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Reconstruction of Betti numbers of manifolds for

anisotropic Maxwell and Dirac systems

Katsiaryna Krupchyk, Yaroslav Kurylev and Matti Lassas

We consider an invariant formulation of the system of Maxwell’s
equations for a general anisotropic medium on a compact orientable
Riemannian three-manifold (M, g) with nonempty boundary. The
system can be completed to a Dirac type first-order system on the
manifold. We show that the Betti numbers of the manifold can
be recovered from the dynamical response operator for the Dirac
system given on a part of the boundary. In the case of the origi-
nal physical Maxwell system, assuming that the entire boundary
is known, all Betti numbers of the manifold can also be deter-
mined from the dynamical response operator given on a part of
the boundary. Physically, this operator maps the tangential com-
ponent of the electric field into the tangential component of the
magnetic field on the boundary.

1. Introduction

Recently there has been a lot of interest in inverse problems for Maxwell’s
equations in Euclidean domains in R

3 and on compact Riemannian mani-
folds, see [4, 14–16, 22–24]. In a smooth bounded domain M ⊂ R

3, Maxwell’s
equations are given by

curlE(x, t) = −Bt(x, t),(1.1)
curl H(x, t) = Dt(x, t),

where E and H are the electric and magnetic fields, and B and D are the
magnetic flux density and the electric displacement. The fields E and D,
and similarly, the fields H and B are related by the constitutive relations,

(1.2) D(x, t) = ε(x)E(x, t), B(x, t) = μ(x)H(x, t),

where the electric permittivity ε(x) and the magnetic permeability μ(x)
are C∞-smooth positive-definite 3 × 3-matrix valued functions on M . The
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initial boundary value problem for the time dependent Maxwell’s equations
consists of (1.1) and (1.2) together with the conditions

(1.3)
E(x, t)|t=−τf

= 0, H(x, t)|t=−τf
= 0,

n × E|∂M×R− = f,

where n is the unit exterior normal to ∂M , and τf > 0 is such that f(x, t) = 0
for t < −τf . The inverse problem associated with (1.1) to (1.3), is the prob-
lem of reconstruction of electromagnetic parameters ε(x) and μ(x) from the
knowledge of the response operator

(1.4) R : n × E|∂M×R− �→ n × H|∂M×R− .

From the point of view of modern electrodynamics and classical field the-
ories, it is natural to adopt an invariant approach to Maxwell’s equations,
where the domain M is replaced by a general three-dimensional smooth
compact oriented connected Riemannian manifold, and the vector fields E,
H, D and B are viewed as differential forms, see [27]. The geometric inverse
problem is then to determine the unknown manifold M , together with the
electromagnetic parameters, from the response operator (1.4), which is now
defined in terms of boundary traces of the corresponding differential forms.
See also [17–19], where the problem of the reconstruction of a Riemannian
manifold from the Dirichlet-to-Neumann operator for harmonic functions,
has been studied.

In the context of time-harmonic Maxwell’s equations in an isotropic
setting, i.e., when the parameters ε(x) and μ(x) are scalar, the inverse prob-
lem for bounded domains in R

3 was solved in [22], see also [6, 20, 24].
Much less is known in the anisotropic case. To the best of our knowledge,
the positive results in this direction have only been established in the case
of an anisotropic medium of a special type, characterized by the polariza-
tion independent velocity of the wave propagation. In terms of the elec-
tromagnetic parameters, this amounts to the existence of α(x) > 0 such
that ε(x) = α(x)μ(x). In this case, under a certain geometric condition, it
is shown in [14] that, if the conformal class of ε(x) and μ(x) is known, the
stationary boundary measurements identify uniquely the conformal factors.
There are also counterexamples for uniqueness of time-harmonic inverse
problems involving very anisotropic and degenerate material parameters
[11, 12]. In [16], the inverse problem for Maxwell’s equations in the time
domain for an anisotropic medium was studied, still assuming that the
wave propagation is independent of the polarization. It was shown that the
Riemannian manifold and the electromagnetic parameters can be recovered
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from the dynamical response operator similar to (1.4), given on a finite time
interval. See also [1] for reconstruction of the wave speed.

In this paper we shall be concerned with the case of a general anisotropic
medium. Specifically, working in the geometric setting of Maxwell’s equa-
tions on a manifold M , we are able to recover the Betti numbers of the man-
ifold from the dynamical response operator, given on an open subset of the
boundary. This can be viewed as the first step in attempting to reconstruct
the geometry and topology of the underlying manifold, in the full generality
of the anisotropic case. Let us remark that in the isotropic case, as well as in
the case when ε(x) = α(x)μ(x), α(x) > 0, the reconstruction of the manifold
and the electromagnetic parameters is based on controllability results, which
in turn rely crucially on generalizations of the Tataru unique continuation
theorem [9, 16]. In our opinion, the main obstacle in the study of the inverse
problem for the general anisotropic Maxwell system is due to the fact that
such unique continuation results do not seem to be available in this case.

We would like also to mention the paper [2], where the reconstruction
of the Betti numbers of a manifold from the Dirichlet-to-Neumann operator
for the Hodge Laplacian on differential forms is studied.

The plan of the paper is as follows. Section 2 is devoted to the description
of our geometric setup, including the completion of the Maxwell system to
a Dirac type elliptic system, and contains the statement of the main results.
We also discuss examples that illustrate the significance of our results for
the determination of the topological structure of an unknown object from
the boundary measurements. In Section 3, we prove the identifiability of the
Betti numbers in the complete Maxwell case, while in Section 4 we establish
our results for the physical Maxwell system.

2. Preliminaries and statement of the main results

2.1. Invariant definition of Maxwell’s equations

Let (M, g0) be a smooth compact oriented connected Riemannian three-
manifold with ∂M �= ∅. We shall first rewrite equations (1.1) and (1.2), in
the anisotropic case, using the language of differential forms. In doing so,
we shall follow closely [16], where the case ε(x) = α(x)μ(x), α(x) > 0, is
considered.

Let ΛkT ∗M , k = 0, 1, . . . , 3, be the bundle of the kth exterior differ-
ential forms and ΛT ∗M be the full bundle of differential forms. Denote
by C∞(M, ΛkT ∗M) the space of smooth real exterior differential forms of
degree k.
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Define the fiberwise duality between one-forms and vector fields,

� : C∞(M, TM) → C∞(M, Λ1T ∗M), X�(Y ) = g0(X, Y ),

or in a coordinate system for X = ai ∂
∂xi , X� = g0,ija

jdxi. This map is bijec-
tive and has the following properties [26]:

(curl X)� = ∗0dX�, divX = − ∗0 d ∗0 X�,

where

d : C∞(M, ΛkT ∗M) → C∞(M, Λk+1T ∗M)

is the exterior differential and ∗0 is the Hodge operator with respect to the
metric g0, acting fiberwise,

∗0 : C∞(M, ΛkT ∗M) → C∞(M, Λ3−kT ∗M).

We define the one-forms E = E� and H = H� and the two-forms B = ∗0B
�

and D = ∗0D
�. Using the identity ∗0∗0 = id, valid in the three-dimensional

case, we can write Maxwell’s equations (1.1) in terms of differential forms
as

(2.1) dE = −∂tB, dH = ∂tD.

Consider now the constitutive relations (1.2). We shall determine a metric
gε such that the Hodge operator with respect to this metric, denoted by ∗ε,
satisfies

(2.2) D = ∗0(εE)� = ∗εE .

In local coordinates (x1, x2, x3), we have εE = εi
kE

k ∂
∂xi , (εE)� = g0,ijε

j
kE

kdxi

and thus, the middle term of (2.2) yields

∗0(εE)� = ∗0(g0,ijε
j
kE

kdxi) =
1
2

√
det(g0)gil

0 g0,ijε
j
kE

kslpqdxp ∧ dxq

=
1
2

√
det(g0)ε

j
kE

ksjpqdxp ∧ dxq,

where slpq is the Levi–Civita permutation symbol. Here we may recall that
slpq = 1 if (l, p, q) is an even permutation of (1, 2, 3), slpq = −1 if (l, p, q) is
an odd permutation, and slpq = 0 if at least two indices are the same.
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The right hand side of (2.2) implies that

∗εE = ∗ε(g0,ikE
kdxi) =

1
2

√
det(gε)gij

ε g0,ikE
ksjpqdxp ∧ dxq.

Hence, (2.2) is valid if we set

√
det(gε)gij

ε g0,ik =
√

det(g0)ε
j
k.

By taking the determinants of both sides, we obtain

√
det(gε) = det(ε)

√
det(g0).

Defining

gij
ε =

1
det(ε)

εj
kg

ki
0 ,

we see that (2.2) is valid. Similarly, we see that for the metric tensor gij
μ =

1
det(μ)

μj
kg

ki
0 , we have

B = ∗0(μH)� = ∗μH.

Hence, the constitutive relations take the form

D(x, t) = ∗εE(x, t), B(x, t) = ∗μH(x, t).

We consider the waves that satisfy the initial conditions

B(x, t)|t=−τ = 0, D(x, t)|t=−τ = 0, τ > 0,

Applying the divergence operator to (1.1), we have

div B(x, t) = 0, div D(x, t) = 0, t ∈ R, x ∈ M.

In terms of differential forms these equations imply that

(2.3) dB = 0, dD = 0.

In the further considerations, we will use only the pair (E ,B) and denote it
by (ω1, ω2), where ω1 = E and ω2 = B. The compatibility conditions (2.3)
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imply that

(2.4) dω2 = 0, d ∗ε ω1 = 0.

It follows from (2.1) that

(2.5) ω2
t = −dω1, ω1

t = ∗εd ∗μ ω2.

Let us consider the following codifferentials,

(2.6) δε,μω2 = ∗εd ∗μ ω2, δμ,εω
k = − ∗μ d ∗ε ωk, k = 1, 3.

Then (2.4) and (2.5) yield

(2.7)
ω1

t = δε,μω2, δμ,εω
1 = 0,

ω2
t = −dω1, dω2 = 0.

These equations are called Maxwell’s equations for forms in the divergence
free case on a Riemannian manifold M .

We shall now extend the above equations to the full bundle of exte-
rior differential forms ΛT ∗M . To this end, we introduce auxiliary forms,
ω0 ∈ C∞(M) and ω3 ∈ C∞(M, Λ3T ∗M), which vanish in the electromag-
netic theory, by

ω0
t = δμ,εω

1, ω3
t = −dω2.

Since ω0 = 0 and ω3 = 0 in the electromagnetic theory, we can modify equa-
tions (2.7) to have

ω1
t = −dω0 + δε,μω2, ω3

t = −dω2,

ω2
t = −dω1 + δμ,εω

3, ω0
t = δμ,εω

1,

or, in the matrix form,

(2.8) ωt + Dω = 0,

where ω = (ω0, ω1, ω2, ω3) and the operator D is given by

(2.9) D =

⎛

⎜⎜
⎝

0 −δμ,ε 0 0
d 0 −δε,μ 0
0 d 0 −δμ,ε

0 0 d 0

⎞

⎟⎟
⎠.
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Equations (2.8) and (2.9) are called the complete Maxwell system. Notice
that the operator D is of the Dirac type – see also the proof of Proposition
2.1 below.

2.2. Function spaces

Define the L2-inner product in the space C∞(M, ΛkT ∗M) as follows,

(ωk, ηk)L2
μ

=
∫

M
ωk ∧ ∗μηk, k = 0, 2,

(ωk, ηk)L2
ε

=
∫

M
ωk ∧ ∗εη

k, k = 1, 3,

and denote by L2(M, ΛkT ∗M) the completion of C∞(M, ΛkT ∗M) in the
corresponding norm. In the complexified case, we take the corresponding
sesquilinear extension of the inner product. We denote by Hs(M, ΛkT ∗M)
the standard Sobolev space of k-forms.

The natural domain of the exterior differential d in L2(M, ΛkT ∗M) is

H(d, ΛkT ∗M) = {ωk ∈ L2(M, ΛkT ∗M) : dωk ∈ L2(M, Λk+1T ∗M)},

and we define

H(δε,μ, ΛkT ∗M) = {ωk ∈ L2(M, ΛkT ∗M) : δε,μωk ∈ L2(M, Λk−1T ∗M)},

and similarly for δμ,ε.
Let i∗ : C∞(M, ΛkT ∗M) → C∞(∂M, ΛkT ∗M) be the pull-back of the

imbedding i : ∂M → M . Then we define the tangential trace of k-forms as

t : C∞(M, ΛkT ∗M) → C∞(∂M, ΛkT ∗M), tωk = i∗ωk, k = 0, 1, 2,

and the normal trace as

n : C∞(M, ΛkT ∗M) → C∞(∂M, Λ3−kT ∗M),

nωk = i∗(∗εω
k), k = 1, 3, nω2 = i∗(∗μω2).

Set

〈tωk,nηk+1〉 =
∫

∂M
tωk ∧ nηk+1, k = 0, 1, 2.
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With this notation, Stokes’ formulae for differential forms can be written as

(2.10)

(dω0, η1)L2
ε
− (ω0, δμ,εη

1)L2
μ

= 〈tω0,nη1〉,
(dω1, η2)L2

μ
− (ω1, δε,μη2)L2

ε
= 〈tω1,nη2〉,

(dω2, η3)L2
ε
− (ω2, δμ,εη

3)L2
μ

= 〈tω2,nη3〉.

Using (2.9) and (2.10), we obtain

(2.11) (Dω, η)L2 + (ω, Dη)L2 = 〈tω,nη〉 + 〈tη,nω〉,

where tω = (tω0, tω1, tω2), nω = (nω1,nω2,nω3), and

〈tω,nη〉 = 〈tω0,nη1〉 + 〈tω1,nη2〉 + 〈tω2,nη3〉.

Here we take ω, η ∈ H, where

H = H(d, Λ0T ∗M) × [H(d, Λ1T ∗M) ∩ H(δμ,ε, Λ1T ∗M)]

× [H(d, Λ2T ∗M) ∩ H(δε,μ, Λ2T ∗M)] × H(δμ,ε, Λ3T ∗M).

It will be convenient to write δ to stand for both δμ,ε and δε,μ, when no risk
of ambiguity is possible. There are well defined extensions of the boundary
trace operators t and n to the spaces H(d, ΛkT ∗M) and H(δ, ΛkT ∗M),
see [25].

Lemma 2.1. The operators t and n can be extended to continuous surjec-
tive maps

t : H(d, ΛkT ∗M) → H−1/2(d, ∂M, ΛkT ∗M),(2.12)

n : H(δ, Λk+1T ∗M) → H−1/2(d, ∂M, Λ2−kT ∗M),(2.13)

where H−1/2(d, ∂M, ΛkT ∗M) is given by

{ωk ∈ H−1/2(∂M, ΛkT ∗M) : dωk ∈ H−1/2(∂M, Λk+1T ∗M)}.

Let Ht(d, ΛkT ∗M) stand for the kernel of (2.12), and Hn(δ, Λk+1T ∗M)
will denote the kernel of the operator (2.13).

Using (2.10), we can verify the following result in a standard way, see
also [16, Lemma 1.3].
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Lemma 2.2. The Hilbert space adjoint of

d : L2(M, Λ0T ∗M) → L2(M, Λ1T ∗M),

equipped with the domain Ht(d, Λ0T ∗M), is the operator δμ,ε with the domain
H(δμ,ε, Λ1T ∗M). The Hilbert space adjoint of

δμ,ε : L2(M, Λ1T ∗M) → L2(M, Λ0T ∗M),

equipped with the domain H(δμ,ε, Λ1T ∗M), is the operator d with the domain
Ht(d, Λ0T ∗M).

It is clear that analogous statements hold for the operators d and δ,
acting on forms of higher degree.

We shall need the following result.

Proposition 2.1. (i) The operator D, given by (2.9) and equipped with
the domain

D(D) = Ht(d, Λ0T ∗M) × [Ht(d, Λ1T ∗M) ∩ H(δμ,ε, Λ1T ∗M)]

× [Ht(d, Λ2T ∗M) ∩ H(δε,μ, Λ2T ∗M)] × H(δμ,ε, Λ3T ∗M),

is skew-adjoint on L2.

(ii) The spectrum of the operator D with the domain D(D) is discrete.

(iii) The operator D is an elliptic differential operator in the interior of M .

Proof. (i). Using the definition of the domain of the adjoint and Lemma
2.2, we obtain that D(D∗) = D(D). The skew-adjointness of D then
follows from (2.11), which holds for ω, η ∈ D(D).

(ii). In view of Gaffney’s inequality [26, Corollary 2.1.6],

Ht(d, ΛkT ∗M) ∩ H(δ, ΛkT ∗M)

= {ωk ∈ H1(M, ΛkT ∗M) : tωk = 0}, k = 1, 2,

together with the Sobolev embedding, we conclude that the imbedding
D(D) ↪→ L2 is compact. Hence, the spectrum of D is discrete.
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(iii). It suffices to show the ellipticity of D2. Since δμ,εδε,μ = 0 and δε,μδμ,ε =
0, we get

D2 =

⎛

⎜
⎜
⎝

−δμ,εd 0 0 0
0 −dδμ,ε − δε,μd 0 0
0 0 −dδε,μ − δμ,εd 0
0 0 0 −dδμ,ε

⎞

⎟
⎟
⎠ .

The operator D2 enjoys the following coercive estimate,

(2.14) (D2ω, ω)L2 ≥ C1‖ω‖2
H1 − C2‖ω‖2

L2 , C1 > 0,

where ω = (ω0, ω1, ω2, ω3) and ωk ∈ C∞
0 (M, ΛkT ∗M), k = 0, 1, 2, 3.

When proving (2.14), notice that, for ω1 ∈ C∞
0 (M, Λ1T ∗M),

((dδμ,ε + δε,μd)ω1, ω1)L2 = ‖δμ,εω
1‖2

L2 + ‖dω1‖2
L2 .

An application of Gaffney’s inequality gives that

‖ω1‖H1 ≤ C(M)(‖ω1‖L2 + ‖dω1‖L2 + ‖δμ,εω
1‖L2)

where C(M) > 0 is a constant. The estimate (2.14) follows, since the treat-
ment of forms of degrees different from 1 is analogous. See also [7] for a
different proof of coercivity. The ellipticity of D2 now follows from the coer-
civity estimate (2.14), see e.g., [21]. �

2.3. Betti numbers and the Euler characteristic of a
manifold with boundary

Let (M, g0) be an orientable compact Riemannian manifold of dimension 3
with boundary. The space

Hk(M) = {ω ∈ L2(M, ΛkT ∗M) : dω = 0, d ∗g0 ω = 0}

is called the space of harmonic fields. Notice that this space is infinite dimen-
sional for 1 ≤ k ≤ 2, see [26, Theorem 3.4.2]. Moreover, it is well-known that
harmonic fields are C∞-smooth in the interior of M . The following two finite
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dimensional subspaces are distinguished in Hk(M):

Hk
D(M) = {ω ∈ Hk(M) : tω = 0} and

Hk
N (M) = {ω ∈ Hk(M) : i∗(∗g0ω) = 0},

which are called the Dirichlet and Neumann harmonic fields, respectively. It
follows from the Hodge theory that the dimensions of the spaces Hk

D(M) and
Hk

N (M) are independent of the choice of the metric g0. For our purposes, we
shall have to specify the choice of the Hodge star operator in the definition
of Hk(M), according to the definition of the codifferential given in (2.6),

H2(M) = {ω ∈ L2(M, Λ2T ∗M) : dω = 0, d ∗μ ω = 0},
Hk(M) = {ω ∈ L2(M, ΛkT ∗M) : dω = 0, d ∗ε ω = 0}, k = 1, 3.

Recall [10] that the space Hk
N (M) is isomorphic to the kth homology group

of the manifold Hk(M ; R) and Hk
D(M) is isomorphic to the kth relative

homology group Hk(M, ∂M ; R). The Poincaré–Lefschetz duality states the
existence of the following isomorphism,

Hk(M ; R) � H3−k(M, ∂M ; R), k = 0, 1, 2, 3.

The kth absolute Betti number of the manifold M is given by

βk(M) = dimHk
N (M), k = 0, 1, 2, 3,

and the kth relative Betti number of M is defined by

βk(M, ∂M) = dimHk
D(M), k = 0, 1, 2, 3.

Being one of the simplest topological invariants, the Betti numbers carry
a basic amount of information about the topology of a manifold in ques-
tion. The Betti numbers β0(M) and β3(M) admit a particularly straight-
forward geometric interpretation. Namely, β0(M) counts the number of the
connected components of M and β3(M) gives the number of the oriented
components of M without boundary. Assuming that the manifold M is con-
nected, we have β0(M) = 1 and β3(M) = 0. As for the first Betti number
β1(M), it is at least as large as the total number of handles of ∂M , see
[5, Theorem 5.1.9].



974 Katsiaryna Krupchyk, Yaroslav Kurylev & Matti Lassas

The Euler characteristic is defined by

χ(M) = β3(M) − β2(M) + β1(M) − β0(M).

It is known [8, Corollary 8.8] that the Euler characteristics of a compact
three-manifold and its boundary are related by

(2.15) χ(∂M) = 2χ(M).

Notice finally that if M is a connected compact orientable three-manifold
with vanishing Euler characteristic, then either the manifold M is closed or
its boundary is a disjoint union of tori.

2.4. Boundary data for inverse problems

Let Γ ⊂ ∂M be an open subset of the boundary ∂M . Consider the following
initial boundary value problem,

(2.16)
(∂t + D)ω(x, t) = 0 in M × R,

tω|∂M×R = f ∈ C∞
0 (R−, C∞

0 (Γ, ΛT ∗M)),
ω|t=−τf

= 0,

where τf > 0 is such that inf supp (f) > −τf . Following [16], we shall define
a solution of (2.16) in the following way. Let E be a right inverse to the
trace mapping t such that Ef(−τf ) = 0. We set

(2.17) ωf (t) = Ef(t) −
∫ t

−τf

e−(t−s)D(∂s + D)Ef(s)ds.

Here e−tD is the unitary group, generated by the self-adjoint operator D/i.
Associated to the problem (2.16) is the response operator,

RΓ : f �→ nωf |Γ×R− .

The first main result of this work is the following theorem.

Theorem 2.1. Assume that we are given an open subset Γ ⊂ ∂M and
the response operator RΓ for any f ∈ C∞

0 (R−, C∞
0 (Γ, ΛT ∗M)). These data

determine the Betti numbers of the manifold M .

The proof of Theorem 2.1 will be given in Section 3.
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Let us now return to the physical Maxwell’s equations

(2.18)

ω1
t = δε,μω2, δμ,εω

1 = 0,

ω2
t = −dω1, dω2 = 0,

tω1 = h ∈ C∞
0 (R−, C∞

0 (Γ, Λ1T ∗M)),
ω|t<−τh

= 0.

As explained in [16], the solution to (2.18) is obtained from (2.17) by choos-
ing the boundary source f in (2.16) as

f = (0, h,−
∫ t

−τh

dh(t′)dt′).

The response operator for (2.18) is defined by

R̃Γ : h �→ nωh,2|Γ×R− ,

where ωh is the solution to (2.18). Notice that in the classical terminology of
electric and magnetic fields, the response operator R̃Γ maps the tangential
component of the electric field n × E|Γ×R− to the tangential component of
the magnetic field n × H|Γ×R− .

Theorem 2.2. Given an open subset Γ ⊂ ∂M and the response operator
R̃Γ for any h ∈ C∞

0 (R−, C∞
0 (Γ, Λ1T ∗M)), the first absolute Betti number

β1(M) of the manifold M can be determined.

Corollary 2.1. The knowledge of the boundary ∂M and the response opera-
tor R̃Γ, Γ ⊂ ∂M , for any h ∈ C∞

0 (R−, C∞
0 (Γ, Λ1T ∗M)), determines the first

and the second absolute Betti numbers β1(M) and β2(M) of M .

Corollary 2.1 follows from Theorem 2.2 together with (2.15).

2.5. Examples

The following two examples illustrate the significance of our results for the
determination of the topological structure of an unknown object from the
boundary measurements. This may have applications to practical situations,
where the structure of complicated voids in an unknown object is to be
recovered.

Example 2.1. Let M ⊂ R
3 be obtained from a large ball by removing a

finite number of pairwise disjoint solid tori. Then the first absolute Betti
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number of M is equal to the number of the removed solid tori. Thus, mea-
suring the response operator on a portion of the boundary sphere, we can
recover the total number of the removed tori.

Example 2.2. Consider a solid torus ST = S1 × D2 ⊂ R
3, where S1 is a

unit circle and D2 is a closed two-dimensional disc. The boundary of ST is a
two-dimensional torus and since D2 is contractible, it follows that the first
absolute Betti number of ST is equal to 1. Let M be the connected sum of
k copies of solid tori ST. Here we may recall that a connected sum of two
manifolds, possibly with boundary, is a manifold formed by deleting a ball
in the interior of each of the manifolds and gluing together the resulting
boundary spheres. The boundary of M is a disjoint union of k copies of
two-dimensional tori. It is known that for manifolds of dimension three and
higher, the first absolute Betti number of the connected sum is the sum
of the first absolute Betti numbers of the summands. Therefore, the first
absolute Betti number of M is equal to k. It follows from our results that
performing measurements on a portion of the boundary of the manifold M ,
we are able to recover the total number of the solid tori.

3. Proof of Theorem 2.1

3.1. Inner products

Let ωf (t) = ωf (x, t) be the solution to (2.16). We shall need the following
Blagovestchenskii type result, see [3] for such results for one-dimensional
inverse problems.

Theorem 3.1. For any f, h ∈ C∞
0 (R−, C∞

0 (Γ, ΛT ∗M)), the knowledge of
Γ ⊂ ∂M and the response operator RΓ allows us to evaluate the inner
products

(3.1) (ωf,k(t), ωh,k(s))L2 , k = 0, 1, 2, 3, for s, t ≥ 0.

Proof. From (2.17), we obtain that

ωf (t) = ωft(−1), t ≥ 0,

where ft = f(· + t + 1), ft ∈ C∞
0 (R−, C∞

0 (Γ, ΛT ∗M)). Therefore, the knowl-
edge of the operator RΓ is equivalent to the knowledge of the operator
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f → nωf |Γ×R. To prove this theorem we also need the following fact,

t(dωk) = d(tωk), k = 0, 1, 2, 3,

see [26, Proposition 1.2.6]. This implies that

nδε,μω2 = t(∗ε ∗ε d ∗μ ω2) = dt(∗μω2) = dnω2,

nδμ,εω
3 = t(∗μ(−1) ∗μ d ∗ε ω3) = −dt(∗εω

3) = −dnω3.

Set Ik(s, t) = (ωf,k(t), ωh,k(s))L2 , k = 0, . . . , 3. Then using Stokes’ formu-
lae, we get

(∂2
s − ∂2

t )I0(s, t) = (ωf,0(t), ∂2
sωh,0(s)) − (∂2

t ωf,0(t), ωh,0(s))

= −(ωf,0(t), δμ,εdωh,0(s)) + (δμ,εdωf,0(t), ωh,0(s))

= 〈tωf,0(t),ndωh,0(s)〉 − 〈tωh,0(s),ndωf,0(t)〉
= −〈tωf,0(t), ∂snωh,1(s)〉 + 〈tωf,0(t),nδε,μωh,2(s)〉

+ 〈tωh,0(s), ∂tnωf,1(t)〉 − 〈tωh,0(s),nδε,μωf,2(t)〉
= −〈tωf,0(t), ∂snωh,1(s)〉 + 〈tωf,0(t), dnωh,2(s)〉

+ 〈tωh,0(s), ∂tnωf,1(t)〉 − 〈tωh,0(s), dnωf,2(t)〉.

Similarly,

(∂2
s − ∂2

t )I1(s, t)

= (ωf,1(t), ∂2
sωh,1(s)) − (∂2

t ωf,1(t), ωh,1(s))

= −〈∂stωh,0(s),nωf,1(t)〉 − 〈tωf,1(t), ∂snωh,2(s) + dnωh,3(s)〉
+ 〈∂ttωf,0(t),nωh,1(s)〉 + 〈tωh,1(s), ∂tnωf,2(t) + dnωf,3(t)〉,

(∂2
s − ∂2

t )I2(s, t)

= (ωf,2(t), ∂2
sωh,2(s)) − (∂2

t ωf,2(t), ωh,2(s))

= −〈∂stωh,1(s) + dtωh,0(s),nωf,2(t)〉 − 〈tωf,2(t), ∂snωh,3(s)〉
+ 〈∂ttωf,1(t) + dtωf,0(t),nωh,2(s)〉 + 〈tωh,2(s), ∂tnωf,3(t)〉,

(∂2
s − ∂2

t )I3(s, t)

= (ωf,3(t), ∂2
sωh,3(s)) − (∂2

t ωf,3(t), ωh,3(s))

= −〈∂stωh,2(s) + dtωh,1(s),nωf,3(t)〉
+ 〈∂ttωf,2(t) + dtωf,1(t),nωh,3(s)〉.

Hence Ik(s, t), k = 0, 1, 2, 3, satisfies an inhomogeneous one-dimensional
wave equation in the unbounded region {(s, t) ∈ R

2 : s ≥ −τh, t ≥ −τf},
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whose right hand side is determined from the knowledge of Γ and RΓ. Since

Ik(−τh, t) = Ik(s,−τf ) = 0, ∂sI
k(−τh, t) = ∂tI

k(s,−τf ) = 0,

we can determine Ik(s, t) in the entire region s ≥ −τf , t ≥ −τf . The result
follows. �

3.2. Controllability result

In the isotropic setting and the case when ε(x) = α(x)μ(x), α(x) > 0, one
can use a generalization of Tataru’s unique continuation theorem [9, 16] to
obtain controllability results with sources supported in a finite time inter-
val. As already mentioned in the introduction, such unique continuation
results do not seem to be available in the general anisotropic setting. Never-
theless, we shall next show that partial controllability results in the general
anisotropic setting on an infinite time interval can be obtained using a unique
continuation principle for elliptic systems. As shown below, this turns out
to be sufficient for the reconstruction of the Betti numbers.

Let HD(M) := ⊕3
k=0Hk

D(M) be the space of all Dirichlet harmonic fields,
and let Π : L2(M, ΛT ∗M) → HD(M) be the orthogonal projection.

Theorem 3.2. We have

{Π(ωf (0)) : f ∈ C∞
0 (R−, C∞

0 (Γ, ΛT ∗M))} = HD(M).

Proof. Let η ∈ HD(M). If we prove that the orthogonality condition

(ωf (0), η)L2 = 0 for all f ∈ C∞
0 (R−, C∞

0 (Γ, ΛT ∗M))

implies that η = 0, then the space {Π(ωf (0)) : f ∈ C∞
0 (R−, C∞

0 (Γ, ΛT ∗M))}
is dense in HD(M). Since the latter space is finite dimensional, the claim
follows.

As Dη = 0, we shall view η(x) as the solution to the following problem,
dual to (2.16),

(3.2)
(−∂t − D)u = 0, in M × R,

tu|∂M×R = 0,

u|t=0 = η.

Using (2.11), we have

∂t(ωf , u)L2 = −(Dωf , u)L2 − (ωf , Du)L2 = −〈f,nu〉.
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Thus,
∫ 0

−τf

〈f,nu〉dt = −(ωf (0), η)L2 + (ωf (−τf ), u(−τf ))L2 = 0.

The choice of −τf implies that
∫

R−

〈f,nu〉dt = 0

for all f ∈ C∞
0 (R−, C∞

0 (Γ, ΛT ∗M)). Thus, nu = 0 on Γ × R−.
Now if Γ coincides with the whole boundary of the manifold M , then we

are done, since Hk
D(M) ∩Hk

N (M) = {0}, see [26, p. 130].
In the case when Γ is a proper open subset of ∂M , we proceed as follows.

Write η = (η0, η1, η2, η3), where ηk ∈ Hk
D. We already know that η0 = 0,

since dη0 = 0 and tη0 = 0. As for η1, we write

(d(∗εd∗ε) + (∗εd∗ε)d)η1 = 0,

and notice that the Cauchy data of η1 on Γ,

(tη1, t(∗εη
1), t(∗εd ∗ε η1), t(∗εdη1))

vanishes. Thus, by the unique continuation principle for second-order elliptic
systems with diagonal principal part, see [13, Theorem 4.3], we get η1 = 0
in M . Similar arguments allow us to conclude that η2 = η3 = 0. The proof
is complete. �

Corollary 3.1. Let Πk : L2(M, ΛkT ∗M) → Hk
D(M) be the orthogonal pro-

jection onto the space of the Dirichlet harmonic k-fields. Then

{Πk(ωf,k(0)) : f ∈ C∞
0 (R−, C∞

0 (Γ, ΛT ∗M))} = Hk
D(M), k = 0, 1, 2, 3.

3.3. Determination of the Betti numbers of the manifold

Lemma 3.1. Let f, h ∈ C∞
0 (R−, C∞

0 (Γ, ΛT ∗M)). Then given the response
operator RΓ, it is possible to find the inner products

(Πkωf,k(0), ωh,k(0))L2 , k = 0, 1, 2, 3.

Proof. Using (2.10), we check by a direct computation that kerD = HD(M).
We can therefore view Π as the spectral projection onto the zero eigenspace
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of D. Consider the unitary group e−tD, t ∈ R, on L2. We shall make use of
the following essentially well-known formula,

(3.3) Π = lim
T→+∞

1
T

∫ T

0
e−tDdt,

valid in the sense of strong convergence of operators. When checking (3.3),
let

ΠT =
1
T

∫ T

0
e−tDdt ∈ L(L2, L2).

Since ‖ΠT ‖L(L2,L2) ≤ 1, it suffices to check that ΠT x → Πx when x varies in
a dense subset of L2. We can take this subset to be the set of all finite linear
combinations of the eigenfunctions of D. To obtain (3.3), we only need to
observe that when λ ∈ R,

lim
T→+∞

1
T

∫ T

0
eitλdt =

{
1 if λ = 0,

0 if λ �= 0.

Now notice that since supp (f) ⊂ R−, we have

e−tDωf (0) = ωf (t), t ≥ 0,

and therefore,

Πωf (0) = lim
T→+∞

1
T

∫ T

0
ωf (t)dt.

We obtain

(Πkωf,k(0), ωh,k(0))L2 = lim
T→+∞

1
T

∫ T

0
(ωf,k(t), ωh,k(0))L2

= lim
T→+∞

1
T

∫ T

0
(ωft,k(0), ωh,k(0))L2 ,

where ft = f(· + t), ft ∈ C∞
0 (R−, C∞

0 (Γ, ΛT ∗M)). Here we have used that
ωf (t) = ωft(0), as follows from (2.17). An application of Theorem 3.1 con-
cludes the proof. �

We have the following result which implies Theorem 2.1.

Lemma 3.2. Given Γ ⊂ ∂M and the response operator RΓ, it is possible to
construct a finite number of boundary sources fj ∈ C∞

0 (R−, C∞
0 (Γ, ΛT ∗M))

such that Πk(ωfj ,k(0)) form a basis of Hk
D(M), 0 ≤ k ≤ 3.
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Proof. Let {hj}∞j=1 be a dense countable set in C∞
0 (R−, C∞

0 (Γ, ΛT ∗M)). We
can use the Gram–Schmidt orthogonalization procedure to construct the
sources fj . More precisely, we define fj recursively by

f1 =
h1

(Πkωh1,k(0), ωh1,k(0))1/2
L2

,

gj = hj −
j−1∑

i=1

(Πkωhj ,k(0), ωhi,k(0))L2fi, j = 2, 3, . . . ,

fj =
gj

(Πkωgj ,k(0), ωgj ,k(0))1/2
L2

.

When gj = 0, we remove the corresponding hj from the original sequence
and continue the procedure. The number of sources fj produced by the
Gram–Schmidt orthogonalization procedure will then be the dimension of
Hk

D(M), according to Corollary 3.1. �

4. Proof of Theorem 2.2

First notice that as in Theorem 3.1, for any f, h ∈ C∞
0 (R−, C∞

0 (Γ, Λ1T ∗M)),
the knowledge of the response operator R̃Γ allows us to evaluate the inner
products,

(ωf,k(t), ωh,k(s))L2 , k = 1, 2, t, s ≥ 0,

where ωf , ωh are solutions of physical Maxwell’s equations (2.18).
We have the following controllability result.

Lemma 4.1. Let ωf be a solution to physical Maxwell’s equations (2.18).
Then

{Π2(ωf,2(0)) : f ∈ C∞
0 (R−, C∞

0 (Γ, Λ1T ∗M))} = H2
D(M),

where Π2 is the orthogonal projection onto the space of the Dirichlet har-
monic two-fields.

Proof. Let η2 ∈ H2
D(M). Assume that

(ωf,2(0), η2)L2 = 0 for all f ∈ C∞
0 (R−, C∞

0 (Γ, Λ1T ∗M)).
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Now (2.18) and Stokes’ formula imply that

∂t(ωf,2(t), η2)L2 = (−dωf,1(t), η2)L2 = −(ω1(t), δε,μη2)L2 − 〈tωf,1(t),nη2〉
= −〈f(t),nη2〉.

Thus,
∫

R−

〈f(t),nη2〉 = −(ωf,2(0), η2)L2 + (ωf,2(−τf ), η2)L2 = 0,

for all f ∈ C∞
0 (R−, C∞

0 (Γ, Λ1T ∗M)). Hence, nη2 = 0 on Γ. Moreover,
Δη2 = 0 on M and tη2 = 0 on ∂M . By the unique continuation principle,
we get η2 = 0. �

Proceeding further as in Subsection 3.3, we can recover the first absolute
Betti number β1(M) from the knowledge of Γ and R̃Γ. This completes the
proof of Theorem 2.2.
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