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Polynomial Bridgeland stability conditions for the

derived category of sheaves on surfaces

Wei-Ping Li and Zhenbo Qin

For the derived category of bounded complexes of coherent sheaves
on a smooth projective surface, we study the standard polynomial
Bridgeland stability conditions introduced by Bayer [2] (see also
[19, 20]). Assuming certain conditions on the stability vector, we
prove that the standard polynomial Bridgeland stability remains to
be the same when the polarization varies in a chamber in the usual
sense of [16, 17]. Furthermore, when the polarization is contained
in a chamber, we show that the polynomial Bridgeland stability
and Gieseker stability can be identified.

1. Introduction

Derived categories and triangulated categories have been studied extensively
in recent years. Bridgeland [4] introduced the concept of stability conditions
on triangulated categories, which can be viewed as a mathematical approach
to understand Douglas’ work [6] on Π-stability for D-branes in string the-
ory. These stability conditions on the derived categories of sheaves have been
constructed and classified for certain varieties (see for example [1, 5, 14, 19]
and the references given there). However, the existence of a Bridgeland sta-
bility condition on the derived categories of sheaves over a general variety
is still unknown at the present. On the other hand, Bayer [2] defined poly-
nomial Bridgeland stability conditions which generalize Bridgeland stability
conditions on triangulated categories (see [20] for related work), and proved
the existence of the standard polynomial Bridgeland stability conditions
on the derived categories of sheaves over any normal projective variety.
By the Proposition 4.1 in [2], the standard polynomial Bridgeland stabil-
ity conditions are related to the large volume limits of Bridgeland stability
conditions.

In this paper, we study the standard polynomial Bridgeland stability
conditions for surfaces. Fix a smooth projective surface X. A stability data
ΩL = (L, ρ, p, U) consists of an ample divisor L on X, a stability vector
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ρ = (ρ0, ρ1, ρ2) ∈ (C∗)3, a perversity function p : {0, 1, 2} → Z associated to
ρ, and a unipotent element U ∈ A∗(X)C (see Definition 2.5). Throughout
the paper, using the ˜GL+(2,R)-action and derived duals, we will assume
that p and ρ satisfy either Case 1 or Case 2 listed in the second paragraph
of Section 4. By [2], there exists a standard polynomial Bridgeland stability
condition (ZΩL

,PΩL
) on the derived categories Db(X) of bounded complexes

of coherent sheaves over X. An element E ∈ Db(X) is of type (r, c1, c2) if
rk(E) = r, c1(E) = c1 and c2(E) = c2. In the context of torsion free sheaves
(i.e., when r > 0), the notions of walls and chambers of type (r, c1, c2) were
introduced in [16, 17]. To handle objects E in the abelian category Ap which
will be defined in (2.5), we generalize these notions to cover the case r < 0 in
Definition 3.1. Let Num(X) be the group of divisors in X modulo numerical
equivalence. For ξ ∈ Num(X) ⊗ R, define

W ξ = CX ∩ {α ∈ Num(X)R | α · ξ = 0},

where CX is the ample cone. Let H ⊂ C be the strict upper half plane

H = {z ∈ C | z ∈ R+ · eiπφ(z), 0 < φ(z) ≤ 1},

and let φ(z) be the phase of z ∈ H. Our first result asserts that the Bogo-
molov inequality holds for ZΩL

-semistable objects, and the ZΩL
-stability

remains to be the same when L varies within a chamber.

Theorem 1.1. Let X be a smooth projective surface, and let ΩL denote
the data (L, ρ, p, U) where p(0) = p(1) = 0 and U = 1 + u1 + u2 with ui ∈
Ai(X)R. Let 0 �= E ∈ Db(X) be of type (r, c1, c2) with r �= 0.

(i) If E is ZΩL
-semistable, then the Bogomolov inequality holds

2rc2 ≥ (r − 1)c21.

(ii) Let L and H be contained in the same chamber of type (r, c1, c2). When
r < 0, we further assume that (c1 + ru1) does not satisfy

(c1 + ru1) · L = 0 < (c1 + ru1) ·H.

Then E is ZΩL
-semistable if and only if it is ZΩH

-semistable.

Let M
G
L (r, c1, c2) be the moduli space of torsion free sheaves which are of

type (r, c1, c2) and are Gieseker-semistable with respect to L. Similarly, let
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MΩL
(r, c1, c2) be the set of all objects E ∈ Ap which are of type (r, c1, c2) and

are ZΩL
-semistable. We remark that it is unknown whether MΩL

(r, c1, c2)
exists as a scheme. Notice that there are several works on moduli stacks of
stable objects [9, 12, 13, 18]. Our second result identifies MΩL

(r, c1, c2) with
certain Gieseker moduli space as sets, and provides strong evidence that
MΩL

(r, c1, c2) should exist as a scheme.

Proposition 1.1. Let X be a smooth projective surface, and fix a numerical
type (r, c1, c2) with r �= 0. Let ΩL = (L, ρ, p, U) where p = 0 is the constant
perversity function, U ∈ A∗(X)R, and L ∈ CX does not lie on any wall of
type (r, c1, c2). Then A ∈ MΩL

(r, c1, c2) if and only if A ∈ M
G
L (r, c1, c2).

Proposition 1.1 implies that for a generic stability data ΩL = (L, ρ, p, U)
on a surface X, the ZΩL

-stability can be identified with the Gieseker stabil-
ity. This has been observed and studied by Bridgeland [5], Kawatani [11],
Ohkawa [15], and Toda [18] in the context of Bridgeland stability. One can
also see important results on moduli spaces of stable objects on surfaces in
Toda’s paper [18] and the paper [1] by Arcara, Bertram and Lieblich where
they studied the moduli stacks and spaces of Bridgeland semi-stable objects
on surfaces with special attentions to K3 surfaces.

It would be interesting to see to what extent results analogous to Propo-
sition 1.1 hold for a higher-dimensional variety X. For instance, when the
perversity function p is a constant function and U is the Todd class td(X)
of X, it has been proved by Bayer [2] that polynomial Bridgeland stability
and Gieseker stability coincide. On the other hand, the same statement defi-
nitely does not hold for 3-folds, as seen by the PT/DT wall-crossing studied
in [22, 23]. We also note that the wall-crossing inside a wall can be extremely
interesting (see e.g., [21]).

The paper is organized as follows. In Section 2, we recall the definitions
and results from [2]. In Section 3, we generalize the definitions and results
in [16, 17] regarding walls and chambers. In Section 4, we prove Theorem 1.1
and Proposition 1.1.

Conventions. The ith cohomology of a sheaf E on a variety X is denoted
by H i(X,E), and its usual dual sheaf Hom(E,OX) is denoted by E∗. The
derived category of bounded complexes of coherent sheaves on X is denoted
by Db(X). The ith cohomology sheaf of an object E ∈ Db(X) is denoted
by Hi(E), and the derived dual of E is denoted by E∨ = RHom(E,OX) ∈
Db(X).
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2. Polynomial Bridgeland stability

In this section, we recall the polynomial Bridgeland stability defined in [2].
All the definitions in this section are from Sections 2 and 3 of [2].

Definition 2.1. Let (S,
) be a linearly ordered set equipped with an
order-preserving bijection S → S, φ �→ φ+ 1 satisfying φ+ 1 
 φ. An
S-valued slicing of a triangulated category D is given by full additive
extension-closed subcategories P(φ) for all φ ∈ S such that the following
properties are satisfied:

(i) for all φ ∈ S, we have P(φ+ 1) = P(φ)[1];

(ii) if φ � ψ for φ, ψ ∈ S and A ∈ P(φ), B ∈ P(ψ), then HomD(A,B) = 0;

(iii) for every nonzero object E ∈ D, there exist a finite sequence

φ1 � φ2 � . . . � φn

of elements in S and a sequence of exact triangles with Ai ∈ P(φi):

0= E0 �� E1

����
��

��
��

�� E2 ��

����
��

��
��

... �� En−1 �� En=E.

����
��
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�
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�

The sequence of exact triangles in Definition 2.1 (iii) is known as the
Harder–Narasimhan filtration of the nonzero object E ∈ D.

Definition 2.2. The set S of polynomial phase functions is the set of con-
tinuous function germs φ : R ∪ {+∞} → R such that there exists a polyno-
mial Z(m) ∈ C[m] with Z(m) ∈ R+ · eiπφ(m) form� 0. It is linearly ordered
by setting

φ ≺ ψ ⇐⇒ φ(m) < ψ(m) for 0 � m < +∞,

and its shift φ �→ φ+ 1 is given by point-wise addition.

In the rest of the paper, S denotes the set of polynomial phase functions.
For a triangulated category D, denote its Grothendieck group by K(D).

Definition 2.3. A polynomial Bridgeland stability condition on a triangu-
lated category D is given by a pair (Z,P), where P is an S-valued slicing
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of D and Z : K(D) → C[m] is a group homomorphism with the following
property: if 0 �= E ∈ P(φ), then Z(E)(m) ∈ R+ · eiπφ(m) for m� 0.

Definition 2.4. A polynomial Bridgeland stability function on an Abelian
category A is a group homomorphism Z : K(A) → C[m] such that there
exists a polynomial phase function φ0 ∈ S with the following property: for
every 0 �= E ∈ A, there exists φE ∈ S such that φ0 ≺ φE � φ0 + 1 and
Z(E)(m) ∈ R+ · eiπφE(m) for m� 0.

It is known [2, 4] that giving a polynomial Bridgeland stability condi-
tion on D is equivalent to giving a bounded t-structure on D and a polyno-
mial Bridgeland stability function on its heart with the Harder–Narasimhan
property.

Next, let X be a smooth projective complex variety of dimension n. Let
A = Coh(X) be the category of coherent sheaves on X, and Db(X) be the
derived category of bounded complexes of coherent sheaves on X. A function
p : {0, 1, . . . , n} → Z is called a perversity function if

(2.1) p(d) ≥ p(d+ 1) ≥ p(d) − 1.

For a perversity function p, define the abelian subcategory Ap,≤k of A by

(2.2) Ap,≤k = {0} ∪ {A ∈ A | p(dim SuppA) ≥ −k}.

By Bezrukavnikov [3] and Kashiwara [10], the following pair defines a bounded
t-structure on Db(X)

Dp,≤0 = {E ∈ Db(X) | H−k(E) ∈ Ap,≤k for all k ∈ Z},(2.3)

Dp,≥0 = {E ∈ Db(X) | Hom(A,E) = 0 for all

A ∈ Ap,≤k[k + 1] and k ∈ Z}.(2.4)

Denote the heart (or core) of this t-structure on Db(X) by Ap, i.e.,

(2.5) Ap = Dp,≤0 ∩ Dp,≥0.

Lemma 2.1. Let n = dim(X) and p be a perversity function with p(0) = 0.

(i) Let 0 �= E ∈ Ap. Let k be the largest integer with H−k(E) �= 0, and let d
be the dimension of the support of H−k(E). Then p(d) = −k, the sheaf
H−k(E) has no torsion in dimension d′ whenever p(d′) > −k, and all
other cohomology sheaves of E are supported in smaller dimension.
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(ii) Let 0 �= E ∈ Ap. Then, Hi(E) = 0 whenever i > 0 or i < p(n).

(iii) If F ∈ A = Coh(X) and k0 ≥ 0, then F [−k0] ∈ Dp,≥0.

(iv) If F ∈ A = Coh(X) and p(dim Supp(F )) = 0, then F ∈ Ap.

(v) If p = 0 is the constant perversity function, then Ap = A = Coh(X).

Proof. (i) This is the Lemma 3.2.3 in [2].
(ii) Suppose first that Hi(E) �= 0 for some i > 0. Since E ∈ Dp,≤0,

Hi(E) ∈ Ap,≤−i by (2.3). Thus by (2.2), p
(

dim SuppHi(E)
) ≥ i. This is

impossible since p cannot be positive. So Hi(E) = 0 if i > 0. Next, we see
from (i) that Hi(E) = 0 if −i > k = −p(d). It follows that Hi(E) = 0 if
i < p(n) since p(n) ≤ p(d).

(iii) Let 0 �= A ∈ Ap,≤k[k + 1] where k ∈ Z. We want to prove that

(2.6) Hom(A,F [−k0]) = 0.

We have A = B[k + 1] for some B ∈ Ap,≤k. By the definition of Ap,≤k,

(2.7) p
(

dim SuppB
) ≥ −k.

Since p(0) ≥ p(dim SuppB), we have 0 ≥ −k. It follows that:

Hom(A,F [−k0]) = Hom(B[k + 1], F [−k0])
= Hom(B,F [−k0 − k − 1])
∼= Ext−k0−k−1

A (B,F )
= 0,

since −k0 − k − 1 ≤ −k0 − 1 ≤ −1. This proves (2.6).
(iv) Recall that Ap = Dp,≤0 ∩Dp,≥0. By (iii), it remains to prove that

F ∈ Dp,≤0. When k �= 0, H−k(F ) = 0 ∈ Ap,≤k since 0 ∈ Ap,≤k by conven-
tion. When k = 0,

p(dim SuppH−k(F )) = p(dim SuppF ) = p(0) = −k,

i.e., H−k(F ) ∈ Ap,≤k as well. Therefore, we have F ∈ Dp,≤0.
(v) The conclusion follows directly from (ii) and (iv). �
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Definition 2.5. A stability vector ρ is a sequence (ρ0, ρ1, . . . , ρn) ∈ (C∗)n+1

such that for every 0 ≤ d ≤ (n− 1), ρd/ρd+1 is contained in the interior of

H = {z ∈ C | z ∈ R+ · eiπφ(z), 0 < φ(z) ≤ 1}.

A perversity function p : {0, 1, . . . , n} → Z is associated to ρ if we have
(−1)p(d)ρd ∈ H for all 0 ≤ d ≤ n. An element ω ∈ Num(X)R is ample if
ωd · α > 0 for all 1 ≤ d ≤ n and for every nonzero effective class α ∈ Ad(X).
An element U ∈ A∗(X)C is unipotent if U = 1 +N , where N is concentrated
in positive degree.

The following is the main theorem in [2], noting that we have replaced
the condition ω ∈ A1(X)R there by ω ∈ Num(X)R.

Theorem 2.1. Let the data Ω = (ω, ρ, p, U) be given, consisting of

• an ample class ω ∈ Num(X)R,

• a stability vector ρ = (ρ0, ρ1, . . . , ρn),

• a perversity function p associated to ρ,

• a uniponent class U ∈ A∗(X)C.

Let ZΩ : K
(Db(X)

)

= K(X) → C[m] be the central charge defined by

(2.8) ZΩ(E)(m) =
∫

X

n
∑

d=0

ρdω
dmd · ch(E) · U.

Then ZΩ(E)(m) is a polynomial Bridgeland stability function for Ap with
the Harder–Narasimhan property, and thus induces a polynomial Bridgeland
stability condition (ZΩ,PΩ) on Db(X).

Remark 2.1. Note that the polynomial Bridgeland stability condition
associated to the data (aω, ρ, p, U), a ∈ R+ is independent of the parame-
ter a ∈ R+.

Finally, for the smooth variety X, let D : Db(X) → Db(X) be the dual
functor defined by the derived dual D(E) = RHom(E,OX) = E∨, and let

(2.9) P : A∗(X) → A∗(X)

be the parity operator acting by multiplication by (−1)i on Ai(X). Then
the dual polynomial Bridgeland stability condition (ZΩ∗ ,PΩ∗) of (ZΩ,PΩ) is
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defined by the data Ω∗ = (ω, ρ∗, p∗, U∗), where ρ∗d = (−1)dρd, p∗ is the dual
perversity function defined by p∗(d) = −d− p(d), and U∗ = P (U).

3. Walls and chambers for surfaces

In this section, X denotes a smooth projective surface. Our goal is to recall
and generalize the basic definitions and results in [8, 16, 17] regarding walls,
chambers, and variations of μ-stability as the polarization changes.

When r > 0, the following definition can be found in [16, 17] (see also [8]).

Definition 3.1. Let CX ⊂ Num(X)R be the ample cone of the smooth
projective surface X. Fix two integers r, c2 ∈ Z and a divisor c1 on X.

(i) For a class ξ ∈ Num(X) ⊗ R, we define

(3.1) W ξ = CX ∩ {α ∈ Num(X)R | α · ξ = 0}.

We say that L,H ∈ Num(X)R are separated by W ξ if L · ξ ≤ 0 < H · ξ,
or L · ξ < 0 ≤ H · ξ, or L · ξ ≥ 0 > H · ξ, or L · ξ > 0 ≥ H · ξ.

(ii) Let W(r, c1, c2) be the set whose elements are of the form W ξ, where
ξ is the numerical equivalence class (rF − sc1) for some divisor F and
some integer s with 0 < s < |r| satisfying the inequalities

(3.2) −r
2

4
(2rc2 − (r − 1)c21) ≤ ξ2 < 0.

(iii) A wall of type (r, c1, c2) is an element in W(r, c1, c2), while a chamber
of type (r, c1, c2) is a connected component in the complement CX −
W(r, c1, c2).

(iv) A sheaf E (or in general, a bounded complex E of sheaves) on X is of
type (r, c1, c2) if rk(E) = r, c1(E) = c1 and c2(E) = c2.

Remark 3.1. For polynomial Bridgeland stability conditions, sometimes
a “wall” may also refer to a situation where some of the stability vectors ρi

overlap. We refer to [2, 23] for more details.

Fix a triple (r, c1, c2). By the results in [7], the set W(r, c1, c2) of wall of
type (r, c1, c2) is locally finite, i.e., given a compact subset K of the ample
cone CX , there are only finitely many walls W of type (r, c1, c2) such that
W ∩K �= ∅.
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Lemma 3.1. Let r̃ = −r �= 0 and 1 + c̃1 + c̃2 = (1 + c1 + c2)−1 ∈ A∗(X).
Then, ξ defines a wall of type (r, c1, c2) if and only if it defines a wall of type
(r̃, c̃1, c̃2).

Proof. We have c̃1 = −c1 and c̃2 = c21 − c2. Our result follows from the obser-
vations that (rF − sc1)=(r̃ ˜F − s̃c̃1) where ˜F =(r/|r|)c1 − F and s̃ = |r| − s,
and that

−r
2

4
(2rc2 − (r − 1)c21) = − r̃

2

4
(2r̃c̃2 − (r̃ − 1)c̃21). �

The following lemma is well-known, and its proof is omitted.

Lemma 3.2. Let L be an ample divisor, and assume a filtration of tor-
sion free sheaves 0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En−1 ⊂ En = E such that all
the quotients Ei/Ei−1 with i > 0 are torsion free and μ-semistable with
respect to L. If μL(Ei) = μL(E) for all i > 0, then E is μ-semistable with
respect to L. �

Lemma 3.3. Let A be a torsion free sheaf of type (r, c1, c2). Let B be
a proper subsheaf of A with torsion free quotient C = A/B. Assume that
μL(A) = μL(B), and A (hence B) is μ-semistable with respect to L.

(i) Either the class ξ def= rc1(B) − rk(B)c1 ≡ 0 (numerically equivalent to
zero) or ξ defines a wall of type (r, c1, c2) satisfying ξ · L = 0.

(ii) The integer 2rc2 − (r − 1)c21 is bounded below by

max(2rk(B)c2(B) − (rk(B) − 1)c1(B)2, 2rk(C)c2(C) − (rk(C) − 1)c1(C)2).

Proof. (i) This is the Theorem 4.C.3 in [8]. Note that we also have

ξ = rk(C)c1(B) − rk(B)c1(C).

(ii) From our setup, we have the exact sequence

(3.3) 0 → B → A→ C → 0.

A straight–forward computation shows that 2rc2 − (r − 1)c21 is equal to

r

rk(B)
(2rk(B)c2(B) − (rk(B) − 1)c1(B)2)

+
r

rk(C)
(2rk(C)c2(C) − (rk(C) − 1)c1(C)2) − ξ2

rk(B)rk(C)
.(3.4)
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Since B and C are μ-semistable, they satisfy the Bogomolov inequality:

2 rk(B)c2(B) ≥ (rk(B) − 1)c1(B)2,

2 rk(C)c2(C) ≥ (rk(C) − 1)c1(C)2.

Since ξ2 ≤ 0 by the Hodge Index Theorem, our conclusion follows
from (3.4). �

A weaker version of the following lemma can be found in [17].

Lemma 3.4. Let A be a torsion free sheaf of type (r, c1, c2), and let L,
H ∈ CX .

(i) When A is strictly μ-semistable with respect to H, there is an exact
sequence

(3.5) 0 → B → A→ C → 0,

such that C is torsion free, and that either ξ def= rc1(B) − rk(B)c1 ≡ 0,
or ξ defines a wall of type (r, c1, c2) with ξ ·H = 0.

(ii) If A is not μ-semistable with respect to H but is μ-semistable with
respect to L, then there exists an exact sequence (3.5) such that C is
torsion free, and that ξ defines a wall of type (r, c1, c2) with ξ · L <
0 < ξ ·H or ξ · L = 0.

Proof. (i) Since A is strictly μ-semistable with respect to H, there exists a
proper subsheaf B of A with μH(B) = μH(A). Moreover, we may assume
that the quotient C = A/B is torsion free. Then our result follows from
Lemma 3.3 (i).

(ii) First of all, assume that A is μ-stable with respect to L. Let IQ consist
of all the rational points on the line segment LH connecting L and H. Recall
that the conditions of being μ-stable with respect to M and of being not
μ-semistable with respect to M are both open conditions for M ∈ IQ. It
follows that there exists M ∈ IQ such that A is strictly μ-semistable with
respect to M . By (i), there exists an exact sequence (3.5) such that either
ξ = rc1(B) − rk(B)c1 ≡ 0 or ξ defines a wall of type (r, c1, c2) with ξ ·M = 0.
The case ξ ≡ 0 cannot happen: indeed, μL(B) < μL(A) since A is μ-stable
with respect to L; so ξ · L < 0 and ξ �≡ 0. Also, ξ ·H > 0 since ξ · L < 0,
ξ ·M = 0, and M lies in the interior of LH.
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Next, let A be strictly μ-semistable with respect to L. Then there is a
filtration

(3.6) 0 = A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ An−1 ⊂ An = A,

such that all the quotients Ai/Ai−1 are torsion free and μ-stable with respect
to L, and μL(Ai) = μL(A) for all i. If rc1(Ai) − rk(Ai)c1 �≡ 0 for some 1 ≤
i ≤ (n− 1), then setting B = Ai and ξ = rc1(Ai) − rk(Ai)c1, we see from
Lemma 3.3 (i) that ξ defines a wall of type (r, c1, c2) with ξ · L = 0. In the
following, assume that

rc1(Ai) − rk(Ai)c1 ≡ 0

i.e., c1(Ai)/rk(Ai) ≡ c1/r for all 1 ≤ i ≤ (n− 1). Then μH(Ai) = μH(A) for
all 1 ≤ i ≤ (n− 1). Since A is not μ-semistable with respect to H, we con-
clude from Lemma 3.2 that Ai/Ai−1 is not μ-semistable with respect to H
for some 1 ≤ i ≤ n. Since ˜A

def= Ai/Ai−1 is μ-stable with respect to L, we see
from the preceding paragraph that there exists an exact sequence

(3.7) 0 → ˜B → ˜A→ ˜C → 0,

such that ˜C is torsion free, and that ξ̃ def= rk( ˜A)c1( ˜B) − rk( ˜B)c1( ˜A) defines a
wall of type

(

rk( ˜A), c1( ˜A), c2( ˜A)
)

with ξ̃ · L < 0 < ξ̃ ·H. Let B be the kernel
of the composition Ai → ˜A→ ˜C. Then ˜B = B/Ai−1. Letting C = A/B, we
obtain (3.5). Note that C is torsion free since it sits in the exact sequence

(3.8) 0 → Ai/B → C → A/Ai → 0

with both A/Ai and Ai/B ∼= ˜C being torsion free. Setting ξ = rc1(B) −
rk(B)c1, then ξ ≡ rξ̃/rk( ˜A) since c1(Aj)/rk(Aj) ≡ c1/r for every j. So ξ2 < 0
and ξ · L < 0 < ξ ·H. Applying Lemma 3.3 (ii) to the inclusions Ai−1 ⊂
Ai ⊂ A and noting μL(A) = μL(Ai) = μL(Ai−1), we obtain

2rc2 − (r − 1)c21 ≥ 2rk(Ai)c2(Ai) − (rk(Ai) − 1)c1(Ai)2

≥ 2rk( ˜A)c2( ˜A) − (rk( ˜A) − 1)c1( ˜A)2.
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Since ξ̃ defines a wall of type
(

rk(Ai), c1(Ai), c2(Ai)
)

, we obtain

ξ2 =
r2

rk( ˜A)2
ξ̃2

≥ r2

rk( ˜A)2
·
{

−rk( ˜A)2

4

(

2rk( ˜A)c2( ˜A) − (rk( ˜A) − 1)c1( ˜A)2
)

}

= −r
2

4

(

2rk( ˜A)c2( ˜A) − (rk( ˜A) − 1)c1( ˜A)2
)

≥ −r
2

4
(2rc2 − (r − 1)c21).

This shows that ξ defines a wall of type (r, c1, c2) with ξ · L < 0 < ξ ·H. �
Our next result generalizes the Theorem 1.2.3 in [16].

Theorem 3.1. Let A be a torsion free sheaf of type (r, c1, c2) on a surface
X. Let C− and C+ be two adjacent chambers of type (r, c1, c2) sharing a
common wall W . Let L ∈ C−, H ∈ C+, and {M} = W ∩ LH. Then, A is
μ-stable with respect to L but μ-unstable with respect to H if and only if all
the following conditions hold:

(i) A is strictly μ-semistable with respect to M,

(ii) there exists an exact sequence 0 → B → A→ C → 0 such that C is
torsion free and ξ def= rc1(B) − rk(B)c1 represents W with ξ · L < 0 <
ξ ·H,

(iii) μL( ˜B) < μL(A) for every proper subsheaf ˜B of A with μM ( ˜B) = μM (A).

Proof. First of all, assume that A is μ-stable with respect to L but μ-unstable
with respect to H. Since A is μ-stable with respect to L, μL( ˜B) < μL(A) for
every proper subsheaf ˜B of A. This proves (iii). By Lemma 3.4 (ii), we obtain
(ii). Moreover, from the first paragraph in the proof of Lemma 3.4 (ii), we
see that A is strictly μ-semistable with respect to M . This proves (i).

Conversely, assume (i) to (iii). Since ξ ·H > 0, we have μH(B) > μH(A).
So A is μ-unstable with respect to H. Assume that A is not μ-stable with
respect to L. Since L does not lie on any wall of type (r, c1, c2), A cannot be
strictly μ-semistable with respect to L. Thus A is μ-unstable with respect
to L. Let ˜B be the first nonzero term in the Harder–Narasimhan filtration
of A with respect to L. By the Proposition 4.3.6 in [17], ˜B is also the first
nonzero term in the Harder–Narasimhan filtration of A with respect to every
˜L ∈ C−. So μ

˜L( ˜B) > μ
˜L(A) for all ˜L ∈ C−. Since M is on the boundary of
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C−, μM ( ˜B) ≥ μM (A). Since A is μ-semistable with respect to M , μM ( ˜B) ≤
μM (A). Hence μM ( ˜B) = μM (A). Therefore, μL( ˜B) < μL(A) by (iii). This con-
tradicts to the choice of ˜B. �

4. Polynomial Bridgeland stability under change
of polarizations

In this section, we will assume that X is a smooth projective complex surface
and the class L ∈ A1(X)R in a stability data ΩL = (L, ρ, p, U) is represented
by an R-ample divisor on X. Our goal is to study the variation of the
polynomial Bridgeland stability condition (ZΩL

,PΩL
) on Db(X) when we

change L.
We begin with some simplifications of the perversity function p :

{0, 1, 2} → Z and the stability vector ρ = (ρ0, ρ1, ρ2). Let ˜GL+(2,R) be the
universal covering space of GL+(2,R) which denotes the group of 2 × 2-
matrices with positive determinants. As in [4], the group ˜GL+(2,R) acts on
the space of polynomial Bridgeland stability conditions. Using this action,
we may assume that ρ0 = −1 and ρ1 = i. It follows that p(0) = p(1) = 0 (up
to a swift of p by −p(0)). Using the derived duality mentioned in the para-
graph containing (2.9), we may further assume that ρ2 is contained in the
closure H. This leaves two cases,

Case 1. p(0) = p(1) = p(2) = 0 (ρ0 = −1, ρ1 = i, ρ2 ∈ H).

Case 2. p(0) = p(1) = 0 and p(2) = −1 (ρ0 = −1, ρ1 = i, ρ2 > 0).

In the rest of the paper, we will work with these two cases. Note that when
X is a K3 surface, the second case has been treated in [5]. In addition, in the
second case, the stability condition is essentially self-dual (up to modifying
U), and so we have the convenience of applying the derived duality.

Next, let ΩL = (L, ρ, p, U) where U = 1 + u1 + u2 with ui ∈ Ai(X)C. Let
E ∈ Db(X) be of type (r, c1, c2). We calculate from (2.8) that
(4.1)
ZΩL

(E)(m) = ρ2 rL
2m2 + ρ1

(

ru1L+ c1L
)

m+ ρ0(ru2 + c1 u1 + c21/2 − c2).

If the rank r is nonzero, let μL(E) = (c1 · L)/r be the μ-slope function. Then,
(4.2)
ZΩL

(E)(m)
r

= ρ2L
2m2 + ρ1

(

u1L+ μL(E)
)

m+ ρ0
ru2 + c1 u1 + c21/2 − c2

r
.

In the next two lemmas, we handle Case 1 when p(0) = p(1) = p(2) = 0.
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Lemma 4.1. Let ΩL = (L, ρ, p, U) where U ∈ A∗(X)R, L is an ample divi-
sor, and p = 0 is the constant perversity function. Let 0 �= A ∈ Ap be of type
(r, c1, c2).

(i) If r �= 0, then r > 0.

(ii) If A is ZΩL
-semistable, then A is a pure dimensional sheaf.

(iii) Let r > 0. If A is ZΩL
-semistable, then A is μ-semistable with respect to

L; moreover, if A is strictly μ-semistable with respect to L, then either
L lies on some wall of type (r, c1, c2), or A is semistable with respect to
the stability data (L, ρ, p, ˜U) for every ˜U ∈ A∗(X)R.

Proof. (i) Note from Lemma 2.1 (v) that Ap = A = Coh(X). So A is a
nonzero sheaf on X. Since r �= 0, we must have r > 0.

(ii) Since p(0) = p(1) = p(2) = 0, we see that ρ0, ρ1, ρ2 ∈ H and φ(ρ0) >
φ(ρ1) > φ(ρ2). Now let d be the dimension of the support of A. If A is not
pure dimensional, then A contains a d′-dimensional torsion T with d′ < d.
By (4.1),

φ
(

ZΩL
(A)(+∞)

)

= φ(ρd),
φ
(

ZΩL
(T )(+∞)

)

= φ(ρd′).

Since φ(ρd) < φ(ρd′), we would obtain φ
(

ZΩL
(A)(m)

)

< φ
(

ZΩL
(T )(m)

)

for
m� 0. This is impossible since A is ZΩL

-semistable and there is an inclusion
T ↪→ A.

(iii) By (ii), A is torsion free. It follows from (4.2) that the polyno-
mial semistability implies the μ-semistability. Thus, A is μ-semistable with
respect to L.

Assume that A is strictly μ-semistable with respect to L, and that L
does not lie on any wall of type (r, c1, c2). Let ΩL,˜U = (L, ρ, p, ˜U). Let B
be any proper subsheaf of A. If μL(B) < μL(A), then φ

(

ZΩL, ˜U
(B)(m)

)

<

φ
(

ZΩL, ˜U
(A)(m)

)

for m� 0. If μL(B) = μL(A), then rc1(B) − rk(B)c1 ≡ 0
by Lemma 3.3 (i). By (4.2),

ZΩL
(A)(m)
r

= ρ2L
2m2 + ρ1

(

u1L+ μL(A)
)

m+ ρ0

(

u2 +
c1
r
u1 +

c21 − 2c2
2r

)

.

Since A is ZΩL
-semistable, φ

(

ZΩL
(B)(m)

) ≤ φ
(

ZΩL
(A)(m)

)

for m� 0. So

u2 +
c1(B)
rk(B)

u1 +
c1(B)2 − 2c2(B)

2rk(B)
≤ u2 +

c1
r
u1 +

c21 − 2c2
2r

.
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Since c1(B)/rk(B) ≡ c1/r, we conclude immediately that

c1(B)2 − 2c2(B)
2rk(B)

≤ c21 − 2c2
2r

.

This in turn implies φ
(

ZΩL, ˜U
(B)(m)

) ≤ φ
(

ZΩL, ˜U
(A)(m)

)

for m� 0. There-
fore, A is semistable with respect to the stability data (L, ρ, p, ˜U) for all
˜U ∈ A∗(X)R. �

Lemma 4.2. Let ΩL = (L, ρ, p, U) and ΩH = (H, ρ, p, U), where U ∈
A∗(X)R, and L and H are two R-ample divisors on X. Let p(0) = p(1) =
p(2) = 0, and let 0 �= A ∈ Ap be of type (r, c1, c2) with r > 0. If A is ZΩL

-
semistable but not ZΩH

-semistable, then there exists an exact sequence of
sheaves

(4.3) 0 → B → A→ C → 0,

such that C is torsion free and that ξ def= rc1(B) − rk(B)c1 defines a wall of
type (r, c1, c2) satisfying ξ ·H = 0, or ξ · L < 0 < ξ ·H, or ξ · L = 0.

Proof. By Lemma 4.1 (iii), the sheaf A is μ-semistable with respect to L.
Since A is not ZΩH

-semistable with respect to H, there exists a proper sub-
sheaf ˜B ⊂ A such that φ

(

ZΩH
( ˜B)(m)

)

> φ
(

ZΩH
(A)(m)

)

form� 0. By (4.2),

ZΩH
(A)(m)
r

= ρ2H
2m2 + ρ1

(

u1H + μH(A)
)

m+ ρ0a,

ZΩH
( ˜B)(m)

rk( ˜B)
= ρ2H

2m2 + ρ1

(

u1H + μH( ˜B)
)

m+ ρ0b,

where a, b ∈ R are independent of H. So μH( ˜B) ≥ μH(A), and A is not
μ-stable with respect to H. Note that since extending ˜B by a torsion sheaf
increases either μH( ˜B) or b, we may assume that A/ ˜B is torsion free.

If A is strictly μ-semistable with respect to H, then let B = ˜B. We have
μH(B) = μH(A). By Lemma 3.4 (i), either ξ =

(

rc1(B) − rk(B)c1
) ≡ 0 or

ξ defines a wall of type (r, c1, c2) with ξ ·H = 0. We claim that ξ ≡ 0 can
not happen. Indeed, if ξ ≡ 0, then μL(B) = μL(A). So φ

(

ZΩL
(B)(m)

) ≤
φ
(

ZΩL
(A)(m)

)

for m� 0 implies b ≤ a, which in turn implies that
φ
(

ZΩH
(B)(m)

) ≤ φ
(

ZΩH
(A)(m)

)

form� 0. This contradicts to our assump-
tion about B = ˜B.
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Assume now that A is not μ-semistable with respect toH. By Lemma 3.4
(ii), there exists an exact sequence (4.3) such that ξ = rc1(B) − rk(B)c1
defines a wall of type (r, c1, c2) satisfying either ξ · L < 0 < ξ ·H or
ξ · L = 0. �

Next, we handle Case 2 when p(0) = p(1) and p(2) = −1.

Lemma 4.3. Let ΩL = (L, ρ, p, U), where U ∈ A∗(X)R, L is an ample divi-
sor, and p(0) = p(1) = 0 and p(2) = −1. Let 0 �= E ∈ Ap be of type (r, c1, c2).

(i) The category Ap consists of two-term complexes F with H−1(F ) being
torsion free and H0(F ) being torsion. In particular, if r �= 0, then r <
0.

(ii) Let r < 0, and let E be ZΩL
-semistable. Then, the torsion sheaf H0(E)

is not one-dimensional, the sheaf H−1(E) is μ-semistable with respect
to L, and the Bogomolov inequality holds for E:

(4.4) 2rc2 ≥ (r − 1)c21.

Proof. (i) This follows from Lemma 2.1. Since the conclusion has been stated
in Sect. 4 of [2], we omit the detailed proof here.

(ii) Since p(0) = p(1) = 0 and p(2) = −1, we have ρ0, ρ1,−ρ2 ∈ H with
φ(ρ0), φ(−ρ2) > φ(ρ1). Note that in Ap, we have a short exact sequence

(4.5) 0 → H−1(E)[1] → E → H0(E) → 0.

Since E is ZΩL
-semistable, φ

(

ZΩL

(H0(E)
)

(m)
) ≥ φ

(

ZΩL
(E)(m)

)

for m�
0. Since

ZΩL
(E)(m) = −ZΩL

(H−1(E)
)

(m) + ZΩL

(H0(E)
)

(m)

and H0(E) is torsion, we have φ
(

ZΩL
(E)(+∞)

)

= φ(−ρ2). So

φ
(

ZΩL

(H0(E)
)

(+∞)
) ≥ φ(−ρ2).

If H0(E) is one-dimensional, then φ
(

ZΩL
(E)(+∞)

)

= φ(ρ1). Thus φ(ρ1) ≥
φ(−ρ2), but this contradicts to φ(−ρ2) > φ(ρ1). Hence H0(E) is not one-
dimensional.

Let B be any proper subsheaf of H−1(E) with torsion free quotient.
Then, B[1] is a sub-object of E in Ap. Since E is ZΩL

-semistable,
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φ
(

ZΩL
(B[1])(m)

) ≤ φ
(

ZΩL
(E)(m)

)

for m� 0. By (4.2), we obtain

ZΩL
(E)(m)
−r = −ρ2L

2m2 + ρ1

( − u1L− μL

(H−1(E)
))

m− ρ0a,

ZΩL
(B[1])(m)
rk(B)

= −ρ2L
2m2 + ρ1

( − u1L− μL(B)
)

m− ρ0b,

where a, b ∈ R are independent of m. Since φ(−ρ2) > φ(ρ1), we must have

−u1L− μL(B) ≥ −u1L− μL

(H−1(E)
)

.

Thus μL(B) ≤ μL

(H−1(E)
)

. Hence H−1(E) is μ-semistable with respect to
L.

LetA = H−1(E), and let 	 = 	
(H0(E)

)

be the length of the zero-dimensional
torsion sheaf H0(E). By (4.5), −ch(A) = ch(E) − 	. Thus,

rk(A) = −r, c1(A) = −c1, c2(A) = c21 − c2 − 	.

Applying the usual Bogomolov inequality to the μ-semistable sheaf A, we
see that 2(−r)c2(A) ≥ (

(−r) − 1
)

c21. Therefore, we obtain

2rc2 = 2r(−c2(A) + c21 − 	) ≥ 2r(−c2(A) + c21) ≥ (r − 1)c21. �

Lemma 4.4. Let ΩL = (L, ρ, p, U), where U = 1 + u1 + u2 ∈ A∗(X)R, and
L and H are two R-ample divisors on X. Let p be the perversity function
p(0) = p(1) = 0 and p(2) = −1. Let 0 �= E ∈ Ap be of type (r, c1, c2) with
r < 0. If E is ZΩL

-semistable but not ZΩH
-semistable, then either (c1 + ru1) ·

L = 0 < (c1 + ru1) ·H, or there is an exact sequence in Ap:

(4.6) 0 → B[1] → E → C → 0,

such that B is a torsion free sheaf, and that ξ def= rc1(B[1]) − rk(B[1])c1
defines a wall of type (r, c1, c2) satisfying ξ ·H = 0, or ξ · L < 0 < ξ ·H,
or ξ · L = 0.

Proof. Since E is not ZΩH
-semistable, there exists a ZΩH

-destablizing sub-
object F ∈ Ap. Moreover, we may assume that F is ZΩH

-semistable. Let
G = E/F ∈ Ap. Then we have a long exact sequence of cohomologies
(4.7)

0 → H−1(F ) → H−1(E) → H−1(G) → H0(F ) → H0(E) → H0(G) → 0.

First of all, assume that H−1(F ) = 0. Then F is a torsion sheaf by
Lemma 4.3 (i). Let d be the dimension of the support of F . Then d = 0 or 1.
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If d = 1, then φ
(

ZΩH
(F )(+∞)

)

= φ(ρ1); since φ
(

ZΩH
(E)(+∞)

)

= φ(−ρ2)
and φ(−ρ2) > φ(ρ1), we see that φ

(

ZΩH
(E)(m)

)

> φ
(

ZΩH
(F )(m)

)

for m�
0; this contradicts to the assumption that F is ZΩH

-destablizing. So d = 0.
Since ρ0 = −1,

ZΩL
(F )(m) = ρ0 · 	(F ) = −	(F )

is a constant polynomial. Since

1 = φ
(

ZΩL
(F )(m)

) ≤ φ
(

ZΩL
(E)(m)

)

for m� 0, we have φ
(

ZΩL
(E)(m)

)

= 1 for m� 0. By (4.1), (c1 + ru1) ·
L = 0. Similarly, since

1 = φ
(

ZΩH
(F )(m)

)

> φ
(

ZΩH
(E)(m)

)

for m� 0, we obtain (c1 + ru1) ·H > 0. Thus (c1 + ru1) · L = 0 < (c1 +
ru1) ·H.

Next, assume that rkH−1(F ) = rkH−1(E). Thus G is a zero-dimensional
torsion sheaf. So φ

(

ZΩH
(G)(m)

)

= 1 ≥ φ
(

ZΩH
(E)(m)

)

for m� 0, contra-
dicting to the assumption that G is ZΩH

-destablizing for E. Hence this case
cannot happen.

Finally, assume 0 < rkH−1(F ) < rkH−1(E). Let ˜B = H−1(F ) and A =
H−1(E). Then A is μ-semistable with respect to L by Lemma 4.3 (ii). Since
F is ZΩH

-semistable, H0(F ) is a zero-dimensional torsion by Lemma 4.3 (ii)
as well. So

ZΩH
(E)(m)
−r = −ρ2H

2m2 + ρ1

( − u1H − μH(A)
)

m− ρ0ã,

ZΩH
(F )(m)

−rk(F )
= −ρ2H

2m2 + ρ1

( − u1H − μH( ˜B)
)

m− ρ0b̃,

where −rk(F ) = rk( ˜B) > 0, and ã, b̃ ∈ R are independent of m. Since
φ(−ρ2) > φ(ρ1) and φ

(

ZΩH
(F )(m)

)

> φ
(

ZΩH
(E)(m)

)

for m� 0, we must
have

(−u1H − μH( ˜B)) ≤ (−u1H − μH(A)).

So μH( ˜B) ≥ μH(A). Now there are two cases. In the first case, A is strictly
μ-semistable with respect to H. Let B = ˜B. We have μH(B) = μH(A). Note
from (4.7) that A/B is torsion free. By Lemma 3.4 (i), either

ξ = (−r)c1(B) − rk(B)(−c1) ≡ 0
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or ξ defines a wall of type (r, c1, c2) with ξ ·H = 0. As in the second para-
graph in the proof of Lemma 4.2, ξ ≡ 0 cannot happen. In the second case,
A is not μ-semistable with respect to H. By Lemma 3.4 (ii), there exists an
exact sequence

0 → B → A→ ˜C → 0,

such that ˜C is torsion free and ξ = (−r)c1(B) − rk(B)(−c1) defines a wall
of type (r, c1, c2) satisfying ξ · L < 0 < ξ ·H or ξ · L = 0. Note that in both
cases,

ξ = rc1(B[1]) − rk(B[1]) c1.

In addition, sinceA/B is torsion free, we have the inclusionsB[1] ⊂ A[1] ⊂ E
in Ap. Letting C ∈ Ap be the quotient E/B[1] gives rise to (4.6). �

Theorem 4.1. Let X be a smooth projective surface, and let ΩL denote
the data (L, ρ, p, U), where p(0) = p(1) = 0 and U = 1 + u1 + u2 with ui ∈
Ai(X)R. Let 0 �= E ∈ Db(X) be of type (r, c1, c2) with r �= 0.

(i) If E is ZΩL
-semistable, then the Bogomolov inequality holds

2rc2 ≥ (r − 1)c21.

(ii) Let L and H be contained in the same chamber of type (r, c1, c2). When
r < 0, we further assume that (c1 + ru1) does not satisfy

(c1 + ru1) · L = 0 < (c1 + ru1) ·H.

Then E is ZΩL
-semistable if and only if it is ZΩH

-semistable.

Proof. (i) By definition, the semistable objects in Db(X) are precisely the shifts
of the semistable objects in the heart Ap. So E = ˜E[k] for some ZΩL

-
semistable object ˜E ∈ Ap. When p(2) = 0, we apply the usual Bogomolov
inequality to the μ-semistable sheaf ˜E; when p(2) = −1, we apply (4.4) to
˜E. So we obtain

2 rk( ˜E) c2( ˜E) ≥ (

rk( ˜E) − 1
)

c1( ˜E)2.

When k is even, we have rk( ˜E) = r and c( ˜E) = c(E); when k is odd, rk( ˜E) =
−r and 1 + c̃1 + c̃2

def= c( ˜E) = c(E)−1 = 1 − c1 + (c21 − c2). In either case, we
conclude that E satisfies the Bogomolov inequality (4.4) as well.

(ii) Again, the object E is ZΩL
-semistable if and only if E = ˜E[k] for

some ZΩL
-semistable object ˜E ∈ Ap. By Lemma 3.1, the chambers of type
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(r, c1, c2) coincide with the chambers of type (−r, c̃1, c̃2). By Lemmas 4.2
and 4.4, ˜E ∈ Ap is ZΩL

-semistable if and only if it is ZΩH
-semistable. Hence,

we see that E is ZΩL
-semistable if and only if it is ZΩH

-semistable. �

Definition 4.1. Fix a type (r, c1, c2) on the surface X and an ample divi-
sor L.

(i) Define M
G
L (r, c1, c2) to be the moduli space of torsion free sheaves

which are of type (r, c1, c2) and are Gieseker-semistable with respect
to L.

(ii) For ΩL = (L, ρ, p, U), define MΩL
(r, c1, c2) to be the set of all objects

E ∈ Ap which are of type (r, c1, c2) and are ZΩL
-semistable.

We remark that it is unknown whether MΩL
(r, c1, c2) exists as a scheme.

Lemma 4.5. Let X be a smooth projective surface, and fix a numerical
type (r, c1, c2) with r �= 0. Let ΩL,U = (L, ρ, p, U), where p = 0 is the constant
perversity function, U ∈ A∗(X)R, and L ∈ CX does not lie on any wall of
type (r, c1, c2). Then, MΩL,U

(r, c1, c2) is independent of U .

Proof. Note from Lemma 4.1 (i) that we have r > 0. LetA ∈ MΩL,U0
(r, c1, c2)

for some U0 ∈ A∗(X)R. By Lemma 4.1 (iii), A is a torsion free sheaf
μ-semistable with respect to L. If A is μ-stable with respect to L, then
A ∈ MΩL, ˜U

(r, c1, c2) for every ˜U ∈ A∗(X)R. If A is strictly μ-semistable with
respect to L, then since L does not lie on any wall of type (r, c1, c2), we
see from Lemma 4.1 (iii) again that A ∈ MΩL, ˜U

(r, c1, c2) for every ˜U ∈
A∗(X)R. �

Proposition 4.1. Let X be a smooth projective surface, and fix a numerical
type (r, c1, c2), with r �= 0. Let ΩL = (L, ρ, p, U), where p = 0 is the constant
perversity function, U ∈ A∗(X)R, and L ∈ CX does not lie on any wall of
type (r, c1, c2). Then A ∈ MΩL

(r, c1, c2) if and only if A ∈ M
G
L (r, c1, c2).

Proof. It has been proved in [2] that if U = td(X), then A ∈ MΩL
(r, c1, c2)

if and only if A ∈ M
G
L (r, c1, c2). So our result follows from Lemma 4.5. �
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