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Slow convergence of graphs under mean

curvature flow

Kashif Rasul

In this paper, we study the mean curvature flow of entire graphs in
Euclidean space. Ecker and Huisken in [1] have shown that given
some initial growth condition at infinity and bounded initial gradi-
ent, such graphs, when rescaled, become self-similar under this evo-
lution. Furthermore the convergence is exponentially fast in time.
Here we consider a weaker condition at infinity, and show that
under mean curvature flow such a condition is preserved for the
height of the graph during the extent of the evolution. Our main
result then states that under this alternative condition at infinity
and bounded gradient, the rescaled graphs also become self-similar,
converging however at a slower (polynomial in time) rate.

1. Introduction

We denote a smooth family of embeddings from an open subset Mn of R
n

by Ft = F (·, t) : Mn → R
n+1 with Ft(Mn) = Mt for t > 0. We say that this

family of hypersurfaces moves by mean curvature flow if

∂F

∂t
(p, t) = �H(F (p, t)),

F (p, 0) = F0(p),
(1.1)

for p ∈Mn and t ∈ I. Here �H(F (p, t)) is the mean curvature vector of the
hypersurface Mt at F (p, t) defined as:

�H := −H�ν,

where H is the mean curvature and �ν the outward unit normal to the hyper-
surface at the point F (p, t). In the case when Mt are entire graphs, i.e.,
Mt = graphw(·, t), where w : R

n × (0,∞) → R is smooth, mean curvature
flow (1.1) is equivalent, modulo tangential diffeomorphisms in R

n, to the
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following quasilinear equation:

∂w

∂t
=

√
1 + |Dw|2 div

(
Dw

√
1 + |Dw|2

)

,

w(·, 0) = w0(·).
(1.2)

Rather than studying this equation from a PDE point of view, it is more
helpful to look at certain natural geometric quantities like the height of Mt

with respect to the hyperplane R
n × 0 defined by:

u(p, t) = 〈x(p, t),�en+1〉,

and its evolution. One can also similarly look at the gradient function:

v =
1

�ν · en+1
=

√
1 + |Dw|2

and derive estimates for the curvature of the graph. This yields by the work
of Ecker and Huisken in [1], the longtime existence of a solution to (1.2) for
initial data with bounded gradient.

Further they have shown that under certain conditions on the initial
hypersurface near infinity, the solution of mean curvature flow becomes
asymptotically self-similar, a self-similar solution being one whose graph
over R

n moves only by homothety. Modulo scaling this says thatMt =
√
tM1

for t > 0. Such solutions are given by the solution of the following elliptic
equation:

(1.3) H +
1
2
F · �ν = 0.

The PDE (1.3) arises naturally when we consider solutions “coming out
of a cone” in the sense that for initial data which is a cone: w0(λp) = λw0(p)
for some λ > 0, the solution is of the form w(p, t) =

√
tw(p/

√
t, 1). Stavrou

in [3] has shown that in fact one can replace the asymptotic condition at
infinity of Ecker and Huisken by asking that the initial surface have a unique
tangent cone at infinity to obtain solutions to (1.2) which converge uniformly
to a self-similar solution as t→ ∞. He shows that this is the weakest possible
condition in view of a counter example, however he does not obtain a rate
of convergence.

In general, graphs will move out to infinity as t approaches infinity with
height and curvature proportional to 1/

√
t, and so in order to study the

global shape of the solutions, one needs to rescale the surfaces back in such a
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way that they do not diverge off, but still retain a bound on their curvatures.
As in [2], we consider

F̃ (s) =
F (t)√
2t+ 1

,

where the new time variable is given by

s =
1
2

log(2t+ 1),

for 0 ≤ s <∞. The rescaled mean curvature flow then becomes

(1.4)
∂F̃

∂s
= �̃H − F̃

with the same initial condition

F̃ (·, 0) = F (·, 0).

Ecker and Huisken have then shown that if the initial graph has bounded
gradient

(1.5) v ≤ c1, for some c1 ≥ 1,

and satisfies the condition

〈F, ν〉2 ≤ C(1 + |F |2)1−δ,

for some δ > 0 and C <∞, then the rescaled surface is self-similar as t→ ∞.
They also show that this convergence is exponential in time.

For the rescaled surfaces denoted by M̃s = F̃ (·, s)(M), our main result
states:

Main Theorem. Suppose M0 satisfies the linear growth condition (1.5)
and has bounded curvature. If in addition it satisfies

〈x, ν〉2 ≤ c
1 + |x|2 − u2

logδ(e + |x|2) ,

for some constant c <∞ and some power δ > 0 then the solutions M̃s of the
rescaled mean curvature flow (1.4) converge as s→ ∞ to a limiting surface
M̃∞ which is self-similar, i.e., it satisfies

F⊥ = �H.
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2. Height estimate

We define the height of Mt with respect to the hyperplane R
n × {0} by

u(p, t) = 〈x(p, t), en+1〉.

In particular we have the following lemma, since x(p, t) is the solution
to mean curvature flow and so

(
d

dt
− Δ

)
u = 0.

Lemma 2.1. The function η(x, t) given by

η(x, t) = e + |x|2 − u2 + (2n+m)t

satisfies
(
d

dt
− Δ

)
η = 2|∇u|2 +m,

for some constant m.

Now we would like to study Mt, a smooth solution to (1.1), which grows
logarithmically. We would like to show that height u(·, t) satisfies the same
logarithmic growth estimates as u(·, 0). Note in particular that the non-
negative function |x|2 − u2 measures distance in the hyperplane orthogonal
to en+1. Our proposition then states:

Proposition 2.1. If for some negative constant −∞ < c0 ≤ 0 and positive
power δ ≥ 1, the inequality

u2

e + |x|2 − u2
− 1 ≤ c0

logδ(e + |x|2 − u2)

is satisfied on M0, then for all t > 0,

u2

e + |x|2 − u2 + (2n+m)t
− 1 ≤ c0

logδ(e + |x|2 − u2 + (2n+m)t)
,

and a positive constant m ≥ 4(δ − 1).
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Proof idea. The proof involves calculating the evolution of

(
u2

e + |x|2 − u2 + (2n+m)t
− 1

)
logδ(e + |x|2 − u2 + (2n+m)t)

and then using the weak maximum principle to obtain the result. �

Thus when we have for our particular case

f(η) = log(η), f ′(η) =
1
η
, f ′′(η) = − 1

η2

then the above lemma gives:

(
d

dt
− Δ

)(
u2f δ(η)

η
− f δ(η)

)
=

(
u2

η
− 1

)
δf δ−1

(
2|∇u|2 +m

η
+

|∇η|2
η2

)

−
(
u2

η
− 1

)
δ(δ − 1)

f δ−2

η2
|∇η|2

− 2
f δ

η
|∇u|2 − u2f δ

η2
(2|∇u|2 +m)

− 2
u2f δ

η3
|∇η|2 + 2δ

u2f δ−1

η3
|∇η|2

− 4δ
uf δ−1

η2
∇u · ∇η + 4

uf δ

η2
∇u · ∇η.

Using Young’s inequality we obtain:

(2.1)
∣∣∣∣4
uf δ

η2
∇u · ∇η

∣∣∣∣ ≤ 2
f δ

η
|∇u|2 + 2

u2f δ

η3
|∇η|2.

Also note that in terms of a local orthonormal frame {ei}1≤i≤n on M we
have

∇iu = ∇i〈x, en+1〉 = 〈ei, en+1〉

which implies that

∇iη = 2|x| 〈x, ei〉
|x| − 2〈x, en+1〉〈ei, en+1〉 = 2〈ei, x− 〈x, en+1〉en+1〉
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so that:

|∇η|2 = 4
∑

i

(〈x, ei〉 − 〈x, en+1〉〈ei, en+1〉)2

= 4
∑

i

(〈x, ei〉2 − 2〈x, en+1〉〈ei, en+1〉〈x, ei〉 + 〈x, en+1〉2〈ei, en+1〉2)

= 4
(|x|2 − 〈ν, x〉2 − 2〈x, en+1〉2 + u2(1 − 〈ν, en+1〉2)

)

≤ 4η.(2.2)

Also by the first derivative test for an extrema, we have at such a point
∇(u2f δ/η − f δ) = 0. We expand this out to obtain:

0 = ∇
(
u2f δ(η)

η
− f δ(η)

)
= 2

uf δ∇u
η

+ δ
u2f δ−1∇η

η2

− u2f δ∇η
η2

− δ
f δ−1∇η

η
,

which we rearrange to obtain:

2δ
u2f δ−1

η3
|∇η|2 − 4δ

uf δ−1

η2
∇u · ∇η = −2δ2

f δ−2|∇η|2
η2

+ 2δ2
u2f δ−2|∇η|2

η3

≤ −2δ2
f δ−2|∇η|2

η2
+ 2δ2

f δ−2|∇η|2
η2

= 0.(2.3)

The last inequality above follows if we assume that initially

u2

η
≤ 1

which is preserved during mean curvature flow as shown by the following
adaption of Proposition 2.2 of Ecker and Huisken in [1]:

Proposition 2.2 (A priori height estimate). If for some c0 <∞, the
inequality

u2

1 + |x|2 − u2
≤ C0

is satisfied on M0, then for all t > 0, and some constant m ≥ 0,

u2

1 + |x|2 − u2 + (2n+m)t
≤ C0.
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Proof. We calculate the evolution equation

(
d

dt
− Δ

)
u2

η
= −2

|∇u|2
η

− u2

η2
(2|∇u|2 +m) − 2u2 |∇η|2

η3

+ 4u
∇η · ∇u
η2

.

By Young’s inequality we have:

∣
∣∣∣4u

∇η · ∇u
η2

∣
∣∣∣ ≤ 2

|∇u|2
η

+ 2u2 |∇η|2
η3

which then implies that

(
d

dt
− Δ

)
u2

η
≤ −u

2

η2
(2|∇u|2 +m) ≤ 0.

Therefore by the weak maximum principle [1] the result follows. �

We are now ready to prove our proposition, namely if Mt is a smooth
solution of mean curvature flow and if initially M0 converges to its tangent
cone logarithmically, then such a rate is preserved during the evolution. In
other words the solutions remain in the same growth class they started in.

Proof of Proposition 2.1. By using the inequalities (2.1) and (2.3) we obtain
from the evolution equation for some positive power δ, the following inequal-
ity at the maximum point:

(
d

dt
− Δ

) (
u2

η
− 1

)
f δ ≤ −δ

(
1 − u2

η

)
f δ−1

(
2|∇u|2 +m

η
+

|∇η|2
η2

)

+ δ(δ − 1)
(

1 − u2

η

)
f δ−2

η2
|∇η|2

− u2f δ

η2
(2|∇u|2 +m).

Note that since u2/η − 1 by our initial assumption is negative, the only
positive term we have in the above inequality is

δ(δ − 1)
(

1 − u2

η

)
f δ−2

η2
|∇η|2 ≤ 4δ(δ − 1)

(
1 − u2

η

)
f δ−2

η
,
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since by (2.2) |∇η|2 ≤ 4η. Now we will choose a positive constant m so that
we can control this term. In particular we see that m must be chosen so that

δ

(
1 − u2

η

)
f δ−1

η

(
4
δ − 1
f

−m

)
≤ 0.

Thus since f(η) ≥ log e = 1, if we choose m ≥ 4(δ − 1), we can drop this
remaining negative term to obtain

(
d

dt
− Δ

)(
u2

η
− 1

)
f δ ≤ 0.

Therefore once again by the weak maximum principle [1], the result we need
is obtained. �

3. Curvature estimates

In [1] Ecker and Huisken obtaining time and polynomial spatial decay esti-
mates for the curvature, and in this section we show that initial logarithmic
spatial decay behaviour is also preserved during the course of the evolution.
If we consider the scaled solutions (Mρ

s )s∈(0,1), where

Mρ
s =

1
ρ
Mρ2s,

then the second fundamental form of (Mρ
s ) given by Aρ satisfies a scaling

property which we obtain by setting x = ρy and t = ρ2s. We then have for
x ∈Mt and y ∈Mρ

s that

|∇mAρ(y)|2 = ρ2(m+1)|∇mA(x)|2,

so that the statements

|∇mAρ(y)|2 ≤ c2(m),

for y ∈Mρ
s ∩B1/2, s ∈ (3/4, 1) and

|∇mA(x)|2 ≤ c2(m)
ρ2(m+1)

,

for x ∈Mt ∩Bρ/2, t ∈ (3/4ρ2, ρ2) are equivalent. In view of this we propose
the following proposition which satisfies the correct scaling of the second
fundamental form:
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Proposition 3.1. Let Mt be a smooth solution of (1.1), satisfying v ≤ c1,
and the additional assumption

|∇mA|2 ≤ c2(m)
logδ(m+1)(e + |x|2)

(e + |x|2)m+1

at time t = 0, m ≥ 0 and δ ≥ 0. Then for all t > 0

|∇mA|2 ≤ Cm

logδ(m+1)

(
e +

(√|x|2 + 2nt−√
βt

)2
)

(
e +

(√|x|2 + 2nt−√
βt

)2
)m+1 ,

where β = β(c1) > 0 and Cm = Cm(n,m, c1, c2(0), . . . , c2(m)).

Proof idea. Let g= |A|2v2f(η) + Lv2 where f(η) is an arbitrary non-negative
function and L > 0 to be determined later. For the case m = 0 we thus have:

(
d

dt
− Δ

)
g = f(η)

(
d

dt
− Δ

)
|A|2v2 + |A|2v2

(
d

dt
− Δ

)
f(η)

− 2∇f(η) · ∇(|A|2v2) + L

(
d

dt
− Δ

)
v2

≤ −2
f(η)
v

∇v · ∇(|A|2v2) + |A|2v2

(
d

dt
− Δ

)
f(η)

− 2∇f(η) · ∇(|A|2v2) − 2L(|A|2v2 − 3|∇v|2).

Note that we have

∇g = f(η)∇(|A|2v2) + |A|2v2∇f(η) + 2vL∇v,

so that we if we multiply both sides by −2(∇v)/v we end up with:

−2
v
∇v · ∇g = −2

f

v
∇v · ∇(|A|2v2) − 2|A|2v∇v · ∇f − 4L|∇v|2.

Similarly multiplying both sides by −2(∇f)/f gives:

− 2
f
∇f · ∇g = −2∇f · ∇(|A|2v2) − 2

|∇f |2
f

|A|2v2 − 4L
v

f
∇v · ∇f.
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Substituting the above equations into the estimate thus gives
(
d

dt
− Δ

)
g ≤ −2

(∇v
v

+
∇f
f

)
· ∇g + |A|2v2

(
2
v
∇f · ∇v +

2
f
|∇f |2

+
(
d

dt
− Δ

)
f − 2L

)
+ 4L

v

f
∇v · ∇f − 2L|∇v|2.

By Young’s inequality we have that
∣
∣∣∣4L

v

f
∇v · ∇f

∣
∣∣∣ ≤ 2L

v2

f2
|∇f |2 + 2L|∇v|2,

and we estimate the vector 2v−1∇v using the inequality v−1|∇v| ≤ |A|v,
and from the Proposition for the long-time existence for the case m = 0 and
the fact C(0) = c21/2. This together then implies that

2
v
∇v · ∇f ≤ c1

√
2
t
|∇f |.

Thus we finally have the estimate

(
d

dt
− Δ

)
g ≤ −2

(∇v
v

+
∇f
f

)
· ∇g + |A|2v2

(

c1

√
2
t
|∇f | + 2

f
|∇f |2

+
(
d

dt
− Δ

)
f − 2L

)
+ 2L

v2

f2
|∇f |2.(3.1)

Now we define

η(x, t) = e +
(√

|x|2 + 2nt−
√
βt

)2
,

where β > 0 will be chosen later. Recall that we have the inequality (2.2)

|∇η|2 ≤ 4η

and also in view of the fact that (d/dt− Δ)(|x|2 + 2nt) = 0 we have
(
d

dt
− Δ

)
η = 2

(√
|x|2 + 2nt−

√
βt

) (
d

dt
− Δ

) √
|x|2 + 2nt

− 2
∣∣∣∇

√
|x|2 + 2nt

∣∣∣
2
+ β −

√
β

t
(|x|2 + 2nt)

=
(√

|x|2 + 2nt−
√
βt

) ∣∣∇|x|2∣∣2
2(|x|2 + 2nt)3/2
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−
∣∣∇|x|2∣∣2

2(|x|2 + 2nt)
+ β −

√
β

t
(|x|2 + 2nt)

=

∣∣∇|x|2∣∣2
2(|x|2 + 2nt)

−
√
βt

∣∣∇|x|2∣∣2
2(|x|2 + 2nt)3/2

−
∣
∣∇|x|2∣∣2

2(|x|2 + 2nt)
+ β −

√
β

t
(|x|2 + 2nt)

≤ β −
√
β

t
(|x|2 + 2nt).(3.2)

�
Proof of Proposition 3.1. As stated above, for the case m = 0 if g =
|A|2v2f(η) + Lv2, where f(η) is an arbitrary non-negative function and
L > 0 to be determined later, we have the evolution equation of g given
by (3.1). Now we define

f(η(x, t)) =
η(x, t)

logδ η(x, t)
, f ′(η) =

log η − δ

logδ+1 η
, f ′′(η) =

δ(1 + δ − log η)
η logδ+2 η

,

and for some β > 0 to be chosen later and η(x, t) whose evolution equation
is given by (3.2).

Thus we begin by estimating the terms in (3.1) by first calculating the
evolution of f(η):

(
d

dt
− Δ

)
f(η) = η

(
d

dt
− Δ

)
log−δ η + log−δ η

(
d

dt
− Δ

)
η

− 2∇η · ∇ log−δ η

= −δ log−δ−1 η

(
d

dt
− Δ

)
η − δ

η
|∇η|2 log−δ−1 η

− δ(δ + 1)
η

|∇η|2 log−δ−2 η + log−δ η

(
d

dt
− Δ

)
η

+ 2
δ

η
|∇η|2 log−δ−1 η

=
(

1 − δ

log η

)
log−δ η

(
d

dt
− Δ

)
η

+ δ

(
1 − δ + 1

log η

) |∇η|2
η

log−δ−1 η

≤
(
d

dt
− Δ

)
η + 4δ ≤ 4δ + β −

√
β

t
(|x|2 + 2nt),
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where we use the inequality (2.2) |∇η|2 ≤ 4η and the fact that log η ≥ 1.
The next term we estimate is:

2
f
|∇f |2 = 2

f

η2
|∇η|2 + 2δ2

f

η4 log2 η
|∇η|2

− 4δ
f

η3 log η
|∇η|2

≤ 8
f

η
+ 8δ2

f

η3 log2 η
≤ 8(1 + δ2/e2),

which also gives us that

2L
v2

f2
|∇f |2 ≤ 8(1 + δ2/e2)L

v2

f
.

Finally we estimate

|∇f | ≤ |∇η| log−δ η − δ

η
|∇η| log−δ−1 η ≤ |∇η| ≤ 2

√
|x|2 + 2nt+ 2

√
βt,

which we use to obtain

c1

√
2
t
|∇f | ≤ c1

√
2
t
|∇η| ≤ 2c1

√
2
t
(|x|2 + 2nt) + 2c1

√
2β.

We therefore have the final estimate for g by substituting the above
estimates into (3.1):
(
d

dt
− Δ

)
g ≤ −2

(∇v
v

+
∇f
f

)
· ∇g + |A|2v2

(
2c1

√
2β + β + 4δ

+ 8(1 + δ2/e2) − 2L
) −

√
|x|2 + 2nt

t

(√
β − 2

√
2c1

)
|A|2v2

+ 8(1 + δ2/e2)L
v2

f(η)

≤ �b · ∇g + |A|2v2
(
2c1

√
2β + β + 4δ + 8(1 + δ2/e2) − 2L

)

+ 8(1 + δ2/e2)L
v2

f(η)
,

for some large enough β = β(c1), where we define

�b = −2
(∇v
v

+
∇f
f

)
.
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If we now choose L large depending on β, c1 and δ, and define k = supM0
g +

9(1 + δ2/e2)Lc21, we obtain
(
d

dt
− Δ

)
g ≤ �b · ∇g − g − k

f(η)
,

where we have used the estimate v(x, t) ≤ c1 once again. Now let gk =
max(g − k, 0), and since gk · (g − k) = g2

k, we obtain the result using the
maximum principle with g2

k.
For the case m = 1, we compute as in the previous proposition the

evolution
(
d

dt
− Δ

)
|∇A|2f2(η) = f2

(
d

dt
− Δ

)
|∇A|2 + |∇A|2

(
d

dt
− Δ

)
f2(η)

− 2∇f2 · ∇|∇A|2
≤ c(n)|A|2|∇A|2f2(η) − 2|∇2A|2f2(η)

+ 8
(

log η − δ

logδ+1 η

)2

|∇η|2|∇A|2 + 2|∇2A|2f2.

Since by (2.2) |∇η|2 ≤ 4η and |A|2f(η) ≤ C0 (recall that v ≤ 1) we estimate
(
d

dt
− Δ

)
|∇A|2f2(η) ≤ c(n, δ, C0)|∇A|2f(η).

Similarly we derive
(
d

dt
− Δ

)
|A|2f(η) ≤ −|∇A|2f(η) + c(n, δ, C0)|A|2.

Also recall that for v ≥ 1 one has
(
d

dt
− Δ

)
v2 ≤ −2|A|2,

so that if we choose large enough positive constants K and L depending on
n, δ and C0 we have that

(
d

dt
− Δ

)
(|∇A|2f2(η) +K|A|2f(η) + Lv2) ≤ 0.

The proposition for m = 1 then follows from the maximum principle. We
iterate over m similarly to prove the general statement. �
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4. Asymptotic behaviour

As our initial graph evolves under mean curvature flow, it will move off to
infinity with speed proportional to 1/

√
t and height proportional to

√
t, so

studying its global shape as time goes to infinity will give us no insight,
unless we rescale the surfaces back and prevent it from diverging to infinity.

We therefore define the following rescaling:

F̃ (s) =
F (t)√
2t+ 1

,

where the new time variable is given by

s =
1
2

log(2t+ 1),

for 0 ≤ s <∞. The rescaled mean curvature flow then becomes (1.4) with
the same initial condition

F̃ (·, 0) = F (·, 0).

Now for the rescaled surfaces denoted by M̃s = F̃ (·, s)(M) we have the
following result:

Main Theorem. Suppose M0 satisfies the linear growth condition (1.5)
and has bounded curvature. If in addition it satisfies

(4.1) 〈x, ν〉2 ≤ c
1 + |x|2 − u2

logδ(e + |x|2)

for some constant c <∞ and some power δ > 0 then the solutions M̃s of the
rescaled mean curvature flow (1.4) converge as s→ ∞ to a limiting surface
M̃∞ which is self-similar, i.e., it satisfies

F⊥ = �H.

Before we prove this we show that the up to a time dependent factor,
the condition (4.1) is preserved for all time.
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Lemma 4.1. Suppose our initial graph M0 has bounded gradient and
curvature and we have

〈x, ν〉2 ≤ c
1 + |x|2 − u2

logδ(e + |x|2) ,

for some constant c <∞ and positive δ ≥ 0, then for all t > 0, Mt also
satisfies

〈x, ν〉2 ≤ c(t)
1 + |x|2 − u2 + 2nt
logδ(e + |x|2 + 2nt)

.

Proof. Let f = 〈x, ν〉, then we have

(
d

dt
− Δ

)
f2 = 2f2|A|2 − 4Hf − 2|∇f |2

≤ C(f2 + 1) − 2|∇f |2.

Also if we define

η1 = e + |x|2 + 2nt and η2 = 1 + |x|2 − u2 + 2nt,

then by the product-rule for the heat operator,

(
d

dt
− Δ

)
logδ η1 = δ

|∇η1|2
η2
1

logδ−1 η1 − δ(δ − 1)
|∇η1|2
η2
1

logδ−2 η1

= δ

(
1

log η1
− δ − 1

log2 η1

) |∇η1|2
η2
1

logδ η1

≤ 4δ
(

1
log η1

− δ − 1
log2 η1

)
1
η1

logδ η1 ≤ C logδ η1,

where we have used the inequality |∇η1|2 ≤ 4η1 and denoted all constants
which depend on the curvature bound and t by C. Similarly we have

(
d

dt
− Δ

)
η−1
2 = −2

|∇η2|2
η3
2

− 2
|∇u|2
η2
2

,
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so that

(
d

dt
− Δ

)
f2

η2
=

1
η2

(
d

dt
− Δ

)
f2 + f2

(
d

dt
− Δ

)
1
η2

− 2∇f2 · ∇ 1
η2

≤ C

η2
(f2 + 1) − 2

|∇f |2
η2

− 2f2 |∇η2|2
η3
2

− 2f2 |∇u|2
η2
2

+ 4
f

η2
2

∇f · ∇η2

≤ C

η2
(f2 + 1) − 2f2 |∇u|2

η2
2

≤ C

η2
(f2 + 1),

where we have used Young’s inequality

∣∣∣
∣4
f

η2
2

∇f · ∇η2

∣∣∣
∣ ≤ 2

|∇f |2
η2

+ 2f2 |∇η2|2
η3
2

.

Therefore since η−1
2 logδ η1 ≤ c, some constant c > 0 we have:

(
d

dt
− Δ

)
f2

η2
logδ η1 =

f2

η2

(
d

dt
− Δ

)
logδ η1 + logδ η1

(
d

dt
− Δ

)
f2

η2

− 2∇f2

η2
· ∇ logδ η1

≤ C

(
f2

η2
logδ η1 + 1

)
− 2∇f2

η2
· ∇ logδ η1.

Now we calculate

−2∇f2

η2
· ∇ logδ η1 = 2δ

f2 logδ−1 η1

η1η2
2

∇η1 · ∇η2 − 4δ
f logδ−1 η1

η1η2
∇f · ∇η1,

and once again by Young’s inequality we can estimate the first term by

∣∣
∣∣∣
2δ
f2 logδ−1 η1

η1η2
2

∇η1 · ∇η2

∣∣
∣∣∣
≤ f2

η2
logδ η1

(
4δ2

|∇η1|2
η2
1 log2 η1

+
|∇η2|2
η2
2

)

≤ C
f2

η2
logδ η1,
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since |∇η1|2 ≤ 4η1 and similarly |∇η2|2 ≤ 4η2. Thus dropping the negative
term gives us the following estimate:

(
d

dt
− Δ

)
f2

η2
logδ η1 ≤ C

(
f2

η2
logδ η1 + 1

)
,

which by the maximum principle implies the result that we require. �

In order to prove the Main Theorem we will need to know the evolution
equation of a test-function in the rescaled case. The test function we use
will have the following general form

ρ̃(x̃, s) = g(x̃, s)h(s)

where

g(x̃, s) =
logδ(η̃1)
η̃p
2

,

for some positive powers δ > 0 and p > 0 to be specified later.
The heat operator of ρ̃ is

(
d

ds
− Δ̃

)
ρ̃(x̃, s) = h(s)

(
d

ds
− Δ̃

)
g(x̃, s) + h′(s)g(x̃, s)

and since
(
d

ds
− Δ̃

)
g(x̃, s) =

1
η̃p
2

(
d

ds
− Δ̃

)
logδ η̃1 + logδ η̃1

(
d

ds
− Δ̃

)
1
η̃p
2

− 2∇ logδ η̃1(η̃1) · ∇ 1
η̃p
2

= δ
logδ−1 η̃1

η̃p
2

(
d

ds
− Δ̃

)
η̃1 − δ(δ − 1)

|∇η̃1|2
η̃2
1 η̃

p
2

logδ−2 η̃1

− p
logδ η̃1

η̃p+1
2

(
d

ds
− Δ̃

)
η̃2 − p(p+ 1)

|∇η̃2|2
η̃p+2
2

logδ η̃1

− 2∇ logδ η̃1 · ∇η̃−p
2 ,

we obtain the following:
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Proposition 4.1. For twice differentiable functions η̃1(x̃, s) and η̃2(x̃, s)
and continuous h(s), such that

ρ̃(x̃, s) = g(x̃, s)h(s) =
logδ η̃1

η̃p
2

h(s),

for some positive powers δ > 0 and p > 0, we have
(
d

ds
− Δ̃

)
ρ̃(x̃, s) ≤ δ

ρ̃

log η̃1

(
d

ds
− Δ̃

)
η̃1 − δ

(
δ

2
− 1

) |∇η̃1|2
η̃2
1 log2 η̃1

ρ̃

− p
ρ̃

η̃2

(
d

ds
− Δ̃

)
η̃2 + p(p− 1)

|∇η̃2|2
η̃2
2

ρ̃

+ h′(s)g(x̃, s).

Proof. The crucial ingredient of the proof comes from expanding the term

−2h(s)∇ logδ η̃1 · ∇η̃−p
2 = 2δp

ρ̃

η̃1η̃2 log η̃1
∇η̃1 · ∇η̃2,

which by Peter–Paul’s inequality gives:
∣
∣∣∣2δp

ρ̃

η̃1η̃2 log η̃1
∇η̃1 · ∇η̃2

∣
∣∣∣ ≤ 2p2 |∇η̃2|2

η̃2
2

ρ̃+
1
2
δ2

|∇η̃1|2
η̃2
1 log2 η̃1

ρ̃.

Therefore since
(
d

ds
− Δ̃

)
ρ̃(x̃, s) = δ

ρ̃

log η̃1

(
d

ds
− Δ̃

)
η̃1 − δ(δ − 1)

|∇η̃1|2
η̃2
1 log2 η̃1

ρ̃

− p
ρ̃

η̃2

(
d

ds
− Δ̃

)
η̃2 − p(p+ 1)

|∇η̃2|2
η̃2
2

ρ̃+ h′(s)g(x̃, s)

− 2∇ logδ η̃1 · ∇h(s)
η̃p
2

,

we obtain our result by using the above estimate. �

4.1. Proof of the Main Theorem

The result of the Main Theorem will follow from the following estimate for
some 0 < γ < 2:

sup
M̃s

(H̃ + 〈x̃, ν̃〉)2ṽ2

η̃p
2 log−ε η̃1

≤ (1 + s)−γ sup
M0

(H + 〈x, ν〉)2v2

ηp
2 log−ε η1

,
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where 0 < ε < δ, 0 < p < 1, and for some choice of test functions η1 and η2.
Note that this implies polynomial convergence on compact subsets, instead
of exponentially fast convergence, obtained in regard to the corresponding
estimate of Ecker and Huisken.

We will make use of the following lemma from Ecker and Huisken [1]:

Lemma 4.2. The normalized quantity H̃ + 〈x̃, ν̃〉 satisfies the evolution
equation (

d

ds
− Δ̃

)
(H̃ + 〈x̃, ν̃〉) = (|Ã|2 − 1)(H̃ + 〈x̃, ν̃〉).

Proof. To begin with note that H̃ = ψ−1(t)H and 〈x̃, ν̃〉 = ψ(t)〈x, ν〉 where
ψ(t) = 1/

√
2t+ 1 is the rescaling factor. As in [2], we say that H is of

“degree” −1 and 〈x, ν〉 is of “degree” 1. This together with the evolution
equations

(
d

dt
− Δ

)
H = |A|2H and

(
d

dt
− Δ

)
〈x, ν〉 = |A|2〈x, ν〉 − 2H,

gives us
(
d

ds
− Δ̃

)
(H̃ + 〈x̃, ν̃〉) = |Ã|2(H̃ + 〈x̃, ν̃〉) − 2H̃ + H̃ − 〈x̃, ν̃〉

= (|Ã|2 − 1)(H̃ + 〈x̃, ν̃〉),

which is the result we want. �
Similarly we have

(
d

ds
− Δ̃

)
ṽ2 = −2|Ã|2ṽ2 − 6|∇ṽ|2,

which gives us the following inequality for f2 = (H̃ + 〈x̃, ν̃〉)2ṽ2

(
d

ds
− Δ̃

)
f2 ≤ −2f2 − 2

1
ṽ
∇ṽ · ∇f2.

Multiplying this with a test function ρ̃(x̃, s) we derive
(
d

ds
− Δ̃

)
f2ρ̃(x̃, s) ≤ −2f2ρ̃− 2

ρ̃

ṽ
∇ṽ · ∇f2 + f2

(
d

ds
− Δ̃

)
ρ̃

− 2∇ρ̃ · ∇f2.
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Note that since ∇(f2ρ̃) = ρ̃∇f2 + f2∇ρ̃, we can write

−2
ρ̃

ṽ
∇ṽ · ∇f2 − 2∇ρ̃ · ∇f2 = −2

(∇ṽ
ṽ

+
∇ρ̃
ρ̃

)
∇(f2ρ̃) + 2

f2

ṽ
∇ρ̃ · ∇ṽ

+ 2
f2

ρ̃
|∇ρ̃|2,

so that we end up with
(
d

ds
− Δ̃

)
f2ρ̃(x̃, s) ≤ −2f2ρ̃+ f2

(
d

ds
− Δ̃

)
ρ̃+ 2

f2

ρ̃
|∇ρ̃|2

− 2
(∇ṽ
ṽ

+
∇ρ̃
ρ̃

)
∇(f2ρ̃) + 2

f2

ṽ
∇ρ̃ · ∇ṽ.(4.2)

Proof of Main Theorem. When we set h(s) = (1 + s)γ for some positive γ,
then we have that:

h′(s) =
γ

1 + s
h(s),

thus giving us the following estimate for the evolution of ρ̃ via Proposition 4.1
(
d

ds
− Δ̃

)
ρ̃(x̃, s) ≤ ε

ρ̃

log η̃1

(
d

ds
− Δ̃

)
η̃1 + ε

(
1 − ε

2

) |∇η̃1|2
η̃2
1 log2 η̃1

ρ̃

− p
ρ̃

η̃2

(
d

ds
− Δ̃

)
η̃2 + p(p− 1)

|∇η̃2|2
η̃2
2

ρ̃

+
γ

1 + s
ρ̃.

Now define η̃1 and η̃2 as

η̃1 = e+ α|x̃|2 and η̃2 = 1 + β|x̃|2 − βũ2,

for some positive constants α and β to be determined later. We have that
since both |x|2 and u2 are of “degree” 2, together with the fact that

(
d

dt
− Δ

)
|x|2 = −2n and

(
d

dt
− Δ

)
u2 = −2|∇u|2,

the heat operator of η̃1 is given by:
(
d

ds
− Δ̃

)
η̃1 = −2α(|x̃|2 + n),
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and that of η̃2 by:

(
d

ds
− Δ̃

)
η̃2 = −2β(|x̃|2 + n) + 2β(|∇ũ|2 + ũ2).

This then implies the following estimate for 0 < p < 1, 0 < ε < δ and s > 0:

(
d

ds
− Δ̃

)
ρ̃ ≤ 2

(
pβ − εα

log η̃1

)
(|x̃|2 + n)ρ̃

+
1
2

|∇η̃1|2
η̃2
1 log2 η̃1

ρ̃+
γ

1 + s
ρ̃

≤ 1
2

|∇η̃1|2
η̃2
1 log2 η̃1

ρ̃+ γρ̃,

where we have chosen β such that β ≤ εα/p log η1, so that we can drop first
term in the above inequality and that ε− ε2/2 ≤ 1/2 for ε > 0.

Moreover we obtain from the estimates

|∇η̃1|2 ≤ 4αη̃1 and |∇η̃2|2 ≤ 4βη̃2,

the following estimates:

(
d

ds
− Δ̃

)
ρ̃ ≤ (2α+ γ)ρ̃,

and

|∇ρ̃| ≤
(
ε

|∇η̃1|
η̃1 log η̃1

+ p
|∇η̃2|
η̃2

)
ρ̃

≤ 2(ε
√
α+ p

√
β)ρ̃ ≤ 2

√
εα(

√
ε+

√
p)ρ̃,

which then gives

2
f2

ρ̃
|∇ρ̃|2 ≤ 8εα(

√
ε+

√
p)2f2ρ̃,

and together with the estimate |∇ṽ|/ṽ ≤ |Ã|ṽ ≤ c1c(0) also gives:

2
f2

ṽ
∇ρ̃ · ∇ṽ ≤ c(c1, c(0), n)

√
εα(

√
ε+

√
p)f2ρ̃.
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Thus we finally have after substituting the above estimate into (4.2):
(
d

ds
− Δ̃

)
f2ρ̃ ≤ �a · ∇(f2ρ̃) +

(
2α+ γ + c

√
εα(

√
ε+

√
p)

+ 8εα(
√
ε+

√
p)2 − 2

)
f2ρ̃,

where

�a = −2
(∇ṽ
ṽ

+
∇ρ̃
ρ̃

)
.

Choosing α, β and γ suitably small depending on ε, p and c, we see that:
(
d

ds
− Δ̃

)
f2ρ̃ ≤ �a · ∇(f2ρ̃),

for all s > 0. Lemma 6.1 ensures that f2ρ̃ vanishes at infinity which enables
us to apply the parabolic maximum principle to conclude that f2ρ̃ is uniformly
bounded by its initial data.

Finally we use the result of Stavrou [3] to conclude uniform convergence
to self-similar solutions, since our assumption is stronger than his. �
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