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On existence of the prescribing k-curvature problem

on manifolds with boundary

Yan He and Weimin Sheng

In this paper, we study the problem of conformally deforming a
metric to a prescribed kth order symmetric function of the eigenval-
ues of the Schouten tensor on compact Riemannian manifolds with
totally geodesic boundary. We prove the solvability of the prob-
lem and the compactness of the solution set for the case k ≥ n/2,
provided the conformal class admits a k-admissible metric. These
results have been proved by Gursky and Viaclovsky, Trudinger and
Wang for the manifolds without boundary, and by Jin et al. and
S. Chen for the locally conformally flat manifolds with boundary.

1. Introduction

In this paper, we study the existence of the solution to a prescribing
k-curvature problem on manifolds with boundary and the compactness of
the solution set.

Let (Mn, g) be a smooth, compact Riemannian manifold of dimension
n ≥ 3. The Schouten tensor of g is defined by

Ag =
1

n− 2

(
Ricg −

Rg

2(n− 1)
g

)
,

where Ric and R are the Ricci and scalar curvatures of g, respectively. Let
[g] be the set of metrics conformal to g. For g̃ = e−2ug ∈ [g], we consider the
equation

(1.1) σ
1/k
k

(
λ(g̃−1Ag̃)

)
= f(x),

where σk : Rn → R denotes the kth elementary symmetric function (1 ≤
k ≤ n), and λ(g−1Ag) the eigenvalues of g−1Ag. σk

(
λ(g−1Ag)

)
is called

k-curvature. The Schouten tensor transforms according to the formula

Ag̃ = ∇2u+ du⊗ du− 1
2
|∇u|2g +Ag,
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where ∇u and ∇2u denote the gradient and Hessian of u with respect to g.
Consequently, (1.1) is equivalent to

(1.2) σ
1/k
k

(
λ
(
g−1

[
∇2u+ du⊗ du− 1

2
|∇u|2g +Ag

]))
= f(x)e−2u.

Let Γk ⊂ Rn denote the component of {x ∈ Rn | σk(x) > 0} containing the
positive cone {x ∈ Rn | x1 > 0, . . . , xn > 0} and [g]k = {g̃ ∈ [g] | λ(g̃−1Ag̃) ∈
Γk}. We call a metric in [g]k k-admissible, or simply admissible. The func-
tion u is called k-admissible, if e−2ug ∈ [g]k. The k-Yamabe problem is to
find a solution of (1.2) with f(x) = constant for some given metric g on
Mn with g ∈ Γk. When k = 1, it reduces to the classical Yamabe problem.
For compact manifolds without boundary, the classical Yamabe problem
(i.e., k = 1) has been solved by Yamabe [1], Trudinger [2], Aubin [3] and
Schoen [4]. For k ≥ 2, the existence of the solutions to the k-Yamabe equa-
tion ((1.2) for f(x) = constant) has been solved for the cases k = 2, n = 4
[5, 6], k = 2, n ≥ 4 [12], k = n/2 [7], k > n/2 [8, 9] or for locally conformally
flat manifolds [10–12, 33]. The compactness of the solution set has also been
proved when k ≥ n/2 in the above papers, and for locally conformally flat
case, by [13].

For compact Riemannian manifold (Mn, g) with non-empty smooth
boundary ∂M , there are two classes of boundary conditions for the existence
problem of equation (1.2). One is the Dirichlet boundary condition, which
has been studied by Bo Guan in [14]. Another is the Neumann problem, has
been studied by S. Chen, Jin–Li–Li and Li–Li [15–18], etc. For k = 1, there
are also several results (e.g.[19–22], etc.). Under various conditions, they
derive local estimates for solutions and establish some existence results.

In this paper, we are interested in the case k ≥ n/2 with the Neumann
boundary condition. Under the assumption that the boundary is totally
geodesic, we obtain the existence of the solutions to the Neumann problem
and the compactness of the solution set. In fact, we have the following

Theorem 1.1. Let (Mn, g) be compact n-dimensional Riemannian mani-
fold with totally geodesic boundary, n ≥ 3. Assume g is k-admissible with k >
n/2 and M is not conformally equivalent to the standard hemisphere. Then
for any given smooth positive function f ∈ C∞(M), there exists a smooth
function u ∈ C∞(M) such that the conformal metric g̃ = e−2ug satisfies

σ
1
k

k (λ(g̃−1Ag̃)) = f(x)

and M has totally geodesic boundary under g̃. In addition, the set of all such
solutions is compact in the Cm-topology for any m ≥ 0.
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Theorem 1.2. Let (Mn, g) be a compact n-dimensional Riemannian man-
ifold with totally geodesic boundary, n ≥ 4. Assume that g is k-admissible
with k = n/2 and (M, g) is not conformally equivalent to (S+

n , gc), where gc

is the standard metric on the hemisphere. Then for any given smooth pos-
itive function f ∈ C∞(M) there exists a smooth function u ∈ C∞(M) such
that the conformal metric g̃ = e−2ug satisfies

σ
1
k

k (λ(g̃−1Ag̃)) = f(x)

and M has totally geodesic boundary under g̃. In addition, the set of all such
solutions is compact in the Cm-topology for any m ≥ 0.

Here Theorem 1.1 generalizes a result in [17] where it assumes that (M, g)
is locally conformally flat near ∂M . Theorem 1.2 improves a corresponding
result in [15] and [17] for the case k = n/2, where f(x) ≡ constant, and
(M, g) is locally conformally flat.

Recall that the second fundamental form L of ∂M with respect to g is
defined as

L (X,Y ) = −g (∇Xν, Y ) , X, Y ∈ Tx (∂M) ,

where Tx (∂M) denotes the tangent space of ∂M at x, ν is the unit inward
normal vector field to ∂M in (M, g), ∇ is the Levi–Civita connection of
g. A point x ∈ ∂M is umbilic if L (X,Y ) = τg(x)g (X,Y ) for all X,Y ∈
Tx (∂M). The boundary is called umbilic if every point of ∂M is umbilic. A
totally geodesic boundary is umbilic with τg ≡ 0. Note that the umbilicity
is conformally invariant. In fact, we have

L̃ (X,Y ) eu =
∂u

∂ν
g (X,Y ) + L (X,Y ) , for any X,Y ∈ Tx (∂M) ,

where L̃ denotes the second fundamental form of ∂M with respect to
g̃ = e−2ug. When the boundary is umbilic, the above formula becomes

τg̃ e−u =
∂u

∂ν
+ τg.

Especially, if (M, g) has totally geodesic boundary and the conformal metric
g̃ has totally geodesic boundary as well, then the k-Yamabe problem with
totally geodesic boundary becomes to consider the following equation:
(1.3)⎧⎨
⎩
σ

1/k
k

(
λ
(
g−1

[
∇2u+ du⊗ du− 1

2 |∇u|2g +Ag

]))
= f(x) e−2u, in M,

∂u

∂ν
= 0, on ∂M.
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For k > n
2 , we study (1.3) along the line of [8]. By use of the deformation

(2.1), which is defined in [8], we may get (1.3) when t = 1 and the equa-
tion when t = 0 is easier to analyze. The Leray–Schauder degree, defined
in [23]([15] for the boundary case) is non-zero. By homotopy-invariance of
the degree, the existence of the solution reduces to establish a priori esti-
mates for t ∈ [0, 1]. To prove this, we argue it by contradiction. Assuming
that there exists a sequence of solutions {ui} which fails on C0-bound, we
study its blow-up. In Section 3, we prove that there are only finite blow-up
points. Then we show that the super limit of solution ui is +∞ at regular
point in Section 4. Hence, in Section 5, we can obtain a better rescaled func-
tion wi. Then by gluing two copies of M along the boundary, we derive a
C1,1

loc function w̃ on a closed C2,1 manifold M̃ . Therefore, by the argument
in sections 6 and 7 of [8], we know (Mn, e−2wg) is in fact the half-plane in
Euclidean space, which contradicts with the condition that the manifold is
not conformally equivalent to standard hemisphere.

However, when k = n
2 , the Ricci tensor is only positive semi-definite,

it is not enough to prove the existence as the case k > n/2. So, we need
to employ another method. In [7], Trudinger and X.-J. Wang provided an
another approach. By analyzing the asymptotic behavior of the solution at
singular points, they prove the existence of the solutions to equation (1.2)
for manifolds without boundary. By the similar argument as [7], we may
glue two copies of M along the boundary as above, and prove Theorem 1.2
in Section 6.

2. Deformation and C1 and C2 estimates

2.1. Deformation

To prove the existence of solution to the equation (1.3), we employ the
following deformation which is defined in [24]:

(2.1)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ
1/k
k

(
λ
(
g−1

[
λk(1 − ψ(t))g + ψ(t)Ag + ∇2u+ du⊗ du

−1
2 |∇u|2g

]))
= ψ(t)f(x)e−2u + (1 − t)(

∫
e−(n+1)u)

2
n+1 , in M,

∂u

∂ν
= 0, on ∂M.

where ψ ∈ C1[0, 1] satisfies 0 ≤ ψ(t) ≤ 1, ψ(0) = 0, ψ(t) = 1 for t ≥ 1
2 ; and

λk = (n
k)−

1
k vol(M, g)

2
n+1 .
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As [24], at t = 1 (2.1) becomes (1.3). While at t = 0, it becomes⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ
1/k
k

(
λ
(
g−1

[
λkg + ∇2u+ du⊗ du− 1

2 |∇u|2g
]))

=
(∫

e−(n+1)u

) 2
n+1

, in M,

∂u

∂ν
= 0, on ∂M.

It has been pointed out in [24] that the above equation has a unique solution
u(x) ≡ 0, if ∂M = ∅. We can show it is also true in our case.

In fact, it is obvious that u = 0 is a solution. Now we can show its
uniqueness.

At the maximum point x0 of u, no matter x0 is an interior or a boundary
point, it is true that ∇u|x0 = 0, and ∇2u|x0 is negative semi-definite. In
fact, if x0 is interior point, it is easy to be understood. Now we consider
the case that x0 is boundary point. Since ∂u

∂ν |∂M = 0, we have ∂u
∂ν |x0 = 0 and

∂2u
∂ν∂xα |x0 = 0. It is also true that ∂u

∂xα |x0 = 0 and ∂2u
∂xα∂xβ |x0 is negative semi-

definite, where {xα}1≤α≤n−1 is a local coordinates on the boundary ∂M

around x0. For ∂2u
∂ν2 |x0 , we denote u(x) = u(x′, xn), x0 = (x′0, 0). For fixed x′0,

we consider u = u(x′0, xn) as the function of xn. Since u(x0) = u(x′0, 0) is the
maximum of u(x′0, xn) for 0 ≤ xn < ε, ∂2u

(∂xn)2 |x0 ≤ 0. This means that ∂2u
∂ν2 |x0

is nonpositive. Therefore, ∇2u|x0 is negative semi-definite. Now at x0 we have

λk (n
k)1/k = λkσ

1
k

k (λ(g−1 · g))

≥ σ
1/k
k

(
λ
(
g−1

[
∇2u+ du⊗ du− 1

2
|∇u|2g + λkg

]))

=
(∫

e−(n+1)u

) 2
n+1

.

Similarly, at the minimum point of u, we have λk (n
k)1/k ≤ (

∫
e−(n+1)u)

2
n+1 .

Therefore, λk (n
k)1/k = (

∫
e−(n+1)u)

2
n+1 .

By Newton–MacLaurin inequality, we can immediately get σ
1/k
k ≤

1
n(n

k)1/kσ1. Hence,

λk (n
k)1/k = σ

1/k
k

(
λ
(
g−1

[
λkg + ∇2u+ du⊗ du− 1

2
|∇u|2g

]))

≤ 1
n

(n
k)1/k σ1

(
λ
(
g−1

[
λkg + ∇2u+ du⊗ du− 1

2
|∇u|2g

]))

=
1
n

(n
k)1/k

(
�u+ (1 − n

2
)|∇u|2 + nλk

)
.
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Then

(n
2
− 1

) ∫
M

|∇u|2 ≤
∫

M
�u =

∫
∂M

∂u

∂ν
= 0,

and u ≡ constant = 0.

Thus the operator

Ψt[u] = σ
1/k
k

(
λ
(
g−1

[
λk(1−ψ(t))g+ψ(t)Ag +∇2u+du⊗ du− 1

2
|∇u|2g

]))

− ψ(t)f(x)e−2u − (1 − t)
(∫

e−(n+1)u

) 2
n+1

satisfies Leray–Schauder degree deg(Ψ0,O0, 0) �= 0 at t = 0, where the
Leray–Schauder degree is defined by [23]([15] for the boundary case) and O0

is a neighborhood of the zero solution in {u ∈ C4,α(M) : u is k-admissible,
∂u
∂ν = 0 on ∂M}. When we obtain the homotopy-invariance of degree, we can
derive that the Leray–Schauder degree is non-zero at t = 1 which implies
equation (1.3) is solvable.

2.2. C1 and C2 estimates

We use Fermi coordinates in a boundary neighborhood at first. In this local
coordinates, we take the geodesic in the inner normal direction ν = ∂

∂xn

parameterized by arc length, and
(
x1, . . . , xn−1

)
forms a local chart on

the boundary. The metric can be expressed as g = gαβdx
αdxβ + (dxn)2.

The Greek letters α, β, γ, . . . stand for the tangential direction indices, 1 ≤
α, β, γ, . . . ≤ n− 1, while the Latin letters i, j, k, . . . stand for the full indices,
1 ≤ i, j, k, . . . ≤ n. For Fermi coordinates, see [25] for details. In Fermi coor-
dinates, the half ball is defined by E+

r = {xn ≥ 0,
∑

i x
2
i ≤ r2} and the seg-

ment on the boundary by Σr = {xn = 0,
∑

i x
2
i ≤ r2}. We denote the RHS

of the first equation of (2.1) by h(x, u) and define

csup(r) = sup
E

+
r

(
|h| + |∇xh(x, u)| + |hz(x, u)| + |∇2

xh(x, u)|

+ |∇xhz(x, u)| + |hzz(x, u)| +
∣∣∣ |∇xh(x, u)|

infM h

∣∣∣ +
∣∣∣ |hz(x, u)|

infM h

∣∣∣).
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Note that the constant (1 − t)(
∫

e−(n+1)u)
2

n+1 is less than σ
1/k
k (λ(g−1

[λk(1 − ψ(t))g + ψ(t)Ag])). According to Theorem 1 in [28], we have

(2.2) sup
E

+
r/2

(
|∇u|2 + |∇2u|

)
≤ C1 · csup(r) = C2 · (1 + e−2 inf

E+
r

u),

where C2 = C2(n, g, r, f).
Now we can immediately get a boundary estimate on the geodesic half

ball B(x, r) = {y ∈M |dist(x, y) < r}, since there is a following relationship
between the half balls in Fermi coordinates and the half geodesic balls:

E
+
ρ/

√
2 ⊂ B(x, ρ) ⊂ E

+√
5ρ.

In fact, we may assume the fermi coordinate of y is (y1, . . . , yn), z is on
the xn-axis satisfying dist(z, y) = dist(xn-axis, y) and let d = dist(x, y), d0 =
dist(x, z) and d1 = dist(z, y). Now for any y ∈ E

+
ρ/

√
2, we have d2

0 + d2
1 =

∑
α

(yα)2 + (yn)2 < ρ2/2. Thus the triangle inequality implies d2 = dist(x, y)2

≤ (dist(x, z) + dist(x, y))2 ≤ 2(d2
0 + d2

1) < ρ2 . Therefore, y ∈ B(x, ρ). On
the other hand, for any y ∈ B(x, ρ), we have d2 < ρ2. Thus d2

1 = dist(z, y)2 ≤
dist(x, y)2 = d2 < ρ2 and d0 = dist(z, x) ≤ 2dist(x, y) = 2d < 2ρ, otherwise
d ≥ d0 − d1 > 2d− d = d. Hence, d2

0 + d2
1 < 5ρ2 and y ∈ E

+√
5ρ.

Then (2.2) implies

sup
B(x0,r)

(
|∇u|2 + |∇2u|

)
≤ sup

E
+√

5r

(
|∇u|2 + |∇2u|

)

≤ C3

(
1 + e

−2 inf
E

+
2
√

5r

u)

≤ C3

(
1 + e−2 infB(x0,2

√
10r) u

)
,(2.3)

where x0 is a boundary point and C3 = C3(n, g, r, f).
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We can get interior estimate as well. Let

csup(r) = sup
B(x0,r)

(|h| + |∇xh(x, u)| + |hz(x, u)| + |∇2
xh(x, u)|

+ |∇xhz(x, u)| + |hzz(x, u)| +
∣∣∣ |∇xh(x, u)|

infM h

∣∣∣ +
∣∣∣ |hz(x, u)|

infM h

∣∣∣),
where x0 is an interior point. Then by the estimates in [26, 27] (or Theorem 2
in [28]) we have

sup
B(x0,r/2)

(
|∇u|2 + |∇2u|

)
≤ C4 ·

(
1 + e−2 infB(x0,r) u

)
,

where C4 = C4(n, g, r, f).
Now we may assume that infM ui → −∞. Otherwise, by above estimate

and Harnack inequality we can get the upper bound, therefore completes
the proof.

There are following two possibilities.
(A) One is that the blow-up subsequence uti

happens at ti ≤ 1 − δ < 1
for δ > 0. We still denote it by ui for simplicity. Then, at the maximum
point of ui, which is either an interior point or a boundary point, we have

δ

(∫
e−(n+1)ui

) 2
n+1

≤ σ
1/k
k

(
λ
(
g−1

[
λk(1 − ψ(t))g + ψ(t)Ag

]))
≤ C0.

Then we can take εi = einfM ui � eui(z0
i ), where z0

i ∈M is ui’s minimum
point. Defining a map:

Ti : B(0, c0) ⊂ Tz0
i
M → B(z0

i , c0 · εi) ⊂M,

y → expz0
i
(εiy),

where the metric on tangent space is g̃i = ε−2
i T ∗

i g and B(0, c0) is a geodesic
ball in exp−1

z0
i

(M) with radius c0 > 0. Then we can obtain the functions with
lower bounds in B(0, c0) on the tangent space Tz0

i
M : wi(y) = ui(Ti(y)) −

log εi ≥ 0.
Furthermore, wi satisfies

σ
1/k
k

(
λ
(
g̃−1
i

(
ε2iλk(1−ψ(ti))g̃i +ψ(ti)Ag̃i

+∇2wi +dwi ⊗ dwi−
1
2
|∇wi|2g̃i

g̃i

)))

= ψ(ti)f(Ti (y))e−2wi + ε2i (1 − ti)
(∫

e−(n+1)ui

) 2
n+1

, in B(0, c0).
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Then by the interior and boundary estimates on B(0, c0
2 ), we can obtain

the upper bound of wi immediately. We then obtain the following contra-
diction:

C(n, g, c0, f)≤
∫
B(0,

c0
4

)
e−(n+1)wi ≤ εi

∫
B(z0

i ,c0εi/2)
e−(n+1)ui ≤ εi(C0/δ)

n+1
2 → 0.

Therefore, we have the following boundary version of Theorem 2.1 in [24].

Lemma 2.1. For any fixed 0 < δ < 1, there is a constant C = C(δ, n, g, f)
such that any k-admissible solution of (2.1) with t ∈ [0, 1 − δ] satisfies
||u||C4,α ≤ C.

(B) So without loss of generality, we may assume that uti
tends to −∞

at the time ti → 1, where uti
is the solution of (2.1) at t = ti, which will be

denoted by ui in follows. Thus equation (2.1) is changed as

(2.4)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ
1/k
k

(
λ
(
g−1

(
Ag + ∇2u+ du⊗ du− 1

2
|∇u|2g

)))
= (1 − t)o+ f(x) e−2u, in M,

∂u

∂ν
= 0, on ∂M.

where u is assumed to be k-admissible, and o ≥ 0 is a constant.
We will obtain more exact boundary and interior estimates which are

both in geodesic coordinates.

Lemma 2.2. Let u ∈ C4(M) be a k-admissible solution of (2.1) in B(x, r)
and 0 ≤ r < 1. Then there is a constant C = C(n, g, f) such that

(2.5)
(
|∇2u| + |∇u|2

)
(x′) ≤ C

(
r−2 + e−2 infB(x,2

√
10r) u

)
.

for all x′ ∈ B(x, r).

Proof. If x is on the boundary ∂M , we define a local diffeomorphism

O : B(0, 2
√

10) ⊂ TxM → B(x, 2
√

10r),
y → expx(ry),

where B(0, 2
√

10) is the geodesic ball in exp−1
x (M) with the metric g̃ =

r−2O∗g.
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Let w (y) = u(O(y)) − log r in B(0, 2
√

10), then w satisfies

σ
1/k
k

(
λ
(
g̃−1

[
Ag̃ + ∇2w + dw ⊗ dw − 1

2
|∇w|2g̃g̃

]))

= f(O (y))e−2w + r2(1 − t)o, in B(0, 2
√

10).

By a similar argument as (2.3) we can obtain

sup
B(x,r)

r2
(
|∇u|2 + |∇2u|

)

≤ sup
B(0,1)

(
|∇w|2 + |∇2w|

)

≤ C ·
(
e−2 infB(0,2

√
10) w + 1

)

≤ C ·
(
e−2 infB(x,2

√
10r) ur2 + 1

)
.

Therefore,

sup
B(x,r)

|∇2u|(x) + |∇u|2(x) ≤ C
(
r−2 + e−2 infB(x,2

√
10r) u

)
,

where C = C(n, g, f).
If x is an interior point, the interior estimate in [8] has implied the

result. �

3. Finite blow-up points

In this section, we prove that there are finite blow-up points for prescribing
k-curvature problem, where k > n/2. By [29], we have Ricg ≥ (2k−n)(n−1)

n(k−1)

σ1(Ag)g for k-admissible metric g.
Lemma 3.1 below has been proved by Guan and Wang in [26] for the

interior point. If we only focus on the boundary point, their proof also can be
applied, we just notice that the ball is half ball, i.e., B(x, ρ) means B(x, ρ) ∩
M . Here we omit the proof.

Lemma 3.1. There exist ς and C = (ς, n, g, f) such that any solution u ∈
C2(B(x, ρ)) with

∫
B(x,ρ) e−nu < ς satisfies infB(x,ρ/2) u ≥ log ρ− C.

Similar as [24], for a given point x ∈M, we define the mass of x by

m({ui};x) = lim
r→0

lim sup
i→∞

∫
B(x,r)

e−nui .
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We also denote Σ[{ui}] = {x | m({ui};x) �= 0}.
By use of the ε-regularity result (Lemma 3.1) and the volume comparison

theorem, we may get the following propositions. See [30] for their proofs.

Proposition 3.1 (Lemma 2.3 of [30]). Given a sequence of smooth solu-
tions of (2.4) with infM ui → −∞. Then there exists a positive constant
μ(n, g, f, ς) such that either m({ui};x) = 0 or m({ui};x) ≥ μ.

Proposition 3.2 (Section 2 of [30]). Suppose ui is a blow-up sequence
of (2.4), then

(1) Σ[{ui}] is non-empty;

(2) Σ[{ui}] is finite.

Corollary 3.1 (Corollary 4.7 of [8]). Let ui be a solution of (2.4), then

(1) when ui(xi) converges to −∞, any accumulated point of xi must belong
to Σ[{ui}].

(2) for any x0 ∈ Σ[{ui}], there exists a subsequence {uki
} and a sequence

points xi such that limi→∞ xi = x0 and limi→∞ uki
(xi) = −∞.

Proof. (1) Let ui(xi) be a blow-up sequence converging to −∞. Since the
manifold M is compact, then there is a convergent subsequence xik

. Suppose
limk→∞ xik

= x0.
We assert that x0 must be in Σ[{ui}]. Otherwise, by Lemma 3.1, there

exist constants r0 and J such that infB(x0,r0) ui ≥ −C, where i ≥ J .
Furthermore, we can find K such that xik

∈ B(x0, r0) for any k ≥ K.
Therefore, uj(xik

) ≥ −C when j ≥ J and k ≥ K, which contradicts the fact
that limk→∞ uik

(xik
) = −∞.

(2) Otherwise, there exists a neighborhood of x0, for example B(x0, r0),
and a constant C such that infB(x0,r0) ui ≥ −C. Then

m({ui};x0) = lim
r→0

lim sup
i→∞

∫
B(x0,r)

e−nui ≤ lim
r→0

∫
B(x0,r)

enC = 0,

which contradicts the fact that x0 ∈ Σ[{ui}]. �

For simplicity, we still denote the subsequence by {ui}.
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4. Tend to +∞ in regular set

In this section, we prove that at any regular point x ∈M\Σ[{ui}], lim supi→∞
ui(x) = +∞, where Ricg ≥ (2k−n)(n−1)

n(k−1) σ1(Ag)g, when g is k-admissible (k >
n/2). We prove the result by contradiction.

Suppose there is a regular point x′ such that lim supi→∞ ui(x′) < +∞.

Lemma 4.1. We can find a subsequence uik
→ u ∈ C∞(M \ Σ[{ui}]),

where the convergence is Cm on compact sets away from Σ[{ui}].

Proof. SupposeK is a compact subset inM \ Σ[{ui}]. Then we can find com-
pact sets K ′ and K̃ ′, such that K ∪ {x′} ⊂ K ′ ⊂ K̃ ′. Since compact set K̃ ′
is covered by finite open sets, then by Lemma 2.2, we may get supK′ |∇ui| ≤
C1, and supK ui ≤ supK′ ui ≤ infK′ ui + C2 ≤ lim supi→∞ ui(x′) + C2 ≤ C3.
Therefore, by regularity theory, there is a subsequence uik

which converges
uniformly to u on the compact set K. �

For simplicity we still denote the subsequence uik
in Lemma 4.1 by ui.

Lemma 4.2. Let u ∈ C2(M). Assume gu = e−2ug has non-negative scalar
curvature, where ∂u

∂ν |∂M = 0. Suppose there is a ball B(x, ρ) ⊂M and con-
stants α0 > 0 and B0 > 0 with

(4.1)
∫

B(x,ρ)
eα0udVg ≤ B0.

Then there is a constant C = C(n, g, ρ, α0, B0), such that

(4.2) max
M

u ≤ C.

Proof. This is the boundary version of Proposition 3.3 in [8]. The proof for
compact manifolds without boundary is given in [8]. We just present a proof
for manifolds with boundary. We denote Ru the scalar curvature of gu, then

1
2(n− 1)

Rue−2u =
1

2(n− 1)
R+ �u− n− 2

2
|∇u|2.

By the k-admissible (k > n/2) condition, we know that both Ru and R are
positive.



Existence of the prescribing k-curvature problem 65

If we denote v = e−
n−2

2
u, we have

n− 2
2

Ru

2(n− 1)
v

4
n−2

+1 = −�v +
R(n− 2)
4(n− 1)

v,

then

(4.3) �v ≤ C0v.

Let ε < 2α0
n−2 . Multiplying by v−2ε−1 on both sides of (4.3), and integrating

by parts, we have

C0

∫
M
v−2ε ≥

∫
M
v−2ε−1�v = (1 + 2ε)

∫
M
v−2ε−2|∇v|2 +

∫
∂M

v−2ε−1 ∂v

∂ν

=
1 + 2ε
ε2

∫
M

|∇(v−ε)|2.

Then, by the lower bound of the first eigenvalue η1 for Neumann
boundary condition (see [31]), we see that

∫
M v−2ε can be controlled by

a constant depending on vol
(
B(x, ρ)

)
and the bound of

∫
B(x,ρ) v

−ε < B
n−2
2α0

ε

0

vol
(
B(x, ρ)

)1− (n−2)ε

2α0 � A0:

∫
M
v−2ε ≤

(
∫
M v−ε)2

vol(M)
+

1
η1

∫
M

|∇(v−ε)|2 ≤
(
∫
M v−ε)2

vol(M)
+
C0

ε2

1+2ε

η1

∫
M
v−2ε

≤
(
∫
B(x,ρ) v

−ε + (
∫
B(x,ρ)c v

−2ε)
1
2 vol(B(x, ρ)c)

1
2 )2

vol(M)

+
C0ε

2

η1(1 + 2ε)

∫
M
v−2ε

≤
A2

0 +A0θ
∫
B(x,ρ)c v

−2ε+A0
θ vol(B(x, ρ)c) + vol(B(x, ρ)c)

∫
B(x,ρ)c v

−2ε

vol(M)

+
C0ε

2

η1(1 + 2ε)

∫
M
v−2ε

≤ C1(A0, θ) + (
A0θ + vol(B(x, ρ)c)

vol(M)
+

C0ε
2

η1(1 + 2ε)
)
∫

M
v−2ε.

Then by choosing a suitable constants ε and θ such that

A0θ + vol
(
B(x, ρ)c

)
vol(M)

+
C0ε

2

η1(1 + 2ε)
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is strictly less than 1, we can obtain the upper bound of
∫
M v−2ε which

depends on g,A0, ρ and α0. In other words, when ε is small enough, (4.1)
implies a global integral upper bound of v−2ε.

Now we complete the proof via Green representation theorem. Note when
s < n

n−1 , the Green function G and its gradient |∇G| are Ls integrable. If
we denote 1

1− 1
s

by s′, we wish to find a good enough Ls′
integrable function.

Denote w = v−
2ε

s′ , then w ∈ Ls′
(M), and

�w = −2ε
s′
v−2 ε

s′ −1�v +
2ε
s′

(
2ε
s′

+ 1
)
v

2ε

s′ −2|∇v|2

≥ −C2
2ε
s′
w.

Consequently, by Green representation theorem we have

w(a) = −
∫

M
G(a, ·)�w +

∫
∂M

∂G(a, ·)
∂ν

w

≤ C3

∫
M
G(a, ·)w +

∫
∂M

∂G(a, ·)
∂ν

w

≤ C4(||G(a, ·)||Ls ||w||Ls′ + ||∇G(a, ·)||Ls ||w||Ls′ )
≤ C5(n, g,A0, ρ, α0).

This gives (4.2). �

Proposition 4.1 (Proposition 4.6. of [8]). There is a neighborhood
B(x0, ρ̄) of x0 ∈ Σ[{ui}] and constant C(n, g, f, ρ̄, ς), such that for any x ∈
B(x0, ρ̄) \ {x0},

u(x) ≥ log dg(x, x0) − C.

Proof. Since uik
is bounded above in some neighborhood U of regular point,

so ∫
U

eαuik ≤ C1,

where α is a constant. Then according to Lemma 4.2.

max
M

uik
≤ C2.

Let u(x) = lim supk→∞ uik
in M , then the limit satisfies

sup
M\Σ[{ui}]

u ≤ C2.
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By Volume Comparison Theorem, and Fatou Lemma,
∫

M
e−nu ≤ lim inf

k→∞

∫
M

e−nuik = vol(guik
) ≤ v0.

Hence, there exists ρ̄ small enough such that
∫

B(x0,2ρ̄)
e−nu ≤ ς/2,

where ς is the constant in Lemma 3.1. Then for any point x ∈ B(x0, ρ̄) \
{x0}, B(x, dg(x, x0)/2) ⊂ B(x0, 2ρ̄) and

∫
B(x, 1

2
dg(x,x0))

e−nu ≤ ς/2.

Since u is a C2(B(x, 1
2d(x, x0))) solution of (2.4), by Lemma 3.1

u(x) ≥ inf
B(x, 1

2
d(x,x0))

u(x) ≥ log dg(x, x0) − C. �

Similar as the case of the manifolds without boundary in [8], for the
manifolds with non-empty boundary, we can get the following propositions.
Their proofs are also similar as in [8], we just notice the boundary condition
∂u
∂ν = 0, when we take integral on the boundary. We omit their proofs.

Proposition 4.2 (Theorem 3.5. of [8]). Let u ∈ C1,1
loc (A(1

2r1, 2r2)),
where x0 ∈M and A(1

2r1, 2r2) denotes the annulus B(x0, 2r2)/B(x0,
1
2r1),

with 0 < r1 < r2. Assume ∂u
∂ν = 0 on the boundary ∂M and gu = e−2ug sat-

isfies Ric(gu) − 2δσ1(Au)g ≥ 0 almost everywhere in A(1
2r1, 2r2) for some

0 ≤ δ < 1
2 . Define αδ = n−2

1−2δ δ ≤ 0 and p = n+ 2αδ ≥ n. Then for any given
α ≥ αδ, there is constant C = C((α− αδ)−1, n, g) > 0 such that

∫
A(r1,r2)

|∇u|peαu

≤ C
(∫

A( 1
2
r1,2r2)

eαu|Ric|
p

2 +
1
rp
1

∫
A(

r1
2

,r2)
eαu +

1
rp
2

∫
A(r1,2r2)eαu

)
.

Corollary 4.1 (Corollary 3.9. of [8]). Let u ∈ C1,1
loc (M) satisfies ∂u

∂ν = 0
on the boundary ∂M . Assume gu = e−2ug is k-admissible with (k > n/2).
Suppose δ satisfies 0 < δ ≤ min

{
1
2 ,

(2k−n)(n−1)
2n(k−1)

}
. Define αδ = n−2

1−2δ δ. Then
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for any α > αδ, there exists a constant C = C(δ, n, g, α) such that

||e(α/p)u||Cγ0 ≤ C||e(α/p)u||Lp ,

where γ0 = 2αδ

n+2αδ
.

Proposition 4.3 (Proposition 4.5. of [8]). Suppose x0 ∈ Σ[{ui}] and
ui is a blow-up sequence near x0. Then for any given θ > 0 there exists
neighborhood U of x0 and a constant C = C(θ, n, g, f) such that the function
u = lim supi→∞ ui satisfies

u(x) ≤ (2 − θ) log dg(x, x0) + C,

for all x �= x0 in U .

Now from Propositions 4.1 and 4.3 we obtain a contradiction. This
implies that the assumption lim supi ui(x′) < +∞ for some regular point
x′ is impossible. Thus we have the following:

Proposition 4.4. (1) lim supi ui = +∞ in M/Σ[{ui}].
(2) There is a subsequence uik

converging uniformly to +∞ on compact
set K ⊂M/Σ[{ui}].

Proof of (2). Note that lim supi ui(x′) = +∞, we may suppose limk uik
(x′) =

+∞.
There are compact sets K ′ and K̃ ′, such that K ∪ {x′} ⊂ K ′ ⊂ K̃ ′.

Applying Lemma 2.2 on K̃ ′, we have supK′ |∇ui| ≤ C1 and infK ui ≥ infK′ ui

≥ supK′ ui − C2.
Thus for any fixed N ∈ N, since limk uik

(x′) = +∞ we can find J ∈ N,
such that uik

(x′)>N +C2 when k >J . Hence, infK uik
≥uik

(x′)−C2>N .
�

In the rest of the proof we consider the subsequence uik
chosen above

(still denoted by ui) and a non-empty set Σ0[{uik
}] ⊂ Σ[{ui}], which will be

denoted by Σ0 for simplicity.

5. Complete the proof of Theorem 1.1.

Note that ui satisfies limi ui(x′) = +∞, for some regular point x′ in M � Σ0.
Let

wi(x) = ui(x) − ui(x′).

We will show that wi converges to a C1,1
loc -limit in M � Σ0.
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Proposition 5.1. We have

(1) Swi
= Ricwi

− 2δσ1(Awi
)g is positive semi-definite.

(2) Let Mr = M \ ∪xk∈ΣB(xk, r), where r > 0 small enough. Then we can
find constants J = J(r) and C = C(n, g, f) such that

|∇2wi| + |∇wi|2 ≤ Cr−2

for all x ∈Mr and i > J = J(r).

(3) The sequence {wi} has a global upper bound maxM wi ≤ C and a L∞

bound in Mr.

Proof. (1) Swi
= Ricwi

− 2δσ1(Awi
)g = Ricui

− 2δσ1(Aui
)g ≥ 0.

(2) By Proposition 4.4 (2), we can find J(r) ∈ N such that e−2 infMr/2 ui ≤
r−2 when i > J . Therefore, for any x ∈Mr and i > J , we have

sup
B(x,r/4)

(
|∇2wi| + |∇wi|2

)

= sup
B(x,r/4)

(
|∇2ui| + |∇ui|2

)

≤ C1

(
r−2 + e−2 infM√

10r/2
ui

)
≤ 2C1r

−2.

Since Mr is compact, by the finite covering argument, we know that there
is a constant C = C(n, g, f) such that

|∇2wi| + |∇wi|2 ≤ Cr−2

for all x ∈Mr and i > J = J(r).
(3) We may assume that r is small enough and Mr contains x′. By (2)

|∇wi|2(x) ≤ 2C1r
−2 in Mr. Then

sup
Mr

wi ≤ inf
Mr

wi + C2 ≤ wi(x′) + C2 = C2,

where C2 depends on n, g, f and r. By Lemma 4.2., we obtain a global upper
bound maxM wi ≤ C. For the lower bound, we have

inf
Mr

wi ≥ sup
Mr

wi − C2 ≥ wi(x′) − C2 = −C2. �
Then Arzela–Ascoli theorem implies that a subsequence of wi (denoted

by wi again) converges on compact sets K ⊂M \ Σ0 in C1,α(K) where
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α ∈ (0, 1). Hence, from Rademacher theorem, ∇2w is well defined almost
everywhere. We can obtain the following corollary immediately.

Corollary 5.1. (1) The limit w = limiwi is in C1,1
loc (M \ Σ0).

(2) Sw = Ricw − 2δσ1(Aw)g is positive semi-definite almost everywhere
in M .

Now we may consider a doubling manifold M̃ of M by gluing two copies
of M along the boundary ∂M . With the given smooth Riemannian metric
g on M , there is a standard metric g̃ on M̃ induced from g. When ∂M is
totally geodesic in (M, g), g̃ is C2,1 on M̃ ; see [19].

If we denote the corresponding double of Σ0 by Σ̃0, we can extend w to
a C1,1

loc (M̃ \ Σ̃0) function w̃ as follows:
Near the boundary we take Fermi Coordinates, w̃ is then defined as

w̃(x1, . . . , xn) =

{
w(x1, . . . , xn), xn ≥ 0,
w(x1, . . . ,−xn), xn ≤ 0.

Since ∇w is locally Lipschitz, ∇w̃ is the same. In fact, taking a geodesic
convex neighborhood B̃(x, r̃) centered at any x ∈ ∂M , we may assume p and
q are two points with xn(p) ≥ 0 and xn(q) ≤ 0. Then the geodesic connecting
p and q is contained in B̃(x, r̃) and pass across the boundary ∂M . Thus there
exists a point z in B̃(x, r̃) ∩ ∂M such that d̃ist(p, q) = d̃ist(p, z) + d̃ist(z, q)
where the distance function under metric g̃ denote by d̃ist(·, ·). Since ∇ ∂

∂xi
w

(1 ≤ i ≤ n) is a locally Lipschitz function we know that there exist a con-
stant L such that |∇ ∂

∂xi
w(p) −∇ ∂

∂xi
w(z)| ≤ L · dist(p, z) and |∇ ∂

∂xi
w̃(z) −

∇ ∂

∂xi
w̃(q)| ≤ L · d̃ist(z, q). Therefore,

|∇ ∂

∂xi
w̃(p) −∇ ∂

∂xi
w̃(q)|

≤ |∇ ∂

∂xi
w̃(p) −∇ ∂

∂xi
w̃(z)| + |∇ ∂

∂xi
w̃(z) −∇ ∂

∂xi
w̃(q)|

≤ L
(
d̃ist(p, z) + d̃ist(z, q)

)

= L · d̃ist(p, q).

It is obviously that w̃ is a C1 function. Now we may conclude that
w̃ ∈ C1,1

loc (M̃ \ Σ̃0). Then the following corollary is immediately.

Corollary 5.2. (1) The limit w̃ = limi w̃i is in C1,1
loc (M̃ \ Σ̃0).

(2) Sw̃ = Ricw̃ − 2δσ1(Aw̃)g̃ is positive semi-definite almost every where
in (M̃, g̃).
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By a similar proof as it in sections 6 and 7 of [8], we can get the following
proposition.

Proposition 5.2. (1) There exists an isometry

Φ : (M̃reg, e
−2w̃g̃) → (Rn, gEuc),

where gEuc is the Euclidean metric and M̃reg = M̃ \ Σ̃0.
(2) (Mreg, e

−2wg) is isometric to the half-plane in Euclidean space, where
Mreg = M \ Σ0.

Thus, Theorem 1.1 follows immediately, since that (M, g) is assumed to
be not conformally equivalent to a standard hemisphere.

6. Proof of Theorem 1.2.

Note that when k = n/2, we cannot find a positive δ such that Ricg ≥
δσ1(Ag)g. Therefore, the method of the proof in Theorem 1.1 cannot be
applied in the case k = n/2. Nevertheless, any k-admissible solution w (k ≥
n/2) on (M, g) satisfies another crucial inequality (see [7])

(6.1) Wnn +
1

n− 2

n∑
k=1

Wkk ≥ 0,

where Wij = wij + wiwj − gij

2 (Σn
k=1wk)2 + (Ag)ij .

Let ui be a sequence of k-admissible solutions to equation (1.2). In [7],
Trudinger and Wang consider the rescaled k-admissible solutions wj = uj −
supM uj and prove the rescaled sequence wj converges in W 1,p (for any
1 < p < n

n−1) to an admissible function w. Roughly speaking, if x̄ is a blow-
up point of w, inequality (6.1) implies one side of the estimate for the limit
function w near x̄:

(6.2) w(x) ≤ 2 log d(x, x̄) + C.

Furthermore, they prove

(6.3) w(x) = 2 log d(x, x̄) + o(1),

where o(1) → 0 when d(x, x̄) → 0. From (6.3), one can show that each blow-
up point is isolated, which implies that the number of blow-up points is finite.
Combining the fact that Ricg ≥ 0, by the volume comparison theorem, one



72 Yan He & Weimin Sheng

can show as in [8, 9] the ratio of the volume of the geodesic ball of radius r in
the metric e−2wg with that of the Euclidean ball is non-increasing. Therefore
w has exactly one blow-up point 0 and the manifold (M \ {0}, e−2wg) is
isometric to the Euclidean space, which contradicts with the assumption.
Therefore there is a unform L∞ bound for solutions and the set of solutions
is compact.

Now, similarly, when dealing with manifold with boundary we expect
to prove the conformal metric e−2wg is in fact Euclidean metric on half-
plane and get a contradiction, where w is the limit function of the rescaled
sequence wj = uj − supM uj on manifold with boundary.

To this end, we double the manifold (M, g). Given a smooth Riemannian
metric g on M , there is a standard metric ĝ on M̂ induced from g, which
is glued by two copies of M along the boundary ∂M . When ∂M is totally
geodesic in (M, g), then ĝ is C2,1 on M̂ , see [19].

Then we extend the functions wj to a function ŵj on M̂ as follows:

ŵj(x1, · · · , xn) =
{
wj(x1, · · · , xn), xn ≥ 0,
wj(x1, · · · ,−xn), xn ≤ 0,

where we take Fermi Coordinates near the boundary as before. We firstly
verify that ŵj satisfies the preliminary Lemmas in section 2 of [7]. However,
from the boundary condition we can see that ŵj are in fact C2 k-admissible
functions on (M̂, ĝ). We calculate under Fermi coordinates:

lim
xn→0+

∂ŵj

∂xn
(x1, . . . , xn) =

∂wj

∂xn
(x1, . . . , xn−1, 0)

= 0 = −∂wj

∂xn
(x1, . . . , xn−1, 0) = lim

xn→0−

∂ŵj

∂xn
(x1, . . . , xn),

and

lim
xn→0+

∂2ŵj

∂(xn)2
(x1, . . . , xn) = lim

xn→0−

∂2ŵj

∂(xn)2
(x1, . . . , xn).

Thus from the k-admissible property of wj we know that ŵj are k-admissible
and sub-harmonic with some elliptic operator.

As a matter of fact, we may extend the definition of k-admissible and
sub-harmonic(super-harmonic) in the viscosity sense (see [7] for details).

We call a metric g̃ = X g is k-admissible if X is lower semi-continuous,
does not equal to ∞, and there exists a sequence of k-admissible functions
Xm ∈ C2(M) such that Xm → X almost everywhere in M .

We say a function v is super-harmonic with respect to a elliptic operator
L if (i) v is lower semi-continuous (l.s.c.); (ii) v does not equal to ∞ in
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any open set; (iii) for any open subset D ⊂M and any function h ∈ C2(D̄)
satisfying L(h) = 0 inD and h ≤ v on ∂D, we have h ≤ v inD. Subharmonic
functions are defined as the negative of super-harmonic ones (See p. 131
of [32]).

As a result, if ŵj is k-admissible, then the function v̂j = e−
n−2

2
ŵj is

super-harmonic with respect to the conformal Laplace operator L � �g −
n−2

4(n−1)Rg. The corresponding maximal (minimal) radial functions are also
super-harmonic (subharmonic), where the maximal and minimal radial func-
tions in BR(x0) are defined by

˜̂v(x) = inf{v̂(y) : y ∈ ∂Br(x0), r = d(x, x0)}

and

˜̂w(x) = sup{ŵ(y) : y ∈ ∂Br(x0), r = d(x, x0)},

respectively, where r ≤ R.
Now ŵj (v̂j) and ˜̂wj (˜̂vj) satisfying the subharmonic (super-harmonic)

property, thus Lemma 2.1, Lemma 2.2, Corollary 2.1 and hence Corollary 2.2
and Corollary 2.3 in [7] still hold for v̂:

Lemma 6.1 (Corollary 2.2 of [7]). Let v̂ be super-harmonic with respect
to the conformal Laplacian operator L. Then the maximal radial function˜̂v(r) is locally uniformly Hölder continuous away from 0, with Hölder
exponent α ∈ (0, 1/n).

Lemma 6.2 (Corollary 2.3 of [7]). Let v̂j be a sequence of super-
harmonic functions which converges to v̂ in L1(Br(0)). Then the correspond-
ing maximal radial functions ˜̂vj(r) converges locally uniformly to ˜̂v(r).

Proof of Theorem 1.2. By use of the argument in [7] and [8], we only sketch
the proof here. Suppose x0,j is a blow up sequence of uj and x̄ = limj→∞ x0,j .
Let xj

0 be the maximum point of uj . Notice that e−2 sup ujf(xj
0) = e−2uj(x

j
0)

f(xj
0) ≤ C(�uj +Ag)(x

j
0) ≤ C. Since supM uj > −∞, x0,j is also a blow-up

sequence of wj = uj − supM uj , and ŵj(x0,j) → −∞, v̂j(x0,j) → +∞.
Now we are going to prove the limit of ŵ = limj→∞ ŵj satisfies (6.3).

We begin with two observations:
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(1) If we denote v̂j(x0,j)
1

n−2 and 1

1−2
− 1

n−2
by Rj and A0 respectively, when

j is large enough in B(x0,j , A0R
−1
j ) there must be some local maxi-

mum points of v̂j , denoted by xj . Furthermore, xj is the local maxi-
mum points of v̂j in B(xj ,

1
2 v̂j(xj)

− 1
n−2 ) yet (see Lemma 3.2. in [7] for

details).

(2) Note that the maximal and the minimal radial functions depend only
on distance to the center. Thus, we may denote that

˜̂wj(r) = sup{ŵj(y) : y ∈ ∂Br(xj)},

and

˜̂w(r) = sup{ŵ(y) : y ∈ ∂Br(x̄)}.

In virtue of Lemmas 6.1 and 6.2, we can obtain ˜̂w(r) = lim
j→∞

˜̂wj(r).

Then by a similar argument in section 3 of [7], we can see that ŵ satisfies
(6.3) in (M̂, ĝ) and singular points are isolated. Furthermore, since the Ricci
curvature of (M̂, ĝ) is still positive semi-definite, by the volume comparison
theorem, there is at most one end and it is away from the singular points; the
metric e−2ŵĝ, a doubling of e−2wg, is in fact a Euclidean one (see section
7 of [8] for details). Finally, restricting the argument to manifold M , we
can see (M \ {x̄}, e−2wg) is just the half-plane in Euclidean space, which
contradicts with the assumption. Therefore, there is a uniform L∞ bound
for solutions and the set of solutions is compact. This completes the proof
of Theorem 1.2. �
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