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Ricci curvature and convergence of Lipschitz

functions

Shouhei Honda

We give the definition of a convergence of the differentials of Lip-
schitz functions with respect to the measured Gromov–Hausdorff
topology and several properties of the convergence.

1. Introduction

Let {(Mi,mi)}i∈N be a sequence of pointed n-dimensional complete
Riemannian manifolds (n ≥ 2) with RicMi

≥ −(n− 1), and (Y, y, υ) a pointed
proper metric space (i.e., every bounded subset of Y is relatively compact)
with a Radon measure υ on Y satisfying that (Mi,mi, vol) converges to
(Y, y, υ) with respect to the measured Gromov–Hausdorff topology. Here vol
is the renormalized Riemannian volume of (Mi,mi): vol = vol/volB1(mi).
Fix R > 0, a sequence {f}1≤i<∞ of Lipschitz functions fi on BR(mi) = {w ∈
Mi;w,mi < R}, and a Lipschitz function f∞ on BR(y) with supi Lipfi <∞.
Here w,mi is the distance between w and mi, Lipfi is the Lipschitz constant
of fi. Then we say that fi converges to f∞ on BR(y) if fi(xi) → f∞(x∞)
for every xi ∈ BR(mi) and every x∞ ∈ BR(y) satisfying that xi converges
to x∞. See Section 2 for these precise definitions. Assume that fi converges
to f∞ on BR(y), below.

The purpose of this paper is to give a definition: the differentials dfi

of fi converges to the differential df∞ of f∞ in this setting. In order to
give the definition below, we shall recall celebrated works on limit spaces of
Riemannian manifolds by Cheeger–Colding. By [1] and [6], it is known that
the cotangent bundle T ∗Y of Y exists. We remark that each fiber T ∗

wY is a
finite-dimensional real vector space with canonical inner product 〈·, ·〉(w) for
a.e. w ∈ Y , and that every Lipschitz function g on BR(y) has the canonical
differential section: dg(w) ∈ T ∗

wY for a.e. w ∈ BR(y). See Section 4 in [1] and
Section 6 in [6] for the details.
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We shall give the definition of a convergence of the differentials of Lips-
chitz functions (see Definition 4.4):

Definition 1.1 Convergence of the differentials of Lipschitz fun-
ctions. We say that dfi converges to df∞ on BR(y) if for every ε > 0,
every x∞ ∈ BR(y), every z∞ ∈ Y , every sequence {xi}1≤i<∞ of points xi ∈
BR(mi) satisfying that xi converges to x∞, and every sequence {zi}1≤i<∞
of points zi ∈Mi satisfying that zi converges to z∞, there exists r > 0 such
that

lim sup
i→∞

∣
∣
∣
∣
∣

1
volBt(xi)

∫

Bt(xi)
〈drzi

, dfi〉dvol− 1
υ(Bt(x∞))

∫

Bt(x∞)
〈drz∞ , df∞〉dυ

∣
∣
∣
∣
∣
<ε

and

lim sup
i→∞

1
volBt(xi)

∫

Bt(xi)
|dfi|2dvol ≤ 1

υ(Bt(x∞))

∫

Bt(x∞)
|df∞|2dυ + ε

for every 0 < t < r. Here rzi
is the distance function from zi: rzi

(w) = zi, w.

Roughly speaking, this convergence: dfi → df∞, implies “H1,2 (or H1,p)-
convergence with respect to the measured Gromov–Hausdorff topology”. See
Theorem 1.1 and Remark 4.5. If dfi converges to df∞ on BR(y), then we
denote it by (fi, dfi) → (f∞, df∞) on BR(y). Assume (fi, dfi) → (f∞, df∞)
and (gi, dgi) → (g∞, dg∞) on BR(y) below.

In the paper, we will study several properties of the convergence and
give their applications. For example, we will show the following in Section 4:

Theorem 1.1. Let {Fi}1≤i≤∞ be a sequence of continuous functions on
R. Assume that Fi converges to F∞ with respect to the compact uniformly
topology. Then, we have

lim
i→∞

∫

BR(mi)
Fi(〈dfi, dgi〉)dvol =

∫

BR(y)
F∞(〈df∞, dg∞〉)dυ.

Especially, if f∞ = g∞, then

lim
i→∞

∫

BR(mi)
Fi(|dfi − dgi|)dvol = F∞(0)υ(BR(y)).

See Corollary 4.4 for the proof. We will also show the following in
Section 4:
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Theorem 1.2. Let {hi}1≤i<∞ be a sequence of harmonic functions hi on
BR(mi), and h∞ a Lipschitz function on BR(y). Assume that supi Liphi

<∞ and that hi converges to h∞ on BR(y). Then we have (hi, dhi) →
(h∞, dh∞) on BR(y).

We remark that in Theorem 1.2, h∞ is a harmonic function on BR(y),
proved in [11] by Ding. We will give an alternative proof of it in Section 4.
See Corollary 4.7.

The organization of this paper is as follows:
In the next section, we will recall several important notions and propeties

of metric spaces, Riemannian manifolds and their limit spaces. Most of state-
ments in Section 2 do not have the proof, we will give a reference for them
only.

In Section 3, we will show several results about rectifiability of limit
spaces of Riemannian manifolds. See Theorems 3.1 and 3.4. It is important
that their functions in these theorems which give a rectifiability of limit
spaces, are distance functions. As a corollary of them, we will give an explicit
geometric formula for the radial derivative of Lipschitz functions from a given
point. See Theorem 3.3. These results are used in Section 4 essentially.

In Section 4, we will give two-definitions of pointwise convergence of
L∞-functions with respect to the measured Gromov–Hausdorff topology, and
give the definition of a convergence of the differentials of Lipschitz functions
again via the definitions of convergence of L∞-functions. We will also give
several properties of the convergence. The main properties are Theorems
4.1, 4.2 and Corollary 4.5.

Finally, we shall introduce several applications of this paper. In [24],
we will give an application of this Section 4 to a study of harmonic func-
tions with polynomial growth on asymptotic cones of non-negatively Ricci-
curved manifolds having Euclidean volume growth. For example, we will
show that a space of harmonic functions on asymptotic cones with polyno-
mial growth of a fixed rate is a finite-dimensional vector space. We can regard
it as asymptotic cones version of the conjecture [9, Conjecture 0.1] by Yau
[39, 40]. Moreover, in [24], we will give “Laplacian comparison theorems on
limit spaces of Riemannian manifolds” by using several results given in Sec-
tion 4, and show a stability of lower bounds on Ricci curavture with respect
to the Gromov–Hausdorff topology as a corollary of them. In [25], we will
also give a geometric application by using several results in this Section
4, to limit spaces of Riemannian manifolds with Ricci curvature bounded
below.
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2. Background

Our aim in this section is to give several notation, important notions and
properties for metric measure spaces and manifolds. For a positive number
ε > 0 and real numbers a, b, we use the following notations:

a = b± ε⇐⇒ |a− b| < ε.

We denote by Ψ(ε1, ε2, . . . , εk; c1, c2, . . . , cl) (more simply, Ψ) some positive
function on Rk

>0 × Rl satisfying

lim
ε1,ε2,...,εk→0

Ψ(ε1, ε2, . . . , εk; c1, c2, . . . , cl) = 0

for each fixed real numbers c1, c2, . . . , cl. We often denote by C(c1, c2, . . . , cl)
some positive constant depending only on fixed real numbers c1, c2, . . . , cl.

2.1. Metric measure spaces

For a metric space Z, a point z ∈ Z and positive numbers r,R with r < R,
we use the following notations: Br(z) = {x ∈ Z; z, x < r}, Br(z) = {x ∈ Z;
z, x ≤ r}, ∂Br(z) = {x ∈ Z; z, x = r}. Here y, x is the distance between y
and x, we often denote the distance by dZ(y, x). For every subset A of
Z, we also put Br(A) = {x ∈ Z;A,w < r} and Br(A) = {x ∈ Z;A, x ≤ r}.
For z ∈ Z, we define a 1-Lipschitz function rz on Z by rz(w) = z, w. For a
Lipschitz function f on Z and a point z ∈ Z, which is not isolated in Z, we
put

lipf(z) = lim inf
r→0

(

sup
x∈Br(z)\{z}

|f(x) − f(z)|
x, z

)

,

Lipf(z) = lim sup
r→0

(

sup
x∈Br(z)\{z}

|f(x) − f(z)|
x, z

)

.

If z is an isolated point in Z, then we put lipf(z) = Lipf(z) = 0. We also
denote the Lipschitz constant of f by Lipf . We remark that for every subset
A of Z and every Lipschitz function f on A, there exists a Lipschitz function
f∗ on Z such that f∗|A = f and Lipf∗ = Lipf . See for instance (8.2) in [2].

We say that Z is proper if every bounded subset of Z is relatively
compact. We also say that Z is a geodesic space if for every x1, x2 ∈ Z,
there exists an isometric embedding γ from [0, x1, x2] to Z such that γ(0) =
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x1, γ(x1, x2) = x2. γ is called a minimal geodesic from x1 to x2. For a proper
geodesic space W and a point w in W , we put Cw = {z ∈W ;w, z + z, x >
w, x for every x ∈W \ {z}} (if W is a single point, then we put Cw = ∅),
and call it the cut locus of W at w.

For a proper metric space Z and a Radon measure υ on Z, we say
that the pair (Z, υ) is a metric measure space in this paper. For a metric
measure space (Z, υ), a point z in Z and a non-negative integer k, we say
that υ is Ahlfors k-regular at z if there exist r > 0 and C ≥ 1 such that
C−1 ≤ υ(Bt(z))/tk ≤ C for every 0 < t < r. We shall introduce the notion
of υ-rectifiability for metric measure spaces by Cheeger–Colding. See [6,
Definition 5.3] and [6, Theorem 5.7]. See also [12]. For metric spaces X1, X2,
a positive number δ with δ < 1, and a bijection map f from X1 to X2, we
say that f is (1 ± δ)-bi-Lipschitz to X2 if f and f−1 are (1 + δ)-Lipschitz
maps.

Definition 2.1 Rectifiability for a Borel subset of metric measure
spaces. For a metric measure space (Z, υ) and a Borel subset A of Z, we say
that A is υ-rectifiable if there exists a positive integerm, a collection of Borel
subsets {Ck,i}1≤k≤m,i∈N of A, and a collection of bi-Lipschitz embedding
maps {φk,i : Ck,i → Rk}k,i such that the following properties hold:

1. υ(A \⋃

k,iCk,i) = 0

2. υ is Ahlfors k-regular at each x ∈ Ck,i.

3. For every k, x ∈ ⋃

i∈NCk,i and every 0 < δ < 1, there exists Ck,i such
that x ∈ Ck,i and that the map φk,i is (1 ± δ)-bi-Lipschitz to the image
φk,i(Ck,i).

Remark 2.1. The third (1 ± δ)-bi-Lipschitz condition in the above defini-
tion is important. Actually, the existence of the canonical inner product of
the cotangent bundle of Ricci limit spaces follows from this property. See
condition (iii) of page 60 of [6] and Section 6 in [6].

2.2. Gromov–Hausdorff convergence

For compact metric spaces X1, X2, we denote the Gromov–Hausdorff dis-
tance between X1 and X2 by dGH(X1, X2). See [17] for the definition. On the
other hand, for compact metric spaces X1, X2, a positive number ε > 0 and
a map φ from X1 to X2, we say that φ is an ε-Gromov–Hausdorff approxima-
tion if X2 = Bε(Imageφ) and |x, y − φ(x), φ(y)| < ε for every x, y ∈ X1. For
a sequence of compact metric spaces {Xi}1≤i≤∞, we say that Xi converges to
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X∞ if dGH(Xi, X∞) converges to 0. Then we denote it by Xi → X∞. Sim-
ilarly, for pointed compact metric spaces (X1, x1), (X2, x2), we can define
the pointed Gromov–Hausdorff distance dGH((X1, x1), (X2, x2)). Moreover,
for a sequence of pointed proper geodesic spaces {(Zi, zi)}1≤i≤∞, we say that
(Zi, zi) converges to (Z∞, z∞) if there exist sequences {εi}i, {Ri}i of posi-
tive numbers, and {φi}i of Borel maps φi from (BRi

(zi), zi) to (BRi
(z∞), z∞)

such that εi → 0, Ri → ∞ as i→ ∞, BRi
(z∞) ⊂ Bεi

(Imageφi) and |α, β −
φi(α), φi(β)| ≤ εi for every α, β ∈ BRi

(xi). We denote it by (Zi, zi)
(φ1,Ri,εi)→

(Z∞, z∞), or more simply, (Zi, zi) → (Z∞, z∞). It is easy to check that
(Zi, zi) → (Z∞, z∞) if and only if dGH((BR(zi), zi), (BR(z∞), z∞)) → 0 for
every R > 0. For a sequence {xi}1≤i≤∞ of points xi ∈ Zi, we say that xi

converges to x∞ if xi ∈ BRi
(zi) and φi(xi), x∞ → 0. Then, we denote it by

xi → x∞.
Let (Zi, zi) → (Z∞, z∞). For a sequence {Ai}1≤i≤∞ of subsets Ai of Zi

with supi zi, Ai <∞, we say that Ai is included by A∞ asymptotically if for
every ε > 0, there exists i0 such that φi(Ai) ⊂ Bε(A∞) for every i ≥ i0. Then
we denote it by lim supGH

i→∞Ai ⊂ A∞ (if A∞ = ∅, then lim supGH
i→∞Ai ⊂

A∞ implies Ai = ∅ for every sufficiently large i). Similarly, we also say
that A∞ is included by Ai asymptotically if for every ε > 0, there exists
i0 such that A∞ ⊂ Bε(φi(Ai)) for every i ≥ i0. Then we denote it by A∞ ⊂
lim infGH

i→∞Ai. Let C∞ ⊂ lim infGH
i→∞Ci. For a sequence {fi}1≤i≤∞ of Lips-

chitz functions fi on Ci with supi Lip fi <∞, we say that f∞ is a restriction
of fi asymptotically if limi→∞ fn(i)(wn(i)) = f∞(w) for every w ∈ C∞, every
subsequence {n(i)}i of N, and every wn(i) ∈ Cn(i) with φn(i)(wn(i)), w → 0.
Let lim supi→∞Di ⊂ D∞ and assume that D∞ is compact. For a sequence
{gi}1≤i≤∞ of Lipschitz function gi on Di with supi Lip gi <∞, we say that
g∞ is an extension of gi asymptotically if limi→∞ gn(i)(wn(i)) = g∞(w) for
every w ∈ D∞, every subsequence {n(i)}i of N, and every wn(i) ∈ Dn(i) with
φn(i)(wn(i)), w → 0.

For a sequence {Ki}1≤i≤∞ of compact subsets Ki of Zi, we say that
(Zi, zi,Ki) converges to (Z∞, z∞,K∞) if lim supGH

i→∞Ki ⊂ K∞ and K∞ ⊂
lim infGH

i→∞Ki hold. Then we denote it by (Zi, zi,Ki)
(φi,Ri,εi)→ (Z∞, z∞,K∞),

or more simply, (Zi, zi,Ki) → (Z∞, z∞,K∞), or Ki → K∞.
Let (Zi, zi,Ki) → (Z∞, z∞,K∞). For sequences {f1

i }1≤i≤∞, . . . ,
{fk

i }1≤i≤∞ of Lipschitz functions f l
i on Ki with supi,l(Lipf l

i + |f l
i |L∞) <∞,

we say that (Zi, zi,Ki, f
1
i , . . . , f

k
i ) converges to (Z∞, z∞,K∞, f1∞, . . . , fk∞)

if f l∞ is an extension of {f l
i}i asymptotically for every l. We denote it by

(Zi, zi,Ki, f
1
i , . . . , f

k
i ) → (Z∞, z∞,K∞, f1∞, . . . , fk∞), or more simply, f l

i →
f l∞ for every l. Then it is easy to check that limi→∞ |f l

i − f l∞ ◦ φi|L∞(Ki) = 0.
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It is not difficult to check the following proposition:

Proposition 2.1. Let {(Zi, zi)}1≤i≤∞ be a sequence of pointed proper geod-
esic spaces, Λ a set and {Aλ

i }λ∈Λ a collection of bounded subsets of Zi for
every 1 ≤ i ≤ ∞. Assume that (Zi, zi) converges to (Z∞, z∞), Aλ∞ is com-
pact for every λ ∈ Λ and that lim supGH

i→∞Aλ
i ⊂ Aλ∞ for every λ ∈ Λ. Then,

we have lim supGH
i→∞

⋂

λ∈ΛA
λ
i ⊂ ⋂

λ∈ΛA
λ∞ and lim supGH

i→∞(Ai \Br(xi)) ⊂
A∞ \Br(x∞) for every r > 0 and every sequence {xi}i of points xi in Zi

with xi → x∞.

We shall recall a fundamental covering lemma for proper metric spaces.
See Chapter 1 in [38] for the proof.

Proposition 2.2. Let X be a proper metric space, A a subset of X, Λ a
set, {xλ}λ∈Λ a collection of points in X and {rλ}λ∈Λ a collection of positive
numbers. Assume that for every x ∈ A and every ε > 0, there exists λ ∈ Λ
such that x ∈ Brλ

(xλ) and diamBrλ
(xλ) < ε. Then, there exists a countable

subset Λ1 of Λ such that the following properties hold:

1. {Brλ1
(xλ1)}λ1∈Λ1 are pairwise disjoint collection.

2. We have

A \
⋃

λ2∈Λ2

Brλ2
(xλ2) ⊂

⋃

λ∈Λ1\Λ2

B5rλ
(xλ)

for every finite subset Λ2 of Λ1.

We shall recall the definition of measured Gromov–Hausdorff conver-
gence. Let (Zi, zi) → (Z∞, z∞). For a sequence {υi}1≤i≤∞ of Radon mea-
sures υi on Zi, we say that (Zi, zi, υi) converges to (Z∞, z∞, υ∞) with
respect to the measured Gromov–Hausdorff topology if limi→∞ υi(Br(xi)) =
υ∞(Br(x∞)) for every r > 0 and every sequence {xi}i of points xi in Zi with
xi → x∞. See also [13]. Then we denote it by (Zi, zi, υi) → (Z∞, z∞, υ∞).
The next proposition is used many times in this paper. We skip the proof
because it is not difficult to check it by using Proposition 2.2.

Proposition 2.3. Let {(Zi, zi, υi)}1≤i≤∞ be a sequence of pointed proper
geodesic spaces with Radon measures, and {Ai}1≤i≤∞ a sequence of Borel
subsets Ai of Zi. Assume that υi(B1(zi)) = 1, A∞ is compact, (Zi, zi, υi) →
(Z∞, z∞, υ∞), lim supGH

i→∞Ai ⊂ A∞ and that for every R > 0 there exists
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κ = κ(R) ≥ 1 such that υi(B2r(xi))≤2κυi(Br(xi)) for every 0< r< R, every
1 ≤ i ≤ ∞ and every xi ∈ Zi. Then we have

lim sup
i→∞

υi(Ai) ≤ υ∞(A∞).

We shall give a proof of the following proposition:

Proposition 2.4. Let {(Zi, zi, υi)}1≤i≤∞ be a sequence of pointed proper
geodesic spaces with Radon measures. Assume that υi(B1(zi)) = 1 for every i,

diamZ∞ > 0, (Zi, zi, υi)
(φi,Ri,εi)→ (Z∞, z∞, υ∞), and that for every R > 0,

there exists κ = κ(R) ≥ 1 such that υi(B2r(xi)) ≤ 2κυi(Br(xi)) for every
0 < r < R, every 1 ≤ i ≤ ∞ and every xi ∈ Zi. Then, we have

lim
i→∞

sup
xi∈BR(zi),0<r<R

|υi(Br(xi)) − υ∞(Br(φi(xi)))| = 0

for every R ≥ 1.

Proof. It is easy to check that radZ∞ > 0. Here radX = infx2∈X(supx1∈X

x1, x2) for a metric space X. Put κ = κ(100R). Let τ > 0 with τ � radZ∞.
Then, there exists N such that for every N ≤ i ≤ ∞ and every w ∈ Zi, there
exists ŵ ∈ Zi such that w, ŵ = τ . Since Bδ(w) ⊂ Bτ+δ(ŵ) \Bτ−δ(ŵ) for
every 0 < δ < τ , by [10, Lemma 3.3], there exists τ̂ � τ such that υi(Bt(w))
≤ Ψ(t;κ,R)υi(B10τ (w)) for every N ≤ i ≤ ∞, every w ∈ Zi and every 0 <
t < τ̂ . Fix ε > 0. Then, there exist N1 ∈ N and 0 < r1 � min{R, τ̂ , ε, 1}
such that υi(Bs(z)) ≤ ε for every N1 ≤ i ≤ ∞, every 0 < s < r1 and every
z ∈ BR(zi). Let {xj}1≤j≤l ⊂ BR(z∞) and {tj}1≤j≤l̂ ⊂ [0, R] satisfying that

BR(z∞) ⊂ ⋃l
j=1Bεr1(xj) and [0, R] ⊂ ⋃l̂

j=1Bεr1(tj). Let xj(i) ∈ BR(zi) with
xj(i) → xj . There existsN2 ≥ N1 such that |υi(Btĵ

(xj(i))) − υ∞(Btĵ
(xj))| <

ε for every i ≥ N2, every 1 ≤ j ≤ l and every 1 ≤ ĵ ≤ l̂. Fix z ∈ BR(z∞)
and s ∈ [r1, R]. Let j ∈ {1, . . . , l} and ĵ ∈ {1, . . . , l̂} satisfying that z, xj <
εr1 and |s− tĵ | < εr1. Then, by [10, Lemma 3.3], we have |υ∞(Bs(z)) −
υ∞(Btĵ

(xj))| ≤ υ∞(Bs+5εr1(z)) − υ∞(Bs−5εr1(z))≤Ψ(ε;κ,R, τ)υ∞(BR(z∞))
On the other hand, for a sequence {z(i)}i of points z(i) in BR(zi) with z(i) →
z, |υi(Bs(z(i))) − υi(Btĵ

(xj(i)))| ≤ υi(Bs+10εr1(z(i))) − υi(Bs−10εr1(z(i))) ≤
Ψ(ε;κ,R, τ)υi(BR(zi)) ≤ Ψ(ε;κ,R, τ)υ∞(BR(z∞)) for every i ≥ N2. Thus,
we have |υi(Bs(z(i))) − υ∞(Bs(z))| < Ψ(ε;κ,R, τ)υ∞(BR(z∞)) for every i ≥
N2. Therefore, we have the assertion. �
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2.3. Riemannian manifolds and their limit spaces

For a real number K and a pointed proper geodesic space (Y, y), in this
paper, we say that (Y, y) is a (n,K)-Ricci limit space if there exist sequences
of real numbers {Ki}i, and of pointed n-dimensional complete Rieman-
nian manifolds {(Mi,mi)}i with RicMi

≥ Ki(n− 1) such that Ki → K and
(Mi,mi) → (Y, y). Similarly, for a pointed proper geodesic space with Radon
measure (Y, y, υ), we also say that (Y, y, υ) is a (n,K)-Ricci limit space
(of {(Mi,mi, vol)}i) if (Mi,mi, vol) → (Y, y, υ) as above. More simply, for a
(n,−1)-Ricci limit space (Y, y) (or (Y, y, υ)), we say that (Y, y) is a Ricci
limit space. See for instance Section 4.1 in [34]. We shall fix a Ricci limit
space (Y, y, υ) in this subsection and give a very short review of structure
theory of Ricci limit spaces developed by Cheeger–Colding, Colding, below.
See [3–6, 8] for the details.

For pointed proper geodesic spaces (Z, z) and (X,x), we say that (Z, z)
is a tangent cone of X at x if there exists a sequence of positive num-
bers {ri}i such that ri → 0 and (X,x, r−1

i dX) → (Z, z). For k ≥ 1, we put
Rk(Y ) = {x ∈ Y ; All tangent cones at x are isometric to Rk} and call
it the k-dimensional regular set. More simply, we shall denote it by Rk.
We also put R =

⋃

1≤k≤n Rk and call it the regular set. Then we have
υ(Y \ R) = 0. See [4, Theorem 2.1] for the proof. For δ, r > 0 and 0 <
α < 1, we put (Rk)δ,r = {x ∈ Y ; dGH((Bs(x), x), (Bs(0k), 0k)) ≤ δs for every
0 < s ≤ r} and (Rk;α)r = {x ∈ Y ; dGH((Bs(x), x), (Bs(0k), 0k)) ≤ s1+α for
every 0 < s ≤ r}. Here 0k ∈ Rk. We remark that (Rk)δ,r and (Rk;α)r are
closed,

⋂

δ>0

(⋃

r>0(Rk)δ,r

)

= Rk. We also put Rk;α =
⋃

r>0(Rk;α)r. By [4,
Theorem 3.23] and [4, Theorem 4.6], there exists 0 < α(n) < 1 such that
υ(Rk \ Rk;α(n)) = 0 and that υ is Ahlfors k-regular at every point in Rk;α(n)

for every k.
On the other hand, it is known that Y is υ-rectifiable. See [6, Theorem

5.5] and [6, Theorem 5.7]. Thus, by Section 6 in [6] or Section 4 in [2],
the cotangent bundle T ∗Y of Y exists. We will give several fundamental
properties of the cotangent bundle only:

1. T ∗Y is a topological space.

2. There exists a Borel map π : T ∗Y → Y such that υ(Y \ π(T ∗Y )) = 0.

3. π−1(w) is a finite-dimensional real vector space with canonical inner
product 〈·, ·〉(w) for every w ∈ π(T ∗Y ).

4. For every open subset U of Y and every Lipschitz function f on
U , there exist a Borel subset V of U , and a Borel map df (called
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the differential section of f or the differential of f) from V to T ∗Y
such that υ(U \ V ) = 0 and that π ◦ df(w) = w, |df |(w) = Lipf(w) =
lipf(w) for every w ∈ V , where |v|(w) =

√〈v, v〉(w).

We call {〈·, ·〉(w)}w∈π(T ∗Y ) the Riemannian metric of Y and denote it by
〈·, ·〉. Finally, we remark that υ(Cx) = 0 for every x ∈ Y . See [22, Theorem
3.2]. These above results are used in Section 3, essentially.

3. Rectifiability on limit spaces

In this section, we shall study a rectifiability of Ricci limit spaces. These
results given in this section are used in Section 4, essentially.

3.1. Radial rectifiability

The main result in this subsection is Theorem 3.1.

Lemma 3.1. Let Z be a proper geodesic space, z a point in Z, s, δ posi-
tive numbers, υ a Radon measure on Z and F a non-negative valued Borel
function on Bs(m). Assume that

1
υ(Bs(z))

∫

Bs(z)
Fdυ ≤ δ

and that there exists κ ≥ 1 such that 0 < υ(B2t(w)) ≤ 2κυ(Bt(w)) for every
w ∈ Bs(z) and every 0 < t ≤ s. Then, there exists a compact subset K of
Bs/102(z) such that υ(K)/υ(Bs/102(z)) ≥ 1 − Ψ(δ;κ) and

1
υ(Bt(x))

∫

Bt(x)
Fdυ ≤ Ψ(δ;κ)

for every x ∈ K and every 0 < t ≤ s/102.

Proof. Without loss of generality, we can assume that F is a non-negative
valued Borel function on Z by defining F ≡ 0 on Z \Bs(z). Fix C > 0 and
put A1(C) = {w ∈ Bs(z);

∫

Bs/102 (w) Fdυ ≥ Cυ(Bs/102(w))}. Let {x1
j}1≤j≤k1

be an s/10-maximal separated subset of A1(C). Put A2(C) = {w ∈ Bs(m) \
⋃k1

i=1Bs(x1
i );

∫

Bs/103(w) Fdυ ≥ Cυ(Bs/103(w))}. Let {x2
j}1≤j≤k2 be an s/102-

maximal separated subset of A2(C). By iterating this argument, put
Al(C) = {w ∈ Bs(m) \⋃

1≤j≤l−1, 1≤i≤kj
Bs/10l−2(xl−1

i );
∫

Bs/10l+1(w) Fdυ ≥ Cυ
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(Bs/10l+1(w))}. Let {xl
j}1≤j≤kl

be an s/10l-maximal separated subset of
Al(C).

Claim 3.1. The collection {Bs/10l+1(xl
i)}i,l are pairwise disjoint.

Let w ∈ Bs/10l̂+1(xl̂
î
) ∩Bs/10l+1(xl

i). Assume that l < l̂. Then, by the con-

struction, we have xl̂
î
∈M \⋃kl

j=1Bs/10l−1(xl
j). Especially, we have xl̂

î
, xl

i ≥
s/10l−1. Therefore, we have Bs/10l̂+1(xl̂

î
) ∩Bs/10l+1(xl

i) = ∅. This is a contra-
diction. Therefore, we have l = l̂. By the definition, we have i = î. Thus, we
have Claim 3.1.

It is easy to check the following claim:

Claim 3.2. We have
⋃

i∈NAi(C) ⊂ ⋃

l∈N,1≤i≤kl
Bs/10l−2(xl

i)

We have
∑

l∈N,1≤i≤kl

∫

B s
10l+1

(xl
i)
Fdυ ≥ C

∑

l∈N,1≤i≤kl

υ(B s

10l+1
(xl

i))

≥ CC(κ)
∑

l∈N,1≤i≤kl

υ(B s

10l−2
(xl

i)) ≥ CC(κ)υ

×
⎛

⎝
⋃

l∈N,1≤i≤kl

B s

10l−2
(xl

i)

⎞

⎠ .

On the other hand, we have

∑

l∈N,1≤i≤kl

∫

B s
10l+1

(xl
i)
Fdυ =

∫

⋃

l∈N,1≤i≤kl
B s

10l+1
(xl

i)
Fdυ ≤

∫

Bs(z)
Fdυ

≤ C(κ)υ(Bs(z))δ.

Therefore, we have

υ
(
⋃

l∈N,1≤i≤kl
B s

10l−2
(xl

i)
)

υ(Bs(m))
≤ δ

C
C(κ).

By letting C =
√
δ and K = Bs/102(z) \⋃

l∈N,1≤i≤kl
B s

10l−2
(xl

i), we have the
assertion. �
Let (Y, y) be a Ricci limit space, k an integer with k ≤ n, and r, δ positive
numbers with r < 1, δ < 1. Let (Rk)

y
δ,r be the set of points w in Y satisfying
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that for every 0 < s ≤ r, there exists a map Φ from Bs(w) to Rk such
that π1 ◦ Φ = ry and that Φ is a δs-Gromov–Hausdorff approximation to
Bs(Φ(w)) Here, π1 is the projection from Rk = R × Rk−1 to R defined by
π1(x1, . . . , xk) = x1.

Lemma 3.2. We have

⋂

δ>0

(
⋃

r>0

(

(Rk)x
δ,r \ Cx

)

)

= Rk \ Cx.

Proof. It is easy to check that

⋂

δ>0

(
⋃

r>0

(

(Rk)x
δ,r \ Cx

)

)

⊂ Rk \ Cx.

Let w ∈ Rk \ Cx. For every δ > 0, there exists r > 0 such that for every 0 <
s < r, there exists a δs-Gromov–Hausdorff approximation from (Bs(0k), 0k)
to (Bs(w), w). Here, 0k ∈ Rk. On the other hand, by the splitting theorem on
limit spaces [2, Theorem 9.27], there exist a pointed proper geodesic space
(Ws, ws) and a map Φ̂ from (Bs(w), w) to (Bs(0, ws), (0, ws)) such that
πR ◦ Φ̂ = rx − x,w and that Φ̂ is a δs-Gromov–Hausdorff approximation.
Here, Bs(0, ws) ⊂ R ×Ws with the product metric

√

d2
R + d2

Ws
, πR is the

projection from R ×Ws to R. By rescaling s−1dRk and [21, Claim 4.4], there
exists a Ψ(δ;n)s-Gromov–Hausdorff approximation f from (Bs(ws), ws) to
(Bs(0k−1), 0k−1). Define a map g from Bs(w) to Rk by g(z) = (x, z, f ◦ Φ̂).
Let πs be the canonical retraction from Rk to Bs(g(w)). Put ĝ = πs ◦ g.
Then, it is easy to check that ĝ is an Ψ(δ;n)s-Gromov–Hausdorff approxi-
mation to (Bs(ĝ(w)), g(w)). Since δ is arbitrary, we have the assertion. �
Put Dτ

x={w ∈ X; There exists α ∈ X such that α,w ≥ τ and x,w + w,α=
x, α} for a proper geodesic space X, a point x ∈ X and a positive num-
ber τ > 0. It is easy to check that Dτ

x is closed. By the definition, we have
⋃

τ>0 Dτ
x = X \ Cx. Let LebA = {a ∈ A; limr→0 υ(Br(a) ∩A)/υ(Br(a))=1}

for a metric measure space (X, υ) and a Borel subset A of X.
We shall give a fundamental result about rectifiability of limit spaces

by distance functions. The essential idea of the proof is to replace harmonic
functions giving rectifiability in [6, Theorem 3.26] with suitable distance
functions via the Poincaré inequality.

Lemma 3.3. Let (Y, y, υ) be a Ricci limit space, k a positive integer satis-
fying k ≤ n, δ, r positive numbers satisfying δ < 1, r < 1, x a point in Y
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and w a point in (Rk)x
δ,r ∩ Leb((Rk)δ,r) \ (Cx ∪ {x}). Then, there exists

η(w) > 0 such that the following property holds: For every 0 < s ≤ η(w),
there exists a compact subset L of Bs(w) ∩ (Rk)δ,r and a collection of points
{xj}2≤j≤k in Y such that υ(L)/υ(Bs(w)) ≥ 1 − Ψ(δ;n) and that the map
Φ = (rx, rx2 , . . . , rxk

) from L to Rk, is an (1 ± Ψ(δ;n))-bi-Lipschitz equiva-
lent to the image Φ(L).

Proof. There exists 0 < τ < r such that w ∈ Dτ
x \Bτ (x) and υ(Bs(w) ∩

(Rk)δ,r)/υ(Bs(w)) ≥ 1 − δ for every 0 < s < τ . Let (Mi,mi, vol) → (Y, y, υ),
and let {xi}i, {wi}i be sequences of points xi, wi inMi satisfying that wi → w
and xi → x. Fix 0 < s� min{δ, τ}. Then, for every sufficiently large i,
there exists a δs-Gromov–Hausdorff approximation Φi = (Φi

1, . . . ,Φ
i
k) from

(Bs(wi), wi) to (Bs(0k), 0k) such that Φi
1 = rxi

− rxi
(wi). Put s0 =

√
δs.

For convenience, we shall use the following notations for rescaled metrics
s−1
0 dMi

, s−1
0 dY : v̂ol = vols

−1
0 dMi , r̂w(α) = s−1

0 rw(α), B̂t(α) = B
s−1
0 dMi

t (α) =
Bs0t(α), υ̂ = υ/υ(Bs0(y)), ĝ = s−1

0 g for a Lipschitz function g and so on. We
also denote the differential section of g as rescaled manifolds (Mi, s

−1
0 dMi

)
by d̂g : Mi → T ∗Mi and denote the Riemannian metric of (Mi, s

−1
0 dMi

) by
〈·, ·〉s0 = s−2

0 〈·, ·〉. We remark that (Mi,mi, s
−1
0 dMi

, vols
−1
0 dMi ) → (Y, y, s−1

0

dY , υ̂). The following claim follows from the proof of the splitting theorem
on limit spaces (see for instance [2, Lemmas 9.8, 9.10 and 9.13] or [3]).

Claim 3.3. For every sufficiently large i, there exist collections of harmonic
functions {b̂i

j}1≤j≤k on B̂1002(wi), and of points {xi
j}2≤j≤k in B̂√

δ
−1(wi)

such that |b̂i
j − r̂xi

j
|L∞(B̂1002(wi))

≤ Ψ(δ;n),

1

v̂ol B̂1002(wi)

∫

B̂1002(wi)

(

|d̂b̂i
j − d̂r̂xi

j
|2s0

+ |Hessb̂i
j
|2s0

)

dv̂ol ≤ Ψ(δ;n),

and
1

v̂ol B̂1002(wi)

∫

B̂1002(wi)
|〈d̂b̂i

j , b̂
i
l〉s0 |dv̂ol = δjl ± Ψ(δ;n)

for every 1 ≤ j ≤ l ≤ k, where x = xi
1 for every i.

Define a non-negative valued Borel function Fi on B̂1002(wi) by

Fi =
k∑

l=1

L̂ip(b̂i
l − r̂xi

l
)2 +

∑

l �=j

|〈d̂b̂i
l, d̂b̂

i
j〉s0 | +

k∑

l=1

|Hessb̂i
l
|2s0
.
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By Lemma 3.1, for every sufficiently large i, there exists a compact subset
Ki of B̂100(wi) such that v̂olKi/v̂ol B̂100(wi) ≥ 1 − Ψ(δ;n) and

1

v̂ol B̂t(α)

∫

B̂t(α)
Fidv̂ol ≤ Ψ(δ;n)

for every α ∈ Ki and every 0 < t < 100.

Claim 3.4. For every sufficiently large i, every α ∈ Ki ∩ B̂50(wi), every
1 ≤ j ≤ k, and every 0 < t < 50, there exists a constant Ci

j such that b̂i
j =

r̂xi
j
+ Ci

j ± Ψ(δ;n)t on B̂t(α).

The proof is as follows. By the Poincaré inequality, we have

1

v̂ol B̂t(α)

∫

B̂t(α)

∣
∣
∣
∣
∣
(b̂i

j − r̂xi
j
) − 1

v̂ol B̂t(α)

∫

B̂t(α)
(b̂i

j − r̂xi
j
)dv̂ol

∣
∣
∣
∣
∣
dv̂ol

≤ tC(n)

√

1

v̂ol B̂t(α)

∫

B̂t(α)
(L̂ip(b̂i

1 − r̂xi
))2dv̂ol

≤ tΨ(δ;n).

For C > 0, let Aj(C) be the set of points β ∈ B̂t(α) satisfying that
∣
∣
∣
∣
∣
(b̂i

j(β) − r̂xi
j
(β)) − 1

v̂ol B̂t(α)

∫

B̂t(α)
(b̂i

j − r̂xi
j
)dv̂ol

∣
∣
∣
∣
∣
≥ C.

Then, we have

Ψ(δ;n)t ≥ 1

v̂ol B̂t(α)

∫

B̂t(α)

∣
∣
∣
∣
∣
(b̂i

j − r̂xi
j
) − 1

v̂ol B̂t(α)

∫

B̂t(α)
(b̂i

j − r̂xi
j
)dv̂ol

∣
∣
∣
∣
∣
dv̂ol

≥ C
v̂olAj(C)

v̂ol B̂t(α)
.

Put C =
√

Ψ(δ;n)t for Ψ(δ;n) as above. Then we have v̂olAj(C)/v̂ol B̂t(α)
≤ √

Ψ(δ;n).
Assume that there exist β ∈ B̂t(α) and ε > 0 such that B̂εt(β) ⊂ Aj(C).

Then, by the Bishop–Gromov volume comparison theorem, we have C(n)εn ≤
v̂olBεt(β)/v̂ol B̂t(α) ≤ v̂olAj(C)/v̂ol B̂t(α) ≤ √

Ψ(δ;n). Therefore, by

letting ε =
(

2C(n)−1
√

Ψ(δ;n)
)1/n

, we have a contradiction.
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Put ε =
(

2C(n)−1
√

Ψ(δ;n)
)1/n

. Let β ∈ B̂t(α) and β̂ ∈ B̂(1−ε)t(α) with

r̂β(β̂) < εt. Then, there exists γ ∈ B̂εt(β̂) \Aj(C). Especially, we have γ ∈
B̂t(α). By the definition of Aj(C), we have

b̂i
j(γ) = r̂xi

j
(γ) +

1

v̂ol B̂100(α)

∫

B̂100(α)
(b̂i

j − r̂xi
j
)dv̂ol ±

√

Ψ(δ;n)t.

By Cheng–Yau’s gradient estimate (see [7] or [36]), we have |∇̂b̂i
j |s0 ≤ C(n).

Thus, we have

b̂i
j(β) = r̂xi

j
(β) +

1

v̂ol B̂100(α)

∫

B̂100(α)
(b̂i

j − r̂xi
j
)dv̂ol ± Ψ(ε;n)t.

Therefore, we have Claim 3.4.
By an argument similar to the proof of [6, Theorem 3.3], we have the

following:

Claim 3.5. For every sufficiently large i, every α ∈ Ki ∩ B̂50(wi) and every
0 < t ≤ 10−5, there exist a compact subset Zt of Mi, a point zt in Zt and a
map φ from (B̂t(α), α) to (B̂t(zt), zt) such that the map Φ = (b̂i

1, . . . , b̂
i
k, φ)

from B̂t(α) to B̂t+Ψ(δ;n)t(Φ(α)) ⊂
(

Rk × Zt,
√

d2
Rk + (s0−1dMi

)2
)

, is a Ψ
(δ;n)t-Gromov–Hausdorff approximation.

Put K̂i = Ki ∩ B̂40(wi). Then, we have v̂olKi/v̂ol B̂40(wi) ≥ 1 − Ψ(δ;n).
By Gromov’s compactness theorem, without loss of generality, we can assume
that there exists a compact subsetK∞ of B̂40(w) and a collection {x∞j }2≤j≤k

of points in Y such that xi
j → x∞j and Ki → K∞. By Proposition 2.3, we

have υ̂(K∞)/υ̂(B̂40(w)) ≥ 1 − Ψ(δ;n). On the other hand, by Claims 3.4 and
3.5, for every α ∈ K∞ and every 0 < t ≤ 10−5, there exists a compact metric
space Z∞, a point z∞ in Z∞, and a map φ from (B̂t(α), α) to (Bt(z∞), z∞)
such that the map φ̂ = (r̂x, r̂x∞

2
, . . . , r̂x∞

k
, φ) from B̂t(α) to B̂t+Ψ(δ;n)t(φ̂(α)),

is a Ψ(δ;n)t-Gromov–Hausdorff approximation. Put K̂∞ = K∞ ∩ (Rk)δ,r ∩
B10−10s0(w). Then, we have υ(K̂∞)/υ(B10−10s0(w)) ≥ 1 − Ψ(δ;n). On the
other hand, for every α ∈ K̂∞ and every 0 < t ≤ 10−5, let φ,Z∞, z∞ as
above. Then, since α ∈ (Rk)δ,r, we have diamZ∞ ≤ Ψ(δ;n)t. Especially, the
map f = (r̂x, r̂x∞

2
, . . . , r̂x∞

k
) from B̂t(α) to Bt+Ψ(δ;n)t(f(α)), is a Ψ(δ;n)t-

Gromov–Hausdorff approximation. Especially, for every α, β ∈ K̂∞ with α �=
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β, by letting t = r̂α(β)(≤ 10−5), we have
√
√
√
√(x, αs−1

0 dY − x, β
s−1
0 dY )2 +

k∑

l=2

(x∞l , α
s−1
0 dY − x∞l , β

s−1
0 dY )2

= α, β
s−1
0 dY ± Ψ(δ;n)t

= (1 ± Ψ(δ;n))α, βs−1
0 dY

.

Therefore, we have the assertion. �

Lemma 3.4. Let (Y, y, υ) be a Ricci limit space and x a point in Y . Then,
there exist collections of compact subsets {Cx

k,i}1≤k≤n,i∈N of Y , and of points
{xl

k,i}2≤l≤k≤n,i∈N in Y such that the following properties hold:

1.
⋃

i∈NCx
k,i ⊂ Rk and υ(Rk \⋃

i∈NCx
k,i) = 0 for every k.

2. For every z ∈ ⋃

i∈NCx
k,i and every 0 < δ < 1, there exists Cx

k,i such
that z ∈ Cx

k,i and that the map Φx
k,i = (rx, rx2

k,i
, . . . , rxk

k,i
) from Cx

k,i to
Rk, is (1 ± δ)-bi-Lipschitz to the image Φx

k,i(C
x
k,i).

Proof. Put

Ak =
⋂

m1∈N

(
⋃

m2∈N

(

(Rk)x
1/m1,1/m2

∩ Leb((Rk)1/m1,1/m2
) \ (Cx ∪ {x})

)
)

.

Claim 3.6. We have Ak ⊂ Rk and υ(Rk \Ak) = 0.

The proof is as follows. Put

Bk =
⋂

m1∈N

(
⋃

m2∈N

(

(Rk)x
1/m1,1/m2

∩ (Rk)1/m1,1/m2
\ (Cx ∪ {x})

)
)

.

Then we have Ak ⊂ Bk and υ(Bk \Ak) = 0. On the other hand, by Lemma
3.2, we have Bk = Rk \ (Cx ∪ {x}). Since υ(Cx) = 0, we have Claim 3.6.

For every z ∈ Ak and everyN ∈ N, there existsm2 = m2(z,N) such that
z ∈ (Rk)x

1/N,1/m2
∩ Leb((Rk)1/N,1/m2

) \ (Cx ∪ {x}). By Lemma 3.3, there
exists η(z,N) > 0 such that for every 0 < s ≤ η(z,N), there exists a com-
pact subset L(z, s,N) of Bs(z) ∩ (Rk)1/N,1/m2

and a collection of points
{xj(z, s,N)}1≤j≤k in Y such that υ(L(z, s,N))/υ(Bs(z)) ≥ 1 − Ψ(N−1;n)
and that the map Φz,s,N = (rx, rx2(z,s,N) . . . , rxk(z,s,N)) from L(z, s,N) to
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Rk, is (1 ± Ψ(N−1;n))-bi-Lipschitz to the image. Fix R > 1 and N ∈ N.
By Lemma 2.2, there exists a pairwise disjoint collection {BsN.R

i
(zN,R

i )}i∈N

such that zN,R
i ∈ Ak ∩BR(y), 0 < sN,R

i ≤ η(zN,R
i , N)/100 and Ak ∩BR(y) \

⋃m
i=1BsN,R

i
(zN,R

i ) ⊂ ⋃∞
i=m+1B5sN,R

i
(zN,R

i ) for every m. Put L̂(i,N,R) =
L(zN,R

i , 5sN,R
i , N) ∩Ak ∩BR(y) ⊂ Ak ∩BR(y).

Claim 3.7. υ
(

Ak ∩BR(y) \⋃

N≥N0,i∈N L̂(i,N,R)
)

= 0 for every N0 ∈ N.

Because we have

υ

(

Ak ∩BR(y) \
⋃

i∈N

L̂(i,N,R)

)

≤ υ

(
⋃

i∈N

(

B5sN,R
i

(zN,R
i ) ∩Ak ∩BR(y)

)

\

⋃

i∈N

(

L(zN,R
i , 5sN,R

i , N) ∩Ak ∩BR(y)
)
)

≤
∑

i∈N

υ
(

B5sN,R
i

(zN,R
i ) \ L(zN,R

i , 5sN,R
i , N)

)

≤ Ψ(N−1;n)
∑

i∈N

υ(B5sN,R
i

(zN,R
i )) ≤ Ψ(N−1;n)

∑

i∈N

υ(BsN,R
i

(zN,R
i ))

≤ Ψ(N−1;n)υ(B2R(y))

for every N ≥ N0. Therefore, by letting N → ∞, we have Claim 3.7.
By Claim 3.7, we have υ

(

Ak ∩BR(y) \⋂

N0

(⋃

N≥N0,i∈N L̂(i,N,R)
))

=

0. Put E(i,N,R) = L̂(i,N,R) ∩⋂

N0∈N

(
⋃

N≥N0,j∈N L̂(j,N,R)
)

. Then, we

have υ
(

Ak ∩BR(y) \⋃

i,N∈NE(i,N,R)
)

= 0. Fix z ∈ ⋃

i,N∈NE(i,N,R) and
0 < δ < 1. Then there exist i,N such that z ∈ E(i,N,R). Let N0 ∈ N with
N−1

0 � δ. Then there exist N̂ ≥ N0 and î ∈ N such that z ∈ L̂(̂i, N̂ , R).
By the definition, the map φ = (rx, rx2

(

zN̂,R

î
,sN̂,R

î

) , . . . , r
xk

(

zN̂,R

î
,sN̂,R

î

)) from

L(zN̂,R

î
, sN̂,R

î
, N̂) to Rk, is Ψ(N−1, n)-bi-Lipschitz to the image. Especially,

the map is (1 ± δ)-bi-Lipschitz to the image. We remark that L̂(̂i, N̂ , R) ⊂
L(zN̂,R

î
, sN̂,R

î
, N̂) and z ∈ L̂(̂i, N̂ , R) ∩⋂

l∈N

(
⋃

j≥l,p∈N L̂(p, j, R)
)

= E(̂i, N̂ ,

R). Therefore, by letting xj(i,N,R) = xj(z
N,R
i , sN,R

i , R) for every 2 ≤ j ≤ k,
we have the following claim:
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Claim 3.8. For every z ∈ ⋃

i,N∈NE(i,N,R) and every 0 < δ < 1, there
exists E(i,N,R) such that z ∈ E(i,N,R) and that the map φ = (rx,
rx2(i,N,R), . . . , rxk(i,N,R)) from E(i,N,R) to Rk, is (1 ± δ)-bi-Lipschitz to the
image.

By Claim 3.8, it is easy to check the assertion. �

Lemma 3.5. With the same notaion as in Lemma 3.4, for every k, i, let
{Fx

k,i,j}j∈N be a collection of Borel subsets of Cx
k,i with

υ
(

Cx
k,i \

⋃

j∈N Fx
k,i,j

)

= 0. Then, there exists a collection of Borel subsets
{Ex

k,i,j}k,i,j of Y such that Ex
k,i,j ⊂ Fx

k,i,j, υ(Fx
k,i,j \ Ex

k,i,j) = 0 and that for
every k, every z ∈ ⋃

i,j∈N Ex
k,i,j and every 0 < δ < 1, there exists Ex

k,i,j such
that z ∈ Ex

k,i,j and that the map Φx
k,i,j = (rx, rx2

k,i
, . . . , rxk

k,i
) from Ex

k,i,j to Rk,
is (1 ± δ)-bi-Lipschitz to the image.

Proof. Fix 1 ≤ k ≤ n. For every M ∈ N, put BM = {i ∈ N; The map φ =
(rx, rx2

k,i
, . . . , rxk

k,i
) from Cx

k,i to Rk, is (1 ±M−1)-bi-Lipschitz to the image}
and Ex

k,i,j = Fx
k,i,j ∩

⋂

M∈N

(
⋃

i∈BM ,j∈N Fx
k,i,j

)

.

Claim 3.9. υ(Fx
k,i,j \ Ex

k,i,j) = 0.

The proof is as follows. By Lemma 3.4, we have
⋃

i∈NCx
k,i ⊂

⋂

M∈N(
⋃

i∈BM
Cx

k,i

)

. On the other hand, it is easy to check that
⋂

M∈N
(
⋃

i∈BM
Cx

k,i

)

⊂ ⋃

i∈NCx
k,i. Therefore, we have

⋂

M∈N

(
⋃

i∈BM
Cx

k,i

)

=
⋃

i∈NCx
k,i. Thus, υ(Fx

k,i,j \ Ex
k,i,j) = υ

(

Fx
k,i,j ∩

⋃

l∈NCx
k,l \ Ex

k,i,j

)

=υ
(

Fx
k,i,j∩

⋂

M∈N

(
⋃

l∈BM
Cx

k,l

)

\ Ex
k,i,j

)

= υ
(

Fx
k,i,j ∩

⋂

M∈N

(
⋃

l∈BM ,j∈N Fx
k,l,j

)

\Ex
k,i,j

)

= 0. Therefore, we have Claim 3.9.

Claim 3.10. For every z ∈ ⋃

i,j∈N Ex
k,i,j and every 0 < δ < 1, there exists

Ex
k,i,j such that z ∈ Ex

k,i,j and that the map φ = (rx, rx2
k,i
, . . . , rxk

k,i
) from Ex

k,i,j

to Rk, is (1 ± δ)-bi-Lipschitz to the image.

The proof is as follows. Let M, i, j be positive integers with M−1 � δ,
z ∈ Ex

k,i,j . There exist N0 ∈ BM and N1 ∈ N such that z ∈ Fx
k,N0,N1

. There-

fore, we have z ∈ Fx
k,N0,N1

∩⋂

M̂∈N

(
⋃

î∈BM̂ ,ĵ∈N Fx
k,̂i,ĵ

)

= Ex
k,N0,N1

and that
the map φ = (rx, rx2

k,j
, . . . , rxk

k,j
) from Ex

k,N0,N1
to Rk, is (1 ±M−1)-bi-

Lipschitz to the image. Thus, we have Claim 3.10.
By Claims 3.9 and 3.10, we have the assertion. �
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The following theorem is the main result in this subsection. See (2.2) in [5]
or [22, Definition 4.1] for the definition of the measure υ−1.

Theorem 3.1 Radial rectifiability. Let (Y, y, υ) be a Ricci limit space
with Y �= {y}, and x a point in Y . Then, there exist collections of Borel
subsets {Cx

k,i}1≤k≤n,i∈N of Y , of points {xl
k,i}2≤l≤k≤n,i∈N in Y , a positive

number 0 < α(n) < 1 and a Borel subset A of [0,diamY ) such that the fol-
lowing properties hold:

1.
⋃

i∈NCx
k,i ⊂ Rk,α(n) \ Cx and υ

(

Rk \⋃

i∈NCx
k,i

)

= 0 for every k.

2. limr→0 υ(Br(z) ∩ Cx
k,i)/υ(Br(z)) = 1 for every Cx

k,i and every z ∈ Cx
k,i.

3. For every Cx
k,i, there exists Ax

k,i > 1 such that (Ax
k,i)

−1 ≤ υ(Br(z))/
rk ≤ Ax

k,i for every z ∈ Cx
k,i and every 0 < r < 1.

4. The limit measure υ and the k-dimensional Hausdorff measure Hk are
mutually absolutely continuous on Cx

k,i.

5. For every z ∈ ⋃

i∈NCx
k,i and every 0 < δ < 1, there exists Cx

k,i such
that z ∈ Cx

k,i and that the map Φx
k,i = (rx, rx2

k,i
, . . . , rxk

k,i
) from Cx

k,i to
Rk, is (1 ± δ)-bi-Lipschitz to the image.

6. H1([0,diamY ) \A) = 0.

7. For every R ∈ A, the collection {∂BR(x) ∩ Cx
k,i}k,i ⊂ ∂BR(x) \ Cx sat-

isfies the following properties:
(a) υ−1

(

(∂BR(x) \ Cx) \⋃

1≤k≤n,i∈NCx
k,i

)

= 0.
(b) For every ∂BR(x) ∩ Cx

k,i, there exist Bx
k,i > 1 and τx

k,i > 0 such that
(Bx

k,i)
−1≤υ−1(∂BR(x) ∩Br(z) \ Cx)/rk−1≤υ−1(∂BR(x) ∩Br(z))/

rk−1 ≤ Bx
k,i for every z ∈ ∂BR(x) ∩ Cx

k,i and every 0 < r < τx
k,i.

(c) For every z∈⋃

i∈N(∂BR(x)∩Cx
k,i) and every 0 < δ < 1, there exists

∂BR(x) ∩ Cx
k,i such that z ∈ ∂BR(x) ∩ Cx

k,i and that the map Φ̂x
k,i =

(rx2
k,i
, . . . , rxk

k,i
) from ∂BR(x) ∩ Cx

k,i to Rk−1, is (1 ± δ)-bi-Lipschitz
to the image.

Especially, ∂BR(x) \ Cx is υ−1-rectifiable.

Proof. First, we shall prove the following claim:

Claim 3.11. We have υ−1(∂Bx,z(x) ∩Bε(z)) ≤ C(n)υ(Bε(z))/ε for every
R > 0, every z ∈ BR(x) \ {x} and every ε > 0 with ε < min{z, x/100, 1}.
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The proof is as follows. By [23, Corollary 5.7], we have

υ−1(∂Bx,z(x) ∩Bε(z))
vol ∂Bx,z(p)

≤ C(n)
υ(Cx(∂Bx,z(x) ∩Bε(z)) ∩Ax,z−2ε,x,z(x))

volAx,z−2ε,x,z(p)
.

Here Cx(A) = {z ∈ Y ; There exists a ∈ A such that x, z + z, a = z, a} for
every subset A of Y , p is a point in the n-dimensional hyperbolic space
form. On the other hand, by triangle inequality, we have Cx(∂Bx,z(x) ∩
Bε(z)) ∩Ax,z−2ε,x,z(x) ⊂ B100ε(z). Thus, we have

υ−1(∂Bx,z(x)∩Bε(z))≤
vol ∂Bx,z(p)

volAx,z−2ε,x,z(p)
υ(B100ε(z))C(n)≤C(n,R)

1
ε
υ(Bε(z)).

Therefore, we have Claim 3.11.
Let {Cx

k,i}k,i be a collection of Borel subsets of Y and {xl
k,i}k,i,l a col-

lection of points in Y as in Lemma 3.4. By Lemma 3.5, without loss of
generality, we can assume that for every Cx

k,i, there exists τ > 0 such that
Cx

k,i ⊂ Dτ
x \Bτ (x). Moreover, by [6, Theorems 3.23 and 4.6], we can assume

that for every Cx
k,i, there exists Ax

k,i > 1 such that (Ax
k,i)

−1 ≤ υ(Br(z))/rk ≤
Ax

k,i for every 0 < r < 1 and every z ∈ Cx
k,i, and that limr→0 υ(Br(z) ∩ Cx

k,i)/
υ(Br(z)) = 1 for every Cx

k,i and every z ∈ Cx
k,i.

Claim 3.12. Let (Y, y, υ) be a Ricci limit space, x a point in Y , τ,R positive
numbers with 0 < τ < 1 < R, and z a point in Dτ

x ∩BR(x) \Bτ (x). Then,
we have υ−1(∂Bx,z(x) ∩Bε(z) \ Cx) ≥ C(n,R)υ(Bε(z))/ε for every 0 < ε <
τ/100.

The proof is as follows. Let w ∈ Y with z, w = ε/100, x, z + z, w = x,w.
By [23, Theorem 4.6 ], we have

υ(B ε

1000
(w))

volAx,z,x,z+ε(p)
≤ C(n)

υ−1

(

Cx(B ε

1000
(w)) ∩ ∂Bx,z(x)

)

vol ∂Bx,z(p)
.

By triangle inequality, we have Cx(Bε/1000(w)) ∩ ∂Bx,z(x) ⊂ ∂Bx,z(x) ∩Bε(z).
Thus, by the Bishop–Gromov volume comparison theorem for υ, we have

υ−1(∂Bx,z(x) ∩Bε(z) \ Cx) ≥ C(n)
vol ∂Bx,z(p)

volAx,z,x,z+ε(p)
υ(Bε/1000(w))

≥ C(n,R)
1
ε
υ(B ε

1000
(w))

≥ C(n,R)
1
ε
υ(B5ε(w)) ≥ C(n,R)

υ(Bε(z))
ε

.
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Therefore, we have Claim 3.12.
By Claims 3.11 and 3.12, for every Cx

k,i, there exist Bx
k,i > 1 and τx

k,i >

0 such that (Bx
k,i)

−1 ≤ υ−1(∂Bx,z(x) ∩Br(z) \ Cx)/rk ≤ Bx
k,i for every z ∈

Cx
k,i and every 0 < r < τx

k,i. Put Â = {t ∈ [0,diamY ); υ−1

(

∂Bt(x) \
⋃
Cx

k,i

)

=

0}. Since υ
(

Y \⋃
Cx

k,i

)

= 0, it follows from [23, Proposition 5.1 and The-

orem 5.2] that Â is Lebesgue measurable and that H1([0,diamY ) \ Â) = 0.
Since H1 is a Radon measure on R, we have the assertion. �

3.2. Calculation of radial derivatives of Lipschitz functions

The purpose in this subsection is to calculate the radial derivative from a
given point x, of a given Lipschitz function f : 〈drx, df〉 explicitly. The main
result in this subsection is Theorem 3.3.

Lemma 3.6. Let (Y, y) be a Ricci limit space with Y �= {y}, z a point
in Y \ Cy, f a Lipschitz function on Y , τ a positive number and γi an
isometric embedding from [0, y, z + τ ] to Y satisfying γi(0) = y, γi(y, z) = z
for every i ∈ {1, 2}. Put fi = f ◦ γi. Then, we have lipf1(y, z) = lipf2(y, z)
and Lipf1(y, z) = Lipf2(y, z).

Proof. For every real number ε with 0 < |ε| � τ , by the splitting theorem
on limit space, we have γ1(x, z + ε), γ2(x, z + ε) ≤ Ψ(|ε|;n)|ε|. Therefore, we
have

|f1(x, z + ε) − fa1(x, z)|
|ε| ≤ |f2(x, z + ε) − f2(x, z)|

|ε| + LipfΨ(|ε|;n).

Thus, we have Lipf1(y, z) ≤ Lipf2(y, z) and lipf1(y, z) ≤ lipf2(y, z). There-
fore, we have Lipf1(y, z) = Lipf2(y, z) and lipf1(y, z) = lipf2(y, z). �

Let (Y, y) be a Ricci limit space, z a point in Y \ Cy, τ a positive num-
ber, γ an isometric embedding from [0, y, z + τ ] to Y satisfying γ(0) = y,
γ(y, z) = z. Put F = f ◦ γ, liprad

y f(z) = lipF (y, z) and Liprad
y f(z) = LipF (y, z).

It is not difficult to check the following lemma:

Lemma 3.7. Let (Z, υ) be a metric measure space. Assume that the fol-
lowing properties hold:

1. υ(Br(z)) > 0 for every z ∈ Z and every r > 0.

2. There exist r0 > 0 and κ > 1 such that υ(B2r(z)) ≤ 2κυ(Br(z)) for
every z ∈ Z and every 0 < r < r0.
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Then, we have Lipf(a) = Lip(f |A)(a) and lipf(a) = lip(f |A)(a) for every
a ∈ Leb(A), every Lipschitz function f on Z and every Borel subset A of Z.

The following theorem implies that ∂BR(x)⊥∇rx in some sense:

Theorem 3.2. Let (Y, y, υ) be a Ricci limit space, x a point in Y and f a
Lipschitz function on Y . Then, we have the following:

1. lipf(z)2 = liprad
x f(z)2 + lip(f |∂Bx,z(x))(z)2 for a.e. z ∈ Y .

2. Lipf(z)2 = Liprad
x f(z)2 + Lip(f |∂Bx,z(x))(z)2 for a.e. z ∈ Y .

3. Lip(f |∂Bx,z(x))(z) = lip(f |∂Bx,z(x)\Cx
)(z) for a.e. z ∈ Y \ Cx.

Proof. First, we shall remark the following:

Claim 3.13. Let f be a Lipschitz function on Rk. Then, we have Lipf(z)2 =
(Lip(f |R×{z2,...,zk})(z))

2 + (Lip(f |{z1}×Rk−1)(z))2 = (lip(f |R×{z2,...,zk})(z))
2 +

(lip(f |{z1}×Rk−1)(z))2 = lipf(z)2 for a.e z = (z1, . . . , zk) ∈ Rk.

Because, by Rademacher’s theorem about differentiability of Lipschitz
functions on Rk, f is totally differentiable at a.e z ∈ Rk. Therefore, we have
Claim 3.13.

The next claim is clear:

Claim 3.14. Let {Zi}i=1,2 be metric spaces, δ a positive number with
0 < δ < 1, and Φ a map from Z1 to Z2 satisfying that Φ(Z1) = Z2 and
(1 − δ)x1, x2 ≤ Φ(x1),Φ(x2) ≤ (1 + δ)x1, x2 for every x1, x2 ∈ Z1. Then, for
every Lipschitz function f on Z2, we have, (1 − Ψ(δ))Lipf(Φ(z1)) ≤ Lip(f ◦
Φ)(z1) ≤ (1 + Ψ(δ))Lipf(z1), (1 − Ψ(δ))lipf(Φ(z1)) ≤ lip(f ◦ Φ)(z1) ≤ (1 +
Ψ(δ))lipf(Φ(z1)) for every z1 ∈ Z1.

We will give a proof of the following claim in the Appendix:

Claim 3.15. For every Lebesgue measurable subset A of Rk, put
sl1 − LebA = {a = (a1, . . . , ak) ∈ A; limr→0H

k−1(({a1}×Br(a2, . . . , ak)) ∩
A)/Hk−1

({a1} ×Br(a2, . . . , ak)
)

= 1}. Then the following properties hold:

1. sl1 − LebA is a Lebesgue measurable set.

2. Hk−1
(

A ∩ ({t} × Rk−1 \ sl1 − LebA)
)

= 0 for every t ∈ R.

3. Hk(A \ sl1 − LebA) = 0.
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Put L = Lipf . Let {Cx
k,i}1≤k≤n,i∈N be a collection of Borel subsets of

Y , and {xl
k,i}2≤k≤n,i∈N,2≤l≤k a collection of points in Y as in Theorem

3.1. Fix a sufficiently small δ > 0 and Ck,i satisfying that the map Φx
k,i =

(rx, rx2
k,i
, . . . , rxk

k,i
) from Cx

k,i to Rk, is (1 ± δ)-bi-Lipschitz to the image. Put
fx

k,i = f ◦ (Φx
k,i)

−1 on Φx
k,i(C

x
k,i). Let F x

k,i be a Lipschitz function on Rk sat-
isfying that F x

k,i|Φx
k,i(C

x
k,i)

= fx
k,i and LipF x

k,i = Lipfx
k,i.

Claim 3.16. With the notation as above, we have the following:

1. (1 − Ψ(δ;n))LipF x
k,i(w) ≤ Lipf((Φx

k,i)
−1(w)) ≤ (1 + Ψ(δ;n))Lip

F x
k,i(w) for a.e w ∈ Φx

k,i(C
x
k,i).

2. (1 − Ψ(δ;n))lipF x
k,i(w) ≤ lipf((Φx

k,i)
−1(w)) ≤ (1 + Ψ(δ;n))lipF x

k,i(w)
for a.e w ∈ Φx

k,i(C
x
k,i).

3. Lip(F x
k,i|R×{w2,...,wk})(w) − LΨ(δ;n) ≤ Liprad

x f((Φx
k,i)

−1(w)) ≤ Lip
(F x

k,i|R×{w2,...,wk})(w)+LΨ(δ;n) for a.e w = (w1, . . . , wk)∈Φx
k,i(C

x
k,i).

4. lip(F x
k,i|R×{w2,...,wk})(w) − LΨ(δ;n) ≤ liprad

x f((Φx
k,i)

−1(w)) ≤ lip
(F x

k,i|R×{w2,...,wk})(w) + LΨ(δ;n) for a.e w = (w1, . . . , wk) ∈ Φx
k,i(C

x
k,i).

5. (1 − Ψ(δ;n))Lip(F x
k,i|{w1}×Rk−1)(w) ≤ Lip(f |∂B

x,( Φx
k,i

)−1(w)
(x)∩Cx

k,i
)

((Φx
k,i)

−1(w)) ≤ (1 + Ψ(δ;n))Lip(F x
k,i|{w1}×Rk−1)(w) for a.e. w =

(w1, . . . , wk) ∈ Φx
k,i(C

x
k,i).

6. (1 − Ψ(δ;n))lip(F x
k,i|{w1}×Rk−1)(w) ≤ lip(f |∂B

x,(Φx
k,i

)−1(w)
(x)∩Cx

k,i
)

((Φx
k,i)

−1(w)) ≤ (1 + Ψ(δ;n))lip(F x
k,i|{w1}×Rk−1)(w) for a.e. w =

(w1, . . . , wk) ∈ Φx
k,i(C

x
k,i).

The proof is as follows. First, we shall give a proof of Statement 1.
Put Cx

k,i = Leb(Φx
k,i(C

x
k,i)) ∩ Φx

k,i(LebCx
k,i). Then, we have Hk(Φx

k,i(C
x
k,i) \

Cx
k,i) = 0. By Lemma 3.7 and Claim 3.14, we have (1 − Ψ(δ))Lip

(F x
k,i|Φk,i(Cx

k,i)
)(w) ≤ Lip(f |Cx

k,i
)((Φx

k,i)
−1(w)) ≤ (1 + Ψ(δ))Lip(F x

k,i|Φx
k,i(C

x
k,i)

)
(w), Lip(F x

k,i|Φx
k,i(C

x
k,i)

)(w) = LipF x
k,i(w) and Lip(f |Cx

k,i
)((Φx

k,i)
−1(w)) = Lip

f((Φx
k,i)

−1(w)) for every w ∈ Cx
k,i. Therefore, we have statement 1. Simi-

larly, we have Statement 2.
Next, we shall give a proof of Statement 3. Put Cx,f

k,i = sl1 − LebCx
k,i ∩

{w ∈ Rk;F x
k,i is totally differentiable at w}. Then, by Claim 3.15, we have

Hk(Cx
k,i \ Cx,f

k,i ) = 0. Fix w ∈ Cx,f
k,i and put wε = w + (ε, 0, . . . , 0) for every

ε > 0. Since w ∈ sl1 − LebCx
k,i, for every ε > 0, there exist ŵε ∈ Cx

k,i and
a(ε) > 0 such that wε, ŵε ≤ a(ε)ε and a(τ) → 0 as τ → 0. h is clear that (1 −
δ)(ε− a(ε)ε) ≤ (1 − δ)w, ŵε ≤ (Φx

k,i)
−1(w), (Φx

k,i)
−1(ŵε) ≤ (1 + δ)w, ŵε ≤ (1
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+ δ)(ε+ a(ε)ε). Let π1 be the projection from Rk to R defined by π1(w) =
w1. Then we have x, (Φx

k,i)
−1(ŵε) = π1(ŵε) = π1(wε) ± a(ε)ε = π1(w) + ε±

a(ε)ε = x, (Φx
k,i)

−1(w) + (Φx
k,i)

−1(w), (Φx
k,i)

−1(ŵε) ± (δ + a(ε))ε. By Lemma
3.5, without loss of generality, we can assume that there exists τ0 > 0 such
that Ck,i ⊂ Dτ0

x . Fix an isometric embedding γ from [0, x, (Φx
k,i)

−1(w) +
τ0] to Y with γ(0) = x, γ(x, (Φx

k,i)
−1(w)) = (Φx

k,i)
−1(w). Then, by rescaling

ε−1dY and the splitting theorem on limit spaces, we have
(Φx

k,i)
−1(ŵε), γ(x, (Φx

k,i)
−1(w) + ε) ≤ Ψ(a(ε), δ;n)ε. Thus, we have

|F x
k,i(w) − F x

k,i(wε)|
ε

≤ |F x
k,i(w) − F x

k,i(ŵε)|
ε

+ La(ε)

≤ |f((Φx
k,i)

−1(w)) − f(γ(x, (Φx
k,i)

−1(w) + ε))|
ε

+ LΨ(a(ε), δ;n)

for every ε > 0 with ε� τ0. By letting ε→ 0, we have Lip(F x
k,i|R×{w2,···,wk})

(w) ≤ Liprad
x f((Φx

k,i)
−1(w)) + LΨ(δ;n). Let {εi}i be a sequence of real num-

bers such that εj → 0 and

lim
j→∞

|f ◦ (Φx
k,i)

−1(w) − f(γ(x, (Φx
k,i)

−1(w) + εj))|
|εj | = Liprad

x f((Φx
k,i)

−1(w)).

Since (Φx
k,i)

−1(w) ∈ LebCx
k,i, there exist sequences {ŵ(j)}j ⊂ Cx

k,i, {τj}j ⊂
R>0 such that ŵ(j), γ(x, (Φx

k,i)
−1(w) + εj) ≤ τjεj and τj → 0 as j → ∞. Fix

j ∈ N. Assume that εj > 0. Then, we have

π1(ŵ(j)) − π1(w) = x, ŵ(j) − x, (Φx
k,i)

−1(w)

= x, γ(x, (Φx
k,i)

−1(w) + εj) ± τjεj

= εj ± τjεj

= γ(x, (Φx
k,i)

−1(w) + εj), (Φx
k,i)

−1(w) ± τjεj

≥ (1 − δ)Φx
k,i(ŵ(j)), w − τjεj .

On the other hand, since Φx
k,i(ŵ(j)), w ≤ (1 + δ)εj + τjεj , we have

w + (εj , 0, . . . , 0),Φx
k,i(ŵ(j)) ≤ Ψ(|εj |, δ;n)|εj |. Similarly, we have

w + (εj , 0, . . . , 0),Φx
k,i(ŵ(j)) ≤ Ψ(|εj |, δ;n)|εj | in the case εj < 0. Put w(j) =
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w + (εj , 0, . . . , 0). Then, we have

|f
(

(Φx
k,i)

−1(w)
)

− f
(

γ(x, (Φx
k,i)

−1(w) + εj)
)

|εj |

≤
|F x

k,i(w) − F x
k,i

(

Φx
k,i(ŵ(j))

)

|
|εj | + Lτj

≤ |F x
k,i(w) − F x

k,i(w(j))|
|εj | + LΨ(|εj |, τj , δ;n).

By letting j → ∞, we have statement 3. Similarly, we have statement 4.
We shall give a proof of statement 5. Fix w ∈ Cx,f

k,i . By Claim 3.14, we
have

(1 − Ψ(δ))Lip(F x
k,i|({w1}×Rk−1)∩Cx

k,i
)(w)

≤ Lip(f |(Φx
k,i)

−1(({w1}×Rk−1)∩Cx
k,i))

(

(Φx
k,i)

−1(w)
)

≤ (1 + Ψ(δ))Lip(F x
k,i|({w1}×Rk−1)∩Cx

k,i
)(w).

We remark that (Φx
k,i)

−1
(

({w1} × Rk−1) ∩ Cx
k,i

)

= ∂B
x,(Φx

k,i)
−1(w)

(x) ∩
(Φx

k,i)
−1(Cx

k,i). By Proposition 3.7, we have Lip(F x
k,i|{w1}×Rk−1∩Cx

k,i
)(w) =

Lip(F x
k,i|{w1}×Rk−1)(w). Therefore, by Claim 3.14, we have

(1 − Ψ(δ))Lip(F x
k,i|{w1}×Rk−1)(w)

≤ Lip(f |∂B
x,(Φx

k,i
)−1(w)

(x)∩(Φx
k,i)

−1(Cx
k,i)

)
(

(Φx
k,i)

−1(w)
)

≤ Lip(f |∂B
x,(Φx

k,i
)−1(w)

(x)∩Cx
k,i

)
(

(Φx
k,i)

−1(w)
)

≤ (1 + Ψ(δ))Lip(F x
k,i|({w1}×Rk−1)∩Φx

k,i(C
x
k,i)

)(w)

≤ (1 + Ψ(δ))Lip(F x
k,i|{w1}×Rk−1)(w).

Thus, we have Statement 5. Similarly, we have Statement 6.
Therefore, we have Claim 3.16.

Claim 3.17. With the same notation as in Claim 3.16, we have

lip(f |∂B
x,(Φx

k,i
)−1(w)

(x)∩Cx
k,i

)((Φx
k,i)

−1(w))

≥ Lip(f |∂B
x,(Φx

k,i
)−1(w)

(x))((Φ
x
k,i)

−1(w)) − Ψ(δ;n,L)

for a.e w ∈ Φx
k,i(C

x
k,i).
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The proof is as follows. We shall use the same notaion as in the proof of
Claim 3.16. Fix w ∈ Φx

k,i(Leb(Φx
k,i)

−1(Cx,f
k,i )) and put z = (Φx

k,i)
−1(w).

First, assume k ≥ 2. Then we shall prove that z is not an isolated
point in ∂Bx,z(x) \ Cx. Because, by the definition of sl1 − Leb(Cx

k,i), there
exists a sequence of points {β(j)}j in Cx

k,i such that π1(β(j)) = π1(w),
β(j) �= w for every j, and β(j) → w. Then, we have (Φx

k,i)
−1(β(j)) �= z,

(Φx
k,i)

−1(β(j)) ∈ ∂Bx,z(x) \ Cx and (Φx
k,i)

−1(β(j)) → z. Especially, z is not
an isolated point in ∂Bx,z(x) \ Cx. Let {z(j)}j ⊂ ∂Bx,z(x) \ {z} with z(j) →
z, |f(z(j)) − f(z)|/z(j), z → Lip(f |∂Bx,z(x))(z). Put ηj = z(j), z > 0. Since
z ∈ Leb(Φx

k,i)
−1(Cx,f

k,i ), there exist sequences {ẑ(j)}j ⊂ (Φx
k,i)

−1(Cx,f
k,i ) and

{τ̂j}jR>0 such that z(j), ẑ(j) ≤ τ̂jηj and τ̂j → 0 as j → ∞. Put α(j) =
Φx

k,i(ẑ(j)). Then we have |π1(α(j)) − π1(w)| ≤ (1 + δ)τ̂jηj . Therefore, there
exists α̂(j) ∈ {w1} × Rk−1 such that w(j), α̂(j) ≤ Ψ(τ̂j ;n)ηj . Then, we have

|f(z(j)) − f(z)|
z(j), z

≤ |f(ẑ(j)) − f(z)|
ηj

+ Lτ̂j

≤ |F x
k,i(w(j)) − F x

k,i(w)|
ηj

+ Ψ(τ̂j ;n,L)

≤ |F x
k,i(α̂(j)) − F x

k,i(w)|
α̂(j), w

α̂(j), w
ηj

+ LΨ(τ̂j ;n,L).

By letting j → ∞, we have Claim 3.17 for the case k ≥ 2.
Next, assume k = 1. It suffices to check that z is an isolated point in

∂Bx,z(x). The proof is done by a contradiction. Assume that z is not an
isolated point in ∂Bx,z(x). Then, there exists a sequence {z(i)}i of points
in ∂Bx,z(x) \ {z} such that z(i) → z. On the other hand, there exist τ0 > 0
and an isometric embedding γ from [0, x, z + τ0] to Y such that γ(0) = x
and γ(x, z) = z. Put ε(i) = z, z(i). Then we have z(i), γ(x, z − εi) ≥ x, z(i) −
x, γ(x, z − εi) = εi and z(i), γ(x, z + εi) ≥ x, γ(x, z + εi) − x, z(i) = εi. By
Gromov’s compactness theorem, without loss of generality, we can assume
that (Y, ε−1

i dY , z) converges to a tangent cone (TzY, 0z) at z. By the argu-
ment above and the splitting theorem on limit spaces, there exists a pointed
proper geodesic space (W,w) such that TzY = R ×W and W �= {w}. How-
ever, since z ∈ C1,i ⊂ R1, this is a contradiction. Therefore, we have the
Claim 3.17.

By Claims 3.13, 3.16 and 3.17, for every N ∈ N, we have Lipf(z)2 =
Liprad

x f(z)2 + Lip(f |∂Bx,z(x)) (z)2 ±N−1 = liprad
x f(z)2 + lip (f |∂Bx,z(x)\Cx

)
(z)2 ±N−1 = lipf(z)2 ±N−1 for a.e. z ∈ Y \ Cx. Therefore, we have the
assertion. �
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Remark 3.1. For every Ricci limit space (Y, y, υ) and every Lipschitz func-
tion f on Y , we have lipf(x) = Lipf(x) for a.e. x ∈ Y . See [2, Corollary 6.36]

By an argument similar to the proof of Lemma 3.6, we have the following:

Lemma 3.8. Let (Y, y) be a Ricci limit space with Y �= {y}, z a point in Y \
Cy, f a Lipschitz function on Y , τ a positive number and {γi}i=1,2 isometric
embeddings from [0, y, z + τ ] to Y with γi(0) = y, γi(y, z) = z. Then, we have
lim infr→0 |f ◦ γ1(y, z + r) − f(z)|/|r|= lim infr→0 |f ◦ γ2(y, z + r)−f(z)|/|r|.
Moreover, if the limit limr→0(f ◦ γ1(y, z + r) − f(z))/r exists,
then, we have limr→0(f ◦ γ2(y, z + r) − f(z))/r = limr→0(f ◦ γ1(y, z + r) −
f(z))/r.

With the same notaion as in Lemma 3.8, put Liprad
x
f(z)= lim infr→0 |f ◦

γ1(y, z + r) − f(z)|/|r|. Let (Y, y) be a Ricci limit space with Y �= {y}, and
f a Lipschitz function on Y . Put

Ay =
{

x ∈ Y \ Cy; The limit lim
r→0

f ◦ γ(x, y + r) − f(x)
r

exists
}

.

Here γ is an isometric embedding from [0, y, x+ τ ] (τ > 0) to Y with γ(0) =
y, γ(y, x) = x. Put

df

dry
(x) = lim

r→0

f ◦ γ(x, y + r) − f(x)
r

for every x ∈ Ay.

Lemma 3.9. Let (Y, y, υ) be a Ricci limit space, x a point in Y and f
a Lipschitz function on Y . Then, we have Liprad

x
f(z) = Liprad

x f(z) for a.e.
z ∈ Y .

Proof. We will use the same notaion as in the proof of Claim 3.16. Put L =
Lipf . Let δ be a sufficiently small positive number and Cx

k,i a Borel subset of
Y satisfying that the map Φx

k,i = (rx, rx2
k,i
, . . . , rxk

k,i
) from Cx

k,i to Rk, is (1 ±
δ)-bi-Lipschitz to the image. Fix w ∈ Cx,f

k,i and put z = (Φx
k,i)

−1(w). There
exists a positive number τ and an isometric embedding γ from [0, x, z + τ ] to
Y such that γ(0) = x and γ(x, z) = z. Let {εi}i be a sequence of real numbers
satisfying that εi → 0 and limi→∞ |f ◦ γ(x, z + εi) − f(z)|/|εi| = Liprad

x
f(z).

By an argument similar to the proof of Claim 3.8, there exist sequences
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{ŵ(j)}j ⊂ Cx
k,i and {τj}j ⊂ R>0 such that ŵ(j), γ(x, z + εj) ≤ τj |εj |, τj → 0

as j → ∞, and

|f(z) − f(γ(x, z + εj))|
|εj | =

|F x
k,i(w) − F x

k,i(Φ
x
k,i(ŵ(j)))|

|εj | − 2Lτj

≥ |F x
k,i(w) − F x

k,i(wj)|
|εj | − Ψ(τj , δ;n,L).

By letting j → ∞, we have Liprad
x
f(z) ≥ Lip(F x

k,i|R×{w2,...,wk})(w) −
Ψ(δ;n,L) ≥ Liprad

x f(z) − Ψ(δ;n,L). Therefore, we have the assertion. �

We shall state the main theorem in this subsection:

Theorem 3.3 (Radial derivatives of Lipschitz functions). Let (Y, y, υ) be
a Ricci limit space with Y �= {y}, x a point in Y and f a Lipschitz function
on Y . Then, we have υ(Y \Ax) = 0 and

df

drx
(z) = 〈df, drx〉(z)

for a.e. z ∈ Ax.

Proof. For every w ∈ Y \ Cx, there exist τ > 0 and an isometric embedding
γ from [0, x, z + τ ] to Y such that γ(0) = x and γ(x,w) = w. Then, by The-
orem 3.2 and Lemma 3.9, for a.e. w ∈ Y \ Cx, we have

〈drx, df〉(w) =
1
2
(Lip(rx + f)(w)2 − Lipf(w)2 − Liprx(w)2)

=
1
2
(Liprad

x (rx + f)(w)2 + Lip((rx + f)|∂Bx,z(x)\Cx
)(w)2

− Liprad
x f(w)2 − Lip(f |∂Bx,z\Cx

)(w)2 − 1)

=
1
2
(Liprad

x (rx + f)(w)2 + Lip(f |∂Bx,z(x)\Cx
)(w)2

− Liprad
x f(w)2 − Lip(f |∂Bx,z\Cx

)(w)2 − 1)

=
1
2
(Liprad

x (rx + f)(w)2 − Liprad
x f(w)2 − 1)

=
1
2

(

lim
h→0

|(rx + f) ◦ γ(x,w + h) − (rx + f)(w)|2
|h|2

− lim
h→0

|f ◦ γ(x,w + h) − f(w)|2
|h|2 − 1

)
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=
1
2

(

lim
h→0

∣
∣
∣
∣
1 +

f ◦ γ(x,w + h) − f(w)
h

∣
∣
∣
∣

2

− lim
h→0

|f ◦ γ(x,w + h) − f(w)|2
|h|2 − 1

)

(

Here, we have the existence of the limit lim
h→0

f ◦ γ(x,w + h) − f(w)
h

)

=
1
2

(

1 + 2 lim
h→0

f ◦ γ(x,w + h) − f(w)
h

+ lim
h→0

|f ◦ γ(x,w + h) − f(w)|2
|h|2

− lim
h→0

|f ◦ γ(x,w + h) − f(w)|2
|h|2 − 1

)

= lim
h→0

f ◦ γ(x,w + h) − f(w)
h

=
df

drx
(w).

�

3.3. Rectifiability associated with Lipschitz functions

In this section, we will give a generalization of Theorem 3.1. The main result
in this subsection is Theorem 3.4.

Lemma 3.10. Let δ be a positive number, {(Mi,mi)}i a sequence of n-
dimensional complete Riemannian manifolds with RicMi

≥ −δ(n− 1),
(Y, y, υ) a (n,−δ)-Ricci limit space of {(Mi,mi, vol)}i, x, x1, x2 points in
Y , x(i), x1(i), x2(i) points in Mi for every i <∞, bi

1 a harmonic function
on B100(x(i)) for every i <∞, and b∞1 a Lipschitz function on B100(x).
Assume that x, x1 ≥ δ−1, x, x2 ≥ δ−1, x, x1 + x, x2 − x1, x2 ≤ δ, x(i) → x,
xj(i) → xj(i) for every j ∈ {1, 2}, supi Lipbi

1 <∞, bi
1 → b∞1 on B100(x),

|bi
1 − rx1(i)|L∞(B100(x(i))) ≤ δ and

1
volB100(x(i))

∫

B100(x(i))

(|∇bi
1 −∇rx1(i)|2 + |Hessbi

1
|2) dvol ≤ δ

Then, we have

1
υ(B1(x))

∫

B1(x)
|db∞

1 − drx1 |2dυ < Ψ(δ;n).
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We remark that Lemma 3.10 does not follow from [2, Lemma 9.10]
directly. We shall give a proof of Lemma 3.10 in the proof of the follow-
ing Lemma 3.11.

Lemma 3.11. Let δ be a positive number, {(Mi,mi)}i a sequence of n-
dimensional complete Riemannian manifolds with RicMi

≥ −δ(n− 1),
(Y, y, υ) a (n,−δ)-Ricci limit space of {(Mi,mi, vol)}i, x a point in Y ,
{xj}1≤j≤4 a collection of points in Y , and {x(i)} ∪ {xj(i)}1≤j≤4 of points in
Mi for every i. Assume that x(i) → x, xj(i) → xj for every j, x, xj ≥ δ−1

for every j, x, x1 + x, x2 − x1, x2 ≤ δ and x, x3 + x, x4 − x3, x4 ≤ δ. Then,
we have

1
υ(B1(x))

∫

B1(x)

∣
∣
∣
∣
〈drx1 , drx3〉dυ − 1

volB1(x(i))

×
∫

B1(x(i))
〈drx1(i), drx3(i)〉dvol

∣
∣
∣
∣
∣
dυ < Ψ(δ;n)

and

1
volB1(x(i))

∫

B1(x(i))

∣
∣
∣
∣
〈drx1(i), drx3(i)〉 −

1
υ(B1(x))

×
∫

B1(x)
〈drx1 , drx3〉dυ

∣
∣
∣
∣
∣
dvol < Ψ(δ;n)

for every sufficiently large i.

Proof. First, we remark the following claim:

Claim 3.18. For every sufficiently large i, there exist harmonic functions
bi

1,b
i
3 on B100(x(i)) such that Lipbi

j ≤ C(n), |bi
j − rxj(i)|L∞(B100(x(i))) ≤

Ψ(δ;n) and

1
volB100(x(i))

∫

B100(x(i))

(

|dbi
j − drxj(i)|2 + |Hessbi

j
|2
)

dvol ≤ Ψ(δ;n)

for every j ∈ {1, 3}.

See for instance [2, Lemma 9.8, Lemma 9.10 and Lemma 9.13], for a
proof of Claim 3.18.
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Since C(n)(|Hessbi
1
|2 + |Hessbi

3
|2) is an upper gradient of 〈dbi

1, db
i
3〉, by

the Poincaré inequality, we have

1
volB100(x(i))

∫

B100(x(i))

∣
∣
∣
∣
〈dbi

1, db
i
3〉 −

1
volB100(x(i))

×
∫

B100(x(i))
〈dbi

1, db
i
3〉dvol

∣
∣
∣
∣
∣
dvol

≤ C(n)

√

1
volB100(x(i))

∫

B100(x(i))

(

|Hessbi
1
|2 + |Hessbi

3
|2
)

dvol ≤ Ψ(δ;n).

Therefore, we have

1
volB100(x(i))

∫

B100(x(i))

∣
∣
∣
∣
〈dbi

3, drx1(i)〉 −
1

volB100(x(i))

×
∫

B100(x(i))
〈dbi

3, drx1(i)〉dvol

∣
∣
∣
∣
∣
dvol ≤ Ψ(δ;n).

Without loss of generality, we can assume that there exist Lipschitz func-
tions b∞

1 ,b
∞
3 on B100(x) such that bi

j → b∞
j on B100(x). By Theorem 3.3,

there exists a Borel subset A of B100(x) \ Cx1 such that υ(B100(x) \A) = 0
and limh→0(f ◦ γ(x1, a+ h) − f(a))/h = 〈drx1 , db

∞
3 〉(a) for every a ∈ A and

every minimal geodesic γ from x1 to a. By Lusin’s theorem, there exists a
Borel subset A(δ) of A such that υ(A \A(δ)) < δυ(B1(x)) and that the func-
tion 〈drx1 , df〉 is continuous on A(δ). Define a function f δ

η on A(δ) \B2δ(x)
by

f δ
η (z) = sup

w∈Cz({x1})∩Bη(z)

∣
∣
∣
∣

f(z) − f(w)
z, w

− 〈drx1 , df〉(z)
∣
∣
∣
∣

for every 0 < η < δ. It is easy to check that f δ
η is an upper semi-continuous

function. Especially, f δ
η is a Borel function. We also have limη→0 f

δ
η (a) = 0

for every a ∈ A. Thus, by Egoroff’s theorem, there exists a Borel subset
X = X(δ) ofA(δ) such that υ(A(δ) \X(δ)) < δυ(B1(x)) and limη→0(supa∈X

f δ
η (a)) = 0. Let η = η(δ) be a positive number satisfying that η � δ, and

supa∈X f δ
η0

(a) < δ for every η0 ≤ η. For every i, let Xi be the set of points
w ∈ B1(x(i)) satisfying that
∣
∣
∣
∣
∣
〈dbi

3, drx1(i)〉(w) − 1
volB100(x(i))

∫

B100(x(i))
〈dbi

3, drx1(i)〉dvol

∣
∣
∣
∣
∣
≤ Ψ(δ;n).
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Then, we have vol(B1(x(i)) \Xi)/volB1(x(i))≤Ψ(δ;n) for every sufficiently
large i. Define a Borel function Fi on B100(x(i)) \ Cx1(i) by

Fi(w) =
bi

3

(

γ(x1(i), w − η2)
)

− bi
3(w)

−η2

for every i, where γ is the minimal geodesic from x1(i) to w.

Claim 3.19. We have

1
volB10(x(i))

∫

B10(x(i))\Cx1(i)

|〈dbi
3, drx1(i)〉 − Fi(w)|dvol ≤ Ψ(δ;n)

for every sufficiently large i.

The proof is as follows. It is easy to check that

f(t) = f(c) + f ′(t)(t− c) −
∫ t

c
(s− c)f ′′(s)ds

for every a < b, every C2-function f on (a, b), and every c ∈ (a, b). Therefore,
we have

bi
3(γ(x1(i), w − η2)) − bi

3(w)
−η2

=
dbi

3

drx1(i)
(w) − 1

η2

∫ x1(i),w

x1(i),w−η2

(

s− (x1(i), w − η2)
) d2bi

3

dr2x1(i)

(γ(s))ds.

Thus, by an argument similar to the proof of [21, Estimate 2.6], we have

1
volB10(x(i))

∫

B10(x(i))\Cx1(i)

∣
∣〈dbi

3, drx1(i)〉 − Fi(w)
∣
∣ dvol

≤ 1
η2

1
volB10(x(i))

∫

B10(x(i))

∫ x1(i),w

x1(i),w−η2

η2|Hessbi
3
|(γ(s))dsdvol

≤ η2C(n)
1

volB100(x(i))

∫

B100(x(i))
|Hessbi

3
|dvol

≤ η2C(n)

√

1
volB100(x(i))

∫

B100(x(i))
|Hessbi

3
|2dvol ≤ η2C(n)Ψ(δ;n).

Therefore, we have Claim 3.19
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Claim 3.20. We have

1
υ(B1(x))

∫

B1(x)
|〈db∞3 , drx1〉

− 1
volB1(x(i))

∫

B1(x(i))
〈dbi

3, drx1(i)〉dvol

∣
∣
∣
∣
∣
dυ ≤ Ψ(δ;n)

for sufficiently large i.

The proof is as follows. Let Yi = {w ∈ B1(x(i)) \ Cx1(i); |〈dbi
3, drx1(i)〉

(w) − Fi(w)| ≤ Ψ(δ;n)}. By Claim 3.19, we have vol (B1(x(i)) \ Yi)/vol
B1(x(i)) ≤ Ψ(δ;n) for every sufficiently large i. Put Zi = Xi ∩ Yi. There
exists a compact subset Wi of Zi such that vol(Zi \Wi)/volB1(x(i)) ≤
Ψ(δ;n). Then, we have vol(B1(x(i)) \Wi)/volB1(x(i)) ≤ Ψ(δ;n) for every
sufficiently large i. Without loss of generality, we can assume that there
exists a compact subset W∞ of B1(x) such that Wj→W∞. By Lemma 2.3,
we have υ(W∞)/υ(B1(x)) ≥ 1 − Ψ(δ;n). Put E = W∞ ∩X. Then we have
υ(B1(x) \ E) ≤ Ψ(δ;n)υ(B1(x)). For every wi ∈Wi and every w ∈ E, let
γwi

be the minimal geodesic from x1(i) to wi, and γw a minimal geodesic
from x1 to w. Then, there exists i0 such that εi � η,

∣
∣
∣
∣
∣
〈dbi

3, drx1(i)〉(w) − bi
3(γi(x1(i), wi − η2)) − bi

3(wi)
−η2

∣
∣
∣
∣
∣
≤ Ψ(δ;n)

and
∣
∣
∣
∣
∣
〈dbi

3, drx1(i)〉(wi) − 1
volB100(x(i))

∫

B100(x(i))
〈dbi

3, drx1(i)〉dvol

∣
∣
∣
∣
∣
≤ Ψ(δ;n)

for every i ≥ i0, every w ∈ E and every wi ∈Wi with wi → w. Now, we shall
consider the rescaled metric η−2dY . Since

x1, φi(γi(x1(i), wi − η2))
η−2dY ≥ η−1, φi(γi(x1(i), wi − η2)), w

η−2dY ≥ η−1

and

x1, φi(γi(x1(i), wi − η2))
η−2dY

+ φi(γi(x1(i), wi − η2)), w
η−2dY

− x1, w
η−2dY ≤ η,
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by the splitting theorem on limit spaces, we have

φi(γi(x1(i), wi − η2)), γ(x1, w − η2)
η−2dY ≤ Ψ(δ;n).

Therefore, we have
∣
∣
∣
∣
∣

bi
3(γi(x1(i), wi − η2)) − bi

3(wi)
−η2

− b∞
3 (γ(x1, w − η2)) − b∞

3 (w)
−η2

∣
∣
∣
∣
∣
≤ Ψ(δ;n).

Thus, for every i ≥ i0, we have
∣
∣
∣
∣
∣
〈db∞

3 , drx1〉(w) − 1
volB100(x(i))

∫

B100(x(i))
〈dbi

3, drx1(i)〉dvol

∣
∣
∣
∣
∣
≤ Ψ(δ;n).

Let

Ci =
1

volB100(x(i))

∫

B100(x(i))
〈dbi

3, drx1(i)〉dvol.

Then

1
υ(B1(x))

∫

B1(x)
|〈db∞

3 , drx1〉 − Ci| dυ

=
1

υ(B1(x))

∫

B1(x)\E
|〈db∞

3 , drx1〉 − Ci| dυ

+
1

υ(B1(x))

∫

E
|〈db∞

3 , drx1〉−Ci| dυ

≤ C(n)υ(B1(x) \ E)
υ(B1(x))

+
υ(E)

υ(B1(x))
Ψ(δ;n) ≤ Ψ(δ;n).

Therefore, we have Claim 3.20.

Claim 3.21. We have

1
υ(B1(x))

∫

B1(x)
|db∞3 |2dυ ≤ 1 + Ψ(δ;n).

This proof is as follows. Since

1
volB1(x(i))

∫

B1(x(i))
||dbi

3| − 1|dvol ≤ Ψ(δ;n)

for every sufficiently large i, by [1, Lemma 16.2], there exists a compact sub-
set Ki of B1(x(i)) such that vol(B1(x(i)) \Ki)/volB1(x(i)) ≤ Ψ(δ;n) and
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Lip(bi
3|Ki

) ≤ 1 + Ψ(δ;n). Without loss of generality, we can assume that
there exists a compact subset K∞ of B1(x) such that Ki → K∞. By Lemma
2.3, we have υ(K∞)/υ(B1(x)) ≥ 1 − Ψ(δ;n). Then, we have Lip(b∞

3 |K∞) ≤
1 + Ψ(δ;n). Put K̂∞ = LebK∞. Then by Lemma 3.7, we have

1
υ(B1(x))

∫

B1(x)
|db∞

3 |2dυ

=
1

υ(B1(x))

∫

K̂∞

|db∞
3 |2dυ +

1
υ(B1(x))

∫

B1(x)\K∞

|db∞
3 |2dυ

≤ 1
υ(B1(x))

∫

K̂∞

(Lipb∞
3 )2dυ + C(n)

υ(B1(x) \K∞)
υ(B1(x))

≤ 1
υ(B1(x))

∫

K̂∞

(Lip(b∞
3 |K∞))2dυ + Ψ(δ;n)

≤ 1
υ(B1(x))

∫

K̂∞

(1 + Ψ(δ;n))dυ + Ψ(δ;n) ≤ 1 + Ψ(δ;n).

Therefore, we have Claim 3.21.
Assume that x1 = x3 and x2 = x4. Then, by Claims 3.18, 3.20 and 3.21,

we have

1
υ(B1(x))

∫

B1(x)
|db∞

3 − drx3 |2dυ

=
1

υ(B1(x))

∫

B1(x)
|db∞

3 |2dυ − 2
1

υ(B1(x))

∫

B1(x)
〈db∞

3 , drx3〉dυ

+
1

υ(B1(x))

∫

B1(x)
|drx3 |2dυ

≤ 1 + Ψ(δ;n) − 2(1 − Ψ(δ;n)) + 1 ≤ Ψ(δ;n)

for every sufficiently large i. Therefore, we have Lemma 3.10. On the other
hand, Lemma 3.11 follows from Lemma 3.10 and Claim 3.20, directly. �

Corollary 3.1. Let {(Mi,mi)}i be a sequence of n-dimensional complete
Riemannian manifolds with RicMi

≥ −(n− 1), (Y, y, υ) a Ricci limit space of
{(Mi,mi, vol)}i, τ a positive number, x, x1, x2 points in Y ,
{x(i)}i, {x1(i)}i, {x2(i)}i sequences of points x(i), x1(i), x2(i) in Mi. Assume
that x ∈ ⋂

j=1,2(Dτ
xj

\Bτ (xj)), x(i) → x, and xj(i) → xj for every j. Then,
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we have

1
υ(Br(x))

∫

Br(x)
|〈drx1 , drx2〉

− 1
volBr(x(i))

∫

Br(x)
〈drx1(i), drx2(i)〉dvol

∣
∣
∣
∣
∣
dυ ≤ Ψ

(

r,
r

τ
;n

)

and

1
volBr(x(i))

∫

Br(x(i))

∣
∣〈drx1(i), drx2(i)〉

− 1
υ(Br(x))

∫

Br(x)
〈drx1 , drx2〉dυ

∣
∣
∣
∣
∣
dvol ≤ Ψ

(

r,
r

τ
;n

)

for every sufficiently large i.

Proof. By rescaling r−1dY and Lemma 3.11, it is easy to check the assertion.
�

Lemma 3.12. Let {(Mi,mi)}i be a sequence of n-dimensional complete
Riemannian manifolds with RicMi

≥ −(n− 1), (Y, y, υ) a Ricci limit space
of {(Mi,mi, vol)}i, l a positive integer, r, ε, τ, L positive real numbers, x
a point in Y , {x(i)}i a sequence of points xi in Mi, {kα}1≤α≤l a collec-
tion of positive integers, {xs

t}1≤s≤l,1≤t≤ks
of points in Y , {xs

t (i)}1≤s≤l,1≤t≤ks

of points in Mi for every i <∞, and {as
t}1≤s≤l,1≤t≤ks

of real numbers.
Let fj =

∑kj

m=1 a
j
mrxj

m
and f i

j =
∑kj

m=1 a
j
mrxj

m(i). Assume that l ≤ n, ki ≤ n

for every 1 ≤ i ≤ l, x ∈ ⋂k
1≤i≤l,1≤j≤ki

(Dτ
xi

j
\Bτ (xi

j)), x(i) → x, xs
t (i) → xs

t ,
∑

i,j(a
i
j)

2 ≤ L and

1
υ(Br(x))

∫

Br(x)
〈dfj , dfi〉dυ = δij ± ε.

Then, for every sufficiently large i, there exists a compact subset Ki
r of

Br/10(x(i)) such that the following properties hold:

1. vol(Br/10(x(i)) \Ki
r)/volBr/10(x(i)) ≤ Ψ(r, r/τ, ε;n,L).

2. For every w ∈ Ki
r and every 0 < s < r/106, there exist a compact sub-

set Z of Bs(w), a point z in Z, and a map φ from (Bs(w), w) to (Z, z)
such that the map Φ = (f i

1, f
i
2, . . . , f

i
l , φ) from Bs(w) to

Bs+Ψ(r,r/τ,ε;n,L)s (f i
1(w), . . . , f i

l (w), φ(w)), is a Ψ(r, r/τ, ε;n,L)s-
Gromov–Hausdorff approximation.
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3. We have

1
volBs(w)

∫

Bs(w)
|〈df i

α, df
i
β〉 − δαβ |dvol < Ψ

(

r,
r

τ
, ε;n,L

)

for every w ∈ Ki
r and every 0 < s < r/106.

Proof. By Corollary 3.1, we have

1
volBr(x(i))

∫

Br(x(i))
|〈df i

j , df
i
l̂
〉 − δj,l̂|dvol ≤ Ψ

(

r,
r

τ
, ε;n,L

)

for every sufficiently large i. We shall consider rescaled distances r−1dY

and r−1dMi
below. For convenience, we shall use the following notations:

v̂ol = volr
−1dMi , υ̂ = υ/υ(Br(y)), r̂z(w) = r−1w, zdY , B̂s(w) = Br−1dY

s (w) =
Bsr(w), ĝ = r−1g for a Lipschitz function g and so on. We remark that
(Mi,mi, r

−1dMi
, volr

−1dMi ) → (Y, y, r−1dY , υ̂). We also denote the differen-
tial of a Lipschitz function f on Y as a metric measure space (Y, υ̂) by
d̂f : Y → T ∗Y , and the Riemannian metric of rescaled Ricci limit space
(Y, y, r−1dY , υ̂) by 〈·, ·〉r. Thus, we have 〈·, ·〉r = r−2〈·, ·〉. Then, we have

1

v̂ol B̂1(x(i))

∫

B̂1(x(i))
|〈d̂f̂ i

j , d̂f̂
i
l̂
〉r − δj,l̂|dv̂ol ≤ Ψ

(

r,
r

τ
, ε;n,L

)

for every sufficiently large i. On the other hand, by [2, Lemmas 9. 8, 9.10,
9.13], for every sufficiently large i, there exists a collection of harmonic func-
tions {b̂m,i

j }1≤m≤l,1≤j≤km
on B̂100(x(i)) such that |b̂m,i

j −r̂xm
j (i)|L∞(B̂100(x(i)))≤

Ψ(r, r/τ ;n) and

1

v̂ol B̂100(x(i))

∫

B̂100(x(i))

(

|d̂b̂m,i

j − d̂r̂xm
j (i)|2r + |Hess

b̂
m,i

j

|2r
)

dv̂ol

≤ Ψ
(

r,
r

τ
;n

)

.

Let b̂
i

j =
∑kj

m=1 a
j
mb̂

m,i

j .

F̂i =
l∑

j=1

|d̂b̂i

j − d̂f̂ i
j |2r +

l∑

j=1

||d̂b̂i

j |2r − 1| +
∑

j<l̂

|〈d̂bi
j , d̂b

i
l̂
〉r| +

l∑

j=1

|Hess
b̂

i

j

|2r .

The next claim follows from Lemma 3.1, directly:
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Claim 3.22. For every sufficiently large i, there exists a compact sub-
set Ki

r of B̂1/10(x(i)) such that v̂ol(B̂ 1
10

(x(i)) \Ki
r)/v̂ol B̂ 1

10
(x(i)) ≤ Ψ(r, r/τ,

ε;n,L) and

1

v̂ol B̂5s(w)

∫

B̂5s(w)
F̂idv̂ol ≤ Ψ

(

r,
r

τ
, ε;n,L

)

for every w ∈ Ki
r and every 0 < s < 1/10.

Fix w ∈ Ki
r and 0 < s ≤ 1/10. By an argument same to the proof of [6,

Theorem 3.3], we have the following:

Claim 3.23. There exist a compact subset Z of B̂s(w), a point z in Z and
a map φ from B̂s/105(w) to Z such that the map Φ(α) = (b̂i

1(α), . . . , b̂i
l(α),

φ(α)) from B̂s/105(w) to Bs/105+Ψs(b̂i
1(w), . . . , b̂i

l(w), φ(w)) ⊂ Rk × Z, is a
Ψs-Gromov–Hausdorff approximation. Here, Ψ = Ψ(r, r/τ, ε;n,L).

Since

1

v̂ol B̂5s(w)

∫

B̂5s(w)
|d̂b̂i

j − d̂f̂ i
j |2rdv̂ol ≤ Ψ

(

r,
r

τ
, ε;n,L

)

,

by the segment inequality on manifolds [6, Theorem 2.15], for every z1 ∈
B̂s(w), there exist ẑ1 ∈ B̂5s(w), ŵ ∈ B̂5s(w) and a minimal geodesic γ from
ẑ1 to ŵ such that z1, ẑ1 ≤ Ψ(r, r/τ, ε;n,L), w, ŵ ≤ Ψ(r, r/τ, ε;n,L) and

∫ ẑ1,ŵ

0
L̂ip(b̂

i

j − f̂ i
j)(γ(t))dt ≤ Ψ

(

r,
r

τ
, ε;n,L

)

s.

Therefore, we have

|b̂i

j(ẑ1) − f̂ i
j(ẑ1) − (b̂

i

j(ŵ) − f̂ i
j(ŵ))| ≤

∫ ẑ1,ŵ

0
L̂ip(b̂

i

j − f̂ i
j)(γ(t))dt

≤ Ψ
(

r,
r

τ
, ε;n,L

)

s.

By Cheng–Yau’s gradient estimate, we have L̂ip(b̂
i

j |B̂2s(w)) ≤ C(n,L). Thus,

we have |b̂i

j(z1) − f̂ i
j(z1) − (b̂

i

j(w) − f̂ i
j(w))| ≤ Ψ(r, r/τ, ε;n,L)s. Let C =

b̂
i

j(w) − f̂ i
j(w). Then we have that b̂

i

j = f̂ i
j + C ± Ψ (r, r/τ, ε;n,L) s on

B̂s(w).



Ricci curvature 117

Thus, the map Φ̂(α) = (f̂ i
1(α), . . . , f̂ i

l (α), φ(α)) from B̂s/105(w) to
Bs/105+Ψs(f̂ i

1(w), . . . , f̂ i
l (w), φ(w)), is a Ψs-Gromov–Hausdorff approxima-

tion. Therefore, we have the assertion. �

Lemma 3.13. Let (Y, y, υ) be a Ricci limit space, τ, ε, δ, L positive num-
bers, l,m positive integers, x a point in Y , {ks}1≤s≤l a collection of positive
integers, {as

t}1≤s≤l,1≤t≤ks
of real numbers, and {xs

t}1≤s≤l,1≤t≤ks
of points in

Y . Let fj =
∑kj

p=1 a
j
prxj

p
. Assume that x ∈ Leb(

⋂

1≤i≤l,1≤j≤ki

(

Dτ
xi

j
\ {xi

j})∩
(Rm)δ,τ ),

∑

i,j(a
i
j)

2 ≤ L and

lim sup
r→0

1
υ(Br(x))

∫

Br(x)
|〈dfj , dfi〉 − δij |dυ ≤ ε.

Then, for every sufficiently small s > 0, there exists a compact subset Ks of
Bs(x) such that the following properties hold:

1. υ(Ks)/υ(Bs(x)) ≥ 1 − Ψ(ε, δ;n,L).

2. For every α ∈ Ks and every sufficiently small t > 0, there exists a col-
lection of points {wt

j(α)}1≤j≤m−l in Y , and a compact subset Ut of
Bt(α) such that υ(Ut)/υ(Bt(α)) ≥ 1 − Ψ(ε, δ;n,L) and that the map
Φt = (f1, . . . , fl, rwt

1(α), . . . , rwt
m−l(α)) from Ut to Rm, is (1 ± Ψ(ε, δ;

n,L))-bi-Lipschitz to the image.

Proof. Let (Mi,mi, x
s
t (i), vol) → (Y, y, xs

t , υ) and f i
j =

∑kj

p=1 a
j
prxj

p(i). There
exists s1 > 0 such that s1 � τ and

1
υ(B1010s(x))

∫

B1010s(x)
|〈dfj , dfi〉 − δij |dυ

+
υ
(

B1010s(x) ∩
⋂

1≤i≤l,1≤j≤ki
(Dτ

xi
j
∩ (Rm)δ,r)

)

υ(B1010s(x))
≤ 3ε

for every 0 < s < s1. By Proposition 2.3 and Lemma 3.12, for every 0 < s <
s1, there exists a compact subset Ks of B109s(x) such that the following
properties hold:

1. υ(Ks)/υ(B109s(x)) ≥ 1 − Ψ(ε;n,L).

2. For every w ∈ Ks and every 0 < t < 104s, there exist a compact subset
Zw

t of Bt(w) and a map φw
t from Bt(w) to Zw

t such that the map Φw
t =

(f1, . . . , fl, φ
w
t ) from Bt(w) to B109(t+Ψt)(f1(w), . . . , fl(w), φw

t (w)), is a
Ψt-Gromov–Hausdorff approximation. Here Ψ = Ψ(ε;n,L).
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3. We have

1
υ(Bt(w))

∫

Bt(w)
|〈dfj , dfi〉 − δij |dυ ≤ Ψ(ε;n,L)

for every w ∈ Ks and every 0 < t < 104s.

Here, with the same notation as in Lemma 3.12, we applied Proposition 4.7
to obtain

lim
k→∞

1
volBt(w(k))

∫

Bt(w(k))
|〈dfk

j , df
k
i 〉 − δij |dvol

=
1

υ(Bt(w))

∫

Bt(w)
|〈dfj , dfi〉 − δij |dυ

for every sequence w(k) → w. Fix 0 < s < s1, w ∈ Ks ∩ Leb(
⋂

1≤i≤l,1≤j≤ki

(Dτ
xi

j
\ {xi

j}) ∩ (Rm)δ,r), 0 < t < 104s, Zw
t , φ

w
t and Φw

t as above. We remark
that υ(Ks ∩ Leb(

⋂

1≤i≤l,1≤j≤ki
(Dτ

xi
j
\ {xi

j}) ∩ (Rm)δ,r))/υ(B109s(x)) ≥ 1 −
Ψ(ε;n,L). Assume that t is sufficiently small and

υ
(

Bt̂(w) ∩⋂

1≤i≤l,1≤j≤ki
(Dτ

xi
j
\ {xi

j}) ∩ (Rm)δ,r

)

υ(Bt̂(w))
≥ 1 − ε

for every 0 < t̂ ≤ t, below. Then, for every 1 ≤ j ≤ l, there exist points
y+

j , y
−
j ∈ Bt(w) such that Φw

t (y+
j ), (0, . . . , 0, t

︸ ︷︷ ︸

j

, 0, . . . , 0, φw
t (w)) ≤ Ψt and

Φw
t (y−j ), (0, . . . , 0,−t

︸ ︷︷ ︸

j

, 0, . . . , 0, φw
t (w)) ≤ Ψt. Let Φ̂w

t be a Ψt-Gromov–

Hausdorff approximation from B109(t+Ψt)(f1(w), . . . , fl(w), φw
t (w)) to Bt(w)

satisfying that Φw
t ◦ Φ̂w

t (α), α ≤ Ψt for every α ∈ B109(t+Ψt)

(f1(w), . . . , fl(w), φw
t (w)), and that Φ̂w

t ◦ Φw
t (β), β ≤ Ψt for every β ∈ Bt(w).

On the other hand, there exist δt-Gromov–Hausdorff approximations ψw
t

from (Bt(w), w) to (Bt(0m), 0m), and ψ̂w
t from (Bt(0m), 0m) to (Bt(w), w)

such that ψw
t ◦ ψ̂w

t (α), α ≤ 5δt for every α ∈ Bt(0m), and that ψ̂w
t ◦ ψw

t (β), β
≤ 5δt for every β ∈ Bt(w). Especially, there exists a Ψt-Gromov–Hausdorff
approximation ĥw

t from (Bt(0m−l), 0m−l) to (Zw
t , φ

w
t (w)) such that

(0, . . . , 0, α), ψw
t ◦ Φ̂w

t (f1(w), . . . , fl(w), ĥw
t (α)) ≤ Ψt for every α ∈ Zw

t , where
Ψ = Ψ(ε, δ;n,L). Without loss of generality, we can assume that
ψw

t (y+
i ), (0, . . . , 0, t

︸ ︷︷ ︸

i

, 0, . . . , 0) ≤ Ψt. Then, for every i ∈ {l + 1, . . . ,m}, there
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exist points z+
i , z

−
i ∈ Bt(w) such that

ψw
t (z+

i ), (0, . . . , 0, t
︸ ︷︷ ︸

i

, 0, . . . , 0) ≤ Ψt and ψw
t (z−i ), (0, . . . , 0,−t

︸ ︷︷ ︸

i

, 0, . . . , 0) ≤ Ψt.

Let Fi = fi − fi(w) and Gi = Fi ◦ ψw
t on (Bt(0m), 0m). Since

πRm−l(ψw
t ◦ Φ̂w

t (f1(w), . . . , fl(w), ĥw
t (α))), α ≤ Ψt for every α ∈ Bt(0m−l),

we have that the map G = (G1, . . . , Gl, πl+1, . . . , πm) from (Bt(0m), 0m) to
(Bt+Ψt(0m), 0m), satisfies G((0, . . . , 0,±t

︸ ︷︷ ︸

i

, 0, . . . , 0), (0, . . . , 0,±t
︸ ︷︷ ︸

i

, 0, . . . , 0) ≤

Ψt for every i, and that it is a Ψt-Gromov–Hausdorff approximation, where
πRm−l is the canonical projection Rm = Rl × Rm−l to Rm−l, πi is the ith
projection from Rm to R. Thus, we have α,G(α) ≤ Ψt for every α ∈ Bt(0m).
Especially, we have the following claim:

Claim 3.24. We have |Gi − πi| ≤ Ψ(ε, δ;n,L)t on Bt(0m).

Fix 0 < t̂ < t. By rescaling t̂−1dY , t̂−1dRm , Claim 3.24 and the definition
of Busemann function, we have the following:

Claim 3.25. We have

|Fi(α) − (ry−
i
(α) − ry−

i
(w))| ≤ Ψ

(

ε, δ,
t̂

t
,
Ψ(ε, δ;n,L)t

t̂
;n,L

)

t̂

for every α ∈ B t̂(w).

Let y−j (k), z−j (k), w(k) be points in Mk satisfying that y−j (k) → y−j ,
z−j (k) → z−j and w(k) → w. Put r =

√
Ψt for Ψ = Ψ(ε, δ;n,L) as in Claim

3.25. For convenience, for rescaled distances r−1dY and r−1dMi
, we shall use

the same notation as in the proof of Lemma 3.12: f̂k
i , d̂f, v̂ol and so on.

Claim 3.26. We have

1

v̂ol B̂100(w(k))

∫

B̂100(w(k))
|d̂f̂k

i − d̂r̂y−
i (k)|2rdv̂ol ≤ Ψ(ε, δ;n,L)

for every sufficiently large k.

The proof is as follows. By the assumption and Proposition 4.7, we have

1

v̂ol B̂1000(x(k))

∫

B̂1000(x(k))
||d̂f̂k

i |2r − 1|dv̂ol ≤ Ψ(ε, δ;n,L)
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for every sufficiently large k. By an argument similar to the proof of Lemma
3.12, for every sufficiently large k, there exists a harmonic function b̂

k

i

on B̂100(w(k)) such that Lip b̂
k

i ≤ C(n), |b̂k

i − f̂k
i |L∞(B̂100(w(k))) ≤ Ψ(r, r/

τ ;n,L) and

1

v̂ol B̂1000(w(k))

∫

B̂1000(w(k))

(

|d̂b̂k

i − d̂f̂k
i |2r + |Hess

b̂
k

i

|2r
)

dv̂ol

≤ Ψ(r, r/τ ;n,L).

For every α ∈ B̂1000(w(k)) \ Cy−
i (k), let γα

i be the minimal geodesic from
y−i (k) to α on (Mi, r

−1dMi
). Fix 0 < h < 1. By Claim 3.25, there exists k0

such that

b̂
k

i (α) − b̂
k

i

(

γα
i

(

y−i (k), α
r−1dMk − h

))

h

=
f̂k

i (α) − f̂k
i

(

γα
i

(

y−i (k), α
r−1dMk − h

))

h
± Ψ(ε, δ;n,L)

h

=
f̂i(φk(α)) − f̂i

(

φk

(

γα
i

(

y−i (k), α
r−1dMk − h

)))

h
± Ψ(ε, δ;n,L)

h

=
y−i , φk(α)

r−1dY − y−i , φk

(

γα
i

(

y−i (k), α
r−1dMk − h

))r−1dY

h

± Ψ(ε, δ;n,L)
h

=
y−i (k), α

r−1dMk − y−i (k), γα
i

(

y−i (k), α
r−1dMk − h

)r−1dMk

h
± Ψ(ε, δ;n,L)

h

= 1 ± Ψ(ε, δ;n,L)
h

for every k ≥ k0 and every α ∈ B̂1000(w(k)) \ Cy−
i (k). On the other hand, by

an argument similar to the proof of Claim 3.19, we have

∣
∣
∣
∣
∣
∣

1

v̂ol B̂100(w(k))

∫

B̂100(w(k))

1
h

∫ y−
i (k),α

r−1dMk

y−
i (k),α

r−1dMk −h
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(

s− (y−i (k), α
r−1dMk − h)

)
d2b̂

k

i ◦ γα
i

ds2
dsdv̂ol

∣
∣
∣
∣
∣

≤ C(n)
h

v̂ol B̂1000(w(k))

∫

B̂1000(w(k))
|Hess

b̂
k

i

|rdv̂ol ≤ Ψ(ε, δ;n,L).

Since

b̂
k

i (α) = b̂
k

i (γ
α
i (y−i (k), α

r−1dMk − h)) +
d̂b̂

k

i

d̂r̂y−
i (k)

(α)h

−
∫ y−

i (k),α
r−1dMk

y−
i (k),α

r−1dMk −h

(

s− (y−i (k), α
r−1dMk − h)

)
d2b̂

k

i ◦ γα
i

ds2
ds

for every α ∈ B̂100(w(k)) \ Cy−
i (k), we have

1

v̂ol B̂100(w(k))

∫

B̂100(w(k))
〈d̂b̂k

i , d̂r̂y−
i (k)〉rdv̂ol = 1 ± Ψ(ε, δ;n,L)

h
.

Therefore, we have

1

v̂ol B̂100(w(k))

∫

B̂100(x(k))
|d̂f̂k

i − d̂r̂y−
i (k)|2rdv̂ol

=
1

v̂ol B̂100(w(k))

∫

B̂100(w(k))
|d̂f̂k

i |2rdv̂ol

− 2

v̂ol B̂100(w(k))

∫

B̂100(w(k))
〈d̂f̂k

i , d̂r̂y−
i (k)〉rdv̂ol + 1

= 1 − 2
1

v̂ol B̂100(w(k))

∫

B̂100(w(k))
〈d̂b̂k

i , d̂r̂y−
i (k)〉rdv̂ol + 1 ± Ψ(ε, δ;n,L)

= 2 − 2
(

1 ± Ψ(ε, δ;n,L)
h

)

± Ψ(ε, δ;n,L) =
Ψ(ε, δ;n,L)

h
.

Therefore, we have Claim 3.26.
Next claim follows from Claim 3.26 and [2, Theorem 9.29] directly:

Claim 3.27. For every sufficiently large k, we have

1

v̂ol B̂100(w(k))

∫

B̂1(w(k))
|〈d̂f̂k

i , d̂r̂z−
j (k)〉r|dv̂ol ≤ Ψ(ε, δ;n,L)
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for every 1 ≤ i ≤ l and every l + 1 ≤ j ≤ m. Moreover we have

1

v̂ol B̂100(w(k))

∫

B̂1(w(k))
|〈d̂f̂k

i , d̂f̂
k
î
〉r|dv̂ol ≤ Ψ(ε, δ;n,L)

for every 1 ≤ i < î ≤ l.

For every i with l + 1 ≤ i ≤ m, and every sufficiently large k, there exists
a harmonic function b̂

k

i on B̂1000(w(k)) such that |r̂z−
i
− b̂

k

i |L∞(B̂1000(w(k))) ≤
Ψ(ε, δ;n,L) and

1

v̂ol B̂1000(w(k))

∫

B̂1000(w(k))

(

|d̂b̂k

i − d̂r̂z−
i (k)|2r + |Hess

b̂
k

i

|2r
)

dv̂ol

≤ Ψ(ε, δ;n,L).

Let

F̂k =
∑

1≤i,j≤m

|〈d̂b̂k

i , d̂b̂
k

j 〉r − δi,j | +
∑

1≤i≤m

|Hess
b̂

k

i

|2r +
l∑

i=1

|d̂b̂k

i − d̂f̂k
i |2r

+
m∑

i=l+1

|d̂b̂k

i − d̂r̂z−
i
|2r .

Then, by Lemma 3.1, for every sufficiently large k, there exists a compact
subset Z(k) of B̂1(w(k)) such that v̂ol(B̂1(w(k)) \ Z(k))/v̂ol B̂1(w(k)) ≤
Ψ(ε, δ;n,L) and

1

v̂ol B̂ŝ(α)

∫

B̂ŝ(α)
F̂kdv̂ol ≤ Ψ(ε, δ;n,L)

for every α ∈ Z(k) and every 0 < ŝ < 10. Thus, by an argument similar to
the proof of [6, Theorem 3.3], for every α ∈ Z(k) and every 0 < ŝ < 1, there
exists a compact subset Pα

s of B̂ŝ(α), a point pα
ŝ ∈ Pα

ŝ , and a map qα
ŝ from

(B̂ŝ(α), α) to (Bŝ(pα
ŝ ), pα

ŝ ) such that the map Qα
ŝ = (b̂

k

1, . . . , b̂
k

m, q
α
ŝ ) from

B̂ŝ(α) to B̂ŝ+Ψŝ(b̂
k

1(α), . . . , b̂
k

m(α), pα
ŝ ), is a Ψŝ-Gromov–Hausdorff approx-

imation. By an argument similar to the proof of Claim 3.23, for every α ∈
Z(k) and every 0 < ŝ < 1, we have that b̂

k

i = f̂k
i + constant ± Ψŝ on B̂ŝ(α)

for every 1 ≤ i ≤ l, and b̂
k

i = r̂z−
i (k) + constant ± Ψŝ on B̂ŝ(α) for every

l + 1 ≤ i ≤ m. Therefore, the map Q̂α
ŝ = (f̂k

1 , . . . , f̂
k
l , r̂z−

l+1(k), . . . , r̂z−
m(k), q

α
ŝ )

from B̂ŝ(α) to B̂ŝ+Ψŝ(f̂k
1 (α), . . . , f̂k

l (α), r̂z−
l+1(k)(α), . . . , r̂z−

m(k)(α), pα
ŝ ), is a
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Ψŝ-Gromov–Hausdorff approximation. Without loss of generality, we can
assume that there exists a compact subset Z(∞) of B̂1(w) such that Z(k) →
Z(∞). Let U = Z(∞) ∩⋂

1≤i≤l,1≤j≤ki
(Dτ

xi
j
\ {xi

j}) ∩ (Rm)δ,r. By Proposi-

tion 2.3, we have υ̂(B̂1(w) ∩ U)/υ̂(B̂1(w)) ≥ 1 − Ψ. Since α ∈ (Rm)τ,δ, we
have that the map Tα

ŝ = (f̂1, . . . , f̂l, r̂z−
l+1
, . . . , r̂z−

m
) from B̂ŝ(α) to Bŝ(Tα

ŝ (α)),
is a Ψŝ-Gromov–Hausdorff approximation for every α ∈ U and every 0 <
ŝ < 1. Let α, β be points in U ∩ B̂1/2(w) with α �= β. Put ŝ = α, β

r−1dY
< 1.

Then, we have

(f̂1(α), . . . , f̂l(α), r̂z−
l+1

(α), . . . , r̂z−
m
(α)),

(f̂1(β), . . . , f̂l(β), r̂z−
l+1

(β), . . . , r̂z−
m
(β))

= α, β
r−1dY ± Ψŝ = (1 ± Ψ)α, βr−1dY

.

Therefore, we have the assertion. �

Lemma 3.14. Let (Y, y, υ) be a Ricci limit space, l, k,m positive integers
with 1 ≤ l ≤ m ≤ n, x a point in Y , {hi}1≤i≤l a collection of Lipschitz func-
tions on Y , {xi}1≤i≤k of points in Y , and {aj

i}1≤i≤k,1≤j≤l of real numbers
Let fj =

∑k
i=1 a

j
i rxi

. Assume that the following properties hold:

1. We have

lim
r→0

1
υ(Br(x))

∫

Br(x)
|dfj − dhj |dυ = 0

for every j.

2. We have

x ∈
⋃

τ>0

(
⋂

δ>0

(
⋃

r>0

Leb

(
⋂

i

(Dτ
xi
\ {xi}) ∩ (Rm)δ,r

)))

.

3. The limit

lim
r→0

1
υ(Br(x))

∫

Br(x)
〈dhi, dhj〉dυ ∈ R

exists for every i, j.

4. We have

det

(

lim
r→0

1
υ(Br(x))

∫

Br(x)
〈dhi, dhj〉dυ

)

i,j

�= 0.
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Then, for every 0 < δ < 1, there exists r0 > 0 such that for every 0 < s < r0,
there exists compact subset Ks of Bs(x) such that the following properties
hold:

1. υ(Ks)/υ(Bs(x)) ≥ 1 − δ.

2. For every α ∈ Ks and every sufficiently small t > 0, there exists a
collection {wt

j(α)}1≤j≤m−l of points in Y , and a compact subset Ut

of Bt(α) such that υ(Ut)/υ(Bt(α)) ≥ 1 − δ and that the map Φt =
((h1, . . . , hl)A, rwt

1(α), . . . , rwt
m−l(α)) from Ut to Rm, is a (1 ± δ)-bi-

Lipschitz to the image, where

A =

√
√
√
√

(

lim
r→0

1
υ(Br(x))

∫

Br(x)
〈dhi, dhj〉dυ

)

i,j

−1

.

Proof. Define a collection {gi}1≤i≤l of Lipschitz functions gi on Y by
(g1, . . . , gl) = (h1, . . . , hl)A. By the definition, we have

lim
r→0

1
υ(Br(x))

∫

Br(x)
〈gi, gj〉dυ = δi,j .

By the assumption and Corollary 3.1, we have

lim
r→0

1
υ(Br(x))

∫

Br(x)
|〈gi, gj〉 − δi,j |dυ = 0.

Put (F1, . . . , Fl) =
(
∑k

i=1 b
1
i rxi

, . . . ,
∑k

i=1 b
l
irxi

)

=
(
∑k

i=1 a
1
i rxi

, . . . ,
∑k

i=1 a
l
irxi

)

A. Let L ≥ 1 satisfying |A| + ∑

i,j(b
j
i )

2 ≤ L. Fix 0 < δ < 1. By
Lemma 3.13, we have the following claim:

Claim 3.28. There exists r1 > 0 such that for every 0 < s ≤ r1, there exist
a compact subset Ks of Bs(x) such that the following properties hold:

1. υ(Ks)/υ(Bs(x)) ≥ 1 − δ.

2. For every α ∈ Ks and every sufficiently small t > 0, there exist a
collection of points {wt

j(α)}1≤j≤m−l in Y , and a compact subset Et

of Bt(α) such that υ(Et)/υ(Bt(α)) ≥ 1 − δ and that the map Φα
t =

(F1, . . . , Fl, rwt
1(α), . . . , rwt

m−l(α)) from Et to Rm, is (1 ± δ)-bi-Lipschitz
to the image.
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On the other hand, there exists r0 > 0 such that

1
υ(Bs(x))

∫

Bs(x)

∑

j

|dFj − dgj |dυ ≤ δ

for every 0 < s < r0. Thus, by Lemma 3.1, for every 0 < s < r0/100, there
exists a compact subsetXs ofBs(x) such that υ(Xs)/υ(Bs(x)) ≥ 1 − Ψ(δ;n)
and

1
υ(B5ŝ(α))

∫

B5ŝ(α)

∑

j

|dFj − dgj |dυ ≤ Ψ(δ;n)

for every α ∈ Xs and every 0 < ŝ ≤ s. Put Vs = Ks ∩Xs for every 0 <
s < min{r0, r1}/1000. Then we have υ(Vs)/υ(Bs(x)) ≥ 1 − Ψ(δ;n). Fix 0 <
s < min{r0, r1}/1000 and α ∈ Vs. By an argument similar to the proof of
Claim 3.23, for every sufficiently small t > 0, we have Fj = fj + constant ±
Ψ(δ;n)t on Bt(α). Fix such t > 0 and put Ut = Bt/2(α) ∩ Et. Then, we have
υ(Ut)/υ(Bt/2(α)) ≥ 1 − Ψ(δ;n). Let p1, p2 be points in Ut with p1 �= p2. Put
t̂ = p1, p2 > 0. Then, we have

(f1(p1), . . . , fl(p1), rwt
1(α), . . . , rwt

m−l(α)(p1)),
(f1(p2), . . . , fl(p2), rwt

1(α)(p2), . . . , rwt
m−l(α)(p2))

=
(F1(p1), . . . , Fl(p1), rwt

1(α)(p1), . . . , rwt
m−l(α)(p1)),

(F1(p2), . . . , Fl(p2), rwt
1(α)(p2), . . . , rwt

m−l(α)(p2))
± Ψt̂

= (1 ± δ)p1, p2 ± Ψt̂ = (1 ± Ψ)p1, p2.

Therefore, we have the assertion. �

Lemma 3.15. Let (Y, y, υ) be a Ricci limit space, l a positive integer,
{fi}1≤i≤l a collection of Lipschitz functions on Y , f a Lipschitz function on
Y , and A a Borel subset of Y . Assume that span{df1(x), . . . , dfl(x)} = T ∗

xY
for a.e. x ∈ A. Then, for a.e. x ∈ A, there exists a collection of real numbers
{bi(x)}1≤i≤l such that

lim
r→0

1
υ(Br(x))

∫

Br(x)

∣
∣
∣
∣
∣
df −

l∑

i=1

bi(x)dfi

∣
∣
∣
∣
∣

2

dυ = 0.

Proof. Without loss of generality, we can assume that {dfi(x)}i is a basis of
T ∗

xY for every x ∈ A. Put

(b1(x), . . . , bl(x)) = (〈df, df1〉(x), . . . , 〈df, dfl〉(x))
√

(〈dfi, dfj〉(x))i,j

−1
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for every x ∈ A. Then, by Lebesgue’s differentiation theorem, for a.e. x ∈ A,
we have

lim
r→0

1
υ(Br(x))

∫

Br(x)
|df |2dυ = |df |2(x),

lim
r→0

1
υ(Br(x))

∫

Br(x)
〈df, dfi〉dυ = 〈df, dfi〉(x)

and

lim
r→0

1
υ(Br(x))

∫

Br(x)
〈dfi, dfj〉dυ = 〈dfi, dfj〉(x)

for every i, j. Then, since it is easy to check that

lim
r→0

1
υ(Br(x))

∫

Br(x)
|df |2dυ = lim

r→0

1
υ(Br(x))

∫

Br(x)

〈

df,
l∑

i=1

bi(x)dfi

〉

dυ

= lim
r→0

1
υ(Br(x))

∫

Br(x)

∣
∣
∣
∣
∣

l∑

i=1

bi(a)dfi

∣
∣
∣
∣
∣

2

dυ

=

∣
∣
∣
∣
∣

l∑

i=1

bi(x)dfi(x)

∣
∣
∣
∣
∣

2

for a.e. x ∈ A, we have

lim
r→0

1
υ(Br(x))

∫

Br(x)

∣
∣
∣
∣
∣
df −

l∑

i=1

bi(x)dfi

∣
∣
∣
∣
∣

2

dυ

= lim
r→0

1
υ(Br(x))

∫

Br(x)
|df |2dυ − 2 lim

r→0

1
υ(Br(x))

∫

Br(x)

〈

df,
l∑

i=1

bi(x)dfi

〉

dυ

+ lim
r→0

1
υ(Br(x))

∫

Br(x)

∣
∣
∣
∣
∣

l∑

i=1

bi(a)dfi

∣
∣
∣
∣
∣

2

dυ = 0

for a.e. x ∈ A. �

Theorem 3.4 (Rectifiability associated with Lipschitz functions). Let
(Y, y, υ) be a Ricci limit space, l a positive integer, {fi}1≤i≤l a collection of
Lipschitz functions on Y , A a Borel subset of Y . Assume that {dfi(x)}1≤i≤l

are linearly independent in T ∗
xY for a.e. x ∈ A. Then, there exist 0 < α(n) <

1, collections of compact subsets {Ck,i}l≤k≤n,i∈N of A, of points {xk,i}k,i in
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A, and of points {xs
k,i}k,i,1≤s≤k−l in Y such that the following properties

hold:

1. Ck,i ⊂ Rk,α(n) ∩
⋂k−l

j=1(A \ (Cxj
k,i

∪ {xj
k,i})) and υ

(

A \⋃

l≤k≤n,i∈N

Ck,i) = 0 for evrey k.

2. For every l ≤ k ≤ n, every x ∈ ⋃

i∈NCk,i and every 0 < δ < 1, there
exists Ck,i such that x ∈ Ck,i and that the map φk,i = ((f1, . . . , fl)
√

(〈dfi, dfj〉(xk,i))i,j
−1
, rx1

k,i
, . . . , rxk−l

k,i
) from Ck,i to Rk, is (1 ± δ)-bi-

Lipschitz to the image.

3. The limit measure υ and the k-dimensional Hausdorff measure Hk

are mutually absolutely continuous on Ck,i. Moreover, υ is Ahlfors
k-regular at every x ∈ Ck,i.

Proof. Let {Cy
k,i}k,i be a collection of Borel subset of Y , and {xl̂

k,i}k,i of
points in Y as in Theorem 3.1, where x1

k,i = y. By Lemma 3.5, without loss
of generality, we can assume that Ck,i is bounded for every i, k. By the
construction of T ∗Y , we have span{drx1

k,i
(x), . . . , drxk

k,i
(x)} = T ∗

xY for a.e.
x ∈ Cy

k,i. Therefore, we have υ(A ∩ Cy
k,i) = 0 for every k < l. Since

υ

⎛

⎝Rk \
⋃

τ>0

⎛

⎝
⋂

δ>0

⎛

⎝
⋃

r>0

Leb

⎛

⎝
⋂

i,j

(Dτ
xj

i

\ {xj
i}) ∩ (Rk)δ,r

⎞

⎠

⎞

⎠

⎞

⎠

⎞

⎠ = 0,

the following claim follows from Lemmas 3.14 and 3.15, directly:

Claim 3.29. For every k ≥ l and every i ∈ N, there exists a Borel subset
Ak,i of A ∩ Ck,i such that the following properties hold:

1. υ(A ∩ Ck,i \Ak,i) = 0.

2. For every x ∈ Ak,i and every 0 < δ < 1, there exists rδ
x > 0 such that

for every 0 < s < rδ
x, there exists a compact subset K(x, δ, s) of Bs(x)

such that the following properties hold:
(a) υ(K(x, δ, s))/υ(Bs(x)) ≥ 1 − δ.
(b) For every α ∈ K(x, δ, s) and every sufficiently small t > 0, there

exist a collection of points {w(i, x, δ, s, α, t)}1≤i≤k−l in Y , and a
compact subset U(x, δ, s, α, t) of Bt(α) such that the map Φx,δ,s,α,t=
((f1, . . . , fl)A(x), rw(1,x,δ,s,α,t), . . ., rw(k−l,x,δ,s,α,t)) from U(x, δ, s, α, t)
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to Rk, is (1 ± δ)-bi-Lipschitz to the image, where

A(x) =

√
√
√
√

(

lim
r→0

1
υ(Br(x))

∫

Br(x)
〈dfs, dft〉dυ

)

s,t

−1

=
√

(〈dfs, dft〉(x))s,t

−1

.

Put Âk,i = Leb(Ak,i). For every N ∈ N and every x ∈ Âk,i, let sN
x be a

positive number satisfying that 0 < sN
x < min{r1/N

x , N−1} and υ(BsN
x
(x) ∩

Ak,i)/υ(BsN
x
(x)) ≥ 1 −N−1. Let K(x,N−1, sN

x ) be a compact subset as in
Claim 3.29. Put K̂(x,N−1, sN

x ) = K(x,N−1, sN
x ) ∩ Âk,i. Then, we have

υ(BsN
x
(x) ∩ K̂(x,N−1, sN

x ))/υ(BsN
x
(x)) ≥ 1 − 100N−1. For every α∈ K̂(x,

N−1, sN
x ), there exists 0<t= t(α)<N−1 such that υ(Bt̂(α)∩Ak,i)/υ(Bt̂(α))

≥ 1 −N−1 for every 0 < t̂ < t. Take w(i, x,N−1, sN
x , α, t̂) and U(x,N−1,

sN
x , α, t̂) as in Claim 3.29. Put Û(x,N−1, sN

x , α, t̂) = U(x,N−1, sN
x , α, t̂) ∩

Âk,i. Then, we have υ(Bt̂(α) ∩ Û(x,N−1, sN
x , α, t̂))/υ(Bt̂(α))≥1 − 1000N−1.

By Lemma 2.2, it is not difficult to check that the following claim:

Claim 3.30. There exist xN
j ∈ Âk,i, αN

j ∈ K̂(xN
j , N

−1, sN
xN

j
) and 0 < tNj <

t(αN
j ) such that

υ

⎛

⎝Ak,i \
⋃

j∈N

Û(xN
j , N

−1, sN
xN

j
, αN

j , t
N
j )

⎞

⎠ ≤ Ψ(N−1;n)υ(B10(Ak,i)).

Put Û(j,N) = Û(xN
j , N

−1, sN
xN

j
, αN

j , t(α
N
j )), w(i, j,N) = w(i, xN

j , N
−1,

sN
xN

j
, αN

j , t(α
N
j )), U(j) =

⋂

N0∈N

(
⋃

N1≥N0
Û(j,N1)

)

and U(j,N) = Û(j,N) ∩
U(j). Then we have υ

(

Ak,i \
⋃

j∈N U(j)
)

= 0 and
⋃

N∈N U(j,N) = U(j).
Fix j, w ∈ ⋃

N∈N U(j,N) and 0 < δ < 1. There exists N0 such that w ∈
U(j,N0). Let N1 ∈ N with N−1

1 << δ. Since w ∈ ⋃

N2≥N1
Û(j,N2), there

exists N2 ≥ N1 such that w ∈ Û(j,N2). Especially, we have w ∈ U(j,N2).
Thus, the map Gj,N2 = ((f1, . . . , fl)A(xN2

j ), rw(1,j,N2), . . . , rw(k−l,j,N2)) from
U(j,N2) to Rk, is (1 ±N−1

2 )-bi-Lipschitz to the image. Especially, Gj,N2 is
(1 ± δ)-bi-Lipschitz to the image. Therefore, we have the assertion. �

Remark 3.2. The radial rectifiability theorem, Theorem 3.1, corresponds
to Theorem 3.4 for the case: l = 1, f1 = rx, A = Y .

We will end this subsection by giving two corollaries of Theorem 3.4. For a
metric space X, define a distance on R≥0×X/({0}×X) by (t1, x1), (t2, x2) =
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√

t21 + t22 − 2t1t2 cos min{x1, x2, π}. Denote this metric space by C(X), and
put p = [(0, x)] ∈ C(X). The next corollary is used in [24], essentially.

Corollary 3.2. Let X be a compact geodesic space and l a non-negative
integer. Assume that l≤n, dimHX = n− l − 1 and that (Rl × C(X), (0l, p))
is a Ricci limit space. Then, X is Hn−l−1-rectifiable.

Proof. Define a collection of 1-Lipschitz functions {g} ∪ {πj}1≤j≤l on Rk ×
C(X) by πj(t1, . . . , tl, w) = tj and g(t1, . . . , tl, w) = p, w. By Theorem 3.3
and [4, Theorem 5.9], we have 〈dπi, dπj〉(α) = δi,j , 〈dπi, dg〉(α) = 0, |dg|(α) =
1 for a.e. α ∈ Rl × C(X) with respect to the n-dimensional Hausdorff mea-
sure Hn. Therefore, by applying Theorem 3.4 for a collection of Lipschitz
functions {πj}1≤j≤l ∪ {g} and A = Rl × C(X), there exists a collection of
Borel subsets {Ck,i}i,l+1≤k≤n as in Theorem 3.4. Since the product mea-
sure H l ×Hn−l on Rl × C(X) is equal to Hn (see the appendix in [24]), by
Fubini’s theorem, we have

0 = Hn

⎛

⎝

(

Rl × C(X)
)

\
⋃

k,i

Ck,i

⎞

⎠

=
∫

Rl

Hn−l

⎛

⎝({t1, . . . , tl} × C(X)) \
⋃

k,i

Ck,i

⎞

⎠ dH l.

Especially, there exists (t1, . . . , tl)∈Rl such thatHn−l (({t1, . . . , tl}×C(X))
\⋃k,iCk,i

)

= 0. Put Ĉk,i = ({t1, . . . , tl} × C(X)) ∩ Ck,i and regard it as a
subset of C(X), canonically. Now, we remark that

∫

C(X)
fdHn−l =

∫ ∞

0

∫

∂Bt(p)
fdHn−l−1dt

holds for every f ∈ L1(C(X)) (this is the co-area formula for the distance
function from the pole in C(X). See for instance the appendix in [24]).
Thus, especially, we have Hn−l−1

(

∂Bt(p) ∩ C(X) \⋃

k,i Ĉk,i

)

= 0 for a.e.
t > 0. Then it is not difficult to check the assertion. �

Remark 3.3. With the same notation as in Corollary 3.2, we have 0 <
Hn−l−1(Br(x)) <∞ for every x ∈ X and every r > 0. It follows from [4,
Theorem 5.9],[6, Theorem 4.6] and the above co-area formula for the distance
function from the pole on C(X). We skipped the proof because it is not
difficult to check it.
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Similarly, we have the following:

Corollary 3.3. Let (X,x) be a pointed proper geodesic space, l a non-
negative integer. Assume that l≤n, dimHX =n− l and that (Rl ×X, (0l, x))
is a Ricci limit space. Then, X is Hn−l-rectifiable.

4. Convergence of L∞-functions and of Lipschitz functions

In this section, we will give two-notions of convergence of a sequence of
L∞-functions with respect to the measured Gromov–Hausdorff topology.
By using these notions, we will give the definition of a convergence of the
differentials of Lipschitz functions (see Definition 4.4). Moreover, by com-
bining with several results given in Section 3, we will discuss convergence of
harmonic functions. In [26–30], we can also find related important, interest-
ing results to this section. For harmonic functions, see also [9, 11, 24, 31–33,
36, 37]. Throughout the following Subsections 4.1 and 4.2, we shall fix the
following:

1. Let {(Zi, zi)}1≤i≤∞ be a sequence of pointed proper geodesic spaces,
xi ∈ Zi.

2. Let υi be a Radon measure on Zi for every 1 ≤ i ≤ ∞.

3. υi(B1(zi)) = 1 holds for every i.

4. For every R ≥ 1, there exists κ = κ(R) ≥ 1 such that υi(B2s(z)) ≤
2κυi(Bs(z)) for every 1 ≤ i ≤ ∞, every z ∈ Zi and every 0 < s ≤ R.

5. (Zi, xi, zi, υi)
(φi,Ri,εi)→ (Z∞, x∞, z∞, υ∞).

4.1. Pointwise strong convergence of L∞-functions

Our aims in this subsection are to give the following notion and several
fundamental properties of it:

Definition 4.1 (Pointwise strong convergence of L∞-functions). Let R be
a positive number, w∞ a point in BR(x∞) and {fi}1≤i≤∞ a sequence of L∞-
functions fi onBR(xi) with supi |fi|L∞(BR(xi)) <∞. We say that fi converges
strongly to f∞ at w∞ if for every ε > 0, there exists r > 0 such that
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lim sup
i→∞

1
υi(Bt(wi))

∫

Bt(wi)

∣
∣
∣
∣
∣
fi − 1

υ∞(Bt(w∞))

∫

Bt(w∞)
f∞dυ∞

∣
∣
∣
∣
∣
dυi ≤ ε

and

lim sup
i→∞

1
υ∞(Bt(w∞))

∫

Bt(w∞)

∣
∣
∣
∣
∣
f∞ − 1

υi(Bt(wi))

∫

Bt(wi)
fidυi

∣
∣
∣
∣
∣
dυ∞ ≤ ε

for every 0 < t < r and every wi → w∞.

Example 4.1. Fix f ∈ C0(BR(x∞)) and put fi = f ◦ φi. Then, it is easy
to check that fi converges strongly to f∞ at every w ∈ BR(x∞).

We shall give a fundamental result about this convergence without the
proof because it is not difficult to check it:

Proposition 4.1. Let k be a positive integer, R a positive number,
{f l

i}1≤l≤k a collection of L∞-functions on BR(xi) for every 1 ≤ i ≤ ∞ with
supi,l |f l

i |L∞(BR(xi)) <∞, w∞ a point in BR(x∞) and {Fi}1≤i≤∞ a sequence
of continuous functions on Rk. Assume that f l

i converges strongly to f l∞ at
w∞ for every l, and that Fi converges to F∞ with respect to the compact uni-
formly topology. Then, Fi(f1

i , . . . , f
k
i ) converges strongly to F∞(f1∞, . . . , fk∞)

at w∞.

Remark 4.1. Let k be a positive integer, {f l
i}1≤l≤k a collection of L∞-

functions f l
i on BR(xi) for every 1 ≤ i ≤ ∞, w∞ a point in BR(x∞), and

{Fi}1≤i≤∞ a sequence of locally L∞-functions on Rk. Assume that the fol-
lowing properties hold:

1. supi,l |f l
i |L∞(BR(xi)) <∞.

2. f l
i converges strongly to f l∞ at w∞ for every l.

3. The limits

al = lim
r→0

1
υ∞(Br(w∞))

∫

Br(w∞)
f l
∞dυ∞ ∈ R

exist for every l.

4. There exists an open neighborhood U at (a1, . . . , ak) ∈ Rk such that
Fi is continuous on U for every 1 ≤ i ≤ ∞, and that Fi converges to
F∞ on U uniformly.
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Then, we also have that Fi(f1
i , . . . , f

k
i ) converges strongly to F∞(f1∞, . . . , fk∞)

at w∞.

The following proposition is the main result in this subsection:

Proposition 4.2. Let {(Mi,mi)}i be a sequence of pointed n-dimensional
complete Riemannian manifolds with RicMi

≥ −(n− 1), (Y, y, υ) a Ricci
limit space of {(Mi,mi, vol)}i, R a positive number, x∞, z∞ points in Y ,
xi, zi points in Mi for every i <∞, fi a C2-function on BR(xi) for every
i <∞, and f∞ a Lipschitz function on BR(x∞). Assume that supi Lipfi <

∞, (Mi,mi, xi, zi, fi, vol)
(φi,Ri,εi)→ (Y, y, x∞, z∞, f∞, υ) and

sup
i

∫

BR(xi)
|Hessfi

|dvol <∞.

Then, 〈drzi
, dfi〉 converges strongly to 〈drz∞ , df∞〉 at a.e. w∞ ∈ BR(x∞).

Proof. Fix ε > 0 and let L ≥ 1 with

sup
i

(

1
volBR(xi)

∫

BR(xi)
|Hessfi

|dvol + Lipfi

)

≤ L.

By Theorem 3.3, there exist 0<η<<ε and a Borel subset X(ε) of BR(x∞) ∩
Dη

z \Bη(z∞) such that υ(BR(x∞) \X(ε))/υ(BR(x∞)) ≤ ε and

∣
∣
∣
∣

f∞ ◦ γ(z, α+ h) − f∞(α)
h

− 〈drz∞ , df∞〉(α)
∣
∣
∣
∣
≤ ε

for every α ∈ X(ε), every real number h with 0 < |h| < η, and every iso-
metric embedding γ from [0, z∞, α+ η] to Y with γ(0) = z∞, γ(z∞, α) = α.
On the other hand, by Lebesgue’s differentiation theorem, there exists a
Borel subset X̂(ε) of X(ε) such that υ(X(ε) \ X̂(ε)) = 0 and that for every
α ∈ X̂(ε), there exists r(α) > 0 such that

1
υ(Bt(α))

∫

Bt(α)
|〈drz∞ , df∞〉 − 〈drz∞ , df∞〉(α)|dυ < ε

for every 0 < t < r(α). Put l = η−1/4. By an argument similar to the proof
of Proposition 3.1, for every 1 ≤ i <∞, there exists a compact subset Ki of
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BR−ε(xi) such that

vol(BR−ε(xi) \Ki)
volBR−ε(xi)

≤ Ψ(l−1;n,R,L) and
1

volBt(w)

∫

Bt(w)
|Hessfi

|dvol ≤ l

for every w ∈ Ki and every 0 < t < ε/100. Without loss of generality, we
can assume that there exists a compact subset K∞ of BR(x∞) such that
Ki → K∞. Put W (ε) = K∞ ∩X(ε). By Proposition 2.3, we have υ(W (ε))/υ
(BR(x∞)) ≥ 1 − Ψ(ε;n,R,L). Fix α ∈W (ε), 0 < t << min{η, r(α)} and an
isometric embedding γ from [0, z∞, α+ η] to Y with γ(0) = z∞, γ(z∞, α) =
α. Let {αi}i be a sequence of points αi in Ki with αi → α. Define a Borel
function Fi on Bt(αi) \ (Czi

∪ {zi}) by Fi(β) = (fi ◦ γβ(zi, β − η2) − fi(β))/
(−η2), where γβ is the minimal geodesic from zi to β. By an argument similar
to the proof of Claim 3.19, we have

1
volBt(αi)

∫

Bt(αi)
|〈dfi, drzi

〉 − Fi|dvol ≤ η2 C(n)
volB10t(αi)

∫

B10t(αi)
|Hessfi

|dvol

≤ η2C(n)l ≤ Ψ(ε;n)

for every i. Fix i0 with εi << t for every i ≥ i0. We remark that φi(βi), α ≤
t+ εi ≤ η3 for every i ≥ i0 and every βi ∈ Bt(αi). Then, since

z, φi(γβi
(zi, βi − η2))

η−2dY

+ φi(γβi
(zi, βi − η2)), φi(βi)

η−2dY − z, φi(βi)
η−2dY

< 3εi,

we have

z, φi(γβi
(zi, βi − η2))

η−2dY

+ φi(γβi
(zi, βi − η2)), α

η−2dY − z, αη−2dY < 5η.

Similarly, we have

z, φi(γβi
(zi, βi − η2))

η−2dY

+ φi(γβi
(zi, βi − η2)), γ(z, α+ η)

η−2dY

− z, γ(z, α+ η)
η−2dY

< 5η,

φi(γβi
(zi, βi − η2)), γ(z, α+ η)

η−2dY

≥ η−1 − η, φi(γβi
(zi, βi − η2)), z

η−2dY ≥ η−1 − η

and

φi(γβi
(zi, βi − η2)), α

η−2dY

= 1 ± 5η.
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Therefore, by the splitting theorem on limit spaces, we have

φi(γβi
(zi, βi − η2)), γ(z, α− η2)

η−2dY ≤ Ψ(η;n).

Thus, we have

fi(γβi
(zi, βi − η2)) − fi(βi)

−η2
=
f∞(φi(γβi

(zi, βi − η2))) − f∞(φi(βi))
−η2

± εi
η2

=
f∞(γ(z, α− η2))) − f∞(α)

−η2
± Ψ(η;n,L)

= 〈drz, df∞〉(α) ± Ψ(η;n,L).

Especially, we have

1
volBt(αi)

∫

Bt(αi)
|Fi − 〈drz, df∞〉(α)|dvol ≤ Ψ(η;n,L)

for every i ≥ i0. Put W =
⋂

N1∈N

(
⋃

N2≥N1
W (N−1

2 )
)

. Then we have
υ(BR(x∞) \W ) = 0. Moreover, by the argument above, 〈drzi

, dfi〉 converges
strongly to 〈drw, df∞〉 at every w∞ ∈W . �

Remark 4.2. We shall introduce the following important method to obtain
a uniformly L2-Hessian estimates by using cut-off functions with good
properties constructed by Cheeger–Colding: Let (M,m) be a pointed
n-dimensional complete Riemannian manifold with RicM ≥ −(n− 1), R a
positive number and f a C2-function on BR(m). Assume that there exists
L ≥ 1 such that

|∇f |L∞(BR(m)) +
∫

BR(m)
|Δf |2dvol ≤ L.

Then, we have
∫

Br(m)
|Hessf |2dvol < C(n, r,R, L)

for every 0 < r < R. The proof is as follows. By the standard smoothing
argument, without loss of generality, we can assume that f is a smooth
function. By [2, Theorem 8.16], there exists a smooth function φ on M
such that 0 ≤ φ ≤ 1, φ|Br(m) = 1, suppφ ⊂ BR(m), |∇φ| ≤ C(n, r,R) and



Ricci curvature 135

|Δφ| ≤ C(n, r,R). By Bochner’s formula, we have

−1
2Δ|∇(φf)|2 ≥ |Hessφf |2 − 〈∇Δ(φf),∇(φf)〉 − (n− 1)|∇(φf)|2.

Thus, we have
∫

Br(m)
|Hessf |2dvol ≤

∫

BR(m)
|Hessφf |2dvol

≤
∫

BR(m)
(Δ(φf))2 dvol + C(n,R,L)

≤
∫

BR(m)

(

(fΔφ)2 + (φΔf)2 + |〈∇f,∇φ〉|2) dvol

+ C(n,R,L)
≤ C(n, r,R, L).

This observation performs a crucial role to study limit functions of harmonic
functions in Subsection 4.4.

The following proposition follows from Corollary 3.1 directly.

Proposition 4.3. Let {(Mi,mi)}i be a sequence of pointed n-dimensional
complete Riemannian manifolds with RicMi

≥ −(n− 1), (Y, y, υ) a Ricci
limit space of {(Mi,mi, vol)}i, w1∞, w2∞ points in Y , and w1

i , w
2
i points in

Mi for every i, satisfying that wj
i → wj∞ for every j. Then 〈drw1

i
, drw2

i
〉 con-

verges strongly to 〈drw1∞ , drw2∞〉 at every z ∈ Y \ (Cw1∞ ∪ Cw2∞ ∪ {w1∞, w2∞}).

4.2. Pointwise weak convergence of L∞-functions

Our aims in this subsection are to give the following notion and its funda-
mental properties.

Definition 4.2 (Pointwise weak convergence of L∞-functions). Let
R be a positive number, w∞ a point in BR(x∞) and {fi}1≤i≤∞ a sequence
of L∞-functions fi on BR(xi) with supi |fi|L∞(BR(xi)) <∞. We say that fi

converges weakly to f∞ at w∞ if for every ε > 0, there exists r > 0 such that

lim sup
i→∞

∣
∣
∣
∣
∣

1
υi(Bt(wi))

∫

Bt(wi)
fidυi − 1

υ∞(Bt(w∞))

∫

Bt(w∞)
f∞dυ∞

∣
∣
∣
∣
∣
≤ ε

for every 0 < t < r and every wi → w∞.
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It is clear that if fi converges strongly to f∞ at w∞, then fi converges
weakly to f∞ at w∞. We skip the proof of the next proposition because it
is not difficult to check it.

Proposition 4.4 (Linearlity of weak convergence). Let R be a pos-
itive number, w∞ a point in BR(x∞) and ai, bi, ci, di L

∞-functions on
BR(xi) for every 1 ≤ i ≤ ∞ with supi(|ai| + |bi| + |ci| + |di|)L∞(BR(xi)) <∞.
Assume that ai, bi converge strongly to a∞, b∞ at w∞, respectively, and that
ci, di converge weakly to c∞, d∞ at w∞, respectively. Then aici + bidi con-
verges weakly to a∞c∞ + b∞d∞ at w∞.

Proposition 4.5. Let {Ai}1≤i≤∞ be a sequnece of Borel subsets Ai of
BR(xi) and w∞ a point in LebA∞. Assume that 1Ai

converges weakly to
1A∞ at w∞. Then 1Ai

converges strongly to 1A∞ at w∞.

Proof. Fix ε > 0. Let {wi}i be a sequence of points wi in Zi satisfying wi →
w∞. There exists r > 0 such that υ∞(Bt(w∞) ∩A∞)/υ∞(Bt(w∞)) ≥ 1 − ε
and

lim sup
i→∞

∣
∣
∣
∣
∣

1
υi(Bt(wi))

∫

Bt(wi)
1Ai

dυi − 1
υ∞(Bt(w∞))

∫

Bt(w∞)
1A∞dυ∞

∣
∣
∣
∣
∣
< ε

for every 0 < t < r. Fix 0 < t < r. Then we have

1
υi(Bt(wi))

∫

Bt(wi)

∣
∣
∣
∣
∣
1Ai

− 1
υ∞(Bt(w∞))

∫

Bt(w∞)
1A∞dυ∞

∣
∣
∣
∣
∣
dυi

≤ 1
υi(Bt(wi))

∫

Bt(wi)

∣
∣
∣
∣
∣
1Ai

− 1
υi(Bt(wi))

∫

Bt(wi)
1Ai

dυi

∣
∣
∣
∣
∣
dυi + ε

=
1

υi(Bt(wi))

∫

Ai

υi(Bt(wi) \Ai)
υi(Bt(wi))

dυi +
1

υi(Bt(wi))

×
∫

Bt(wi)\Ai

υi(Ai)
υi(Bt(wi))

dυi + ε

≤ 2
υi(Bt(wi) \Ai)
υi(Bt(wi))

+ ε < 2
υ∞(Bt(w∞) \A∞)
υ∞(Bt(w∞))

+ 2ε < 5ε.

for every sufficiently large i. Similarly, we have

1
υ∞(Bt(w∞))

∫

Bt(w∞)

∣
∣
∣
∣
∣
1A∞ − 1

υi(Bt(wi))

∫

Bt(wi)
1Ai

dυi

∣
∣
∣
∣
∣
dυ∞ < 5ε

for every sufficiently large i. Thus, we have the assertion. �
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The next proposition follows from an argument similar to the proof of
Proposition 2.3:

Proposition 4.6. Let R be a positive number, {Ki}1≤i≤∞ a sequence of
Borel subsets Ki of BR(xi), and {fi}1≤i≤∞ of non-negative valued L∞-
functions fi on BR(xi) with supi |fi|L∞(BR(xi)) <∞. Assume that K∞ is
compact, lim supGH

i→∞Ki ⊂ K∞ and that fi converges weakly to f∞ at a.e.
w ∈ K∞. Then, we have

lim sup
i→∞

∫

Ki

fidυi ≤
∫

K∞

f∞dυ∞.

We shall give a fundamental result about this weak convergence:

Proposition 4.7. Let R be a positive number, {Ai}1≤i≤∞ a sequence of
Borel subsets Ai of BR(xi), and {fi}1≤i≤∞ of L∞-functions fi on BR(xi)
with supi |fi|L∞(BR(xi)) <∞. Assume that 1Ai

converges weakly to 1A∞ at
a.e. w ∈ BR(x∞) and that fi converges weakly to f∞ at a.e. w ∈ A∞. Then,
we have

lim
i→∞

∫

Ai

fidυi =
∫

A∞

f∞dυ∞.

Proof. It follows from (the proof of ) Propositions 4.4 and 4.5 that fi1Ai

converges weakly to f∞1A∞ at a.e. w∞ ∈ BR(x∞). Thus, without loss of
generality, we can assume that Ai = BR(xi) for every 1 ≤ i ≤ ∞. Fix ε > 0.
Let L ≥ 1 with supi |fi|L∞(BR(xi)) + υ∞(BR(x∞)) < L. There exists a Borel
subset K̂∞ of BR(x∞) such that υ(BR(x∞) \ K̂∞) = 0 and that for every
w∞ ∈ K̂∞, there exists tw∞ > 0 such that B10tw∞ (w∞) ⊂ BR(x) and

lim sup
i→∞

∣
∣
∣
∣
∣

1
υi(Bs(wi))

∫

Bs(wi)
fidυi − 1

υ∞(Bs(w∞))

∫

Bs(w∞)
f∞dυ∞

∣
∣
∣
∣
∣
< ε

for every 0 < s < tw∞ and every wi → w∞. By Lemma 2.2, there exists a
pairwise disjoint collection {Bri

(xi)}i such that xi ∈ K̂∞, ri << txi
, and

K̂∞ \⋃N
i=1Bri

(xi) ⊂
⋃∞

i=N+1B5ri
(xi) for everyN . FixN satisfying

∑∞
i=N+1

υ∞(Bri
(xi)) < ε. Then, we have

∑∞
i=N+1 υ∞(B5ri

(xi)) < 25κ(1)ε. For every
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i, j, let xi(j) be a point in Zj satisfying xi(j) → xi. Then we have

∫

BR(x∞)
f∞dυ∞ =

N∑

i=1

∫

Bri
(xi)

f∞dυ∞ ± Ψ(ε;κ(1), L)

=
N∑

i=1

∫

Bri
(xi(j))

fjdυj ± Ψ(ε;κ(1), L)

=
∫

BR(xj)
fjdυj ±

(
∫

BR(xj)\⋃N
i=1 Bri

(xi(j))
|fj |dυj

+Ψ(ε;κ(1), L)

)

for every sufficiently large j. On the other hand, by Propositions 2.1 and 2.3,
we have

lim sup
j→∞

∫

BR(xj)\⋃N
i=1 Bri

(xi(j))
|fj |dυj ≤ L lim sup

j→∞
υj

(

BR(xj) \
N⋃

i=1

Bri
(xi(j))

)

≤ Lυ∞

(

K̂∞ \
N⋃

i=1

Bri
(xi)

)

≤ Ψ(ε;κ(1), L).

Therefore, we have the assertion. �

Next corollary follows from Proposition 4.7 directly:

Corollary 4.1. Let R be a positive number, N a positive integer,
{rj}1≤j≤N a collection of positive numbers, {zj}1≤j≤N of points in Y , and
{fi}1≤i≤∞ a sequence of L∞-functions fi on BR(xi) with supi |fi|L∞(BR(xi))

<∞. Assume that fi converges weakly to f∞ at a.e. w ∈ BR(x∞) \⋃N
i=1Bri

(zi). Then, we have

lim
j→∞

∫

BR(xj)\⋃N
i=1 Bri

(zi(j))
fjdυj =

∫

BR(x∞)\⋃N
i=1 Bri

(zi)
f∞dυ∞

for every zi(j) → zi.
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4.3. Convergence of the differentials of Lipschitz functions

A purpose of this subsection is to give the definition of a convergence: dfi →
df∞. See Definition 1.1 or Definition 4.4. Throughout this subsection, we fix
the following situation:

1. Let {(Mi,mi)}1≤i<∞ be a sequence of pointed n-dimensional complete
Riemannian manifolds with RicMi

≥ −(n− 1).

2. Let (Y, y, υ) be a Ricci limit space of {(Mi,mi, vol)}i.

3. Let R be a positive number, {xi}1≤i<∞ a sequence of points xi in Mi,
and x∞ a point in Y satisfying xi → x∞.

4. Let {fi}1≤i≤∞ be a sequence of Lipschitz functions fi on BR(xi) with
supi(Lipfi + |fi|L∞(BR(xi))) <∞.

In this setting, we recall that fi converges to f∞ at w∞ ∈ BR(x∞) if fi(wi) →
f∞(w∞) holds for every wi → w∞. See Section 1.2. We denote it by fi → f∞
at w∞. We remark that it is easy to check that the following conditions are
equivalent:

1. fi converges strongly to f∞ at w∞.

2. fi → f∞ at w∞.

3. fi converges weakly to f∞ at w∞.

We shall consider a convergence of the L2-energy of Lipschitz functions. 0

Definition 4.3 (Pointwise upper semicontinuity of L2-energy). We say
that L2-energy of {fi}i are upper semicontinuous at w∞ ∈ BR(x∞) if for
every ε > 0, there exists r > 0 such that

lim sup
i→∞

1
volBt(wi)

∫

Bt(wi)
(Lipfi)2dvol ≤ 1

υ(Bt(w∞))

∫

Bt(w∞)
(Lipf∞)2dυ + ε

for every 0 < t < r and every wi → w∞.

By the definition, if (Lipfi)2 converges weakly to (Lipf∞)2 at w∞, then
L2-energy of {fi}i are upper semicontinuous at w∞. We shall give the defi-
nition of a convergence of the differentials of Lipschitz functions:

Definition 4.4 (Convergence of the differentials of Lipschitz functions).
We say that dfi converges to df∞ at w∞ ∈ BR(x∞) if the following properties
hold:
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1. 〈drzi
, dfi〉 converges weakly to 〈drz∞ , df∞〉 at w∞ for every zi → z∞;

2. L2-energy of {fi}i are upper semicontinuous at w∞.

Then we denote it by dfi → df∞ at w∞. Moreover, for a subset A of BR(x∞),
if fi → f∞ and dfi → df∞ at every a ∈ A, then we denote it by (fi, dfi) →
(f∞, df∞) on A.

Proposition 4.8. Let wi be a point in Mi for every i <∞, and w∞ a point
in Y with wi → w∞. Then we have (rwi

, drwi
) → (rw∞ , drw∞) on Y .

Proof. It follows from Propositions 4.3 and 4.7 directly. �

The following theorem is the main result in this subsection:

Theorem 4.1. Let {gi}1≤i≤∞ be a sequence of Lipschitz functions gi on
BR(xi), and A a Borel subset of BR(x∞). Assume that supi(Lipgi +
|gi|L∞(BR(xi))) <∞, dfi → df∞ and dgi → dg∞ on A. Then, 〈dfi, dgi〉 con-
verges strongly to 〈df∞, dg∞〉 at a.e. w∞ ∈ A.

Proof. By Theorem 3.1 and Lemma 3.15, there exist collections of Borel
subset {Aj}j of A, of positive integers {kj}j with 1 ≤ kj ≤ n, and of points
{xj

l }j,1≤l≤kj
in Y such that the following properties hold:

1. υ
(

A \⋃∞
j=1Aj

)

= 0 and Aj ⊂ Y \⋃kj

l=1(Cxj
l
∪ {xj

l }) for every j.

2. For every w ∈ Aj , there exists aj
1, . . . , a

j
kj
, bj1, . . . , b

j
kj

∈ R such that

lim
r→0

1
υ(Br(w∞))

∫

Br(w∞)

∣
∣
∣
∣
∣
∣

df∞ − d

⎛

⎝

kj∑

l=1

aj
l rxj

l

⎞

⎠

∣
∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
∣
∣

dg∞ − d

⎛

⎝

kj∑

l=1

bjl rxj
l

⎞

⎠

∣
∣
∣
∣
∣
∣

2

dυ = 0.

Fix j and w∞ ∈ Aj . Let aj
1, . . . , a

j
kj
, bj1, . . . , b

j
kj

∈ R as above, and L ≥ 1

with supi(Lipfi + Lipgi) +
∑kj

l=1((a
j
l )

2 + (bjl )
2) ≤ L. Take τ > 0 with w ∈

⋃kj

l=1(D
τ
xj

l

\Bτ (x
j
l )). Let xj

l (i) → xj
l and wi → w∞. Fix ε > 0. Then, there
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exists r > 0 such that

1
υ(Bt(w∞))

∫

Bt(w∞)

∣
∣
∣
∣
∣
∣

df∞ − d

⎛

⎝

kj∑

l=1

aj
l rxj

l

⎞

⎠

∣
∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
∣
∣

dg∞ − d

⎛

⎝

kj∑

l=1

bjl rxj
l

⎞

⎠

∣
∣
∣
∣
∣
∣

2

dυ

≤ ε,

lim sup
i→∞

1
volBt(wi)

∫

Bt(wi)
(Lipfi)2dvol ≤ 1

υ(Bt(w∞))

×
∫

Bt(w∞)
(Lipf∞)2dυ + ε,

lim sup
i→∞

1
volBt(wi)

∫

Bt(wi)
(Lipgi)2dvol ≤ 1

υ(Bt(w∞))

×
∫

Bt(w∞)
(Lipg∞)2dυ + ε,

lim sup
i→∞

∣
∣
∣
∣
∣

1
volBt(wi)

∫

Bt(wi)
〈dfi, drxj

l (i)
〉dvol − 1

υ(Bt(w∞))

×
∫

Bt(w∞)
〈df∞, drxj

l
〉dυ

∣
∣
∣
∣
∣
< ε

and

lim sup
i→∞

∣
∣
∣
∣
∣

1
volBt(wi)

∫

Bt(wi)
〈dgi, drxj

l (i)
〉dvol

− × 1
υ(Bt(w∞))

∫

Bt(w∞)
〈dg∞, drxj

l
〉dυ

∣
∣
∣
∣
∣
< ε

for every l and every 0 < t < r. Fix 0 < t << min{r, ε, τ}. Then, by Corol-
lary 3.1, we have

1
υ(Bt(w∞))

∫

Bt(w∞)

∣
∣
∣
∣
∣
∣

〈df∞, dg∞〉 − 1
υ(Bt(w∞))

∫

Bt(w∞)

〈

d

⎛

⎝

kj∑

l=1

aj
l rxj

l

⎞

⎠ , d

⎛

⎝

kj∑

l=1

bjl rxj
l

⎞

⎠

〉

dυ

∣
∣
∣
∣
∣
∣

dυ ≤ Ψ(ε;n,L)
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and

1
υ(Bt(w∞))

∫

Bt(w∞)

∣
∣
∣
∣
∣
〈df∞, dg∞〉 − 1

υ(Bt(w))

∫

Bt(w)
〈df∞, dg∞〉dυ

∣
∣
∣
∣
∣
dυ

=
1

υ(Bt(w∞))

∫

Bt(w∞)

∣
∣
∣
∣

〈

d

⎛

⎝

kj∑

l=1

aj
l rxj

l

⎞

⎠ , d

⎛

⎝

kj∑

l=1

bjl rxj
l

⎞

⎠

〉

− 1
υ(Bt(w∞))

∫

Bt(w∞)

〈

d

⎛

⎝

kj∑

l=1

aj
l rxj

l

⎞

⎠ , d

⎛

⎝

kj∑

l=1

bjl rxj
l

⎞

⎠

〉

dυ

∣
∣
∣
∣
dυ

± Ψ(ε;n,L) = Ψ(ε;n,L).

On the other hand, we have

1
volBt(wi)

∫

Bt(wi)

∣
∣
∣
∣
∣
∣

dfi − d

⎛

⎝

kj∑

l=1

aj
l rxj

l (i)

⎞

⎠

∣
∣
∣
∣
∣
∣

2

dvol

=
1

volBt(wi)

∫

Bt(wi)
|dfi|2dvol −

kj∑

l=1

aj
l

volBt(wi)

∫

Bt(wi)
〈dfi, drxj

l (i)
〉dvol

+
∑

l,l̂

aj
l a

j

l̂

volBt(wi)

∫

Bt(wi)
〈drxj

l (i)
, drxj

l̂
(i)〉dvol

≤ 1
υ(Bt(w∞))

∫

Bt(w∞)
|df∞|2dυ −

k∑

l=1

aj
l

υ(Bt(w∞))

∫

Bt(w∞)
〈df∞, drxj

l
〉dυ

+
∑

l,l̂

aj
l a

j

l̂

υ(Bt(w∞))

∫

Bt(w∞)
〈drxj

l
, drxj

l̂

〉dυ + Ψ(ε;n,L)

=
1

υ(Bt(w∞))

∫

Bt(w∞)

∣
∣
∣
∣
∣
∣

df∞ − d

⎛

⎝

kj∑

l=1

aj
l rxj

l

⎞

⎠

∣
∣
∣
∣
∣
∣

2

dυ + Ψ(ε;n,L)

≤ Ψ(ε;n,L)

for every sufficiently large i. Similarly, we have

1
volBt(wi)

∫

Bt(wi)

∣
∣
∣
∣
∣
∣

dgi − d

⎛

⎝

kj∑

l=1

bjl rxj
l (i)

⎞

⎠

∣
∣
∣
∣
∣
∣

2

dvol ≤ Ψ(ε;n,L)
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for every sufficiently large i. Especially, we have

1
volBt(wi)

∫

Bt(wi)

∣
∣
∣
∣
∣
∣

〈dfi, dgi〉 − 1
volBt(wi)

×
∫

Bt(wi)

〈

d

⎛

⎝

kj∑

l=1

aj
l rxj

l (i)

⎞

⎠ , d

⎛

⎝

kj∑

l=1

bjl rxj
l (i)

⎞

⎠

〉

dvol

∣
∣
∣
∣
∣
∣

dvol ≤ Ψ(ε;n,L).

Therefore, by Corollary 3.1, we have the assertion. �

Corollary 4.2. Let Ω be a non-empty open subset of BR(x∞). Assume that
dfi → df∞ at a.e. w ∈ Ω. Then dfi → df∞ on Ω.

Proof. The assertion follows from Proposition 4.7 and Theorem 4.1. �

Corollary 4.3. Let {gi}1≤i≤∞ be a sequence of Lipschitz functions gi on
BR(xi) with supi(Lipgi + |gi|L∞(BR(xi))) <∞, and A a Borel subset of
BR(x∞). Assume that (fi, dfi) → (f∞, df∞) and (gi, dgi) → (g∞, dg∞) on
A. Then, (fi + gi, d(fi + gi)) → (f∞ + g∞, d(f∞ + g∞)) at a.e. w∞ ∈ A, and
(figi, d(figi)) → (f∞g∞, d(f∞g∞)) at a.e. w∞ ∈ A.

Proof. By Theorem 4.1, there exists a Borel subset Â of A such that υ(A \
Â) = 0 and that |dfi|2, 〈dfi, dgi〉 and |dgi|2 converge strongly to |df∞|2,
〈df∞, dg∞〉 and |dg∞|2 on Â, respectively. Since |d(figi)|2 = f2

i |dgi|2 +
2figi〈dfi, dgi〉 + gi|dfi|2, by Proposition 4.1, |d(figi)|2 converges strongly to
f2∞|dg∞|2 + 2f∞g∞〈df∞, dg∞〉 + g2∞|df∞|2 = |d(f∞g∞)|2 on Â. On the other
hand, since d(figi) = gidfi + fidgi, by Proposition 4.4, 〈drzi

, d(figi)〉 con-
verges weakly to g∞〈drz∞ , df∞〉 + f∞〈drz∞ , dg∞〉 = 〈drz∞ , d(f∞g∞)〉 on Â
for every zi → z∞. Therefore, we have (figi, d(figi)) → (f∞g∞, d(f∞g∞)) on
Â. Similarly, we have (fi + gi, d(fi + gi)) → (f∞ + g∞, d(f∞ + g∞)) on Â.

�

Corollary 4.4. Let k be a positive integer, {Ai}1≤i≤∞ a sequence of Borel
subsets Ai of BR(xi), {f l

i , g
l
i}1≤i≤∞,1≤l≤k a collection of Lipschitz functions

f l
i , g

l
i on BR(xi) with supi(Lip f l

i + Lip gl
i) <∞, and {Fi}1≤i≤∞ a sequence

of continuous functions on Rk. Assume that the following properties hold:

1. Fi converges to F∞ with respect to the compact uniformly topology.

2. 1Ai
converges weakly to 1A∞ at a.e. w∞ ∈ BR(x∞).

3. df l
i → df l∞ and dgl

i → dgl∞ at a.e. w∞ ∈ A∞ for every 1 ≤ l ≤ k.
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Then we have

lim
i→∞

∫

Ai

Fi(〈df1
i , dg

1
i 〉, . . . , 〈dfk

i , dg
k
i 〉)dvol

=
∫

A∞

F∞(〈df1
∞, dg

1
∞〉, . . . , 〈dfk

∞, dg
k
∞〉)dυ.

Proof. The assertion follows from Propositions 4.1, 4.5 and Theorem 4.1. �

We shall end this subsection by giving several remarks:

Remark 4.3. By several arguments in Section 3, and the proof of Theo-
rem 4.1, we can also show the following: assume that the following properties
hold:

1. L2-energy of {fi}i are upper semicontinuous at every α ∈ BR(x∞),

2. There exists a dense subset A of BR(x∞) and a Borel subset Â of
BR(x∞) such that υ(BR(x∞) \ Â) = 0 and that 〈drwi

, dfi〉 converges
weakly to 〈drw∞ , df∞〉 at every α ∈ Â for every w∞ ∈ A and every
wi → w∞.

Then, dfi → df∞ on BR(x∞).

Remark 4.4. Let {(Yi, yi, υi)}1≤i≤∞ be a sequence of Ricci limit spaces and
{fi}1≤i≤∞ a sequence of Lipschitz functions fi on BR(yi). Then, similarly, we
can also define a notion of convergence: dfi → df∞ and give several properties
as above.

Remark 4.5. Let (Y, y, υ) be a Ricci limit space and {fi}1≤i≤∞ a sequence
of Lipschitz functions on BR(y) with supi Lipfi <∞. Then, dfi → df∞ on
BR(y) (in the sense of Definition 4.4 with respect to the convergence

(Y, y, υ)
(idY ,Ri,εi)→ (Y, y, υ)) if and only if |Lip(fi − f∞)|L2(BR(y)) → 0. We shall

check it below. By Corollary 4.4, it suffices to check “if” part. Assume that
|Lip(fi − f∞)|L2(BR(y)) → 0. Then, it is clear that L2-energy of {fi}i are
upper semicontinuous at every w ∈ BR(y). On the other hand, by Propo-
sition 4.8, we have limi→∞ |Lip(rxi

− rx∞)|L2(BR(y)) = 0 for every xi → x∞ ∈
Y . Especially, 〈drxi

, dfi〉 converges weakly to 〈drx∞ , df∞〉 at every w ∈ BR(y).
Thus, dfi → df∞ on BR(y).
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4.4. An approximation theorem

Throughout this subsection, we shall use the following notation (same to one
used in previous subsection): Let {(Mi,mi)}i be a sequence of pointed n-
dimensional complete Riemannian manifolds with RicMi

≥−(n− 1), (Y, y, υ)
a Ricci limit space of {(Mi,mi, vol)}i, xi a point in Mi for every i <∞, x∞
a point in Y satisfying (Mi,mi, xi, vol)

(φi,Ri,εi)→ (Y, y, x∞, υ). A purpose in
this subsection is to give the following approximation theorem. Roughly
speaking, it means that for a given Lipschitz function f∞ on BR(x∞), there
exists a sequence of Lipschitz functions fi on BR(xi) approximating the
given function with respect to the topology: “(fi, dfi) → (f∞, df∞)”.

Theorem 4.2 (Approximation theorem). Let L,R be positive numbers,
f∞ an L-Lipschitz function on BR(x∞), A∞ a compact subset of BR(x∞),
{Ai}1≤i<∞ a sequence of Borel subsets Ai of BR(xi), and
{fi}1≤i<∞ a sequence of L-Lipschitz functions fi on Ai. Assume that
lim supGH

i→∞Ai ⊂ A∞ and that f∞|A∞ is an extension of {fi}i asymptoti-
cally. Then, for every ε > 0, there exist an open subset Ωε of BR(x∞) \A∞,
and a sequence {f ε

i }1≤i≤∞ of C(n,L)-Lipschitz functions f ε
i on BR(xi) such

that (f ε
i , df

ε
i ) → (f ε∞, df ε∞) on Ωε, f ε

i |Ai
= fi|Ai

for every 1 ≤ i ≤ ∞, and

υ(BR(x∞) \ (Ωε ∪A∞))
υ(BR(x∞))

+ |f∞ − f ε
∞|L∞(BR(x∞)) + |Lip(f ε

∞ − f∞)|L2(BR(x∞)) < ε.

Proof. Fix sufficiently small ε > 0 and ξ > 0 (we will decide ξ later). By
Lemma 3.5 and (the proof of) Theorem 3.1, there exist collections of pair-
wise disjoint Borel subsets {Ej}j of BR(x∞), of positive numbers {τj}j , of
positive integers {kj}j with 1 ≤ kj ≤ n, and of points {xj

l }j,1≤l≤kj
in Y such

that the following properties hold:

1. υ∞
(

BR(x∞) \⋃

j Ej

)

= 0 and Ej ⊂
⋂kj

l=1

(

Dτj

xj
l

\Bτj
(xj

l )
)

for every j.

2. For every w ∈ Ej , we have

〈drxj
l
, drxj

l̂

〉(w) = lim
r→0

1
υ(Br(w))

∫

Br(w)
〈drxj

l
, drxj

l̂

〉dυ = δl,l̂ ± ε.
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3. For every w ∈ Ej , there exists rw > 0 such that rw � τj , B10rw
(w) ⊂

BR(x∞) and

1
υ(Bt(w))

∫

Bt(w)

∣
∣
∣
∣
∣
∣

df∞ − d

⎛

⎝

kj∑

l=1

aj
l (w)rxj

l

⎞

⎠

∣
∣
∣
∣
∣
∣

2

dυ < ε

for every 0 < t < rw.

Put X =
⋃∞

j=1(Ej \ B5ξ(A∞)). By Proposition 2.2, there exists a pairwise
disjoint collection {Bri

(zi)}i ⊂BR(x∞) such that zi ∈X, ri << min{rzi
, ε, ξ}

and X \⋃N
i=1Bri

(zi) ⊂
⋃∞

i=N+1B5ri
(zi) for every N . For every i, let l(i)

with zi ∈ El(i). Without loss of generality, we can assume that l(i) = i. Fix
N satisfying

∑∞
i=N+1 υ(Bri

(zi)) < ε. Let zi(j) → zi and xl
m(j) → xl

m. Define
functions F j

i on Bri
(zi(j)), and Fi on Bri

(zi) by

F j
i =

ki∑

m=1

ai
mrxi

m(j) + Ci, Fi =
ki∑

m=1

ai
mrxi

m
+ Ci,

where Ci is the constant defined by satisfying Fi(zi) = f∞(zi), and ai
m =

ai
m(zi).

Claim 4.1. We have LipF j
i + LipFi ≤ C(n,L) for every i, j.

The proof is as follows. Since

|df∞(zi)|2 =
∑

s,t

ai
sa

i
t〈drxi

s
, drxi

t
〉(zi)

=
∑

s,t

ai
sa

i
t(δs,t ± ε)

= (1 ± ε)
ki∑

s=1

(ai
s)

2 ± Ψ(ε;n)
ki∑

s=1

(ai
s)

2 = (1 ± Ψ(ε;n))
ki∑

s=1

(ai
s)

2

and |df∞|(zi) ≤ L, we have
∑ki

m=1(a
i
m)2 ≤ L2 + Ψ(ε;n,L). Therefore, we

have Claim 4.1.
We remark that {Bri

(zi(j))}1≤i≤N is a pairwise disjoint collection for
every sufficiently large j. Define functions Fj on

⋃N
m=1B(1−ξ)ri

(zi(j)), and
F∞ on

⋃N
m=1B(1−ξ)ri

(zi) by Fj |B(1−ξ)ri
(zi(j))=F

i
j |B(1−ξ)ri

(zi(j)), F∞|B(1−ξ)ri
(zi)=

Fj |B(1−ξ)ri
(zi) for every sufficiently large j.
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Claim 4.2. We have LipFj + LipF∞ ≤ C(n,L) + ξ−1Ψ(ε;n,L) for every
sufficiently large j.

The proof is as follows. By Claim 4.1, we have Lip(Fj |B(1−ξ)ri
(zi(j))

) +
Lip(F∞|B(1−ξ)ri

(zi)
) ≤ C(n,L) for every i, j. Let j0 satisfying that εj <<

min{ξr1, . . . , ξrN} for every j ≥ j0. Fix j ≥ j0, 1 ≤ l < m ≤ N , wl(j) ∈
B(1−ξ)rl

(zl(j)) and wm(j) ∈ B(1−ξ)rm
(zm(j)). Since Brl

(zl(j)) ∩Brm

(zm(j)) = ∅, there exists α(j) ∈ ∂Brl
(zl) such that wl(j), α(j) + α(j), wm(j)

= wl(j), wm(j). Thus, we have wl(j), wm(j) ≥ wl(j), α(j) ≥ ξrl. Similarly,
we have wl(j), wm(j) ≥ ξrm. Thus, we have wl(j), wm(j) ≥ ξ(rl + rm)/2. On
the other hand, since

1
υ(B10rl

(zl))

∫

B10rl
(zl)

∣
∣
∣
∣
∣
Lip

(

f∞ −
kl∑

s=1

al
srxl

s

)∣
∣
∣
∣
∣

2

dυ < ε,

by the segment inequality on limit spaces [6, Theorem 2.6], there exist points
ẑl, ˆφj(wl(j)) in Brl

(zl) and a minimal geodesic γ from ẑl to ˆφj(wl(j)) such
that zl, ẑl + φj(wl(j)), ˆφj(wl(j)) < Ψ(ε;n)rl and

∫ ẑl, ˆφj(wl(j))

0
Lip

(

f∞ −
kl∑

s=1

al
srxl

s

)

(γ(t))dt < Ψ(ε;n)rl.

Therefore, we have
∣
∣
∣
∣
∣
f∞(ẑl) −

kl∑

s=1

al
srxl

s
(ẑl) −

(

f∞( ˆφj(zl(j))) −
kl∑

s=1

al
srxl

s
( ˆφj(zl(j)))

)∣
∣
∣
∣
∣

≤
∫ ẑl, ˆφj(wl(j))

0
Lip

(

f∞ −
kl∑

s=1

al
srxl

s

)

(γ(t))dt < Ψ(ε;n)rl.

Thus, we have
∣
∣
∣
∣
∣
f∞(zl) −

kl∑

s=1

al
srxl

s
(zl) −

(

f∞(φj(zl(j))) −
kl∑

s=1

al
srxl

s
(φj(zl(j)))

)∣
∣
∣
∣
∣

≤ Ψ(ε;n,L)rl.

Especially, we have |Fj(wl(j)) − f∞ ◦ φj(wl(j))| ≤ Ψ(ε;n,L)rl. Similarly, we
have |Fj(wm(j)) − f∞ ◦ φj(wm(j))| ≤ Ψ(ε;n,L)rm and |F∞ − f∞| ≤ Ψ
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(ε;n,L)rl on B(1−ξ)rl
(zl). Therefore, we have

|Fj(wl(j)) − Fj(wm(j))| ≤ |f∞ ◦ φj(wl(j)) − f∞ ◦ φj(wl(j))|
+ Ψ(ε;n,L)(rl + rm)

≤ Lφj(wl(j)), φj(wm(j)) + Ψ(ε;n,L)(rl + rm)

≤ L(wl(j), wm(j) + εj) + Ψ(ε;n,L)(rl + rm)

≤ Lwl(j), wm(j) + Ψ(ε;n,L)(rl + rm)

≤ (L+ ξ−1Ψ(ε;n,L))wl(j), wm(j).

Thus, by Claim 4.1, we have LipFj ≤ C(n,L) + ξ−1Ψ(ε;n,L). Similarly, we
have LipF∞ ≤ C(n,L) + ξ−1Ψ(ε;n,L). Therefore, we have Claim 4.2.

Claim 4.3. We have
⋃N

i=1B(1−ξ)ri
(zi(j))⊂Mi \B2ξ(Ai) and

⋃N
i=1

B(1−ξ)ri
(zi) ⊂ Y \B2ξ(A∞) for every sufficiently large j.

The proof is as follows. It is easy to check that
⋃N

i=1Bri
(zi) ⊂ Y \

B2ξ(A∞). On the other hand, by the assumption, there exists i0 such that
φi(Ai) ⊂ Bξ(A∞) and εi << min1≤j≤N{ξrj} for every i ≥ i0. Thus, since
φi

(
⋃N

i=1B(1−ξ)ri
(zi(j))

)

⊂ ⋃N
i=1Bri

(zi) ⊂ Y \B4ξ(A∞) for every i ≥ i0, we
have Claim 4.3.

Claim 4.4. We have

lim
i→∞

sup
Ai

|fi − f∞ ◦ φi| = 0.

The proof is done by a contradiction. Assume that the assertion is false.
Then, there exists τ > 0, a subsequence {n(i)}i of N, and αn(i) ∈ An(i)

such that |fn(i)(αn(i)) − f∞ ◦ φn(i)(αn(i))| > τ . Without loss of generality,
we can assume that there exists α∞ ∈ Y such that φn(i)(αn(i)) → α∞. Thus,
lim infi→∞ |fn(i)(αn(i)) − f∞(α∞)| ≥ τ . On the other hand, we have α∞ ∈
A∞ = A∞. Since f∞|A∞ is an extension of {fi}i asymptotically, this is a
cotradiction. Therefore, we have Claim 4.4.

Put Wj =
⋃N

m=1B(1−ξ)ri
(zi(j)) and W∞ =

⋃N
m=1B(1−ξ)ri

(zi). By Claim
4.3, we can define Lipschitz functions Gj on Wj ∪Aj , and G∞ on W∞ ∪A∞
by Gj |Wj

= Fj |Wj
, Gj |Aj

= fj , G∞|W∞ = F∞|W∞ and G∞|A∞ = f∞|A∞ for
every sufficiently large j.

Claim 4.5. We have LipGj +LipG∞≤C(n,L) + ξ−1Ψ(ε;n,L) for every
sufficiently large j.
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The proof is as follows. Put ξj = supAj
|fj − f∞ ◦ φj |. Then by the proof

of Claim 4.2, there exists j0 such that

|Gj(αj) −Gj(βj)| = |Fj(αj) − fj(βj)|
≤ |F∞ ◦ φj(αj) − f∞ ◦ φj(βj)| + Ψ(ε;n,L)ri + ξj

≤ |f∞ ◦ φj(αj) − f∞ ◦ φj(βj)| + Ψ(ε;n,L)ri + ξj

≤ Lφj(αj), φj(βj) + Ψ(ε;n,L)ri
≤ L(αj , βj + εj) + Ψ(ε;n,L)ξ ≤ (L+ Ψ(ε;n,L))αj , βj

for every j ≥ j0, every αj ∈ B(1−ξ)ri
(zi(j)) and every βj ∈ Aj . Therefore, by

Claim 4.2, we have LipGj ≤ C(n,L) + ξ−1Ψ(ε;n,L) for every sufficiently
large j. Similarly, we have LipG∞ ≤ C(n,L) + ξ−1Ψ(ε;n,L). Thus, we have
Claim 4.5.

For Ψ = Ψ(ε;n,L) as in Claim 4.5, put ξ =
√

Ψ. Let f ε
j be a Lips-

chitz function on Mj and f ε∞ a Lipschitz function on Y satisfying that
Lipf ε

j = LipGj , Lipf ε∞ = LipG∞, f ε
j |Wj∪Aj

= Fj |Wj∪Aj
and f ε∞|W∞∪A∞ =

F∞|W∞∪A∞ . Put Ωε = W∞. Then, by Proposition 4.8 and Corollary 4.3, we
have (f ε

i , df
ε
i ) → (f ε∞, df ε∞) on Ωε. On the other hand, we have υ(BR(x∞) \

(Ωε ∪A∞)) ≤ υ(X \ Ωε) + υ(B5ξ(A∞) \A∞) ≤ ∑∞
i=N+1 υ(B5ri

(zi)) + υ

(B5ξ(A∞) \A∞) + Ψ(ε;n,L) ≤ C(n)ε+ υ(B5ξ(A∞) \A∞) + Ψ(ε;n,L) and
∫

BR(x∞)
|df∞ − df ε

∞|2dυ ≤
∫

X
|df∞ − df ε

∞|2dυ +
∫

B5ξ(A∞)
|df∞ − df ε

∞|2dυ

≤
N∑

i=1

∫

B(1−ξ)ri
(zi)

|df∞ − df ε
∞|2dυ

+ 5L2υ(B5ξ(A∞) \A∞) +
∫

A∞

|df ε
∞ − df∞|2dυ

+ Ψ(ε;n,L)

≤
N∑

i=1

ευ(B(1−ξ)ri
(zi)) + 5L2υ(B5ξ(A∞) \A∞)

+ Ψ(ε;n,L)

≤ ευ(BR(x∞)) + 5L2υ(B5ξ(A∞) \A∞)
+ Ψ(ε;n,L).

We remark that since A∞ is compact, we have limr→0 υ(Br(A∞) \A∞) = 0.
Put τ(r) = υ(Br(A∞) \A∞). On the other hand, by the proof of Claim 4.2,
we have |f ε∞ − f∞| < Ψ(ε;n,L) on Ωε ∪A∞. For every w ∈ BR(x∞), there
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exists ŵ ∈ Ωε ∪A∞ such that w, ŵ < Ψ(ε, τ(5ξ);n,L, υ(BR(x∞))). There-
fore, we have |f ε∞(w) − f∞(w)| ≤ |f ε∞(ŵ) − f∞(ŵ)| + Ψ(ε, τ(5ξ);n,L, υ(BR

(x∞)))≤Ψ(ε, τ(5ξ);n,L, υ(BR(x∞))). Thus, we have |f ε∞ − f∞| < Ψ(ε, τ
(5ξ);n,L, υ(BR(x∞))) on BR(x∞). Since it is not difficult to check that
|Lip(f ε∞ − f∞)|L2(BR(x∞)) ≤ Ψ(ε;n,L,R, υ(BR(x∞))), we have the assertion.

�
By using Theorem 4.2, we shall give a sufficient condition to satisfy

pointwise upper semicontinuity of L2-energy:

Proposition 4.9. Let R be a positive number, fi a C2-function on BR(xi)
for every i <∞, and f∞ a Lipschitz function on BR(x∞). Assume that

sup
i

(

Lipfi +
∫

BR(xi)
|Δfi|dvol

)

<∞

and fi → f∞ on BR(x∞). Then, we have

lim sup
i→∞

∫

BR(xi)
(Lipfi)2dvol ≤

∫

BR(x∞)
(Lipf∞)2dυ.

Especially, L2-energy of {fi}i are upper semicontinuous at every w∈BR(x∞).

Proof. Let gi = Δfi. First, we shall remark the following:

Claim 4.6. We have
∫

BR(xi)
|d(fi + k)|2dvol − 2

∫

BR(xi)
gi(fi + k)dvol

≥
∫

BR(xi)
|dfi|2dvol − 2

∫

BR(xi)
gifidvol

for every Lipschitz function k on BR(xi), which has compact support.

Claim 4.6 follows from the equality:
∫

BR(xi)
|d(fi + k)|2dvol − 2

∫

BR(xi)
gi(fi + k)dvol

=
∫

BR(xi)
|dfi|2dvol − 2

∫

BR(xi)
gifidvol

+
∫

BR(xi)
|dk|2dvol.
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Fx ε > 0. Let L ≥ 1 with

sup
i

(

Lipfi + |fi|L∞(BR(xi)) +
∫

BR(xi)
|gi|dvol

)

< L.

Since lim supGH
i→∞AR−ε,R(xi) ⊂ AR−ε,R(x∞), by Theorem 4.2, there exists

a sequence {f ε
i }1≤i≤∞ of C(n,L)-Lipschitz functions f ε

i on BR(xi), and an
open set Ωε ⊂ BR(x∞) \AR−ε,R(x∞) such that f ε

i |AR−ε,R(xi) = fi|AR−ε,R(xi)

for every 1 ≤ i ≤ ∞, (f ε
i , df

ε
i ) → (f ε∞, df ε∞) on Ωε, and

υ (BR(x∞) \ (Ωε ∪AR−ε,R(x∞)))
υ(BR(x∞))

+ |f∞ − f ε
∞|L∞(BR(x∞))

+ |Lip(f ε
∞ − f∞)|L2(BR(x∞)) < ε.

By Claim 4.6, we have
∫

BR(xi)
|df ε

i |2dvol− 2
∫

BR(xi)
gif

ε
i dvol≥

∫

BR(xi)
|dfi|2dvol− 2

∫

BR(xi)
gifidvol.

By Proposition 2.2, without loss of generality, we can assume that there
exists a pairwise disjoint finite collection {Bri

(zi)}1≤i≤N such that Ωε =
⋃N

i=1Bri
(zi). Let zi(j) → zi. Put Ωε(j) =

⋃N
i=1Bri

(zi(j)). Since vol(Ωε(j) ∪
AR−ε,R(xj))/volBR(xj) ≥ 1 − ε for every sufficiently large j, by Proposi-
tion 4.7, we have

∣
∣
∣
∣
∣

∫

BR(xj)
|df ε

j |2dvol −
∫

BR(x∞)
|df∞|2dυ

∣
∣
∣
∣
∣
< Ψ(ε;n,L,R).

On the other hand, since supBR(xj) |f ε
j − fj | ≤ C(n,R,L) supΩε(j) |f ε

j − fj |
and lim supj→∞ supΩε(j) |f ε

j − fj | ≤ supΩε
|f ε∞ − f∞|, we have

∣
∣
∣
∣
∣

∫

BR(xj)
gjf

ε
jdvol −

∫

BR(xj)
gjfjdvol

∣
∣
∣
∣
∣
≤ sup

BR(xj)
|f ε

j − fj |
∫

BR(xj)
|gj |dvol

≤ Ψ(ε;n,R,L)

for every sufficiently large j. Therefore, we have

lim sup
i→∞

∫

BR(xi)
|dfi|2dvol ≤

∫

BR(x∞)
|df∞|2dυ + Ψ(ε;n,L,R).

By letting ε→ 0, we have the assertion. �
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Next corollary follows from Remark 4.2 and Proposition 4.9 directly. See
also [16, 35]:

Corollary 4.5. Let R be a positive number, fi a C2-function on BR(xi)
for every i <∞, and f∞ a Lipschitz function on BR(x∞). Assume that

sup
i

(

Lipfi +
∫

BR(xi)
|Δfi|2dvol

)

<∞

and fi → f∞ on BR(x∞). Then, we have (fi, dfi) → (f∞, df∞) on BR(x∞).

Next we shall consider a convergence of the equations Δfi = gi with
respect to the measured Gromov–Hausdorff convergence:

Corollary 4.6. Let R be a positive number, fi a C2-function on BR(xi)
for every i <∞, and f∞ a Lipschitz function on BR(x∞) with supi(Lipfi +
|Δfi|L∞(BR(xi))) <∞. Assume that fi → f∞ on BR(x∞) and that there exists
a L∞-function g∞ on BR(x∞) such that Δfi converges weakly to g∞ at a.e.
w ∈ BR(x∞). Then, we have

∫

BR(x∞)
〈df∞, dk∞〉dυ =

∫

BR(x∞)
k∞g∞dυ

for every Lipschitz function k∞ on BR(x∞), which has compact support.

Proof. By Corollary 4.5, we have (fi, dfi) → (f∞, df∞) on BR(x∞). Let L ≥
1 with supi(Lipfi + |fi|L∞(BR(xi)) + |Δfi|L∞(BR(xi))) < L. Put r =
supw∈supp k∞ x∞, w and gi = Δfi. Then, we have r < R. Fix ε > 0 with
ε < R− r. By Theorem 4.2, there exists a sequence {kε

i}1≤i≤∞ of C(n,L)-
Lipschitz functions kε

i onBR(xi), and an open set Ωε ⊂BR(x∞) \AR−ε,R(x∞)
such that kε

i |AR−ε,R(xi) = 0 for every 1 ≤ i ≤ ∞, (kε
i , dk

ε
i ) → (kε∞, dkε∞) on Ωε

and

υ (BR(x∞) \ (Ωε ∪AR−ε,R(x∞)))
υ(BR(x∞))

+ |k∞ − kε
∞|L∞(BR(x∞))

+ |Lip(kε
∞ − k∞)|L2(BR(x∞)) < ε.
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By Proposition 4.4, kε
igi converges weakly to kε∞g∞ at a.e. w ∈ Ωε. By an

argument similar to the proof of Propositions 4.9 and 4.7, we have
∣
∣
∣
∣
∣

∫

BR(xi)
〈dfi, dk

ε
i 〉dvol −

∫

BR(x∞)
〈df∞, dkε

∞〉dυ
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫

BR(xi)
gik

ε
idvol −

∫

BR(x∞)
g∞kε

∞dυ

∣
∣
∣
∣
∣
< Ψ(ε;n,L,R)

for every sufficiently large i. Since
∫

BR(xi)
〈dfi, dk

ε
i 〉dvol =

∫

BR(xi)
gik

ε
idvol,

we have
∫

BR(x∞)
〈df∞, dk∞〉dυ =

∫

BR(x∞)
g∞k∞dυ ± Ψ(ε;n,L,R).

By letting ε→ 0, we have the assertion. �
We shall recall the notion of (2-) harmonic for Lipschitz functions on

Ricci limit spaces. For a Lipschitz function f on BR(x∞), we say that f is
harmonic on BR(x∞) if

∫

BR(x∞)
|df |2dυ ≤

∫

BR(x∞)
|d(f + k)|2dυ

for every Lipschitz function k on BR(x∞), which has compact support.
We remark that the notion of harmonic function for H1.2-functions is well
defined. See Section 7 in [2]. See also [15, 18–20]. The following corollary
follows from Corollaries 4.5 and 4.6 directly. See also [11].

Corollary 4.7. Let R be a positive number, fi a harmonic function on
BR(xi) for every i <∞, and f∞ a Lipschitz function on BR(x∞) with
supi Lipfi <∞. Assume that fi → f∞ on BR(x∞). Then, we have (fi, dfi)
→ (f∞, df∞) on BR(x∞). Moreover, we have

∫

BR(x∞)
〈df∞, dk∞〉dυ = 0

for every Lipschitz function k∞ on BR(x∞), which has compact support.
Especially, f∞ is harmonic on BR(x∞).
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Appendix A. A proof of Claim 3.15

In this appendix, we shall give a proof of Claim 3.15. Define functions π1, fA
r

on Rk by π1((x1, . . . , xk)) = x1, fA
r (x) = Hk−1(Br(x) ∩A ∩ π−1

1 (π1(x)))1A(x).
We remark that by the definition of sl1 − LebA,

sl1 − LebA

=
{

a = (a1, . . . , ak) ∈ A; lim inf
r→0

Hk−1(Br(a) ∩A ∩ π−1
1 (π1(a)))

ωk−1rk−1
= 1

}

.

First, assume that A is compact.

Claim A.1. The function fA
r is an upper semi-continuous function on Rk.

Especially, fA
r is a Hk-measurable function.

Proof. Let {xi}1≤i≤∞ be a sequence of points in Rk with xi → x∞. It suffices
to check that lim supi→∞ fA

r (xi) ≤ fA
r (x∞) under the assumption: xj ∈ A

for every j. Fix δ > 0. Let {n(i)}i∈N be a subsequence of N satisfying
limj→∞Hk−1(Br(xn(j)) ∩A ∩ π−1

1 (π1(xn(j)))) = lim supi→∞Hk−1(Br(xi) ∩
A ∩ π−1

1 (π1(xi))). On the other hand, since {Br(xn(j))∩A∩π−1
1 (π1(xn(j)))}j

is precompact with respect to the Hausdroff distance on Rk, without loss
of generality, we can assume that there exists a compact subset K∞ of Rk

such that Br(xn(j)) ∩A ∩ π−1
1 (π1(xn(j))) converges to K∞ with respect to

the Hausdorff distance on Rk. Then, it is easy to check K∞ ⊂ Br(x∞) ∩A ∩
π−1

1 (π1(x∞)). There exists a finite collection {Bri
(yi)}1≤i≤N such that ri �

δ,Br(x∞) ∩A ∩ π−1
1 (π1(x∞)) ⊂ ⋃N

i=1Bri
(yi) and

∣
∣Hk−1(Br(x∞) ∩A ∩ π−1

1
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(π1(x∞))) −∑N
i=1 ωk−1r

k−1
i

∣
∣
∣ < δ. Since Br(x∞) ∩A ∩ π−1

1 (π1(x∞)) is com-

pact, there exists τ0 > 0 such that Bτ0(Br(x∞)∩A∩π−1
1 (π1(x∞)))⊂ ⋃N

i=1

Bri
(yi). Since Br(xn(j))∩A∩π−1

1 (π1(xn(j)))⊂Bτ0(K∞) for every sufficiently
large j, we have Br(xn(j)) ∩A ∩ π−1

1 (π1(xn(j))) ⊂
⋃N

i=1Bri
(yi). Thus, we

have Hk−1(Br(xn(j)) ∩A ∩ π−1
1 (π1(xn(j)))) ≤

∑N
i=1H

k−1(Br(yi) ∩ π−1
1 (π1

(xn(j))))≤
∑N

i=1 ωk−1r
k−1 ≤Hk−1(Br(x∞)∩A∩π−1

1 (π1(x∞)))+ δ for every
sufficiently large j. Therefore, we have Claim A.1. �

By Claim A.1, we have statement 1 in Claim 3.15. Statement 2 follows
from the Lebesgue differentiation theorem on Euclidean spaces. Finally, by
Fubini’s theorem, we have

Hk(A \ sl1 − LebA) =
∫

R
Hk−1

(

A ∩ ({t} × Rk−1) \ sl1 − LebA
)

dt = 0.

Thus, we have Statement 3. Therefore, we have Claim 3.15 if A is compact.
We shall give a proof of Claim 3.15 in the general case. Fix R > 0.

There exists a sequence of compact subsets {Ki}i of BR(0k)∩A such that
Hk(BR(0k) ∩A \Ki) → 0. Then, we have sl1 −LebKi ⊂ sl1 − Leb(BR(0k)
∩A). Thus, we haveHk(BR(0k) ∩A \ sl1 − Leb(BR(0k) ∩A)) ≤ Hk(BR(0k)
∩A \ sl1 −LebKi)≤Hk(BR(0k)∩A \Ki) +Hk(Ki \ sl1 − LebKi)

i→∞→ 0 as
an outer measure. Thus, sl1 − Leb(BR(0) ∩A) is a Hk-measurable set. Since
sl1 − LebA =

⋃

N∈N (sl1 − Leb(A ∩BN (0))), we have Statement 1 in Claim
3.15. By the Lebesgue differentiation theorem and Fubini’s theorem, we have
Statements 2 and 3. Thus, we have Claim 3.15.
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