T*Y of Y exists. We will give several fundamental
properties of the cotangent bundle only:

1. T*Y is a topological space.
2. There exists a Borel map 7 : T*Y — Y such that v(Y \ 7(T*Y)) = 0.

3. 7 1(w) is a finite-dimensional real vector space with canonical inner
product (-, -)(w) for every w € 7w(T*Y).

4. For every open subset U of Y and every Lipschitz function f on
U, there exist a Borel subset V' of U, and a Borel map df (called
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the differential section of f or the differential of f) from V to T*Y
such that v(U \ V) = 0 and that 7 o df (w) = w, |df|(w) = Lipf(w) =
lipf(w) for every w € V, where |v|(w) = /(v, v)(w).

We call {(-,)(w)}wer(r+y) the Riemannian metric of Y and denote it by
(-,-). Finally, we remark that v(C;) = 0 for every x € Y. See [22, Theorem
3.2]. These above results are used in Section 3, essentially.

3. Rectifiability on limit spaces

In this section, we shall study a rectifiability of Ricci limit spaces. These
results given in this section are used in Section 4, essentially.

3.1. Radial rectifiability
The main result in this subsection is Theorem 3.1.

Lemma 3.1. Let Z be a proper geodesic space, z a point in Z, s, posi-
tive numbers, v a Radon measure on Z and F' a non-negative valued Borel
function on Bs(m). Assume that

o(Bo(2) /BS(Z) Fdv <o

and that there exists k > 1 such that 0 < v(Bat(w)) < 2%v(By(w)) for every
w € Bs(z) and every 0 <t <s. Then, there exists a compact subset K of
By j102(2) such that v(K)/v(Bgj102(2)) > 1 — ¥ (0; k) and

o
v(Bi(z))

for every x € K and every 0 <t < 5/102.

/ Fdv < ¥ (0; k)
(@)

Proof. Without loss of generality, we can assume that F' is a non-negative
valued Borel function on Z by deﬁning F=0on Z\ Bs(z). Fix C > 0 and
put A;(C) = {w € By( fB w) Fdv = Cu(Bg 12 (w))}. Let {zihi<i<k
be an s/10-maximal separated subset of A1(C). Put Ay(C) = {w € Bs(m) \
Uk, Bs(z)); J5. sy Fdv = Co(Byjigs(w))}. Let {a73}1<j<p, be an s/10%
maximal separated subset of As(C). By iteratlng this argument, put
A)(C) = {w € Bs(m) \ Ur<j<i-1, 1<i<k, Bsjro-2( fB ) Fdv > Cv

/101+1
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(Bs/1o01 (w)) }. Let {xé'}lgjgk:l be an s/10'-maximal separated subset of
A (C).

Claim 3.1. The collection {Es/l()“rl(xfli)}i,l are pairwise disjoint.

Letw € Es/lofﬂ (a:i) N Es/loHl (z}). Assume that | < I. Then, by the con-

struction, we have xi e M\ U?’Zl Bs/wm(xé). Especially, we have xi,xﬁ >
5/10'=1. Therefore, we have Es/lofﬂ (xi) N By /1ge+1 (¢}) = 0. This is a contra-
diction. Therefore, we have [ = [. By the definition, we have ¢ = i. Thus, we

have Claim 3.1.
It is easy to check the following claim:

Claim 3.2. We have ;e 4i(C) C Ujen 1<i<h, By g2 (at)

We have
Fdv>C Y v(B_g (a})
1N, 1<i<k, ’ Brgirr (&) IEN,1<i<k,
>CC(k) Y, v(B_g,(ah) > CC(r)v
1eN,1<i<k;
X U B
IEN,1<i<k

On the other hand, we have

Fdv = /
€ UlEN.lgigkl Bﬁ

< O(r)v(Bs(2))d.

Fdv < / Fdv
(z}) B (2)

IEN,1<i<k, / Brtrr

Therefore, we have

U<Ul€N,1§i§kl Bm(xﬁ)> - )
v(Bg(m)) = C

C (k).

By letting C' = v/ and K = By 10:(2) \ Uren,1<i<i B—i= (z1), we have the

assertion. 0

Let (Y,y) be a Ricci limit space, k an integer with k < n, and r,d positive
numbers with r < 1, § < 1. Let (Ry)¥ . be the set of points w in Y satisfying
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that for every 0 < s <r, there exists a map ® from By(w) to R* such
that m o ® =r, and that ® is a Js-Gromov-Hausdorff approximation to
By (®(w)) Here, m; is the projection from RF = R x R¥~! to R defined by
(T, ..., k) = X1.

Lemma 3.2. We have

ﬂ(U«mmx@ﬂ_nmap

6>0 \r>0

Proof. 1t is easy to check that

ﬂ(U«MmAQOCRMQF

6>0 \r>0

Let w € Ry, \ C,. For every § > 0, there exists r > 0 such that for every 0 <
s < 7, there exists a §s-Gromov—Hausdorff approximation from (Bg(0x), Ox)
to (Bs(w),w). Here, 05 € R¥. On the other hand, by the splitting theorem on
limit spaces [2, Theorem 9.27], there exist a pointed proper geodesic space
(Ws,w,) and a map ® from (Bs(w),w) to (Bs(0,ws), (0,ws)) such that
mRo® =r, —T,w and that ® is a ds-Gromov—Hausdorff approximation.
Here, B4(0,ws) C R x W, with the product metric |/d} + d%,[,s, 7R is the
projection from R x W to R. By rescaling s "!dgrx and [21, Claim 4.4], there
exists a ¥(d;n)s-Gromov-Hausdorff approximation f from (Bg(ws),ws) to
(Bs(05_1),0_1). Define a map ¢ from By(w) to R¥ by ¢(z) = (7,2, f o D).
Let 75 be the canonical retraction from R* to B,(g(w)). Put § = w50 g.
Then, it is easy to check that ¢ is an W(d;n)s-Gromov-Hausdorff approxi-

mation to (Bs(g(w)),g(w)). Since § is arbitrary, we have the assertion. [J

Put DI={w € X; There exists « € X such that &, w > 7 and T, w + W, a =
T, a} for a proper geodesic space X, a point x € X and a positive num-
ber 7 > 0. It is easy to check that D] is closed. By the definition, we have
U,s0D = X\ C;. Let Leb A = {a € A;lim, qv(B(a) N A)/v(B;(a))=1}
for a metric measure space (X,v) and a Borel subset A of X.

We shall give a fundamental result about rectifiability of limit spaces
by distance functions. The essential idea of the proof is to replace harmonic
functions giving rectifiability in [6, Theorem 3.26] with suitable distance
functions via the Poincaré inequality.

Lemma 3.3. Let (Y,y,v) be a Ricci limit space, k a positive integer satis-
fying k <mn, §,r positive numbers satisfying 6 < 1,r <1, = a point in Y
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and w a point in (Ry)5, NLeb((Ri)sr) \ (Cz U{x}). Then, there exists
n(w) > 0 such that the following property holds: For every 0 < s < n(w),
there exists a compact subset L of Bs(w) N (Ry)sr and a collection of points
{zj}o<j<k in Y such that v(L)/v(Bs(w)) > 1—VY(d;n) and that the map
® = (ry,T0y,---,7z,) from L to R, is an (14 U(8;n))-bi-Lipschitz equiva-
lent to the image ®(L).

Proof. There exists 0 <7 <r such that w € D]\ B;(z) and v(Bs(w)N
(Ri)sy)/v(Bs(w)) > 1 =4 for every 0 < s < 7. Let (M;, m;, vol) — (Y, y,v),
and let {z;};, {w; }; be sequences of points x;, w; in M; satisfying that w; — w
and x; — x. Fix 0 < s < min{d,7}. Then, for every sufficiently large i,
there exists a §s-Gromov-Hausdorff approximation ®' = (®%,...,®%) from
(Bs(w;), w;) to (Bs(0g),0x) such that &} =r, —r,, (w;). Put so = /ds.
For convenience, we shall use the following notations for rescalefi metrics
sgtds,, sg tdy: vol = volso i f () = sg rw(a), Bi(a) = B}° A () =
Bs,i(), © = v/v(Bs,(y)), § = s 'g for a Lipschitz function g and so on. We
also denote the differential section of g as rescaled manifolds (M;, sy day,)
by (ig : M; — T*M,; and denote the Riemannian metric of (M;, saldMi) by
;)50 =59 (-,-). We remark that (Mi,mi,saldMi,Lcﬂsalde) — (Y, y,85"
dy, ). The following claim follows from the proof of the splitting theorem
on limit spaces (see for instance [2, Lemmas 9.8, 9.10 and 9.13] or [3]).

Claim 3.3. For every sufficiently large i, there exist collections of harmonic
functions {bj}1<j<p on Biopx(wi), and of points {x}}o<j<k in B 5-1(wi)

such that |b§ — fx; |Lx(1§1002 (w:) < W(d;n),

1 o )
vol Bioo: (wi) /B g N5 = s, + [Hessy, 2, ) dvol < W(3; ),
1007 ( 1002 (Wi J
and
1 U .
vE)lElOO(w)/B () [(dbj, by)s, |dvol = & + W (d;n)
2 i 1002 (Wi
fO?" every 1 S] <I< k, where x = xi or every 7.
1

Define a non-negative valued Borel function F; on 31002 (w;) by

2
So*

i k
Fy = > Uip(b — 7)Y [{dbf, dbf), | + Y |Hessy,
=1 #3 =1
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By Lemma 3.1, for every sufficiently large ¢, there exists a compact subset
Ki of Eloo(’wi) such that vol Ki/vol Bloo(wi) > 1-— \IJ(5, n) and

1/ Fidvol < U(8;n)
vol Bi(a) J B, ()

for every a € K; and every 0 < t < 100.

Claim 3.4. For every sufficiently large i, every a € K; N Bg)o(’wl) every
1 <j <k, and every 0 <t < 50, there exists a constant Cz such that bz =

zi +Cj’:|:\11(6 n)t on By(a).

The proof is as follows. By the Poincaré inequality, we have

1 Ny 1 . R -
vol Bt(Oé) Bi(a) ! vol Bt(a) Bi(a) !
1 a R
<tC(n M/ Lip(b% — 74,))?dvol
N 57 i TP 720

For C > 0, let A;(C) be the set of points 3 € By(«) satisfying that

> C.

b — T —71 Ai-—fi Vz)
B9 4 8) ~ /E},,(a)(b] 2 )dvol

Then, we have

1 . . .
U(d;n)t > / ) — M/ (b} — 74 )dvol| dvol
vol Bt Bi(a ” vol By(a) JB,(a) !

VolA (C)
vol Bi(a)

Put C = \/W(8; n)t for ¥(;n) as above. Then we have vol Aj(C)/vE)I Bi(a)

< /¥(9;n). R )
Assume that there exist 3 € B(«) and € > 0 such that By (8) C A;(C).
Then, by the Bishop—Gromov volume comparison theorem, we have C(n)e" <

vol Be(3)/vol By(a) < vol Aj(C')/vz)l Bi(a) < \/¥(6;n). Therefore, by
1/n
letting € = <2C(n)_1 U(6; n)> , we have a contradiction.
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1/n ~ A A
Put € = (2C(n)—1 T (s; n)) "™ Let 8 € By(a) and § € Bi_oy (@) with

fp(ﬁ) < et. Then, there exists v € Bu(3) \ 4;(C). Especially, we have ~ €
By («). By the definition of A;(C'), we have

~ . 1 ~ . ~
0=+ s [ B i)

By Cheng—Yau’s gradient estimate (see [7] or [36]), we have |@f)§]so < C(n).
Thus, we have

N 1 N .
b’.ﬂ:f@ﬂ—kM/ b’ — 7, )dvol = ¥(e; n)t.
5(B) = 741 (B) vol Bro(a) Bm(a)( 5~ Fai) (e;m)

Therefore, we have Claim 3.4.
By an argument similar to the proof of [6, Theorem 3.3], we have the
following:

Claim 3.5. For every sufficiently large i, every o € K; N Bsg (w;) and every
0<t<107°, there exist a compact subset Zy of M;, a point z; in Zy and a
map ¢ from (By(a), ) to (By(z), z) such that the map ® = (bl ... ,lA)};, ®)
from ét(a) to §t+q,(5m)t((l>(a)) C (Rk X Zy, \/d%{k + (80_1dMi)2), is a W
(6;n)t-Gromov—Hausdorff approximation.

Put K; = K; N Bao(w;). Then, we have vol Ki/vz)l B4O(wi) >1—Y(o;n).
By Gromov’s compactness theorem, without loss of generality, we can assume
that there exists a compact subset K, of Byg(w) and a collection {25 o<z
of points in Y such that z} — 27° and K; — K. By Proposition 2.3, we
have 0(Ko)/0(Byo(w)) > 1 — ¥(8;n). On the other hand, by Claims 3.4 and
3.5, for every a € Ko, and every 0 < t < 1072, there exists a compact metric
space Zoo, & POt Zo i Zoo, and a map ¢ from (Bi(a), @) to (Bi(ze), Zoo)
such that the map ¢ = (7, Page, ..., Tz, @) from By(a) to §t+q,(5;n)t(<;3(a)),
is a W(; n)t-Gromov—Hausdorff approximation. Put Ko = Koo N (Ri)sr N
Big-10s,(w). Then, we have v(Ku)/v(B1g-10s,(w)) > 1— ¥(6;n). On the
other hand, for every a € Ko and every 0 <t <107°, let ¢, Zoo, 200 aS
above. Then, since a € (Rg)s,r, we have diam Zo, < W(§;n)t. Especially, the
map f = (P, oz, ..., Tape) from Bi(a) to Bypy(sny(f()), is a W(d;n)t-
Gromov—Hausdorff approximation. Especially, for every a, 8 € Koo with a #
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B, by letting t = 7,(3)(< 1077), we have

k
1 —1
d
(z,a% I z—i—Zazl, o aﬂso )2

—a B0 Y L w(sin)
— (1 £ W(5;n)a, 77 ™.

Therefore, we have the assertion. O

Lemma 3.4. Let (Y,y,v) be a Ricci limit space and x a point in'Y . Then,
there exist collections of compact subsets {C;fi}lgkgn,ieN of Y, and of points
{3:5C Yo<i<k<n,ien in'Y such that the following properties hold:

L. UiGN Cl?,i C Ry and v(Ry \ Uz‘eN C;fz) =0 for every k.
2. For every z € U NC’,“ and every 0 < 0 < 1, there exists C””. such

that z € C¢; and that the map Of ;= (12,742 - ) fmm Ck
R”, is (1 & 6)-bi-Lipschitz to the image @il(C’,fl)

Proof. Put

Ap = m ( U ((Rk>:f/m1,l/m2 N Leb(<Rk)l/m1,1/m2) \ (C:E U {x})>> :

mleN ’ITLQEN

Claim 3.6. We have Ay C Ry and v(Ry \ Ag) = 0.

The proof is as follows. Put

By, = m ( U ((Rk):‘f/ml,l/mz N (Rk)l/ml,l/mz \ (C:C U {$}))> .

m1€N mQGN

Then we have Ay C By and v(By \ Ax) = 0. On the other hand, by Lemma
3.2, we have By = Ry \ (Cy U {x}). Since v(C;) = 0, we have Claim 3.6.
For every z € Ay and every N € N, there exists my = mg(z, N) such that
z € (Rk‘):f/N,l/mz NLeb((Rk)i/n,1/m,) \ (Cz U{z}). By Lemma 3.3, there
exists 7(z, N) > 0 such that for every 0 < s < n(z,N), there exists a com-
pact subset L(z,s,N) of By(z) N (Ri)1/N1/m, and a collection of points
{z;(2,5,N)}i<j<x in Y such that v(L(z,s, N))/v(Bs(z)) > 1— ¥(N"1n)
and that the map @, s N = (T2, o, (2,6,N) - -+ Tz (2,5,N)) from L(z,s,N) to
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RF, is (1 & W(N~!;n))-bi-Lipschitz to the image. Fix R > 1 and N € N.
By Lemma 2.2, there exists a pairwise disjoint collection {Esév.a(zgv’R)}ieN
such that le’R € A, N Bg(y),0 < SZN’R < n(zZN’R, N)/100 and A N Br(y) \
U, Esfv,R(zfv’R) c U §58§V,R(ZZN’R) for every m. Put L(i,N,R) =
L(Z;V’R, 5S£V’R, N) NALN ER(y) C AN ER(y).

Claim 3.7. v <Ak N Bgr(y) \ Unsn, ien L(i,N, R)) = 0 for every Ng € N.

Because we have

v (Ak NBry)\ |J LG, N, R))

1EN

< (LIJ\I (Eg,siv,R(zjV’R) N AN ER(y)) \
U (L(sz’R, 55BN AN BR(y))>

< f v (Bogrn(z" "\ L, 550 )

< Z\Iil(\er; n) Z v(Bgvon () < U(NTm) Z v(Brr(z")

< U(N ‘1;n);€(;23(y)) -

for every N > Ng. Therefore, by letting N — oo, we have Claim 3.7.

By Claim 3.7, we have v (Ak NBry) \ Ny, (UNZNO,z'eN L(i,N, R))) =
0. Put E(i, N, R) = L(i, N, ) 0 y,en (Uns ngen LG N, R) ). Then, we
have ’U(Ak N Bgr(y)\ Uz‘,NeN E(i, N, R)): 0.Fixz € Ui’NeN E(i,N,R) and
0 < § < 1. Then there exist ¢,V such that z € E(i, N, R). Let No € N with
Ny ' < 8. Then there exist N > Ny and 7 € N such that z € L(i, N, R).
By the definition, the map ¢ = (rx,rx (zf“* stR) yen ’Q.(ﬁﬁ va’R>) from

L(zgv’R, s?f’R, N) to R¥, is U(N~!, n)-bi-Lipschitz to the image. Especially,
the map is (1 + J)-bi-Lipschitz to the image. We remark that L(i,N,R) C
LV MR Ny and 2 € L3N, R) 0 Miew (Ujstpen L2 J: R)> = EG,N,

R). Therefore, by letting x;(i, N, R) = z; (ZZN 73£V’R, R) for every 2 < j < k,
we have the following claim:



96 Shouhei Honda

Claim 3.8. For every z € U; yen E(i, N, R) and every 0 <46 <1, there
exists E(i,N,R) such that z € E(i,N,R) and that the map ¢ = (rs,
Taa(i,N,R)s - - » Tan(i,N,R)) from E(i, N, R) to R”, is (14 6)-bi-Lipschitz to the
1mage.

By Claim 3.8, it is easy to check the assertion. O

Lemma 3.5. With the same notaion as in Lemma 3.4, for every k,i, let
{Fiii;tien be a  collection of Borel subsets of Ci, with
v (CF, \ UjeN Flf,i,j) = 0. Then, there exists a collection of Borel subsets
{€¢i i hig of Y such that &, ; C Fi, o, v(Fi, ; \ &k, ;) =0 and that for
every k, every z € UzgeN S,flj and every 0 < § < 1, there exists Ek”. such
that z € &, - and that the map <I>,“] (rg, Ty 200 ) from S,‘f to R¥,
is (1£06)- bz szschztz to the image.

Proof. Fix 1 < k < n. For every M € N, put By, = {i € N; The map ¢ =
(Tzy g2 sy Ty ) from CF ; to RF, is (1 + M~1)-bi-Lipschitz to the image}
and gl?,i,j - flﬁiﬁj n mMeN (UieBM,jeN flf,z’,j) .

Claim 3.9. o( i \Slf”) =0.

The proof is as follows. By Lemma 3.4, we have J;cn C%; C yren
Uies,, Cri)- On the other hand, it is easy to check that (Vo

Uies,, Cri) C Uien Cf,;. Therefore, we have Niren (UieBM C,fl> =
Uien Cl?,i‘ Thus, U<‘7:l§,i,j \glf,i,j) =v (fl?,i,j NUien Cif,z \&f,i,j) =v (]:/f,z‘,jm
Naren (Ures,, %2 \Eis) = v (FEs 0 Narens (Unesagen Fiug ) \Ebas )

= 0. Therefore, we have Claim 3.9.

Claim 3.10. For every z € UzgeN i and every 0 < § < 1, there exists
&l such that z € &, & and that the map ¢ = (Txﬂ”xi peey Tk ) from &,

to R¥, is (1 £ 6)-bi-Lipschitz to the image.

The proof is as follows. Let M, i, j be positive integers with M~! < §,
z €&, i There exist Ny € Byy and N1 € N such that z € ]:,fN Ny There-

fore, we have z € 7/ x. v, N \yren (UzeBM,geN .7-"’“) & Ny, and that
the map ¢ = (ry, 7,2 ,T k_) from &y, n, to R* is (14 M~1)-bi-
Lipschitz to the i 1mage T hus we have Claim 3.10.

By Claims 3.9 and 3.10, we have the assertion. O
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The following theorem is the main result in this subsection. See (2.2) in [5]
or [22, Definition 4.1] for the definition of the measure v_j.

Theorem 3.1 Radial rectifiability. Let (Y,y,v) be a Ricci limit space
with Y # {y}, and x a point in Y. Then, there exist collections of Borel
subsets {C;f,i}lgkgn,ieN of Y, of points {xfrg,i}zglgkgn,z’eN 'Y, a positive
number 0 < a(n) < 1 and a Borel subset A of [0,diamY’) such that the fol-
lowing properties hold:

1.
2.
3.

Uien C,‘;i C Riam) \ Cr and v (Rk \ Uien C',fz> =0 for every k.
lim, o v(By(2) N Cf ;) /v(By(2)) = 1 for every Cf; and every z € Cf ;.

For every Cf,, there exists Aj ;> 1 such that (Af,g’i)*1 <wv(By(z))/
rk < Aﬁ}i for every z € C’,fﬂ- and every 0 < r < 1.

The limit measure v and the k-dimensional Hausdorff measure H* are
mutually absolutely continuous on Cf ,.

For every z € ;e CF; and every 0 < 6 < 1, there exists Cj, such
that z € Cy; and that the map ¥y, = (Tl”rxi,ﬂ cee Tw’i;,i) from C; to
RF, is (14 §)-bi-Lipschitz to the image.

HY([0,diamY) \ A4) = 0.

For every R € A, the collection {0Br(x) N C} ;} ki C 0BRr(x) \ Cy sat-

isfies the following properties: 7

(a) v-1 ((0BR(2)\ Co) \ Uy ion O ) = 0.

(b) For every 0Br(x) N Cy;, there exist BY ; > 1 and 7j7; > 0 such that
(BE )" <01 (0Br(2) N By(2) \ Ca)/r* 10 1 (0Ba(z) N Br(2))/
rk-l < B, for every z € 0Br(x) N C}, and every 0 <r < 7.

(c) For every z€ Uien(0Br(z)NCE ;) and every 0 < § < 1, there exists
OBRr(z) N Cf; such that z € 0Bgr(z) N Cf ; and that the map i‘ﬁl =
(raz oo 7gr ) from OBRr(z) N CY; to R*~1, is (1 & 6)-bi-Lipschitz
to the ima,ge.w

Especially, 0Bgr(x) \ Cy is v_1-rectifiable.

Proof. First, we shall prove the following claim:

Claim 3.11. We have v_1(0Bz=(z) N Be(2)) < C(n)v(Be(2))/€ for every
R >0, every z € Br(z) \ {z} and every ¢ > 0 with ¢ < min{z,;z/100, 1}.
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The proof is as follows. By [23, Corollary 5.7], we have

v-1(0Brz(w) N Be(2)) _ Cn) V(Ca(0Bzz(x) N Be(2)) N Azz-aerz(7))
vol Bz=(p - vol Az=_2c72(p) '

Here Cy(A) = {z € Y; There exists a € A such that 7,z + z,a = z,a} for
every subset A of Y, p is a point in the n-dimensional hyperbolic space
form. On the other hand, by triangle inequality, we have Cy(0Bz=(z) N
B(2)) N Azz—2¢z=(x) C Bigoe(2). Thus, we have

v_1(0Bz=(x)NB(2) < vol 0Bz=(p)

1
<od AT’Z_%W(B)U(Blooe(z))c(n)SC(n, R)E’U(BE(Z)).

Therefore, we have Claim 3.11.

Let {C’,fl};“ be a collection of Borel subsets of Y and {:L’%H}]“l a col-
lection of points in Y as in Lemma 3.4. By Lemma 3.5, without loss of
generality, we can assume that for every le,iv there exists 7 > 0 such that
Cy.CD; \ B;(z). Moreover, by [6, Theorems 3.23 and 4.6, we can assume
that for every C¥ ,, there exists A . > 1 such that (A% )~ < v(B,(2))/r* <
Aj ; for every 0 <r<landeveryz € C} ;> and that lim, o v(By(2) N CE,)/
v(B,(z)) =1 for every Cf; and every z € Cf ;.

Claim 3.12. Let (Y, y,v) be a Ricci limit space, x a point inY , T, R positive
numbers with 0 < 7 <1 < R, and z a point in DL N Br(x) \ B-(x). Then,
we have v_1(0Bzz(z) N Be(2) \ Cz) > C(n, R)v(Bc(z))/€ for every 0 < € <
7/100.

The proof is as follows. Let w € Y with Z,;w = ¢/100, T,z + z,w = T, w.
By [23, Theorem 4.6 |, we have

By @) _ 0t (ClBrgy (w) N0Brs(a)
vol AJTZ,W+E(B) <0 vol 8Bﬁ(£) )

By triangle inequality, we have Cy.(B./1000(w)) N 0Bzz(x) C 0Bzz(7) N Be(2).

Thus, by the Bishop—Gromov volume comparison theorem for v, we have
vol 0Bz =(p)

vol Azz zz+(p)

> C(n, R)%v(B . (w))

1000

v-1(0Bzz(x) N Be(2) \ Cz) =2 C(n)

U(Be/lOOO(w)>

v(B(2))

€

> C(n, R)%U(B&(w)) > C(n,R)
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Therefore, we have Claim 3.12.
By Claims 3.11 and 3.12, for every C,f , there exist Bi,>1 and Thi

0 such that (By;)~ V< v 1(0Bz=(x) N B(2) \ Cy) /r* < B“ for every z €
Cyiandevery 0 <r < 77, Put A= {tel0,diamY);v_, <8Bt( \NU C,fz> =
0}. Since v (Y \U C’,fﬂ-) =0, it follows from [23, Proposition 5.1 and The-

orem 5.2] that A is Lebesgue measurable and that H'([0,diamY’) \ 4) = 0.
Since H' is a Radon measure on R, we have the assertion. O

3.2. Calculation of radial derivatives of Lipschitz functions

The purpose in this subsection is to calculate the radial derivative from a
given point z, of a given Lipschitz function f: (dr,,df) explicitly. The main
result in this subsection is Theorem 3.3.

Lemma 3.6. Let (Y,y) be a Ricci limit space with Y # {y}, z a point
in Y\ Cy, f a Lipschitz function on Y, T a positive number and ~; an
isometric embedding from [0,5,z + 7] to Y satisfying v:(0) =y, (7, 2) = z
for every i € {1,2}. Put f; = f o~;. Then, we have lipfi(y,z) = lipf2(Y, Z)
and Lip f1(y,Z) = Lipf2(y,2).

Proof. For every real number € with 0 < |e¢| < 7, by the splitting theorem
on limit space, we have v1(Z,Z + €), 72(7,Z + €) < ¥(|e[;n)|e|. Therefore, we
have

1@z +¢) = fai(@2)| _ [fo(T,Z 4 ¢) = fo(7,2)]

€] - €]
Thus, we have Lipf1(7,z) < Lipf2(7, 2) and lipf1(y,2) < lipfa(y, z). There-
fore, we have Lipfi1(y;z) = Lipf2(7,z) and lipfi(y,z) = lipfa (7, 2). O
Let (Y,y) be a Ricci limit space, z a point in Y\ Cy, T a positive num-

ber, v an isometric embedding from [0,7,Z + 7] to Y satisfying v(0) = vy,

(@, %) = 2. Put F = f o, lipi* f(2) = lipF (7, %) and Lip}* f(z) = LipF (7, 2).
It is not difficult to check the following lemma:

+ LipfU(|e[; n).

Lemma 3.7. Let (Z,v) be a metric measure space. Assume that the fol-
lowing properties hold:

1. v(By(2)) > 0 for every z € Z and every r > 0.

2. There exist 1o >0 and K > 1 such that v(Bay(2)) < 2"v(By(2)) for
every z € Z and every 0 < r < 1rg.
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Then, we have Lipf(a) = Lip(f|a)(a) and lipf(a) = lip(f|a)(a) for every
a € Leb(A), every Lipschitz function f on Z and every Borel subset A of Z.

The following theorem implies that dBr(x) L Vr, in some sense:

Theorem 3.2. Let (Y,y,v) be a Ricci limit space, x a point in'Y and f a
Lipschitz function on'Y. Then, we have the following:

1. lipf(2)? = lip@2d f(2)? + Lip(floBor(z))(2)? for a.e. z€Y.
2. Lipf(2)? = Lipt2d f(2)? + Lip(f|anyz(x))(z)2 for a.e. z€Y.
3. Lip(floB,-())(2) = lip(flop.(z)\c.)(2) for a.e. z €Y\ Ch.

Proof. First, we shall remark the following:

Claim 3.13. Let f be a Lipschitz function on R¥. Then, we have Lipf(2)? =
(Lip(flRx {201z} (2))? + (LD fl iz xrr1)(2))? = (Up(FlRx f20,.01) (2))
(Lip(flzyxme—1)(2))? = lipf(2)? for a.e z = (z1,...,2) € R".

Because, by Rademacher’s theorem about differentiability of Lipschitz
functions on R*, f is totally differentiable at a.e z € R¥. Therefore, we have
Claim 3.13.

The next claim is clear:

Claim 3.14. Let {Z;};=12 be metric spaces, § a positive number with
0<d<1, and ® a map from Zy to Zs satisfying that ®(Z1) = Zy and
(1 =9)z1, 72 < ®(x1), P(z2) < (1 + 6)T1, 22 for every x1,x2 € Zy. Then, for
every Lipschitz function f on Zs, we have, (1 — W(§))Lipf(®(21)) < Lip(f o
®)(21) < (1+U(8))Lipf (21), (1 — W()lipf ((21)) < lip(f 0 ®)(21) < (1 +
V() lipf(®(z1)) for every z1 € Z.

We will give a proof of the following claim in the Appendix:

Claim 3.15. For every Lebesque measurable subsetiA of RE, put
sly —LebA = {a = (ay,...,ax) € A;lim, o H=Y(({a1} xBr(az, ... ,a;)) N
A)/H*! ({a1} x By(ag,...,ar)) = 1}. Then the following properties hold:

1. sly — LebA is a Lebesgue measurable set.
2. H-1 (AN ({t} x R*1\ sly — LebA)) =0 for every t € R.
3. HE(A\ sl — LebA) = 0.
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Put L = Lipf. Let {Cﬁi}lgkgn,z’eN be a collection of Borel subsets of
Y, and {x§€7i}2§k§n’ieN,2§l§k a collection of points in Y as in Theorem
3.1. Fix a sufficiently small 6 > 0 and C}; satisfying that the map Pr =
(2,722 5 ,rx;:,i) from C}; to R”, is (1 & §)-bi-Lipschitz to the image. Put
fii=1fo (@iﬂ.)*l on ®f ,(CY ;). Let Fi; be a Lipschitz function on R sat-
isfying that Fkx,i|‘p£,i(cf,i) = fi.; and LipFy’, = Lip f{,.

Claim 3.16. With the notation as above, we have the following:

1. (1= ¥(6;n))LipF{ (w) < Lipf((®F,) " (w)) < (1 + ¥(d;n))Lip
i (w) for a.e w € @F (CF ;).

2. (1= W(&;n)lipFt (w) < lipf((9F ;) (w)) < (1 + U(8;n) ) lipF ;(w)
for a.e w € (I)?.(C]fi
P(w) — LW¥(5;n) < Lip f((®F,) " (w)) < Lip

}

)
3' Llp(F]giz|R><{’w2,v
)+L\Il( ;m) for a.e w = (wr,.. ,wk)ECDi,@'(CI?,i)'
(
w)

(Fkxi|R><{w2,...,wk})(

w) = LU(8;n) < Lipd f((@F )~ (w)) < lip
+ LY (0;n) for a.ew = (w1, ..., wy) € Pf(CY,).

4' llp( kz|R><{’u)2, LWk )
( ;“|Rx{w2, ) (W

5. (1= U(0;n))Lip(F} ;| fw, yxre—1) (w) < Lip(f’aBm(x)ﬂC,ji)
((@f,) M (w)) < (1+‘I’(5; n))Lip(Fy ;| (w,yxre-1) (W) for a.e. w=
(w1, ..., wg) € OF (CF ).

6. (1 =W n))lip(Fy ;| fw, yxmre—1) (w) < lZP(f|aBﬁ(z)mC;,i)

(P ) ( ) < (L+ W (8 n))lip(Fy | fw, yxmre—1)(w)  for ae w=
(Wi, ... wp) € Py (CF )

The proof is as follows. First, we shall give a proof of Statement 1.
Put C; = Leb(®% ;(CF ;) N @7 ;(LebCy ;). Then, we have HF(®% (CF )\
#,)=0. By Lemma 3.7 and Claim 3.14, we have (1 —¥(6))Lip
(Fiilowq(cz ) (w) < Lip(flez )(2F,) 7 (w)) < (14 W(0))Lip(F;ler ()
(w), Llp(szlcpw () (w) = Llme(w) and Lip(fc;,)((®F,;) "} (w)) = Lip
f ((@iﬂ)_ (w)) for every w € C ;. Therefore, we have statement 1. Simi-
larly, we have Statement 2.
Next, we shall give a proof of Statement 3. Put Ci{ = sl — LebCy ; N
{w € R¥, Fy; is totally differentiable at w}. Then, by Claim 3.15, we have
H*(C¥ \C‘r’f) =0. Fixwe Ci{ and put we = w + (¢,0,...,0) for every
e > 0. Slnce w € sl; — LebCy ,, for every € > 0, there exist 1, € Ci,; and
a(e) > 0 such that we, we < a(e)e and a(7) — 0 as 7 — 0. h is clear that (1 —
5)(e — a(e)e) < (1 — ), < (BF,) Hw), (BF,) (00) < (1+ ), . < (1
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+6)(e + a(e)e). Let m be the projection from RF to R defined by m (w) =
wi. Then we have z, (97 ;)7 (we) = m1 () = m1(we) £ a(e)e = mi(w) + € £
a(e)e =z, (Of ;) Hw) + (PF ;) Hw), (B ;) (we) £ (J + a(e))e. By Lemma
3.5, without loss of generality, we can assume that there exists 79 > 0 such
that Cy; C Dp’. Fix an isometric embedding v from [0, z, (®f ;)" (w) +
0] to Y with v(0) =z, v(z, (97 ,) " H(w)) = (@i’i)*l(w). Then, by rescaling
e 'dy and the splitting theorem on  limit spaces, we have
(%)~ (we), v(z, (2F ;)1 (w) +€) < ¥(a(e), d;n)e. Thus, we have

|[Fia(w) — i (wo)l_ [FE(w) — B ()|

. . + La(e)
- F(@F,) " (w)) — f(v(=, (PF ) (w) + €))|

€

+ LY (a(e),d;n)

for every € > 0 with € < 79. By letting € — 0, we have Lip(F}7;|Rx {wa,... w.})
(w) < Lip™d f((®F )" (w)) + LE¥(5;n). Let {¢;}; be a sequence of real num-
bers such that ¢; — 0 and

. | o (@F,) " (w) — fy(@, (®F )7 (w) +¢)))]

Jj—00 |€j|

= Lip f((PF,) " (w)).

Since (@} ;)" !(w) € Leb Cf.;» there exist sequences {@(j)}; C CF;, {7}; C

R such that @(j), y(x, (27 )~ (w) + €;) < 7j¢; and 7; — 0 as j — oo. Fix
j € N. Assume that €; > 0. Then, we have

m(@(5)) — m(w) =z, 0(j) — 2, (Pf ;) (w)
=X, 7(35, (@%’i)—l(w) + Ej) + T;€5
= 6]' + TjEj
= (@, (F,) 7 (w) + ), (P ;) (w) + 7je;
> (1=08)0% ,(w(4)), w — 7j€;.

On the other hand, since ®F.(w(j)),w < (1+40)e;+ 1j¢;, we have
w+ (€,0,...,0), 27 (w(5)) < ¥(les], d;5n)|ej]. Similarly, we  have
w+ (€,0,...,0), 97 . (w(5)) < U(lej|,0:n)|e;| in the case €; < 0. Put w(j) =
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w + (€5,0,...,0). Then, we have

£ (@) @) = £ (4 @) w) +¢)))

51
B (w) = FE, (@,(0())|
B €] T
[ (w) = FE(w())]

+ LY (|ej], 75, 0;m).
l€;]

By letting 7 — oo, we have statement 3. Similarly, we have statement 4.
We shall give a proof of statement 5. Fix w € Ci{ By Claim 3.14, we
have

(1 = W) Lip(Fisl (ur yxr+1)ncy ) (W)
< Lip(f|(q:gyi)—l(({wl}kafl)mc;i)) (( %,i)il(w))
< (1 + W) Lip(F | (fuwn yxmri—)ncy ) (W)
We remark that (@5,572.)_1 ({wi} x R*1)n Cii) = 8BW(@“) N

w
(@7 ;)" (Cf ;). By Proposition 3.7, we have Lip(F{ |, xri-1nc ) (W) =
Lip(F{; | fw,yxre-1)(w). Therefore, by Claim 3.14, we have 7

(L= W(6))Lip(Fiil fw, y xme— ) (w)

< Lip(flop———— T N @z )-r(cz) (95,) 7 (w)
< Llp(f|aBW( e ) ((95,) 7 (w))
< (1 + WO Lip(FE il (fuwry xR-1)neg (0 ) (W)
< (L4 Y(0)Lip(F il o, yxri—1) ().

Thus, we have Statement 5. Similarly, we have Statement 6.
Therefore, we have Claim 3.16.

Claim 3.17. With the same notation as in Claim 3.16, we have
noz J(®F;) 7 (w))
@) (@)~ (w)) — (3, L)

> Llp(f|aB

(@E DT (w)

for a.e w € @F ((CF ;).
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The proof is as follows. We shall use the same notaion as in the proof of
Claim 3.16. Fix w € & ,(Leb(®% )" (C/)) and put z = (F )~ (w).
First, assume k£ > 2. Then we shall prove that z is not an isolated
point in dBzz(z) \ Cy. Because, by the definition of sl; — Leb(Cy;), there
exists a sequence of points {B( )}; in Cf; such that m1(8(j)) = m(w),
B(j) # w for every j, and B(j) — w. Then, we have (@iz)_l(ﬂ(j)) # 2z,
(@i,i)_l(ﬂ(j)) € 0Bz=(z) \ C, and (@il)_ (6(j)) — z. Especially, z is not
an isolated point in 0Bzz(x) \ Cy. Let {z(j ))}j C OBgz=z(x) \ {2z} with 2(j) —
2z, [F(2(5)) = F(2)I/2(3), 2 = Lip(f|oBse(a)) (2). Put n; = 2(j), 2 > 0. Since
z € Leb(@i’i)_l(Ci:{), there exist sequences {£(j)}; C (@iz)_l(Cif) and
{7j};R>0 such that z(j),2(j) < 7jm; and 75 — 0 as j — oo. Put a(j) =
@7 ;(2(5)). Then we have |m(a(j)) — m1(w)| < (1 + 6)7;m;. Therefore, there
exists a(j) € {w1} x R¥"L such that w(j), @(j) < ¥(#j;n)n;. Then, we have

f(2(7)) = f(2)]

, < + L7
2(7), 2 Tj
FZ (w(j)) — FF.(w
L0~ R
nj
F"’“" a(g) — FE(w)| a4
a(jg),w Uk

By letting 7 — oo, we have Claim 3.17 for the case k > 2.

Next, assume k = 1. It suffices to check that z is an isolated point in
O0Bz=(x). The proof is done by a contradiction. Assume that z is not an
isolated point in 0Bzz(x). Then, there exists a sequence {z(i)}; of points
in 0Bzz(z) \ {#} such that z(i) — z. On the other hand, there exist 7y > 0
and an isometric embedding v from [0,7,Z + 79| to Y such that (0) ==
and v(T, z) = z. Put €(i) = z, 2(7). Then we have z(i),y(7,z — &) > x, 2(i) —
r,v(@Z —¢) =€ and z(1),y(T, 2 + &) > 2,7(T,Z2 + &) — 7, 2(i) = €. By
Gromov’s compactness theorem, without loss of generality, we can assume
that (Y,¢; 'dy, 2) converges to a tangent cone (7.Y,0,) at z. By the argu-
ment above and the splitting theorem on limit spaces, there exists a pointed
proper geodesic space (W, w) such that 7,Y = R x W and W # {w}. How-
ever, since z € C1; C Ry, this is a contradiction. Therefore, we have the
Claim 3.17.

By Claims 3.13, 3.16 and 3.17, for every N € N, we have Lipf(z)? =
Lipi? f(2)? + Llp(flaBmm))( 2)? £ NTh=1ipdf(2)* +lip (floB,.)\c.)
(2)2 £ N~ =lipf(2)2 £ N7! for a.e. z €Y \ C,. Therefore, we have the
assertion. 0
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Remark 3.1. For every Ricci limit space (Y, y,v) and every Lipschitz func-
tion f on Y, we have lipf(z) = Lipf(x) for a.e. z € Y. See [2, Corollary 6.36]

By an argument similar to the proof of Lemma 3.6, we have the following:

Lemma 3.8. Let (Y,y) be a Ricci limit space with Y # {y}, z a point in' Y\
Cy, f a Lipschitz function on'Y', T a positive number and {~; }i=1,2 isometric
embeddings from [0,7,Z + 7] to Y with v;(0) =y, vi(y,2) = z. Then, we have
limin, o |f o1 (§: 2 + ) — F(2)|/Ir|=lim inf—o|f 0 12757 + 1)~ £(2)|/Ir].
Moreover, if the limit lim,_o(fovi(g;z+7r)— f(2))/r exists,
then, we have lim,_o(f oy (g, 2+ 1) — f(2))/r =lim,o(fon (g, 2+ 1) —
P/

With the same notaion as in Lemma 3.8, put Llp’raOl f(z)=liminf, o |f o
(Y, z+7r) — f(2)|/|r]- Let (Y,y) be a Ricci limit space with Y # {y}, and
f a Lipschitz function on Y. Put

Ay = {az € Y \ Cy; The limit lin% for@my+r) = flx) exists} .
r— 'S

Here 7 is an isometric embedding from [0,7,Z + 7] (7 > 0) to Y with v(0) =
Y. 7(¥,7) = z. Put

d . . foy(@y+r)— flo)
d—%(:v)—lli% r

for every x € A,.

Lemma 3.9. Let (Y,y,v) be a Ricci limit space, x a point in' Y and f
a Lipschitz function on Y. Then, we have @rxadf( z) = Lip®df(2) for a.e.
z€Y.

Proof. We will use the same notaion as in the proof of Claim 3.16. Put L =
Lipf. Let ¢ be a sufficiently small positive number and C}; a Borel subset of
Y satisfying that the map @y ; = (ra, 742 ) from C}; to R”, is (1 +
9)-bi-Lipschitz to the image. le w e fo and put z= (@il)_ (w). There
exists a positive number 7 and an 1sometr1(: embedding from [0,7,Z + 7] to
Y such that y(0) = = and (7, Z) = 2. Let {¢; }; be a sequence of real numbers
satisfying that ¢; — 0 and lim; oo |f o Y(Z,Z + &) — f(2)|/|€&i| = @;adf(z).
By an argument similar to the proof of Claim 3.8, there exist sequences
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{w(j)}; € Cf; and {7;}; C Rso such that w(j), v(Z:Z + ¢;) < 7l€5], 77 — 0
as j — oo, and
1f(2) = f(y@z+ ;) F(w) — FE (97, (0(5)))]
€] €]
| Fyri(w) — B3 (wy)]

€]

— QLT]'

—W(7;,6;n,L).

By letting j — oo, we have @rxadf(z) > Lip(F/g”ﬂ.|R><{w2 _____ wk})(w) —
U(§;n, L) > Lipgadf(z) — U(d;n, L). Therefore, we have the assertion. [J

We shall state the main theorem in this subsection:

Theorem 3.3 (Radial derivatives of Lipschitz functions). Let (Y,y,v) be
a Ricci limit space with Y # {y},  a point in'Y and f a Lipschitz function
on'Y. Then, we have v(Y \ Az) =0 and

a

() = (drdr)(2)

for a.e. z € A,.

Proof. For every w € Y \ C,, there exist 7 > 0 and an isometric embedding
v from [0, 7,Z + 7] to Y such that v(0) = = and v(Z,w) = w. Then, by The-
orem 3.2 and Lemma 3.9, for a.e. w € Y \ C,, we have

(drg, df)(w) = 5 (Lip(rs + f)(w)* ~ Lipf(w)* - Lipr,(w)?)
= LD+ (@) + Lip((re + o (one,) ()’
— Lipi'f(w)? — Lip(flop,.\c,)(w)* — 1)
= LD+ )+ Lin Flog o, (w)?
~ Lip f(w)? ~ Lin(flapc. ) () — 1)
= Wiy + ) (w)? — Lipf f(w)?* 1)
L (et DA ) = o e

2 \h—0 |h|?
— _ 2
h—0 |h|?
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__ 2
1 (hm L, for@mh) — fw)
2 \ h—0 h
— _ 2
h—0 ’h’z
(Here, we have the existence of the limit }ILiH(l) foy(@w Z h) - f(w)>
_ 1<1+2hm f oy (@@ + h) — f(w)
2 h—0 h
— _ 2
+ o [ 0@ ) — f(w)
h—0 |h’2
—_— _ 2
h—0 ’h’Q
— lim fov(@iw+h) — f(w) _ ﬁ(“ﬁ

h—0 h dT‘x

3.3. Rectifiability associated with Lipschitz functions

In this section, we will give a generalization of Theorem 3.1. The main result
in this subsection is Theorem 3.4.

Lemma 3.10. Let 6 be a positive number, {(M;,m;)}; a sequence of n-
dimensional complete Riemannian manifolds with Ricps, > —d(n — 1),
(Y,y,v) a (n,—9)-Ricci limit space of {(M;, m;,vol)};, x,x1,x2 points in
Y, (i), x1(1), 2o(i) points in M; for every i < oo, b% a harmonic function
on Bioo(z(i)) for every i < oo, and b® a Lipschitz function on Bigo(z).
Assume that T, 21 > 6L, T, 23 > 6L, T, 21 + 7,05 — T1, 22 < 6, x(i) — =,
zj(i) — x;(i) for every j € {1,2}, sup; Lipb} < oo, b} — b° on Bigo(x),
b3 = Ty i) | L= (Buo (wi))) = 0 and

1 .
_ Vb! — Vr, (| + |Hessy:
vol Byoo(x(i)) /Bmo(:z:(i)) (IvE} 1)+ [Hessyy

Then, we have

) dvol < 6

1

- db$® — dry, |2dv < U(8;n).
o(Bi(@) /Blm' I dre @n)
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We remark that Lemma 3.10 does not follow from [2, Lemma 9.10]
directly. We shall give a proof of Lemma 3.10 in the proof of the follow-
ing Lemma 3.11.

Lemma 3.11. Let 0 be a positive number, {(M;,m;)}; a sequence of n-
dimensional complete Riemannian manifolds with Ricp, > —0(n — 1),
(Y,y,v) a (n,—0)-Ricci limit space of {(M;,m;,vol)};, = a point in Y,
{z;}1<j<a a collection of points in Y, and {z(i)} U {z;(i) }1<j<a of points in
M; for every i. Assume that z(i) — x, z;(i) — x; for every j, T,z; > 5!
for every j, T,x1 + T, T2 — T1,22 < 0 and T,Z3 + T, T4 — x3,%4 < 6. Then,

we have

I
vol By (z(7))

),
—_ dryg, ,drz,)dv
oB@) o | )

X / (dra, (i); AT, iy )dvol| dv < ¥ (d;n)
By (2(4))

and

1 1
RN dra?] i 7drac3 i -
vol By (x(i)) /BIW)) ‘< @ ) = B )

X / (dry, ,drg,)dv
Bl (x)

for every sufficiently large 1.

dvol < U(6;n)

Proof. First, we remark the following claim:

Claim 3.18. For every sufficiently large i, there exist harmonic functions
ll,bé on Blgo(w(i)) such that Lipb} S C(n), ’b; — Tocj(i)‘Loc(Bmo(x(i))) S
U(d;n) and

1 ‘
— db% — dr, ;i |* + |Hessp:
vol Bioo(#(i)) /Bm(x(i)) (’ j — dra, )" + [Hessy,

for every j € {1, 3}.

2) dvol < W(5: n)

See for instance [2, Lemma 9.8, Lemma 9.10 and Lemma 9.13], for a
proof of Claim 3.18.
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Since C(n)(|Hessy,: 12 + [Hessy,: 2) is an upper gradient of (db},db}), by
the Poincaré inequality, we have

1 : , 1
_ dby,db%) — ———
vol Bigo(z(7)) /Bwo(x(i)) ’< 1,db}) vol Bigo(z(i))

X / (db, db})dvol
Bioo(z (1))

1
<C ,/ Hess
- (n)\/voleo(fC(Z)) Buoo(2(i)) <‘ o5%b;

Therefore, we have

dvol

2 + |Hessy,;

2) dvol < W(5: n).

1 : 1
—_—— dbh, dry, () — ———
vol Bioo (x(1)) /Bw(m’( Sy NP )

X / (dbl, dry, ;y)dvol| dvol < W(8;n).
Bioo(z (7))

Without loss of generality, we can assume that there exist Lipschitz func-
tions b$°, b5° on Bigo(z) such that b;- — b5® on Bigo(). By Theorem 3.3,
there exists a Borel subset A of Bigo(x) \ Cy, such that v(Bigo(z)\ A) =0
and limy_o(f oy(ZT1,a+ h) — f(a))/h = (dry,,dbs®)(a) for every a € A and
every minimal geodesic v from x; to a. By Lusin’s theorem, there exists a
Borel subset A(§) of A such that v(A \ A(J)) < dv(Bi(z)) and that the func-
tion (dry,,df) is continuous on A(J). Define a function fg on A(d) \ Bas(x)
by

RV O R ()

weC. ({21 })NB, () %W

— (dra,, df)(2)

for every 0 < n < §. It is easy to check that fg is an upper semi-continuous
function. Especially, fg is a Borel function. We also have lim, .o fg (a)=0
for every a € A. Thus, by Egoroff’s theorem, there exists a Borel subset
X = X (6) of A(0) such that v(A(0) \ X (6)) < dv(Bi(x)) and lim,—o(Sup,e x
fg(a)) = 0. Let n =n(d) be a positive number satisfying that n < J, and
SUD,e x f,‘;o (a) < 0 for every ng < n. For every i, let X; be the set of points
w € Bi(z(i)) satisfying that

1

(db, dr, ;)Y (w) — vol Bygo(z(1))

/ (dbl, dry, ;y)dvol| < W(8;n).
Bioo(x (7))
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Then, we have vol(Bj(z(7)) \ X;)/vol B1(z(i))<W(d;n) for every sufficiently
large 4. Define a Borel function F; on Byoo(2(i)) \ Cy, ;) by

b} (v(@1(0),w —1%)) = bi(w)
_772

for every i, where v is the minimal geodesic from z1(i) to w.

Claim 3.19. We have

1

— dby, dry, iy) — F;(w)|dvol < W(8;n)
vol Byo(z(7)) /Bw(m(i))\()m() B dra o

for every sufficiently large i.

The proof is as follows. It is easy to check that

f@zf@+f@@—@—/@—@ﬂ@®

for every a < b, every C?-function f on (a,b), and every ¢ € (a, b). Therefore,
we have

bi(v(= ()w 77)) bj(w)

i 214
- dfi - / S COREY) dii'?S (v(5))ds.

Thus, by an argument similar to the proof of [21, Estimate 2.6], we have

1 / :
_— <dbl bl drxl 2 > - dVOl
vol Bio(z(2)) JByo(@(@i)\Cs, | v ¥
1
1 /’ / P [Hessyg | (1(s))dsdvol
n VOIB10 Bio(2(3)) Jz1(3),w—n?

< _— H dvol
= C(n)vol Bloo(fﬂ(z)) /Bmo(a:(i))| esspg dvo

1
< n? vol Bron(z (i) Hesse,
=7 C(n)\/volgwo(x(i)) /Bmo( (4)) Hosey

Therefore, we have Claim 3.19

2dvol < n*C(n)T(5;n).
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Claim 3.20. We have

1 o dr
v(Bi(z)) /Bl(x) (BT, dr)

1 / )
——— dbs, dr,, ;y)dvol| dv < ¥(§;n
vol By (x(i)) Bl(ac(i))< ’ @) (%5n)

for sufficiently large i.

The proof is as follows. Let Y; = {w € Bi(x(i)) \ Cy, )3 |<dbé,d7‘xl(i)>
(w) — Fi(w)| < ¥(0;n)}. By Claim 3.19, we have vol (Bj(z(7)) \ Y;)/vol
Bi(z(i)) < ¥(5;n) for every sufficiently large i. Put Z; = X; NY;. There
exists a compact subset W; of Z; such that vol(Z; \ W;)/vol By (z(i)) <
W (8;n). Then, we have vol(B1(z(i)) \ W;)/vol By (z(i)) < ¥(5;n) for every
sufficiently large i. Without loss of generality, we can assume that there
exists a compact subset We, of By(z) such that W;—W,,. By Lemma 2.3,
we have v(Wy)/v(B1(z)) > 1 — ¥(§;n). Put E = Wy N X. Then we have
v(B1(z) \ E) < ¥(§;n)v(By(x)). For every w; € W; and every w € E, let
~Yw, be the minimal geodesic from z1(i) to w;, and 7, a minimal geodesic
from x7 to w. Then, there exists ig such that ¢; < 7,

bi (i1 (i), w; — n*)) — by(w;)

(b, dry, ) (w) - -

< ¥(dn)

and

1

dbs, dr, i) (w;) — —————— dbk, dr, )dvol| < ¥(8;n
< (o)) vd&m@m»émmm<3 ) (6:)

for every ¢ > 1g, every w € E and every w; € W; with w; — w. Now, we shall
consider the rescaled metric n2dy . Since

n~2dy 1~ 2dy

x1, ¢i(vi(w1 (i), wi — n?)) >0t ¢i(yi(@i(i), w — n?)),w >n!

and

2

- - 1~ 2dy - - 1~ 2dy
1, ¢i(vi(z1(4), wi —n?)) + ¢i(vi(z1 (i), wi —n?)),w

—2
*xlvwn dv < m,
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by the splitting theorem on limit spaces, we have

N~ 2dy

bi(vi(w1(3), wi —n?)),v(@1, W — n?) < VY(d;n).

Therefore, we have

b (v (w1 (3), w; —2772)) —bi(w;) b§°(7($1,w—7722)) — b3°(w) < W(oin).
—n -n
Thus, for every ¢ > ig, we have
1 4
dbs®, dr; ) (w) — ———— dbs, dr,, ;y)dvol| < W(6;n).
(@5 ) 0) = s | ) (8m)
Let
1 .
Ci= / dbi, dr, () )dvol.
vol Bygo(z (7)) Bmo(x(i))< ’ @)
Then
! / (db®, dry ) — C;|d
—_— y 7"11 — U av
v(Bi(2) Jp, )
).
= dbs®,dry,) — Ci| dv
B S g 08 Pl — i
iy L ) =Cildo
v(B1 E
C(n :c)\E v(E)
U(d;n) < ¥(d;n).
BT Sy S v

Therefore, we have Claim 3.20.

Claim 3.21. We have

_— db|7dv < 1+ U (6;n).
B @) o) (%5m)

This proof is as follows. Since

1

_ dbs| — 1|dvol < U(8;n
el o Nl = (5:7)

for every sufficiently large ¢, by [1, Lemma 16.2], there exists a compact sub-
set K; of B1(z(i)) such that vol(Bi(z(i)) \ K;)/vol By (x(i)) < ¥(§;n) and
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Lip(b}|x,) <1+ ¥(5;n). Without loss of generality, we can assume that
there exists a compact subset Ko, of B1(z) such that K; — K. By Lemma
2.3, we have v(K)/v(Bi(z)) > 1 — ¥(d;n). Then, we have Lip(b5°|x_ ) <
1+ U(0;n). Put K, = LebK,.. Then by Lemma 3.7, we have

U(Bj(x))/&(m) (b [2dv
_ U(Bj(x))/&o db|2dv + U(Bj(@)/gl(m)ww b |2 dv
< w/[%m(Lipbgo)de+C(n)W
< v<31<)> /RJLip(bgﬂKm))?dv 0 (6n)
< U(Bj(x))/&oa + (S n))do + U(Sin) < 1+ T(6;n).

Therefore, we have Claim 3.21.
Assume that z1 = 23 and x5 = x4. Then, by Claims 3.18, 3.20 and 3.21,
we have

1 / 9
— dbs® — dry,|“dv
(B @) S,y |
) oo 0 ),
= — dblfdv — 2————— dboo,dr% dv
B @) Sy ™ T B @) Sy e

o - dv
" v(By(x)) /Bl(:c) dra, "
<149(6n)—2(1—TY(6;n))+1<Y(;n)

for every sufficiently large i. Therefore, we have Lemma 3.10. On the other
hand, Lemma 3.11 follows from Lemma 3.10 and Claim 3.20, directly. [J

Corollary 3.1. Let {(M;,m;)}; be a sequence of n-dimensional complete
Riemannian manifolds with Ricyr, > —(n — 1), (Y, y,v) a Ricci limit space of
{(M;,m;,vol)};, T a positive number, xm x1,29 points in Y,
{z(0)}i, {z1(0) }4, {z2(9) }; sequences of points x(i), x1(i), z2(i) in M;. Assume
that x € ;21 2(Dz, \ Br(z;)), (1) — z, and x;(i) — x; for every j. Then,
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we have
ol
- - drxl,drxz
B @) S | )
! r
~vol B, (z(4)) ‘ ; v <w(r L
vol B (z(1)) /BT(I)<dTI1(Z)’dr$2(1)>dvo dv < (T’T’n>
and

1 /
dr$1i7dr$2i
volB(()) ey 0 )

/ (dry, ,drg,)dv
B.(

for every sufficiently large 1.

dvol < ¥ (7’, f;n)
T

Proof. By rescaling r~!'dy and Lemma 3.11, it is easy to check the assertion.
O

Lemma 3.12. Let {(M;,m;)}; be a sequence of n-dimensional complete
Riemannian manifolds with Ricyr, > —(n — 1), (Y,y,v) a Ricci limit space
of {(M;,m;,vol)};, I a positive integer, r,e,7, L positive real numbers, x
a point in Y, {x(i)}; a sequence of points x; in M;, {ko}t1<a<i a collec-
tion of positive integers, {xf}1<s<i1<t<k, of points in'Y, {x] (i) }1<s<ii<t<k,
of points in M; for every i < oo, and {af}i<s<ii<t<k, of real numbers.
Let f; = ZZL 1 aﬁnr i and fZ = me 1a¥nr 0(0) Assume thatl <n, k; <n

for every 1 <i<l, z € ﬂ1<z<l 1<j<k, (DL \B (x )) x(i) — x, z; (i) — 3,
Zw( J) < L and

= df,dfZ dv:5i~ie.

B 0 =

Then, for every sufficiently large i, there exists a compact subset K of
B, j10(w(4)) such that the following properties hold:

L. vol(B, j10(2(i)) \ K7)/vol By jio(2(i)) < W(r,r/7,¢;m, L).

2. For every w € K! and every 0 < s < r/10°%, there exist a compact sub-
set Z of Bs(w), a point z in Z, and a map ¢ from (Bs(w),w) to (Z,z)
such  that the map @ = ‘(fli, oo fhe)  from Bg(w) to
Ber\I/(r,r/T,e;n,L)s (f{ (w)u SRR flz(w)7 ¢(w))7 s a \II(T, T/T, €n, L)S'

Gromov-Hausdorff approzimation.
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3. We have

1 . .
- AfE . dfi) — Gugldvol < W L
VO]BS(W) /Bs(w)|< fom fﬁ> /6| vol < ( 7_ ,E5N, )

for every w € K and every 0 < s < r/10.

Proof. By Corollary 3.1, we have

1 i g
vol B, (z(i)) /B,.(x(i)) df, dff) — |dV01 <V ( LEN L)

for every sufficiently large i. We shall consider rescaled distances r~'dy
and r 1dM{ below. For convenience, we shall use the following notations:
vol = vol” % 3 0 =v/v(B,(y)), #.(w) = r'w, 2%, By(w) =Bl % (w) =
Bgr(w), g =7"1g for a Lipschitz function g and so on. We remark that
(Mi,mi,rfldMi,LolrldMi) — (Y,y,r"'dy,®). We also denote the differen-
tial of a Lipschitz function f on Y as a metric measure space (Y,0) by
d f:Y = T*Y, and the Riemannian metric of rescaled Ricci limit space
(Y, y,r tdy,© ) by (-, ). Thus, we have (-,-), = r=2(-,-). Then, we have

1 . .
- dft,dft), —0.:dvol < W (r,— e;n, L
vol By (x(i)) /Blw)) i) =05 ( T )

for every sufficiently large 7. On the other hand, by [2, Lemmas 9. 8, 9.10,
9.13], for every sufficiently large 4, there exists a collection of harmonic func-

tions {f);nﬂ}lgmghlgjgkm on BlOO( ( )) such that |b <

P ) L (Ban(ai) =
Y(r,r/T;n) and

[ (B ol + sy ) dvol
vol Bioo(2(2)) J Buoo(x(i)) J

Sq/(r,f;n).
T

Let b, = ijzl ainf)

! l
B =" |db; - dfi2 + Z [db2 = 1]+ 3 [(db, dbl), | + > [Hess,, |2
j=1

J=1 j<i

The next claim follows from Lemma 3.1, directly:
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Claim 3.22. For every Suﬂiczently large 1, thereA eacjsts a compact sub-
set K! OfBl/lo( x(1)) such that Vol( ( (2) \ K};)/VOIB%O(:c(i)) < W(r,r/T,
e;n, L) and

1 N ~
M/ FidVOl < v (’I“, i, €;n, L)
vol Bss(w) J B, (w) T

for every w € K and every 0 < s < 1/10.

Fix w € K! and 0 < s < 1/10. By an argument same to the proof of [6,
Theorem 3.3], we have the following:

Claim 3.23. There exist a compact subset Z 0f§ (w), a point zin Z and
a map ¢ from Bgps(w) to Z such that the map ®(a) = (bl (a),. B”( )s

)=
¢(a)) from Byji0o(w) to Byjrs4ws(bi(w), ..., bj(w), p(w)) C Rk X Z,is a
Us-Gromov-Hausdorff approximation. Here \I/ U(r,r/T,e;n,L).

Since

1

— b’ — dfi|Zdvol < W (r, ", e, L
vol B5S (’UJ) \/B5S(w) ’ / fJ’ ( >

by the segment inequality on manifolds [6, Theorem 2.15], for every z; €

Bs(w), there exist 21 € Bsg(w), v € B58( ) and a minimal geodesic 7 from
Z1 to W such that z1,2, < U(r,r/7,e;n, L), w,w < W(r,r/7,€en, L) and

A%Im( f%(»ﬁﬁ@@gﬁmgs

Therefore, we have

b5 (21) — fi(z1) — (bL(@) — fi()] < /0 M L, — (20t

<V (r,z,e;n,L)s
T

By Cheng— Yau s gradient estimate, we have Lip(b ;“BQS (w)) < C(n, L). Thus,
we have |b (z1) — f;(zl) ( ]( w) — j(' w))| < Y(r,r/T,e;n,L)s. Let C =

b (w) — f;( w). Then we have that b;:f]’:—i—Cj:‘I/(r,r/T,e;n,L)s on
Bg(w).
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Thus, the map ®(a) = (fi(a),..., fi(a),$(a)) from Byps(w) to
§8/105+\p5(ff(w),...,f‘f(w),gb(w)), is a Ws-Gromov—Hausdorff approxima-
tion. Therefore, we have the assertion. [l

Lemma 3.13. Let (Y,y,v) be a Ricci limit space, T,€,0, L positive num-
bers, I, m positive integers, x a point in'Y', {ks}1<s<i a collection of positive
integers, {aj}1<s<i, 1<t<k, of real numbers, and {z}}1<s<i1<t<k., of points in

Y. Let f;j = Z’; 1 apr . Assume that x € Leb((y<;< 1<, <D; \{x;})ﬂ

(Rm)s,r)s 22 5(af 2 < L and

1
lim sup /
r—0  V(Bp(z)) B,.(x)
Then, for every sufficiently small s > 0, there exists a compact subset K of
Bg(x) such that the following properties hold:

v(Ks)/v(Bs(x)) > 1— V(e d;n, L).

2. For every o € Ky and every sufficiently smallt > 0, there exists a col-
lection of points {w}(a)}1<j<m—1 i Y, and a compact subset Uy of
Bi(av) such that v(Up)/v(Be(a)) > 1 —VU(e,0;n, L) and that the map
Qe = (fr, s fsTwt (@) Twt_ (o) from Up to R™, is (14 Y(e, d;

L))-bi-Lipschitz to the image.

[(df;, dfi) — dijldv < e.

Proof. Let (M;, m;,x(i),vol) — (Y,y,xf,v) and f; = ZI; 1 a%r 5(7)- There
exists s; > 0 such that s; < 7 and

e
df;, df) — 6,1]dv
Broen(@)) Sy i O V) 0
v (Blows(x) N Mi<i<ii<j<k: (D;;, n (Rm)&r))
v(Bigos(z))

for every 0 < s < s1. By Proposition 2.3 and Lemma 3.12, for every 0 < s <
s1, there exists a compact subset K of Byges(z) such that the following
properties hold:

+

< 3e

1. v(Ks)/v(Biges(z)) > 1 —¥(e;n, L).
2. For every w € K, and every 0 < t < 10%s, there exist a compact subset

ZP of By(w) and a map ¢¥ from By(w) to Z such that the map ®¥ =

(f17 ey fla d);‘,w) from Et(w) to §109(t+\11t)(f1(w)7 ey fl(U/), qb%l)(w))’ isa
Ut-Gromov—Hausdorff approximation. Here ¥ = W(e;n, L).
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3. We have

1

m /Bt(w) [(dfj, dfi) — dijldv < V(e;n, L)

for every w € K, and every 0 < t < 10%s.

Here, with the same notation as in Lemma 3.12, we applied Proposition 4.7
to obtain

1
i e [ drt) - oy dvol
k—o0 vol By(w(k)) B,,(w(k))|< 3 i) =0

1

= —— df; Cll —(Si'd’U
’U(Bt(’w)) /Bf(u))|< f]’ f> ]|

for every sequence w(k) — w. Fix 0 < s < s, w € KgN Leb(“lgigl,lgjgki
(DL \ {x;}) N (Rm)sr),0 <t <10%s,ZP, ¢ and @ as above. We remark

that v(K, N Leb((M1<i<i1<j<k: (D;;z \ {l‘;}) N (Rm)sr))/v(Bioes(x)) > 1 —
U(e;n, L). Assume that ¢ is sufficiently small and

v (Bi(w) NMi<i<ii<j<k (D;j_ \ {333}) N (Rm)é,r>
v(Bj(w))

>1—c¢

for every 0 <t <t, below. Then, for every 1 < j <1, there exist points
yj,y; € By(w) such that <I>§”(yj+), 0,...,0,¢,0,...,0,¢y(w)) < ¥t and
W—/

j
<I>§U(y;), 0,...,0,—t,0,...,0,0}"(w)) < Wt. Let @%" be a Wt-Gromov—
—
j _ _
Hausdorff approximation from Bjgs(sws) (f1(w), - - ., fi(w), ¢}’ (w)) to Bi(w)

satisfying ~ that @} o @“ (a),a <Wt for every «ac §109(t+\11t)
(fi(w), ..., fi(w),d*(w)), and that B o ®¥(5), 3 < Wt for every 3 € By(w).
On the other hand, there exist dt-Gromov-Hausdorff approximations ;"
from (By(w), w) to (By(0m),0m), and ¥ from (B(0m),0m) to (Bi(w),w)
such that ¢}" o 1[1;”(04), a < 56t for every o € By(0y,), and that 1&7}“ oY (8), 3
< 54t for every 3 € By(w). Especially, there exists a Wt-Gromov—Hausdorff
approximation h? from (By(Om_1),0m_;) to (Z¥,¢¥(w)) such that
(0,...,0,a),9% 0 d(fi(w), ..., filw), ¥ (a)) < Ut for every a € Z”, where
U = U(e,0;n,L). Without loss of generality, we can assume that
Y@ (y1),(0,...,0,t,0,...,0) < Wt. Then, for every i € {l +1,...,m}, there
——

7
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exist points 2", 27 € By(w) such that

AREat)

Y(2),(0,...,0,£,0,...,0) < ¥t and ¥ (2;),(0,...,0,—t,0,...,0) < Vt.

(2 7
Let F,=fi—fi(w) and G;=Fo¢® on (By0y),0y). Since
TR (0 0 OF(fi (1), fiw), b (@)@ < Wt for every a € By(0p 1),
we have that the map G = (G1,..., G, T41,. .., Tm) from (B(0,,),0,) to
(Bi+wi(0),0,,), satisfies G((0,...,0,%t,0,...,0),(0,...,0,%t,0,...,0) <
———— ————

Wt for every 4, and that it is a \Ift-GlromofoauSdorff apprzoximation, where
mRrm-t 1S the canonical projection R™ = R! x R to R™7!, 7; is the ith
projection from R to R. Thus, we have o, G(a) < Wt for every o € By(0,).
Especially, we have the following claim:

Claim 3.24. We have |G; — ;| < Y(e, d;n, L)t on Bi(0y,).

Fix 0 < t < t. By rescaling t 'dy, t " 'dg~, Claim 3.24 and the definition
of Busemann function, we have the following:

Claim 3.25. We have
rmm»ngw—@xmnst@

for every a € B;(w).

Let y; (k),z; (k),w(k) be points in My satisfying that y; (k) —y;,

z; (k) — z; and w(k) — w. Put r = VUt for U = U(e,d;n, L) as in Claim

3.25. For convenience, for rescaled distances r~'dy e}nd T_ldMi, we shall use
the same notation as in the proof of Lemma 3.12: ff, df,vol and so on.

Claim 3.26. We have

1 77 s ~
e dlk—df— EdVOIS\IIQ(S;n’L
vol Bloo(w(k)) /Bloo(’w(k‘)) | f Y; (k)| ( )

for every sufficiently large k.

The proof is as follows. By the assumption and Proposition 4.7, we have

[ el < Wl din 1)
VO]BlOOO(l'(k?)) Biooo(z(k))
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for every sufficiently large k. By an argument similar to the proof of Lemma

3.12, for every sufficiently large k, there exists a harmonic function f)l
. .~k ~ k o

on Bjpo(w(k)) such that Lipb; < C(n), |b; *fik|L°°(Bloo(w(k))) < U(r,r/

7;n, L) and

1 e ~n ~
— / (|dbf — a2+ |HessBk|3> dvol
vol B1ooo (w(k)) J Biooo (w(k)) :

< W(r,r/7;n, L).

For every o € Bigopo(w(k)) \ Cy=(k)> let 77" be the minimal geodesic from
y; (k) to a on (M;,r~1dyy,). Fix 0 < h < 1. By Claim 3.25, there exists ko
such that

b ()~ bt (o7 (G ™ 1))

h

_ ) = ff (%“ (y{ (ka” ™ h)) L V(e dn, L)
- h

Fon(e) - i (41 ( (s (a de‘h»)i\P(e,a;n,L)
h
i o ( o)

l_ldy

>

V(e 6;n, L)
:|: 7 7 7 7
h
—Tild 7T71d1&1 lild}\/lk
R PR R
- h h
14 \Il(e,éfin,L)

for every k > ko and every o € Bigoo(w(k)) \ Cy(r)- On the other hand, by
an argument similar to the proof of Claim 3. 19 ‘we have

-1
rldg,

1 / 1/y (k)
vol Bioo(w(k)) J Broo(w(k)) 1t Jy (ke ™ —n
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ke
—~Ydas, ’b. o A
(s — (y; (k),« - h)> d(}%dsdvol

< Cn)—0" / [Hess, ¢ |dvol < W(e, 6, L).
vol B1ooo(w(k)) J Biooo(w(k)) i

1 / ank o .
S by, df o )pdvol = 1 + 9% L)
vol Blgo(’w(k?)) Bwo(w(k))< vi (k) h

Therefore, we have
vol Blgo('UJ(k)) Bioo(z(k)) '
1 A A ~
VO]Bloo(w(k‘)) BIOO(w(k))

2 RPN .
- dfF, di .\ )pdvol +1
vol Blgo(w(k)) /B1no(w(k))< f Ys (k)>

ank Al -
T ol Buoo(w(k)) /J_f;loo(w(k))ubi Wy golrdvol L oim L)
—2_9 (1 + @(6’5};"’ L)> + U(e,0;n, L) = \I/(e’iin’L).

Therefore, we have Claim 3.26.
Next claim follows from Claim 3.26 and [2, Theorem 9.29] directly:

Claim 3.27. For every sufficiently large k, we have

1

— (df¥,dF - )rldvol < U(e, 6;n, L)
vol Bigo(w(k)) /Bl(ww)) »
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for every 1 <i <1 and every l +1 < j < m. Moreover we have

1

—_— (dfE, dfF),|dvol < (e, 6;n, L)
vol Bigo(w(k)) /Bl(w(k)) !

for every 1 <i<i<l.

For every ¢ with [ —|— 1 <i < m, and every sufficiently large k, there exists
a harmonic function b on Biogo(w(k)) such that 7.~ — b |L°° (Brooo (w(k))) <
U(e, d;n, L) and

1 / apk s 2 2 .
— |db; — dr - |5 + |Hess « |5 ) dvol
vol Biooo(w(k)) J Biooo(w(k)) ( o b )
< U(e d5m, L).

l
~ ank sk ank A
Fp= > |{db;,db;), — il + Y  [Hess;s2+ > |db; —dff|?

1<i,j<m 1<i<m i=1

Then, by Lemma 3.1, for every sufficiently large k, there exists a compact
subset Z(k) of Bi(w(k)) such that vol(Bi(w(k))\ Z(k))/vol By (w(k)) <
U(e, d;n, L) and

1 . ~
M/ Fk»dVOl < \I’(E,(S; n, L)
vol Bg(«) JBi(a)

for every a € Z(k) and every 0 < § < 10. Thus, by an argument similar to
the proof of [6, Theorem 3.3], for every a € Z(k) and every 0 < 8 < 1, there

exists a compact subset P of B;(a), a point s € P, and a map ¢¢ from
~ _ ~k
(Bs(a),a) to (Bg(ps),ps) such that the map Qf = (bl,... b

m»>q5) from

= = - -k

B;(a) to Bgyws(by(),...,b,,(a),pf), is a ¥s-Gromov-Hausdorff approx-
imation. By an argument similar to the pllgoof of Claim 3.23, for every a €
Z(k) and every 0 < § < 1, we have that b; = f¥ + constant & U3 on B;(a)
for every 1 <i </, and b =7, (k) + constant + U3 on Bs(a) for every
I +1 < ¢ < m. Therefore, the map QO‘ = (f1 e lk’fzm(k)v ce Z;n(k),qg‘)

from Bg(a) to B§+\1;§(f1 (a),...,fl( a), T T (@) Py (@), pg), Is a
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U s-Gromov—Hausdorfl approximation. Without loss of generality, we can

assume that there exists a compact subset Z(0o) of Bi(w) such that Z(k) —
Z(o0). Let U = Z(c0) mﬂlgigl,lgjgki(pgg \ {2%}) N (Rm)s,- By Proposi-
tion 2.3, we have O(By(w) NU)/0(Bi(w)) > 1 — . Since a € (Ry)rs5, we
have that the map T§ = (fi, - 1, Py ,7,-) from ﬁg(a) to Bs(T (),
is a Ws-Gromov—Hausdorff approximation for every a € U and every 0 <

§ < 1. Let a, 8 be points in U N By j(w) with a # 8. Put s = a, # < 1.
Then, we have

(@), oo @), (@)seees o (@),

(fl(ﬁ)a ceey fl(ﬁ)a’f'zﬂ_l(ﬂ)v cee a’f'z;t(ﬂ))

—a g T rwi=(1+ W) g *
Therefore, we have the assertion. [l

Lemma 3.14. Let (Y,y,v) be a Ricci limit space, 1, k,m positive integers
with 1 <1 <m <n, z apoint inY, {hi}1<i<i a collection of Lipschitz func-
tions on Y, {z;}1<i<k of points in Y, and {al}1<i<ki<j<i of real numbers

Let f; = Zk alry,. Assume that the following properties hold:

1=1"1
1. We have
1
lim/ df; —dh;ldv =10
P (B, (@) Sy P
for every j.
2. We have
ze (ﬂ (U Leb (ﬂ(p;i \ {z:}) N (Rm)&,ﬂ))) .
7>0 \6>0 \r>0 7
3. The limit

1
lim/ dhy, dh;)dv € R
P 0B @) Sy )

exists for every i,j.

4. We have

. 1
det (llir(l) o(Br@) /B,,,(x)<dhi7dhj>dv). | # 0.

27]
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Then, for every 0 < § < 1, there exists ro > 0 such that for every 0 < s < rq,

there exists compact subset Ky of Bs(x) such that the following properties
hold:

1. v(Ks)/v(Bs(x)) > 1— 0.

2. For every a € Ky and every sufficiently small t > 0, there exists a
collection {wé(a)}lgjgm_l of points in'Y, and a compact subset Uy
of Bi(a) such that v(U;)/v(Bi(a)) > 1—38 and that the map ¥y =
((hl, ceey hl)A,Twi(a), PN 77'w£,1,1(a)) from Ut to Rm, 18 a (1 + 5)—bi—
Lipschitz to the image, where

1
1

A= lim/ dh;,dh;)dv

<Hov<Br<:c>> oy i ) )

Proof. Define a collection {g;}1<ij<; of Lipschitz functions g; on Y by
(g1,---,q1) = (h1,...,hy)A. By the definition, we have

ihj

: 1 /
lim ————— 9i, gj)dv = 0; ;.
r—0 v(B;(z)) B,,(x)< 95) !

By the assumption and Corollary 3.1, we have

1
lim/ 9i, 95) — 0 jldv = 0.
r—0 U(BT($)) B, (z) |< ]> J’

Put (Fy,...,F) = <Zf:1 birg,, ..., Zle bérxi) = (Zle atre, ...,
SF aérmi) A. Let L > 1 satisfying |A| + 3, ;(b))* < L. Fix 0 < § < 1. By
Lemma 3.13, we have the following claim:

Claim 3.28. There exists r1 > 0 such that for every 0 < s < ry, there exist
a compact subset K of Bs(x) such that the following properties hold:

1. v(Ks)/v(Bs(z)) > 1—0.

2. For every a € Ky and every sufficiently small t > 0, there exist a
collection of points {w}(a)} i<j<cm—1 Y, and a compact subset Fy
of Bi(a) such that v(E;)/v(By(a)) >1—6 and that the map O =
(F1yo o Pl Tt (a)s -+ 5 Twt, () from By to R™, is (1 & §)-bi-Lipschitz
to the image.
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On the other hand, there exists g > 0 such that
B )
dF; —dgjldv <6
B Sy oy 2=~ 200

for every 0 < s < 1. Thus, by Lemma 3.1, for every 0 < s < 19/100, there
exists a compact subset X of Bg(x) such that v(Xs)/v(Bs(z)) > 1 — ¥(§;n)
and

1
v(Bss()) /Bsg(oz) zj: [4E; = dgjldv < W(8in)
for every a € X; and every 0 < §<s. Put Vy; = K;N X, for every 0 <
s < min{rg,r1}/1000. Then we have v(V;)/v(Bs(z)) > 1 —¥(J;n). Fix 0 <
s < min{rg,r1}/1000 and « € V5. By an argument similar to the proof of
Claim 3.23, for every sufficiently small ¢ > 0, we have F; = f; 4 constant &
W(8;n)t on By(a). Fix such ¢ > 0 and put Uy = By j5(a) N Ey. Then, we have
QA)(Ut)/'U(Btm(Oé)) >1— U(d;n). Let p1,p2 be points in U; with p; # pa. Put
t = p1,p2 > 0. Then, we have

(fiP1), 5 ilP1)s Twt(@)s -+ -5 Tt () (P1)),
(f1(P2),- -5 filp2)s Twt (@) (P2)s -+ 5 Tt (@) (P2))
Twt (a

(Fl(p1)7'"7F‘l(p1)7rwf(a)(pl)7"'7 wh )(pl))
(Fl(pQ)a"‘7ﬂ(p2)7rwi(a)<p2)7‘"77,w:’nil(a)<p2))
(1+0)p1,p2 + Vi = (1 £ ¥)p1, p2.

"+ Ui

Therefore, we have the assertion. O

Lemma 3.15. Let (Y,y,v) be a Ricci limit space, | a positive integer,
{fiti<i<i a collection of Lipschitz functions on'Y', f a Lipschitz function on
Y, and A a Borel subset of Y. Assume that span{dfi(x),...,dfi(z)} = TrY
for a.e. x € A. Then, for a.e. x € A, there exists a collection of real numbers
{bi(x)}lgigl such that

2
dv = 0.

l
df = bi()df;
=1

lim — /
r—0 v(By(2)) /B, (2)

Proof. Without loss of generality, we can assume that {df;(x)}; is a basis of
T7Y for every z € A. Put

-1

(b1(2), ..., bi(x)) = ((df, df1)(x), ..., (df, dfl>($))\/(<dfi7dfj>(x))i,j
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for every z € A. Then, by Lebesgue’s differentiation theorem, for a.e. z € A,
we have

. 1 2, 2
liny s /B Py = arPa),
. 1
lin s /B @ = @)
and
lm / (dfs, df;)dv = (df, df;) ()
r=00(B,(2)) Jp, ) T

for every 4, j. Then, since it is easy to check that

i 1 = lim 71
0 ST VT = B o <df’zb dfﬁ>

I 2

Z bi(a)df;

i=1

1
ST /
r—0 U(Br(fﬂ)) B, (z)

2

x)dfi(x

for a.e. x € A, we have

df ~ Zb )dfi

1
lim /
r=0 v(By()) /B, (x)
1 1
:hm/ df2dv—2lim/
r—0 ’U(Br(.ilf)) B,(z) | | r—0 ’U(BT ($

2
+ lim # /
r—0 v(By(2)) /B, (2)

dv =20
for a.e. z € A. O

<df,2b dfz>

r

l

Z bi(a)dfi

=1

Theorem 3.4 (Rectifiability associated with Lipschitz functions). Let
(Y,y,v) be a Ricct limit space, | a positive integer, {fi}1<i<i a collection of
Lipschitz functions on'Y', A a Borel subset of Y. Assume that {df;(z)}1<i<
are linearly independent in T;Y for a.e. x € A. Then, there exist 0 < a(n) <
1, collections of compact subsets {Ck ;ti<k<nicn of A, of points {xk;}r. in
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A, and of points {x} ;}rii<s<k—1 i Y such that the following properties
hold:

L Cii € Rigam NNSZHAN (Cyp Ul 1) and o (A\ Upcrnien
Ck,i) =0 for evrey k.

2. For every | <k <n, every x € J;en Cryi and every 0 < 6 < 1, there
exists Cy; such that x € Cy; and that the map ¢r; = ((f1,..., f1)

v ({dfi, dfj)(fk,i))i,jily Tal seees rxzfz) from Cy; to R¥, is (1 +£8)-bi-
Lipschitz to the image. ’

3. The limit measure v and the k-dimensional Hausdorff measure HF
are mutually absolutely continuous on Cy ;. Moreover, v is Ahlfors
k-regular at every x € Cy;.

Proof. Let {C} ;}1 be a collection of Borel subset of Y, and {335,“}1“ of
points in Y as in Theorem 3.1, where :c}“ = y. By Lemma 3.5, without loss
of generality, we can assume that Cj; is bounded for every i,k. By the
construction of T*Y, we have span{dr,: (z),...,dry (z)} =T;Y for a.e.
x € C} ;. Therefore, we have v(ANCY ;) = 0 for every k < [. Since

v RN ()| JLeb ﬂ(D;g \ {27}) N (Ri)s.r =0,

7>0 \ >0 \r>0 i,J

the following claim follows from Lemmas 3.14 and 3.15, directly:

Claim 3.29. For every k > 1 and every i € N, there exists a Borel subset
Ay of ANCy; such that the following properties hold:

1. 'U(A N Ckﬂ' \ Akﬂ) =0.

2. For every x € Ay; and every 0 < 6 < 1, there ewists rg > 0 such that
for every 0 < s < rl, there exists a compact subset K(x,0,s) of By()
such that the following properties hold:

(a) v(K(z,0,5))/v(Bs(x)) >1—4.

(b) For every o € K(x,6,s) and every sufficiently small t >0, there
exist a collection of points {w(i,z,0,s,a,t) hi<i<k—1 Y, and a
compact subset U(z, 8, s, a,t) of By(a) such that the map ®05%t=
((fh R fl)A(x)v Tw(1,2,8,8,a,t) + + 1 Tw(lcfl,x,é,s,a,t)) from U(QZ, 4,8, t)
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to R*, is (1 + 6)-bi-Lipschitz to the image, where

-1

N - -
A(r) = <}%WL,,(I)<dfs’dft>dv> = \/(<df5adft>< ))s.t

st

—1

Put fl;“ = Leb(Ay ;). For every N G N and every T € flm, let s be a
positive number satisfying that 0 < s < mm{rw N, N~1} and v(Bgx () N

Api)/v(Bgy(x)) > 1— N~ Let K(z, N1, s2) be a compact subset as in
Claim 3.29. Put K(ZL‘ N~ 1 sN) = K(x, N 1 s¥)N Ay Then, we have
v(Bgny ( )N K (z, ))/U( v(x)) > 1—100N‘1 For every a€ K(x,

N~ 1 )thereex1sts()<t—t( )<N Usuch that v(Bj(a) N Ay;)/v(B ( ))
>1—N1forevery0<t<t Takew(szl,x, )andU( L
sN a,f) as in Claim 3.29. Put Uz, N7, sY, a,f) = U(x N1 8D ,a,f)ﬂ
A;” Then, we have v(B;(« )N Uz, N~1, sN ,a £))/v(By(a))>1 — 1000N 1,
By Lemma 2.2, it is not difficult to check that the followmg claim:

Claim 3.30. There emsta: S A;“, a S K( N N1 sNN) and 0 < tév <
t(aj ) such that

v | A\ U U(xf,Nfl,sgy,ajV,t;V) < U(NYn)0(Bio(Ars)).
jEN ‘

Put U(j, N) = U, N7" sl ol t(af))), w(i j,N) = w(i,z, N7,
)=

0l 0)), UG) = Nysen (Uniom U(a,Nn) and U(j, N) = U (j, N) 1
U(j). Then we have v (A;“\UjeN U(j )) =0 and Uyen UG N) = U()).
Fix j, w € Uyen U4, N) and 0 < 6 < 1. There exists Ng such that w €
U(j, No). Let Ny € N with Ny ' << 4. Since w € Up,>y, U(j, V2), there
exists Ny > Ny such that w € U(j, Na). Especially, we have w € U(j, Na).
ThUS, the map Gj,Nz = ((fla cee fl)A(xé\[z% Taw(1,5,Ng)s -+ - 7rw(k)fl,j,N2)) from
U(j, N2) to R¥, is (1 + N, 1)-bi-Lipschitz to the image. Especially, G v, is
(1 £ 6)-bi-Lipschitz to the image. Therefore, we have the assertion. O

Remark 3.2. The radial rectifiability theorem, Theorem 3.1, corresponds
to Theorem 3.4 for the case: [ =1,f1 =7r,,A=Y.

We will end this subsection by giving two corollaries of Theorem 3.4. For a
metric space X, define a distance on R>oxX/({0} xX) by (t1, 1), (t2,x2) =
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V13 + 13 — 2t1t5 cos min{Z1, T2, 7}. Denote this metric space by C(X), and
put p = [(0,z)] € C(X). The next corollary is used in [24], essentially.

Corollary 3.2. Let X be a compact geodesic space and | a non-negative
integer. Assume that [<n, dimgX =n — [ — 1 and that (R x C(X), (0;,p))
is a Ricci limit space. Then, X is H" '"1_rectifiable.

Proof. Define a collection of 1-Lipschitz functions {g} U {m;}1<j<; on R x
C(X) by mj(ts,...,t;,w) =t; and g(t1,...,4, w) =p,w. By Theorem 3.3
and [4, Theorem 5.9], we have (dm;, dr;)(a) = 6; j, (dm;, dg)(a) = 0, |dg|(e) =
1 for a.e. @ € R! x C(X) with respect to the n-dimensional Hausdorff mea-
sure H™. Therefore, by applying Theorem 3.4 for a collection of Lipschitz
functions {7;}1<j<; U {g} and A = R' x C(X), there exists a collection of
Borel subsets {C;}ii+1<k<n as in Theorem 3.4. Since the product mea-
sure H!' x H" ! on R! x O(X) is equal to H™ (see the appendix in [24]), by
Fubini’s theorem, we have

0=H" (Rl X C(X)) \JCra
ki

:/RZH”Z ({t1, ot} x CCO)\ | Crs | art’,
ki

Especially, there exists (¢4, ... ,#) € R! such that "~ (({t1,...,t;} x C(X))
\ Ui Ck,i) = 0. Put C’;H = ({t1,..., i} x C(X)) N Cy; and regard it as a
subset of C(X), canonically. Now, we remark that

/ fdH" ! = / / fdH™ "t
C(X) 0 OB:(p)

holds for every f € L'(C(X)) (this is the co-area formula for the distance
function from the pole in C(X). See for instance the appendix in [24]).
Thus, especially, we have H" =1 (8Bt(p) NCX)\ Up, C‘kz) =0 for a.e.
t > 0. Then it is not difficult to check the assertion. g

Remark 3.3. With the same notation as in Corollary 3.2, we have 0 <
H"'=1(B,(x)) < co for every z € X and every r > 0. It follows from [4,
Theorem 5.9],[6, Theorem 4.6] and the above co-area formula for the distance
function from the pole on C(X). We skipped the proof because it is not
difficult to check it.
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Similarly, we have the following;:

Corollary 3.3. Let (X,z) be a pointed proper geodesic space, | a non-
negative integer. Assume thatl <n, dimgX =n — [ and that (R! x X, (0, z))
is a Ricci limit space. Then, X is H" '-rectifiable.

4. Convergence of L*°-functions and of Lipschitz functions

In this section, we will give two-notions of convergence of a sequence of
L*>-functions with respect to the measured Gromov-Hausdorff topology.
By using these notions, we will give the definition of a convergence of the
differentials of Lipschitz functions (see Definition 4.4). Moreover, by com-
bining with several results given in Section 3, we will discuss convergence of
harmonic functions. In [26-30], we can also find related important, interest-
ing results to this section. For harmonic functions, see also [9, 11, 24, 31-33,
36, 37]. Throughout the following Subsections 4.1 and 4.2, we shall fix the
following:

1. Let {(Zi, zi) }1<i<oo be a sequence of pointed proper geodesic spaces,
T; € Z;.

2. Let v; be a Radon measure on Z; for every 1 < i < oo.

3. v;(B1(zi)) = 1 holds for every i.

4. For every R > 1, there exists k = k(R) > 1 such that v;(Bas(z)) <
250;(Bs(2)) for every 1 < i < oo, every z € Z; and every 0 < s < R.

(s ,E;',ei) (

5. (Zi, ziy 2i, V) Zoo, Toos Zoos Voo ) -

4.1. Pointwise strong convergence of L°°-functions

Our aims in this subsection are to give the following notion and several
fundamental properties of it:

Definition 4.1 (Pointwise strong convergence of L>-functions). Let R be
a positive number, wo a point in Br(zs) and {f; }1<i<co a sequence of L>-
functions f; on Br(z;) with sup; | fi| L= (B,(x,)) < 00- We say that f; converges
strongly to foo at we if for every € > 0, there exists r > 0 such that
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1 1
lim sup / fi— / JfooldUso | du; < €
imoo Vi(Be(wi)) JB,(w,) Voo (Bt (Woo)) J B, (w..)
and
lim s 1 / f 1 / Fudvy| dvay <
imsup ————— o — ————— 5dv; | duse < €
oo Voo (Bt(Woo)) JB,(w.) vi(Br(wi)) JB,(w,)

for every 0 < t < r and every w; — Weo.

Example 4.1. Fir f € C°(Br(v)) and put f; = f o ¢;. Then, it is easy
to check that f; converges strongly to foo at every w € Br(Zoo).

We shall give a fundamental result about this convergence without the
proof because it is not difficult to check it:

Proposition 4.1. Let k be a positive integer, R a positive number,
{fil}lglgk a collection of L*>®-functions on Br(x;) for every 1 < i < oo with
SUP; 1 | fH 1 (Br(z:) < 00 Woo @ point in Br(so) and {F;}1<i<eo a sequence
of continuous functions on R¥. Assume that fll converges strongly to f'. at
Weo for everyl, and that F; converges to F with respect to the compact uni-
formly topology. Then, Fi(f}, ..., fF) converges strongly to Foo(fL, ..., fX)
at Weo-

Remark 4.1. Let k be a positive integer, {f!}1<;<k a collection of L°°-
functions f! on Bg(z;) for every 1 <i < 00, ws a point in Br(7s), and
{Fi}1<i<oo @ sequence of locally L*°-functions on RF. Assume that the fol-
lowing properties hold:

1. sup;; |fil|Loc(BR(a:i)) < 0.

2. fz-l converges strongly to féo at we for every .

3. The limits

1
l : :
r—0 Uoo(BT(U)OO)) By (wse)

exist for every I.

4. There exists an open neighborhood U at (a!,...,a*) € R¥ such that
F; is continuous on U for every 1 <14 < oo, and that F; converges to
Fo on U uniformly.
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Then, we also have that F;(f}, ..., fF) converges strongly to Fuoo (fL, ..., %)

(2 o0
at Weo-
The following proposition is the main result in this subsection:

Proposition 4.2. Let {(M;,m;)}; be a sequence of pointed n-dimensional
complete Riemannian manifolds with Ricy;, > —(n—1), (Y,y,v) a Ricci
limit space of {(M;,m;,vol)}i, R a positive number, Too, 200 points in'Y,
Ty, z; points in M; for every i < oo, fi a C*-function on Bgr(x;) for every
i < 00, and fs a Lipschitz function on Br(rs). Assume that sup,; Lip f; <

(¢i,Risei)
)=

0, (Miamiamiv'zhfiaLOl }/ayaxooazoo7f00av) and

sup/ |Hess , |dvol < oo.
i J Br(zi)

)

Then, (dr,,,df;) converges strongly to (dr.__,dfec) at a.e. Woo € Br(Too)-

Proof. Fix € > 0 and let L > 1 with

1
_ H |dvol + Lipf; | < L.
P (VC)lBR(mz’) /BM' o dvol + Lipf ) -

By Theorem 3.3, there exist 0<n<<e and a Borel subset X (¢) of Br(xso) N
DI\ By(25) such that v(Br(zso) \ X(€))/v(Br(zs)) < € and

fo oz a+h) = foo(a)
h

= (drz., dfso)(a)| < €

for every o € X(e), every real number h with 0 < |h| <7, and every iso-
metric embedding 7 from [0, Zs, @ + 1] to Y with v(0) = 2s0, 7(Ze0, @) = .
On the other hand, by Lebesgue’s differentiation theorem, there exists a
Borel subset X (¢) of X (e) such that v(X(e) \ X(€)) = 0 and that for every
o € X(e), there exists r(a) > 0 such that

1

v(By(a)) /Bt(cw {dra, dfoc) = {7z, dfoc) (a)|dv <€

for every 0 < t < r(a). Put [ = n~'/4. By an argument similar to the proof
of Proposition 3.1, for every 1 <14 < oo, there exists a compact subset K; of
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Bpr—_c(z;) such that

vol(Br—c(:) \ Ki)
vol Br_. (xl)

<VU(Yn,RL) and |Hess , |dvol <

1
vol By(w) /Bt(w)

for every w € K; and every 0 <t < ¢/100. Without loss of generality, we
can assume that there exists a compact subset K., of Br(7s) such that
K; — K. Put W(e) = Koo N X (€). By Proposition 2.3, we have v(W(¢€))/v
(Br(zx)) > 1 —=V(e;n, R, L). Fix a € W(e), 0 < t << min{n,r(a)} and an
isometric embedding v from [0, Zo, @ + 1] to Y with v(0) = 200, 7(Zo0, @) =
a. Let {a;}; be a sequence of points «a; in K; with o; — «. Define a Borel
function F; on Bi(ay) \ (Cz, U {z:}) by Fi(8) = (fi 0o vp(2i, 8 — %) — fi(B))/
(—n?), where 4 is the minimal geodesic from z; to 3. By an argument similar
to the proof of Claim 3.19, we have

1
vol B(a)

C(n) /
d I3 dT’z, - Fz dvol < I S/ Hess ¢ |dvol
[, )~ Rl < g P [ s

<n?C(n)l < ¥(e;n)

for every i. Fix ig with €; << t for every i > iy. We remark that ¢;(3;),a <
t 4+ ¢; < n? for every i > ip and every 3; € By(«;). Then, since

2 n~2dy — 9 -t dy — 1 2dy
2, 0i (s, (zi, Bi — 1)) + 0i(v8, (2, Bi — 1?)), 0i(5s) —2,0:(5)
< 3¢,
we have
77—2 n—de

dy ——— -2
2 (bl(’)/ﬁb(zzv/@z - 772)) + ¢7J(’75L(zl761 - 772))? a - mn dv < 577

Similarly, we have

-2

n

i i)+ i i — P Eat )

2g,
—zy(Za+n)" 7 <5,
— — n
(rbl(’)/ﬂ, (ZZ', /82 - 772))7 7('27 a+ 7))
7772dy -1

>0t =0, ¢i(vs, (21, B — 12)), 2 >0t =1

—2q,,

and
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Therefore, by the splitting theorem on limit spaces, we have

i i B — P Ea— 1) < U(nn).

Thus, we have

ity (zi, B — 1)) — fi(Bi) _ Joo(@i(8, (20, Bi — 0*))) — foo(0i(B:)) L&
2 . >
Z a0 — n? — Jool¥
_ fo(0(7 _7;2))) Joo )i\li(n;n,L)
= (dr, df o) (@) £ V(03 n, L)

Especially, we have

1

_ F; — {dr,,df ) (a)|dvol < U (n;n, L
S /BM‘ (drs, dfs) (@) (min, L)

for every i>ip. Put W =y en (UN22N1 W(N;l)). Then we have
V(Br(Zoo) \ W) = 0. Moreover, by the argument above, (dr,,, df;) converges
strongly to (dry, dfs) at every ws, € W. O

Remark 4.2. We shall introduce the following important method to obtain
a uniformly L?-Hessian estimates by using cut-off functions with good
properties constructed by Cheeger—Colding: Let (M, m) be a pointed
n-dimensional complete Riemannian manifold with Ricyr > —(n—1), R a
positive number and f a C2-function on Bg(m). Assume that there exists
L > 1 such that

IV flL (Br(m)) +/B | |Af|?dvol < L.

Then, we have

/ [Hessf|*dvol < C(n,r, R, L)
B,.(m)

for every 0 < r < R. The proof is as follows. By the standard smoothing
argument, without loss of generality, we can assume that f is a smooth
function. By [2, Theorem 8.16], there exists a smooth function ¢ on M
such that 0 < ¢ <1, é|g (m) =1, supp¢ C Br(m), |V¢| < C(n,r, R) and
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|A¢g| < C(n,r, R). By Bochner’s formula, we have

—LA|V(6) > [Hessyr|* — (VA(SS), V(8S)) — (n — 1)V (o f)|*.

Thus, we have
/ HeSSf|2dVOI§/ |Hess g f|?dvol
B.(m) Br(m)

< / (A(6f))?dvol + C(n, R, L)
Br(m)

< / ((FAG) + (SAS) + V1, V) ) dyol
Br(m)

+C(n,R, L)
<C(n,r,R,L).

This observation performs a crucial role to study limit functions of harmonic
functions in Subsection 4.4.

The following proposition follows from Corollary 3.1 directly.

Proposition 4.3. Let {(M;,m;)}; be a sequence of pointed n-dimensional
complete Riemannian manifolds with Ricy,, > —(n—1), (Y,y,v) a Ricci
limit space of {(M;, m;,vol)};, wéo,wgo points in Y, and w},w? points in
M; for every i, satisfying that w] — wk, for every j. Then <d7”w;ad7”w§> con-
verges strongly to (dry: ,dry:2 ) at every z € Y \ (Cyr U Gz U {wl, w2 }).

4.2. Pointwise weak convergence of L°°-functions

Our aims in this subsection are to give the following notion and its funda-
mental properties.

Definition 4.2 (Pointwise weak convergence of L>*-functions). Let
R be a positive number, we, a point in Br(z) and { fi}1<i<oo a sequence
of L>®-functions f; on Br(z;) with sup; | filp=(Bp () < 00. We say that f;
converges weakly to foo at we if for every € > 0, there exists r > 0 such that

1 1
_ idv; — —————— 00 @Uso
o (Br(w)) /B,Mf U e (Br(wn) /B,ww)f v

for every 0 < t < r and every w; — Weo.

lim sup <e

1—00
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It is clear that if f; converges strongly to fo at we, then f; converges
weakly to foo at we. We skip the proof of the next proposition because it
is not difficult to check it.

Proposition 4.4 (Linearlity of weak convergence). Let R be a pos-
itive number, woo a point in Br(xs) and a;, b;, ¢;, di L*®-functions on
BR(.TZ) fOT’ every 1 <1< o0 with supi(]ai\ + ’bl| + |Cz‘ + ’dl|)Loo(BR(xl)) < 00.
Assume that a;, b; converge strongly to aeo, boo at Weo, Tespectively, and that
¢, d; converge weakly to Coo,doo 0t W, TESPectively. Then a;c; + bid; con-
verges weakly t0 GooCoo + booldoo 0 Weo.

Proposition 4.5. Let {A;}i<i<oo be a sequnece of Borel subsets A; of
Br(z;) and ws a point in LebAs. Assume that 14, converges weakly to
1a. at weo. Then 14, converges strongly to 14 at Weo.

Proof. Fix € > 0. Let {w;}; be a sequence of points w; in Z; satisfying w; —
Weo. There exists r > 0 such that Ve (Bi(Weo) N Aco)/Veo (Bi(wee)) > 1 —€
and

1 1
lim sup / 1Aidvi—/ la_dus| <€
i—oo | Vi(Bt(wi)) JB,(w) Voo (Bt(Weo)) J B, (w.)
for every 0 < t < r. Fix 0 < t < r. Then we have
1 / 1
_— 1a, — / 14 dvse| dv;
vi(Be(wi)) J B, (w,) Voo (Bt(Weo)) J B, (w.0)
< 1 / 1 L / 1a,dv;| dv; +
< —— AT TR A,dvi| dvu; + €
vi(Be(wi)) J B, (w,) vi(Be(wi)) J B, (w,)
Ui(Be(wi)) Ja,  vi(Bi(wi)) i (Bi(wi))
X —————dv; + ¢
/Bt(wi)\Ai vi(Bi(w;))
vi(Bi(wi) \ Ai) Voo (Bt(wos) \ Aco)
<2————————“ +e<?2 + 2¢ < 5e.
vi(Bt(wi)) Uoo(Bt(wOO))
for every sufficiently large i. Similarly, we have
1 / 1 1 / 14.dv;| dus < 5
=YY Acw = T o 7 A; QU5 [e%s) €
Voo (Bt (Weo)) J B, (w.) vi(Bt(wi)) J B, (w,)

for every sufficiently large 7. Thus, we have the assertion. O
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The next proposition follows from an argument similar to the proof of
Proposition 2.3:

Proposition 4.6. Let R be a positive number, {K;}i<i<oo @ Sequence of
Borel subsets K; of Bgr(z;), and {fi}1<i<oo of mon-negative valued L*-
functions f; on BR(:U,) with sup; | fil Lo (Ba(a)) < 00- Assume that K is
compact, hmsupzﬁooK C K& and that f; converges weakly to foo at a.e.
w € Ku. Then, we have

lim sup / fidv; < / FfoodUse.
1—00 K; Koo

We shall give a fundamental result about this weak convergence:

Proposition 4.7. Let R be a positive number, {A;}1<i<co @ sequence of
Borel subsets A; of Br(xi), and {fi}1<i<co of L®-functions f; on Br(z;)
with sup;, ’fi‘L’x(BR(a:i)) < 00. Assume that 14, converges weakly to 14 at
a.e. w € Br(xoo) and that f; converges weakly to foo at a.e. w € As,. Then,
we have

lim fldvz / foolUso.

i—00

Proof. Tt follows from (the proof of ) Propositions 4.4 and 4.5 that f;14,
converges weakly to foola_ at a.e. woo € Br(Zs). Thus, without loss of
generality, we can assume that A; = Br(x;) for every 1 <i < oo. Fix € > 0.
Let L > 1 with sup; | fil L (Bp () + UOO(BR(a;OO)) < L. There exists a Borel
subset Koo of Br(s) such that v(Bgr(zso) \ Koo) = 0 and that for every
Weo € Koo, there exists t,_ > 0 such that Bio;, (W) C Br(x) and

lim sup
1—00

<€

1 1
S dv; — ——————— 00 Uoo
v;(Bs(w;)) /Bs(wi) fudv Voo (Bs (W) /Bs(ww) footlv

for every 0 < s < t,_ and every w; — ws. By Lemma 2.2, there exists a
pairwise disjoint collection {B,. (z;)}; such that z; € Koo, 75 << l,,, and
Ko \UX, B, (z:) C U2 N1 Bsr, (@) for every N. Fix N satisfying Y o2 v 4
Voo (Br, (2i)) < €. Then, we have Y 7° | Uoo(Bsy, (1)) < 25+(D¢. For every
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i,7, let ;(j) be a point in Z; satisfying z;(j) — x;. Then we have

N
/BR(%O) Joolvoo = Z/ _ foodUoo + (e k(1), L)
B Z/B (@) fydv; £ ¥( K(1), L)

:/ fjdl}j + (/ . |fj|de
Br(z;) Br(z;)\UL, By, (z:(5))

+U(e; k(1), L))

for every sufficiently large j. On the other hand, by Propositions 2.1 and 2.3,
we have

N
limsup/ B |fjldv; < Llimsupwv; (BR xj) U (x5 )
' Br(z;)\U

j—oo Ly Br(m:(4) j—oo

§Lv00< OO\UB )

< ‘Il(e;/i(l),L).

Therefore, we have the assertion. O

Next corollary follows from Proposition 4.7 directly:

Corollary 4.1. Let R be a positive number, N a positive integer,
{rjhi<j<n a collection of positive numbers, {z;}1<j<n of points in Y, and
{fit1<i<oo a sequence of L>-functions f; on Br(x;) with sup; |filr=(Bg(z:))
< 00. Assume that f; converges weakly to foo at a.e. w € Br(xoo) \ Ufil B,,
(zi). Then, we have

lim

A fidv; :/ foodUoo
J70 J Br(z;)\UiL, B, (2:(5)) Br(zo)\UiL, Br, (2:)

for every z(j) — z.
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4.3. Convergence of the differentials of Lipschitz functions

A purpose of this subsection is to give the definition of a convergence: df; —
dfso. See Definition 1.1 or Definition 4.4. Throughout this subsection, we fix
the following situation:

1. Let {(M;,m;) }1<i<oo be a sequence of pointed n-dimensional complete
Riemannian manifolds with Ricps, > —(n — 1).
2. Let (Y,y,v) be a Ricci limit space of {(M;, m;,vol)},.

3. Let R be a positive number, {z;}1<i<oo & sequence of points z; in M;,
and z a point in Y satisfying x; — .

4. Let {fi}1<i<oo be a sequence of Lipschitz functions f; on Bgr(z;) with
sup; (Lipfi + | fil L (B (x.))) < 00

In this setting, we recall that f; converges to foo at woo € Br(Zoo) if fi(w;) —
foo(weso) holds for every w; — weo. See Section 1.2. We denote it by f; — foo
at weo. We remark that it is easy to check that the following conditions are
equivalent:

1. f; converges strongly to foo at wee.
2. fi = fxo at Weo.
3. f; converges weakly to foo at weo.

We shall consider a convergence of the L2-energy of Lipschitz functions. 0

Definition 4.3 (Pointwise upper semicontinuity of L?-energy). We say
that L%-energy of {f;}; are upper semicontinuous at ws, € Br(zs) if for
every € > 0, there exists r > 0 such that

1 1
limsup ——— Lipf; 2dvol < / Lipfeo 2dv + €
poopLOlBt(wi) /Bt(wi)( pfi) dvol < v(Bi(woo)) Bt(wm)( Pfoc)

for every 0 < t < r and every w; — Weo.

By the definition, if (Lipf;)? converges weakly to (Lipfoo)? at weo, then
L2-energy of {fi}; are upper semicontinuous at ws,. We shall give the defi-
nition of a convergence of the differentials of Lipschitz functions:

Definition 4.4 (Convergence of the differentials of Lipschitz functions).
We say that df; converges to df at we € Br(Zso) if the following properties
hold:
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1. (dr,,,df;) converges weakly to (dr,_,dfs) at weo for every z; — zo0;
2. L%-energy of {f;}; are upper semicontinuous at wee.

Then we denote it by df; — dfs at we. Moreover, for a subset A of Bg(xoo),
if fi = foo and df; — dfs at every a € A, then we denote it by (f;,df;) —
(foo, dfo) on A.

Proposition 4.8. Let w; be a point in M; for every i < oo, and we a point
in'Y with w; — Woo. Then we have (ry,,dry,) — (Tw.,dry) on'Y.

Proof. 1t follows from Propositions 4.3 and 4.7 directly. U

The following theorem is the main result in this subsection:

Theorem 4.1. Let {gi}i1<i<co be a sequence of Lipschitz functions g; on
Bgr(z;), and A a Borel subset of Br(xs). Assume that sup,(Lipg; +
9l Lo (Br(2:))) < o0, dfi = df and dg; — dgoc on A. Then, (df,dg;) con-
verges strongly to (dfso,dgeo) at a.e. woo € A.

Proof. By Theorem 3.1 and Lemma 3.15, there exist collections of Borel
subset {A;}; of A, of positive integers {k;}; with 1 < k; < n, and of points
{] }ii<i<k, in Y such that the following properties hold:

1. v <A \ U, Aj> =0and A; CY'\ U;Z1(Cx{ U {w{ ) for every j.

2. For every w € Aj, there exists a{, .. .,ai,,b{, e ,biv € R such that
J

J

2

k;
1 ~
r—0 U(Br (woo)) B, (weo) ; b

2

k;
+ |dgeo — d Zb{rx{ dv = 0.
=1

Fix j and ws € Aj. Let a{,...,ai_,b{,...,bﬁ_ € R as above, and L > 1
J J

with sup;(Lipf; + Lipg;) + 17, ((a))? + ()2) < L. Take 7 > 0 with w €
U;Zl(D;j \ B-(z])). Let x(i) — 2] and w; — Weo. Fix € > 0. Then, there
1
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exists r > 0 such that

2

k- 2 k;
1 / ~ ~
_ dfso — d ajr, + |dgoo — d bl dv
v(Bt(weo)) J B, (wae) (; : l) (zz; b

<,
li ! / (Lipf;)?dvol < !
mmsup ———— Ipfi) avol < ————
eV VoL By (wi) S,y v(Bi(wa))

X / (Lip foo)2dv + e,
'+ (Woo)

1 1
lim su / Lipg;)?dvol < —————
i—>oop vol By(w;) Bt(wi)( pgi)"dyol v(Bi(weo))

X / (Lipgeo)?dv + ¢,

1

1
li —_— i, dr_j)dvol — ————
5D | o )8~ S

1—00

X / (dfsc, dr i )dv
Bi(weo) !

<€

and

1
li — is AT i (y) dvol
im sup ol By () /Bt(wi)(dg drxl m)dvo

1—00

1

- X dgoo,dr i)dv| < e
o(Br(wne)) /B,,<wm)< t

for every | and every 0 <t < r. Fix 0 < t << min{r,¢,7}. Then, by Corol-
lary 3.1, we have

1 1
o(Br(we0)) /BM (Woor d90) = 5 1)

/ <d Za{rmi ,d Zb{rx{ >dv dv < ¥(e;n, L)
Bi(we) 1=1 =1
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and

(dfso; dgoo) — (df s, dgoo)dv| dv

1
v(Bi(w)) /Bt(w)

k; k;
<d Zagrx{ ,d Zb{rx{ >
=1 =1
- d ar ,d Vr dv|dv
v(Bt(Weo)) /Bt(wx)< ; Fo ; L >

+V(en, L) =Y(e;n, L).

1
v(Bi(wes)) /Bt(woo)

On the other hand, we have

2
k;
1 / i
_— df; — d alri dvol
vol Be(wi) J B, (w,) (ZZ; 1l ( ))
k. .
1 J a_]
= AR dfi|*dvol — l/ df;, dr ;. )dvol
vol By (w;) /Bt(w,-)| il dvol ;VOlBt(wi) Bf,(wf,)< f ] (1)> —

a

1@ z
+ Z VOlBt u]l /;t(wl)<d'l" 7(1) d’f‘ ]( )>dVOl

k J

1 / 9 aj /
< dfocl?do — S — G dfo, i, )dv
v(Bt(woo)) Bt(wm)‘ | ;U(Bt(woo)) Bt(wm)< 2
al l
j j U(e;n, L
SR e B
2

k.
1 / ~
= — dfoo — d ajracj dv +¥(en, L
’U(Bt(woo)) B (wes) (; : L) ( )
< VU(e;n, L)

for every sufficiently large ¢. Similarly, we have
ky

dgi —d | 3 _b7os
I=1

2

1
_— dvol < W(e;n, L
vol By (w;) /;9,(wi) vol < ¥ )
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for every sufficiently large i. Especially, we have

1 1
1 dfydgi) — ———
vol By(w;) /Bt(w,-) (i dgi) vol By(w)

kj
/Bt(w ) < Zal xf(’L 7d ;b{rﬂ(l) >dVO1 dLOI < ‘I/(e,n,L)

Therefore, by Corollary 3.1, we have the assertion. O

Corollary 4.2. Let ) be a non-empty open subset of Br(z~). Assume that
dfi — dfso at a.e. w € Q. Then df; — dfs on €.

Proof. The assertion follows from Proposition 4.7 and Theorem 4.1. O

Corollary 4.3. Let {gi}1<i<oo be a sequence of Lipschitz functions g; on
Bpgr(x;) with sup,(Lipg; +7|g;|Lm(BR(xi))) < oo, and A a Borel subset of
Br(zoo). Assume that (fi,dfi) — (foo,dfso) and (gi,dgi) — (oo, dgos) 0N
A. Then, (fi + gi, d(fi + 9i)) = (foo + Joo, A(foo + goo)) at a.e. W € A, and
(figi, d(fi9i)) = (foogoos A(foogoc)) at a.e. we € A.

Proof. By Theorem 4.1, there exists a Borel subset A of A such that v(A \
A) =0 and that |(1le|2 (dfi,dgi) and |dg;|> converge strongly to |dfs|?,

(df o, dgoo) and |algoo|2 on A, respectively. Since |d(figi)|?>= f?|dgi|* +
2flgz(dfz, dg;) + gi|df;|?, by Proposition 4.1, |d(f;g:)|? converges strongly to
2 ldgoo|? + 2foogoo<dfoo, dgso) + 92 |dfso|? = |d(foogoo)|? on A. On the other
hand, since d(f;g;) = gidf; + fidg;, by Proposition 4.4, (dr,,,d(f;g;)) con-
verges weakly t0 goo (d7s__, dfoc) + fooldrs,dgeo) = (drs_,d(focgoo)) ON A
for every z; — zoo. Therefore, we have (f;g;, d(fig:)) — (fooYoo, A(fooGoo)) ON
A. Similarly, we have (f; 4+ gi,d(fi + 9i)) — (foo + goo» d(foo + goo)) 0N A.
]

Corollary 4.4. Let k be a positive integer, {A;}i1<i<oo @ sequence of Borel

subsets A; of Br(z;), {ff,gﬁ}lgigoo,lglgk a collection of Lipschitz functions

1 gl on Br(z;) with sup;(Lip f! + Lip g) < oo, and {F;}1<i<c0 @ sequence

of continuous functions on R¥. Assume that the following properties hold:
1. F; converges to F, with respect to the compact uniformly topology.

2. 14, converges weakly to 14__ at a.e. Woo € Br(To).

3. dle — df', and dgg — dgl, at a.e. woo € Ao for every 1 <1< k.
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Then we have

lim [ F((df},dg}), ..., (dfF,dgF))dvol

i—00 J 4.
i

— / Fao(ldfL, dg). ... (df", dgh.))dv.
As

Proof. The assertion follows from Propositions 4.1, 4.5 and Theorem 4.1. [

We shall end this subsection by giving several remarks:

Remark 4.3. By several arguments in Section 3, and the proof of Theo-
rem 4.1, we can also show the following: assume that the following properties
hold:

1. L2-energy of {f;}; are upper semicontinuous at every a € Br(7),

2. There exists a dense subset A of Br(zs) and a Borel subset A of
Br(7oo) such that v(Br(z) \ A) =0 and that (dry,,df;) converges
weakly to (dry._,dfe) at every a € A for every ws € A and every

W; — Weo-

Then, df; — dfsc on Br(Zso).

Remark 4.4. Let {(Y;, yi, vi) }1<i<oo be a sequence of Ricci limit spaces and
{fi}1<i<co @ sequence of Lipschitz functions f; on Br(y;). Then, similarly, we
can also define a notion of convergence: df; — df, and give several properties
as above.

Remark 4.5. Let (Y,y,v) be a Ricci limit space and { f; }1<i<co a sequence
of Lipschitz functions on Bg(y) with sup, Lipf; < oo. Then, df; — dfs on

Bpr(y) (in the sense of Definition 4.4 with respect to the convergence

(Y, y, U)(idyﬁi’ei)(Y, y,v)) if and only if [Lip(f; — foo)|12(Br(y)) — 0- We shall

check it below. By Corollary 4.4, it suffices to check “if” part. Assume that
ILip(fi — foo)lL2(Br(y)) — 0. Then, it is clear that L2-energy of {fi}; are
upper semicontinuous at every w € Br(y). On the other hand, by Propo-
sition 4.8, we have lim; oo [Lip(72, — 72, )|12(Ba(y)) = 0 for every z; — 2 €
Y. Especially, (dr,, df;) converges weakly to (dr,__, df~) at every w € Bg(y).
Thus, df; — dfec on Bg(y).
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4.4. An approximation theorem

Throughout this subsection, we shall use the following notation (same to one
used in previous subsection): Let {(M;,m;)}; be a sequence of pointed n-
dimensional complete Riemannian manifolds with Ricy;, > —(n— 1), (Y, y,v)
a Ricci limit space of {(M;, m;,vol)};, x; a point in M; for every i < 00, Too
a point in Y satisfying (M;, m;, x;, vol) (Gefig ) (Y,y,z,v). A purpose in
this subsection is to give the following approximation theorem. Roughly
speaking, it means that for a given Lipschitz function fo, on Br(z), there
exists a sequence of Lipschitz functions f; on Bpg(x;) approximating the
given function with respect to the topology: “(fi,dfi) — (foo, dfsc)”-

Theorem 4.2 (Approximation theorem). Let L, R be positive numbers,
foo an L-Lipschitz function on Br(Zso), Ase a compact subset of Br(ZToo),
{Ai}i<icoo a  sequence of Borel subsets A; of Bg(z;), and
{fiti<iceo a sequence of L-Lipschitz functions f; on A;. Assume that
limsup${L A; € Aoy and that foo|a_ is an extension of {fi}: asymptoti-
cally. Then, for every € > 0, there exist an open subset Q¢ of Br(Zoo) \ Acos
and a sequence { ff }1<i<oo of C(n, L)-Lipschitz functions ff on Br(z;) such
that (ff,dff) — (fS.dfSs) on Qe, ffla, = fila, for every 1 <i < oo, and

V(BR(Too) \ (2 U Ax))
U(Br(%oo))
+ [foo = foolLo(Br(@.)) T ILiP(fS% = foo)lL2(Br(z)) < €

Proof. Fix sufficiently small € >0 and £ > 0 (we will decide & later). By
Lemma 3.5 and (the proof of) Theorem 3.1, there exist collections of pair-
wise disjoint Borel subsets {E;}; of Br(zo), of positive numbers {7;};, of
positive integers {k;}; with 1 < k; < n, and of points {x] };1<i<x, in ¥ such
that the following properties hold:

1. v (BR(xoo) \U; Ej> =0and E; C ﬂfil (D;J{ \ B, (x{)) for every j.

2. For every w € F;, we have

1
dri,dr,;)(w) = lim / dr i, dr,)dv=20,; *e.
< ] i>( ) 0 ’U(BT<’U))) Br(w)< ; A> Il

l
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3. For every w € FEj, there exists 7, > 0 such that r,, < 75, ElOrw (w) C
Br(zs) and

2

k.
1 / N
_ dfse — d al(w)ry || dv<e
o(Be@)) Jpy) ; J(w)r,,

for every 0 < t < ry.

Put X =72, (E; \ Bs¢(Ano)). By Proposition 2.2, there exists a pairwise
disjoint collection { B, (2;)}; C Br(zc) such that z; € X, r; << min{r,,,€,&}
and X \ UL, Br.(2) C U2 y41 Bsri(2:) for every N. For every i, let 1(i)
with 2; € Ey;). Without loss of generality, we can assume that /(i) = i. Fix
N satisfying Y2 v v(By,(2:)) < €. Let z;(j) — 2z and 2!, () — al,. Define
functions FZJ on By.(z(j)), and F; on By, (z;) by

k;

F’Z?:Za Tei (jy + Ciy Fi = Zamrx + G,

m=1

where C; is the constant defined by satisfying Fj(z;) = foo(2i), and ai, =
at ().

Claim 4.1. We have Liszj + LipF; < C(n, L) for everyi,j.
The proof is as follows. Since

|df oo (2i)] Za (drai, dry:)(2i)
= Zasat (05t E€)

k; k;
1:i:(~:z :I:ll’enz 1:|:\I’6nz
s=1 s=1

s=1

>

and |dfx|(z;) < L, we have 2%21(61371)2 < L? +¥(e;n, L). Therefore, we
have Claim 4.1.

We remark that {B,,(2(j))}1<i<n is a pairwise disjoint collection for
every sufﬁciently large j. Define functions F; on [J¥_ 1 Ba—ey, (2i(4)), and

F on U 5) (Z’L) by F; ‘B(l £>T (]) |B(1 O ( (]))’ FOO|B(1_£)” (Zz):
Fil, o). (2 1) for every sufficiently large J
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Claim 4.2. We have LipF; + LipFs < C(n,L) + 71U (e;n, L) for every
sufficiently large j.

The proof is as follows. By Claim 4.1, we have Lip(Fj|§(1_£)ri (Zf,(j))) +
Lip(Foo|§(17€m (zi)) < C(n,L) for every i,j. Let jo satisfying that €¢; <<
min{&ry,...,&ry} for every j > jo. Fix 7> jo, 1<l<m <N, w(j) €
Buon(a1()) and wm(j) € Bgm, (m(i)). Since By (a()) N B,
(zm(j)) = 0, there exists a(j) € dB,,(z;) such that w;(j), a(j) + a(j), wm(j)
= wy(J), wnm (7). Thus, we have wy(j), wm(j) > wi(j), a(j) > &ry. Similarly,
we have wy(j), wm(j) > &rm. Thus, we have wi(j), wy,(4) > £(ry + ) /2. On
the other hand, since

2

dv < e,

ki
Lip (foo oy )
s=1

by the segment inequality on limit spaces [6, Theorem 2.6], there exist points
21, qﬁj(wl (7)) in B, (%) and a minimal geodesic v from 2; to ¢;(w;(j)) such

that 2, 2 + ¢ (wi(5)), 6 (wi(§)) < ¥(e;n)ry and

/ Lip ( foo = 3 b | (10t < W(es )
0 s=1

Therefore, we have

ki
—Zaérxg,(él) - (foo j(=21(j Za rat (65(21(j )))'
&, j(w1<'>)
S/ pimo Lip (foo Za rxz> (t))dt < ¥(e;n)ry.
0

Thus, we have

foo Zl Za chl Zl <foo ¢] Zl Za Tx (Z)j zl )))'

< \I/(e,n,L)

ey
v(Bior,(21)) JBuo, (21)

Especially, we have |Fj(w;(j)) — foo © ¢j(wi(j))| < V(e;n, L)r;. Similarly, we
have |Fj(wm(j)) — foo 0 @j(wm ()| < V(esn, L)ry, and  |Foo — foo| < W
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(e;n, L)ry on B(i_¢)y, (21). Therefore, we have

[Fj(wi(4)) = Fj(wm ()] < |foo © @j(wi(5)) — foo © @5(wi())]
+ Y(esn, L)(r + 7mm)
< Loj(wi(4)), ¢5(wm(4)) + ¥(esn, L) (11 + 1)
L(wi(j), wm(5) +€) + ¥(esn, L) (rp + rim)
Lwi(3), wm(j) + Y(e;n, L)(r; + )
(L + &7 (e n, L))wi(5), win()-

INIA CIA

Thus, by Claim 4.1, we have LipF; < C(n, L) + £ 1¥(e; n, L). Similarly, we
have LipF,, < C(n, L) + ¢ 1¥(e;n, L). Therefore, we have Claim 4.2.

Claim 4.3. We have Y, Bi—¢)r,(2i(j)) € M; \ Bae(A;) and UX,
E(l_g)m(zi) C Y \ Byg(Axo) for every sufficiently large j.

The proof is as follows. It is easy to check that UZZ\L 1 Br.(z) C Y\
Bo¢(Ass). On the other hand, by the assumption, there exists ig such that
¢i(A;) C Be(As) and €; << minj<j<n{{r;} for every i >ig. Thus, since
oi (Ufil E(l_g)m(zi(j))) C Uf\il B,,(21) CY \ Bye(Ano) for every i > ig, we
have Claim 4.3.

Claim 4.4. We have
lim sup|fi — foo © @] = 0.
11— 00 Al

The proof is done by a contradiction. Assume that the assertion is false.
Then, there exists 7 >0, a subsequence {n(i)}; of N, and ;) € A,
such that | f)(ne)) — foo © Pn(i)(n()| > 7. Without loss of generality,
we can assume that there exists aoo € Y such that ¢,y () — @eo. Thus,
liminf; oo [ fn(i) (i) — foo(@oo)| = 7. On the other hand, we have a €
As = Ax. Since fy|a.. is an extension of {f;}; asymptotically, this is a
cotradiction. Therefore, we have Claim 4.4.

Put W; = UN_, Bu_ey (2:(5)) and Woe = UN_; B¢, (21). By Claim
4.3, we can define Lipschitz functions G; on W; U A;, and G on W U Ao
by Gjlw, = Fjlw,, Gjla, = [, Goolw.. = Foolw.. and Goola, = foola., for
every sufficiently large j.

Claim 4.5. We have LipG; + LipGoo < C(n, L) + £ YW (e;n, L) for every
sufficiently large j.
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The proof is as follows. Put §; = sup 4, |fi — foo © @;|. Then by the proof
of Claim 4.2, there exists jg such that

Gi(aj) — Gi(B5)| = |Fj(ay) — £3(5;)]
< |Foo 0 ¢j(ay) — f 0 ¢;(Bj)| + ¥(esn, L)r; +&;
< |foo°¢j(aj) O¢J(ﬁj)|+‘1’( )Tz‘“‘&'
< Loj(aj), ¢;(B;) + ¥(en, L)r;
< L(m—i- )+ Y(en, L) < (L+T(en, L))m

for every j > jo, every a; € E(l,g)ri(zi(j)) and every 3; € A;. Therefore, by
Claim 4.2, we have LipG; < C(n,L) + £ 1W¥(en, L) for every sufficiently
large j. Similarly, we have LipGo, < C(n, L) + £ 1¥(e; n, L). Thus, we have
Claim 4.5.

For ¥ =U(en, L) as in Claim 4.5, put £ = VW, Let ff be a Lips-
chitz function on M; and fS5, a Lipschitz function on Y satisfying that
Lip /¢ = LipGy, Lipfs, = LipGoo, f<lw,ua, = Fjlw,ua, and f&lw.oa.
Folw.ua.. - Put Q¢ = W. Then, by Proposition 4.8 and Corollary 4.3, we
have (ff,dff) — (fS, dfS) on Q. On the other hand, we have v(Br(Zoo) \
(e UAw)) € 0(X 1\ 20) + 0(Bse(Aoc) \ Ase) < 332 oy V(Bs (20)) + v
(Bre(Aoo) \ Ae) + W(ein, L) < Cln)e + v(Bag(An) \ Anc) + W(ein, L) and

/ dfoe — dfS.|Pdv < / oo — dfPdv + / (dfe — df<, 2o
BR Qfao) B55

oo

< Z / dfo — df 2o

Ba-¢yr; (2:)

+5L2v(B55(AOO)\AOO)+/ |dfS, — df oo |*dv

oo

+ U(e;n, L)

N
< Z ev(Ba—¢yr, (1)) + 5L2U(B5§(Aoo) \ Aoo)

—i—i\I/(e; n, L)
< v(Br(rse)) + 5L20(Bse(Ano) | Acc)
+ V(e n, L).

We remark that since A is compact, we have lim, o v(B;(Ax) \ As) = 0.
Put 7(r) = v(Br(Ax) \ Aso). On the other hand, by the proof of Claim 4.2,
we have |fS, — foo| < ¥(e;n, L) on Q¢ U As. For every w € Br(z), there
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exists W € Q¢ U Ay such that w,w < U(e, 7(5¢);n, L, v(Br(7))). There-
fore, we have |5, (w) — foo(1)| < |f5(8) — foo ()| + W(e, 7(5);m, L, v(Br
(00))) < WU(e,7(58);n, L,v(Br(oo))). Thus, we have [fS — fool < U(e, T
(58);n, L,v(Br(zs))) on Br(Zs). Since it is not difficult to check that
ILip(fS% — foo)lL2(Ba(za)) < Y(6n, L, R,v(Br(7x))), we have the assertion.

O

By using Theorem 4.2, we shall give a sufficient condition to satisfy
pointwise upper semicontinuity of L2-energy:

Proposition 4.9. Let R be a positive number, f; a C%-function on Bg(x;)
for every i < 0o, and fs a Lipschitz function on Br(rs). Assume that

sup (Lipm /B ( )|Afi|dvol> <o

and fi — feo on Br(xs). Then, we have

tmsup [ (Lipfdvol < [ (Lipfa)Pd.
it—oo  J Bg(z:) Br(%s)

Especially, L*-energy of { f;}: are upper semicontinuous at every wEBR(Too).
Proof. Let g; = Af;. First, we shall remark the following:

Claim 4.6. We have

/ d(f; + k) Pdvol — 2 / (i + k)dvol
BR(LL‘L)

BR(LL‘L)

> / dfi 2dvol - 2 / gifidol
BR(J?Z) BR(CIJi)

for every Lipschitz function k on Br(x;), which has compact support.

Claim 4.6 follows from the equality:

/ |d(f; + k)|*dvol — 2/ gi(fi + k)dvol
BR(L‘)

BR(L‘)

— [ rPdsol-2 [ gipdvol
Br(z:) Br(x:)

+ / |dk|?dvol.
BR(JJi)
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Fx e > 0. Let L > 1 with

sup <Lipfi + | fil L (Br(a:)) +/ !9¢|dv01> <L.

Br Iz)
Since lim s.upiG_)HOO Ap—cr(%;) C Ap—c r(Z), by Theorem 4.2, there exists
a sequence { ff}1<i<oo 0f C(n, L)-Lipschitz functions ff on Bgr(z;), and an

open set Q¢ C Br(Zoo) \ Ar—c,R(Zs) such that ff|AR7€,R(II_) = fi‘ARﬁ,R(xi)
for every 1 <i < oo, (ff,dff) — (fS,dfS,) on Qc, and

v (Br(Ts Q€ A —,R(Loo N
(Br( >U\((BR(L;OO)}; st + | foo — foo|L°°(BR(xoo))

+ |Lip(fSo = foo) L2 (Br(za)) <€

By Claim 4.6, we have

[ garPavl-z [ gpdl> [ jdnPasel-2 [ gifidvol
BR(Q?Z) BR(ZDi) BR(J?L) BR(xi)

By Proposition 2.2, without loss of generality, we can assume that there
exists a pairwise disjoint finite collection {B,,(2;)}1<i<n such that Q. =
UX, B,.(z). Let z(j) — 2. Put Qc(j) = Ui, By, (2(j)). Since vol(Q(5) U
Ap—cr(zj))/vol Br(xzj) > 1 — € for every sufficiently large j, by Proposi-
tion 4.7, we have

[ aPase— [ gl
Br(z;) Br(zo)

On the other hand, since supg, ()| — fj| < C(n, R, L)supq_¢;) | f5 — fjl
and limsup;_, ., supq_¢;) |f5 — fjl § supﬂé |fS — fool, we have

| gl [ gpdwl
Br(z;) Br(z;)

< ¥(e;n, L, R).

< sw |- Lv" lgpldso

Br(z;)

< ¥(e;n,R,L)

for every sufficiently large j. Therefore, we have

limsup/ |df;|?dvol < / |dfoo|*dv + W (e;n, L, R).
BR(CE,L)

1—00 Br(zs)

By letting ¢ — 0, we have the assertion. O
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Next corollary follows from Remark 4.2 and Proposition 4.9 directly. See
also [16, 35]:

Corollary 4.5. Let R be a positive number, f; a C%-function on Br(z;)
for every i < 0o, and fo a Lipschitz function on Br(xso). Assume that

sup (Lipfi + / |Afi|2dvol> < 00
and fi — fso on Br(zs). Then, we have (fi,dfi) = (foo, dfoc) 0n Br(xoo).

Next we shall consider a convergence of the equations Af; = g; with
respect to the measured Gromov—Hausdorff convergence:

Corollary 4.6. Let R be a positive number, f; a C%-function on Br(z;)
for every i < oo, and foo a Lipschitz function on Br(z~) with sup;(Lipf; +
|Afil Lo (Br(z:))) < 00- Assume that f; — foo on Br(¥oo) and that there exists
a L™ -function goo on Br(Tso) such that Af; converges weakly to g at a.e.
w € Br(xs). Then, we have

/ (df o, dkoo)dv = / Koo Goodv
BR(:IJOO) BR(.Z’OO)

for every Lipschitz function ke on Br(xso), which has compact support.

Proof. By Corollary 4.5, we have (f;, df;) — (foo, dfsc) o0t Br(2o). Let L >
1 with  sup,;(Lipf; + |fi|Loo(BR(xi)) + |Afi‘Loc(BR(zi))) <L Put r=
SUDPyesupp ko, Lo, W and g; = Af;. Then, we have r < R. Fix € >0 with
€ < R —r. By Theorem 4.2, there exists a sequence {kf}i<i<co of C(n,L)-
Lipschitz functions k{ on Bg(x;), and an open set Q¢ C Br(Zoo) \AR—¢,R(Zoc0)
such that k|4, . .(z,) = 0 forevery 1 <i < oo, (kf, dkf§) — (kS,, dkS,) on €
and

v(Br(zoo) \ (2 U Ap k(7))
U(BR(ZL‘OO))
+ |Lip(kS — ko) L2(Br(za)) < €

+ koo — kSol L (Br(z))
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By Proposition 4.4, kfg; converges weakly to kS g at a.e. w € 2c. By an
argument similar to the proof of Propositions 4.9 and 4.7, we have

/ (df;, dkS) dyol — / (df, dRS,)do
BR($,5) BR(itoo)

/ gik;idyvol — / JookSodv
Bu(z) Br(ze)

for every sufficiently large ¢. Since

+ < U(en, L, R)

[ il = [ giasol
Br(z;)

Br(z;)
we have
/ (df ooy dkoo)dv = / Jookoodv = W(e;n, L, R).
BR(ajoo) BR('IOC)
By letting € — 0, we have the assertion. [l

We shall recall the notion of (2-) harmonic for Lipschitz functions on
Ricci limit spaces. For a Lipschitz function f on Br(z ), we say that f is
harmonic on Br(rs) if

[ o< [ g r P
BR(mDC) BR('TOO)

for every Lipschitz function k& on Bp(z), which has compact support.
We remark that the notion of harmonic function for Hj o-functions is well
defined. See Section 7 in [2]. See also [15, 18-20]. The following corollary
follows from Corollaries 4.5 and 4.6 directly. See also [11].

Corollary 4.7. Let R be a positive number, f; a harmonic function on
Bpr(z;) for every i < oo, and foo a Lipschitz function on Bpr(x) with
sup; Lipf; < co. Assume that f; — fs on Br(x). Then, we have (fi, df;)
— (foo, dfso) 0n Br(xoo). Moreover, we have

/ (df o, dkoo)dv = 0
Bn(xoc)

for every Lipschitz function ks on Br(Te), which has compact support.
Especially, fo is harmonic on Br(zso).
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Appendix A. A proof of Claim 3.15
In this appendix, we shall give a proof of Claim 3.15. Define functions 1, fA
on RF by 71 ((z1,...,2x)) = z1, fA(x) = HY(B.(x) N ANz (m1(2)))1a(2).
We remark that by the definition of sl; — LebA,

sly — LebA

H1(B Annat
= {a = (a1,...,ax) € A;liminf (Br(a) N E?l (m1(a)) = 1}.
r—0 Wr—17""
First, assume that A is compact.

Claim A.1. The function f is an upper semi-continuous function on RF.
Especially, f2 is a H*-measurable function.

Proof. Let {x;}1<i<co be a sequence of points in R* with 2; — 2. It suffices
to check that limsup,_ . f(7;) < fA (%) under the assumption: x; € A
for every j. Fix § > 0. Let {n(i)}ien be a subsequence of N satisfying
limj o Hk_l(Er(xn(j)) NAN7T Y (m (Tn(;)))) = limsup,_, , HY(B, () N
Ana(mi(x;))). On the other hand, since { B, (Tpy) NAN ot (m (Tn())}i
is precompact with respect to the Hausdroff distance on RF, without loss
of generality, we can assume that there exists a compact subset K., of R¥
such that By(2,(;)) N AN ﬂfl(ﬂl(xn(j))) converges to Ko, with respect to
the Hausdorff distance on RF. Then, it is easy to check Ko, C B, (Too) NAN
T 1(7r1 (o). There exists a finite collection { By, (y;)}1<i<n such that r; <

8, Br(too) N AN (1 (200)) € UN, Br,(y;) and |H* 1 (B, (200) N AN 7y
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(m1(200))) — SN wp_17E 71 < 8. Since B, (200) N AN 77 (71 (200)) is com-
pact, there exists 70 > 0 such that By, (B, (2e) N AN (71 (200))) C Ufil
By, (y;). Since ET(.%n(j))ﬁAﬂﬂ';l(Fl(xn(j))) C B;,(K) for every sufficiently
large j, we have By () NAN 71'1_1(7'(1(1'”(]'))) C vazl By, (y;). Thus, we
have kal(Er(xn(j)) NAN 7['1_1(71'1 (acn(])))) < Zfil kal(Er(yi) N 7T1_1(7['1
(Zn()))) < SN wpm1r* 7 S HP V(B (200) N AN 7 (1 (200)))+ 6 for every
sufficiently large j. Therefore, we have Claim A.1. O

By Claim A.1, we have statement 1 in Claim 3.15. Statement 2 follows
from the Lebesgue differentiation theorem on Euclidean spaces. Finally, by
Fubini’s theorem, we have

H*(A\ sl; — LebA) = / il (A A ({1} x RE1)\ sty — LebA) dt = 0.
R

Thus, we have Statement 3. Therefore, we have Claim 3.15 if A is compact.

We shall give a proof of Claim 3.15 in the general case. Fix R > 0.
There exists a sequence of compact subsets {K;}; of Br(0x) N A such that
H*(Bg(0,) N A\ K;) — 0. Then, we have sl; — LebK; C sl; — Leb(Bg(0y)
N A). Thus, we have H*(Bg(0;) N A\ sl; — Leb(Bgr(0;) N A)) < H*(Bg(0)
NA\ sl; — LebK;) < H*(Br(0,) N A\ K;) + HF(K; \ sl; — LebK;) "==° 0 as
an outer measure. Thus, sl; — Leb(Bg(0) N A) is a H*-measurable set. Since
sl — LebA = (Jyen (811 — Leb(AN By(0))), we have Statement 1 in Claim
3.15. By the Lebesgue differentiation theorem and Fubini’s theorem, we have
Statements 2 and 3. Thus, we have Claim 3.15.
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