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Ricci flow on three-dimensional, unimodular metric

Lie algebras

David Glickenstein and Tracy L. Payne

We give a global picture of the Ricci flow on the space of three-
dimensional, unimodular, nonabelian metric Lie algebras consid-
ered up to isometry and scaling. The Ricci flow is viewed as a
two-dimensional dynamical system for the evolution of structure
constants of the metric Lie algebra with respect to an evolving
orthonormal frame. This system is amenable to direct phase plane
analysis, and we find that the fixed points and special trajec-
tories in the phase plane correspond to special metric Lie alge-
bras, including Ricci solitons and special Riemannian submersions.
These results are one way to unify the study of Ricci flow on left
invariant metrics on three-dimensional, simply-connected, unimod-
ular Lie groups, which had previously been studied by a case-by-
case analysis of the different Bianchi classes. In an appendix, we
prove a characterization of the space of three-dimensional, unimod-
ular, nonabelian metric Lie algebras modulo isometry and scaling.

1. Introduction

Ricci flow was introduced by R. Hamilton in [16] to study Riemannian
manifolds. In this paper we study the Ricci flow on three-dimensional, uni-
modular metric Lie algebras. Metric Lie algebras are in one-to-one corre-
spondence with left-invariant Riemannian metrics on simply-connected Lie
groups, and Ricci flow on such metrics has been studied by a number of
authors (e.g., [7, 12, 19, 20, 22, 28, 29, 33]). The major advances in this
paper are (1) a unification of the trajectories for the Ricci flow, previously
viewed individually in case-by-case studies of Bianchi classes, into a single
global topological picture, and (2) use of a new technique of flowing the Lie
structure constants, which highlights different features of the system than
the usual evolution of metric coefficients.

The space of metric Lie algebras has been studied by a number of authors
(e.g., [21, 25, 28]). Understanding Ricci flow on the space of metric Lie alge-
bras is important for studying both homogeneous spaces and Ricci flow of
general manifolds. A number of Ricci soliton metrics (fixed points of the
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Ricci flow up to diffeomorphism invariance and rescaling) have been found
on homogeneous spaces (see, e.g., [1, 15, 24, 26, 28, 32]), and it has been
suggested that finding Ricci solitons may be a promising way to attack Alek-
seevskii’s conjecture (see [26, 28]). Lott has shown that three-dimensional,
Type III solutions to Ricci flow (as described in [17]) converge to the known
homogeneous expanding solitons as they collapse in the limit (see [30]). Ricci
flow on homogeneous spaces is also useful in constructing self-dual solutions
of Euclidean vacuum Einstein’s equations (see [2]).

We will consider the set M of three-dimensional, nonabelian, unimodular
metric Lie algebras modulo isometry and scaling. Milnor gives an excellent
description of such metric Lie algebras in [31], in particular showing that
there exists a special orthonormal basis {e1, e2, e3} which diagonalizes both
the Ricci endomorphism and the Lie bracket (we say that the Lie bracket is
diagonalized if [ei, ej ] is a scalar multiple of ei × ej). Thus the set of three-
dimensional, unimodular metric Lie algebras depends only on three parame-
ters. In fact, there are two natural choices of those three parameters, and the
Ricci flow through these parameter spaces takes one of the following forms:

(i) Fix the Lie algebra and let the metric vary.

(ii) Evolve the frame to keep it orthonormal and let the structure constants
vary.

In both cases, the Lie bracket and inner product remain diagonal with
respect to the frame. However, in the first case the Lie bracket coefficients
are fixed and the lengths of basis elements change. In the second case, the Lie
bracket coefficients change but the lengths of basis elements do not change
(since the basis evolves to stay orthonormal). It is extremely important that
the frame remains orthogonal under the flow, which follows from the fact
that both the structure constants and the Ricci curvature can always be diag-
onalized at the same time as the metric. This is true for three-dimensional,
unimodular metric Lie algebras, but not in general. The lack of such a frame
is the major obstacle for classifying Ricci flow on four-dimensional, simply-
connected homogeneous spaces; Isenberg–Jackson–Lu [20] classify Ricci flow
for some Riemannian homogeneous spaces which do admit such a frame.

Elements of the space M are three-dimensional metric Lie algebras;
that is, real vector spaces endowed with inner products. In this category,
the most natural notion of normalization is rescaling the inner product by
scalar multiplication. Since M is a three-dimensional space considered mod-
ulo rescaling, we have a two-dimensional system of ordinary differential equa-
tions (ODEs), which is reasonable to analyze as a dynamical system in the
plane. Most previous work on Ricci flow on homogeneous spaces takes the
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first parameterization (e.g., [7, 19, 22]). In contrast, we will take the second
parameterization, and consider M as a quotient of the space of structure
constants. This method has previously been used by the second author to
study Ricci flow on nilmanifolds [33] (see also [15, 28]). These methods have
also been used by researchers in general relativity in studying homogeneous
cosmologies (e.g., [9, 10]).

Let φt denote the flow on M determined by the Ricci flow. Theorem A
describes the topological dynamics of the flow φt.

Theorem A. The phase space M is the disjoint union of the following
invariant sets (see Figures 1 and 2, and Appendix A for the relationship
between S̄m, Sm and M):

• four points p1, p2, p3 and p4;

• six one-dimensional trajectories T1,2, T1,3, T
′
1,3, T1,4, T2,3 and T3,4; and

• three connected two-dimensional open sets B1,4, B1,3 and B′
1,3;

such that

• the points p1, p2, p3 and p4 are fixed by φt;

Figure 1: Schematic of S̄m with Ricci flow lines.
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Figure 2: The space Sm with Ricci flow lines.

• the orbit of a point p in a Ti,j or T ′
i,j has limt→−∞ φt(p) = pi, and

limt→∞ φt(p) = pj; and

• the orbit of a point p in Bi,j or B′
i,j has limt→−∞ φt(p) = pi, and

limt→∞ φt(p) = pj .

Theorem B interprets Theorem A geometrically. In the sequel, we will
say a point in the phase space represents a particular metric, although we
actually mean that it represents the homothety class of the metric, i.e., the
equivalence class of the metric up to isometry and scaling (see Definition 2.2
and Remark 2.1). Given a Lie group G, we will denote the universal covering
group by G̃. Furthermore, recall that a Riemannian submersion f : M → N
is a map such that the differential f∗ maps Hx isometrically to Tf(x)N , where
Hx is the orthogonal complement of the kernel of f∗ (see [3, Chapter 9]).

Theorem B. The decomposition of the phase space M in Theorem A
corresponds geometrically as follows.

(i) Each of the four fixed points p1, p2, p3 and p4 represents a soliton
metric:
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• p1 represents the soliton metric on the three-dimensional Heisenberg
group H(3).

• p2 represents the soliton metric on the three-dimensional solvable
group E(1, 1).

• p3 represents the flat metric on the three-dimensional Euclidean
group ˜E(2).

• p4 represents the round metric on the group SU(2).

(ii) The five trajectories T1,2, T1,3, T ′
1,3, T1,4, and T3,4 have Riemannian

submersion structures:
• T1,2 consists of left-invariant metrics on E(1, 1) (often denoted Sol).

These metrics fiber as Riemannian submersions over R.
• T1,3 consists of left-invariant metrics on ˜E(2). These metrics fiber

as Riemannian submersions over R.
• T ′

1,3 consists of left-invariant metrics on ˜SL2(R) which fiber as Rie-
mannian submersions over the hyperbolic plane H

2.
• T1,4 and T3,4 consist of left-invariant metrics on SU(2) which fiber

as Riemannian submersions over the round sphere S

2 (these Rie-
mannian manifolds are often called Berger spheres). The trajectory
T1,4 corresponds to submersions whose fibers are larger than those
of the round three-sphere (corresponding to the point p4) and the
trajectory T3,4 corresponds to submersions whose fibers are smaller
than those of the round three-sphere.

(iii) The three connected open sets B1,4, B1,3 and B′
1,3 have the structures:

• B1,4 consists of left-invariant metrics on SU(2).
• B1,3 and B′

1,3 consist of left-invariant metrics on ˜SL2(R).

Note that the trajectory T2,3 is still somewhat mysterious. This tra-
jectory was discovered independently by Cao et al. [4], and evidence for it
was present in [5]. Preliminary evidence suggests that this trajectory is not
invariant under cross curvature flow, which may indicate it does not arise
from extra symmetries of the Riemannian metric, as the other special orbits
do (see Remark 5.2).

In formulating the convergence results, we have implicitly chosen a renor-
malization of the Ricci flow. These convergence results are related to, but
sometimes different than, those in [12, 19, 29]. There is still not a consen-
sus as to the best renormalization method for classifying singularities of the
Ricci flow; in the final section of the paper, we discuss this issue, comparing
previous work with our own.
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The organization of this paper is as follows. In Section 2, we introduce
notation and discuss the space of three-dimensional, unimodular metric Lie
algebras and their curvatures. In Section 3 we derive the Ricci flow equations
on the space of structure constants. In Section 4 we analyze the dynam-
ics of the Ricci flow equations on a natural phase space and then on M,
completing the proof of Theorem A. In Section 5 we analyze the dynamics
geometrically, relating fixed points and special trajectories to Ricci solitons
and Riemannian submersions, proving Theorem B. In Section 6 we discuss
how our convergence results relate to the current literature on Ricci flows on
three-dimensional, unimodular metric Lie algebras and Lie groups. Finally,
we include an appendix which give the details of characterizing the space M.

2. Metric Lie algebras and their curvatures

Consider the following definitions.

Definition 2.1. A metric Lie algebra (g, Q) is a Lie algebra g together
with an inner product Q on g. The dimension of the metric Lie algebra is
the dimension of g, and it is unimodular or nonabelian if the Lie algebra g is
unimodular (i.e., adX is trace free for all X ∈ g) or nonabelian, respectively.

Recall that there is a one-to-one correspondence between Lie algebras g

and simply connected Lie groups G. Furthermore, there is a one-to-one cor-
respondence between metric Lie algebras (g, Q) and simply connected Lie
groups G with a left-invariant Riemannian metric g. We will use the Rie-
mannian manifold (G, g) corresponding to the metric Lie algebra (g, Q) for
the following definition.

Definition 2.2. A linear map L : g → g′ is an isometry of metric Lie alge-
bras (g,Q) and (g′,Q′) if it is the differential of a Riemannian isometry
(G, g) → (G′, g′) between the corresponding simply connected Lie groups
with induced left-invariant metrics. Two metrics Q and Q′ on g are homo-
thetic if Q′ = cQ for some c > 0. We say (g,Q) and (g′,Q′) are equivalent
up to isometry and scaling if there exists a diffeomorphism φ : G → G′ and
c > 0 such that g = cφ∗g′. The space of three-dimensional, nonabelian, uni-
modular metric Lie algebras modulo isometry and scaling will be denoted
by M.

Remark 2.1. A related definition is that of isomorphism between metric
Lie algebras. One says two metric Lie algebras (g,Q) and (g′,Q′) are
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isomorphic if there is a linear map L : g → g′ which is a Lie algebra isomor-
phism and satisfies L∗Q′ = Q. The notion of isomorphism in this definition
is stronger than the notion of isometry in Definition 2.2. That is, given an
isomorphism of metric Lie algebras, one can use the group action to extend
this to an isometry of the corresponding simply connected Lie groups with
corresponding left-invariant metrics. However, it is possible to have isome-
tries of the groups which are not isomorphisms of metric Lie algebras. For
instance, there is a flat metric g0 on the Lie group E(2) of Euclidean trans-
formations (as well as its universal cover), and there is a flat metric g1 on
the abelian group R

3. There is an isometry between (˜E(2), g0) and (R3, g1),
but this isometry is not a group isomorphism, and so its differential is not
an isomorphism of metric Lie algebras.

In the beautiful paper of Milnor [31], geometric properties of left-
invariant metrics on three-dimensional Lie groups are studied in detail.
Milnor computes the curvatures of three-dimensional, unimodular metric
Lie algebras:

Theorem 2.1 ([31, Theorem 4.3]). Suppose (g, Q) is a three-dimensional,
unimodular metric Lie algebra. Then there exists a Q-orthonormal frame
B = {e1, e2, e3} for g such that Lie brackets for g are determined by

(2.1) [e2, e3] = a1e1, [e3, e1] = a2e2 and [e1, e2] = a3e3,

for some constants a1, a2, a3 ∈ R. Furthermore, this basis diagonalizes the
Ricci endomorphism Rc such that

[Rc]B = 2

⎡
⎣

μ2μ3

μ1μ3

μ1μ2

⎤
⎦ ,

where

(2.2) μi =
1
2
(a1 + a2 + a3) − ai.

The sectional curvatures are given by

K(e2 ∧ e3) = −μ2μ3 + μ1μ3 + μ1μ2,

K(e3 ∧ e1) = μ2μ3 − μ1μ3 + μ1μ2,

K(e1 ∧ e2) = μ2μ3 + μ1μ3 − μ1μ2.
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Table 1: The three-dimensional, nonabelian, unimodular Lie groups/
algebras.

Signs of Associated Lie
{a1, a2, a3} algebra Associated Lie groups

+, +, + su(2) ∼= so(3) SU(2) or SO(3) = Isom+(S2)
+, +,− sl(2, R) SL2(R) or O(1, 2) or Isom+(H2)
+, +, 0 e(2) E(2) = Isom(E2)
+,−, 0 e(1, 1) E(1, 1) = Sol
+, 0, 0 h(3) H(3) = Nil

Scalar curvature ρ is

ρ = 2(μ2μ3 + μ1μ3 + μ1μ2).

Milnor also describes the isomorphism type of a Lie algebra determined
by Equations (2.1) based on the signs of a1, a2, a3; see Table 1 (where if the
signs are all multiplied by −1, the Lie algebra is the same).

Recalling the space M of metric Lie algebras from Definition 2.2, accord-
ing to Theorem 2.1 we have the following lemma.

Lemma 2.1. Let Ψ̃ : (R3 \ {(0, 0, 0)}) → M be the map which takes (a1, a2,
a3) to the equivalence class of the metric Lie algebra defined by an orthonor-
mal basis {e1, e2, e3} with Lie bracket determined by (2.1). The map Ψ̃ is
surjective.

Notice that we have excluded the point (0, 0, 0), representing the abelian
Lie algebra R

3, from the domain of Ψ̃. This will allow Ψ̃ to descend to a
map from RP

2 to M so that we can consider metric Lie algebra equivalence
up to scaling.

Proof. Certainly the above definition defines a Lie bracket, and Theorem 2.1
shows that every three-dimensional, unimodular Lie algebra can be written
in this way. Since M is a quotient of the set of all such Lie algebras, the
result follows. �

We would like to describe the space M using a fundamental domain.
Since Ψ̃ descends to a map from RP

2 to M, we start with the coordinates
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(m2, m3) = (a2
a1

, a3
a1

) on RP

2. Let

(2.3) Sm = {(m2, m3) ∈ R

2 : 0 ≤ m2 ≤ 1 and m3 ≤ m2},

and let ∼ be the equivalence relation on Sm that is determined by

(2.4) (0, m3) ∼ (0, 1/m3),

if m3 �= 0. Since a fundamental domain should be compact, we need to
compactify Sm, and so we also introduce the compact set

(2.5) S̄m = Sm ∪ {∞},

which is given the one-point-compactification topology, i.e., open neighbor-
hoods of ∞ consist of the complements of compact subsets of Sm. We can
extend ∼ to an equivalence relation on S̄m by adding the equivalence

(2.6) ∞ ∼ (0, 0).

In the appendix, we prove the following:

Theorem 2.2. There is a bijection between S̄m/ ∼ and M.

Using the quotient topology on S̄m/ ∼, there is a natural topology on M
which makes this map a homeomorphism. Note that this topology is quite
natural, as it means that a sequence in Sm converging to infinity must con-
verge to (0, 0) in S̄m/ ∼ . By switching the roles of a1 and a3, one sees that
this convergence is natural in the space of metric Lie algebras. Note that con-
vergence in this setting is equivalent to convergence of structure constants,
which implies convergence of the Riemannian connection. By a standard
Arzela–Ascoli argument, it implies a subsequence of Riemannian metrics
converge in C0 (see [8, Chapter 3]). In fact, since all covariant derivatives
of curvatures are polynomials in the structure constants, there is a subse-
quence that converges in C∞. It is not clear in the general case whether one
can eliminate passing to the subsequence, although Lauret shows this is the
case for nilpotent groups in [27] since the metric can also be written as a
polynomial in the structure constants.

The proof of Theorem 2.2, as well as some of discussion in Section 6,
requires the covariant derivatives of the Ricci tensor, which can be derived in
a straightforward way from the formulas in Theorem 2.1. They also appear
in [23].
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Proposition 2.1. Suppose (g, Q) is a three-dimensional, unimodular met-
ric Lie algebra. The covariant derivative of the Ricci operator satisfies

|D Rc |2 = 8((μ1 − μ3)2μ4
2 + (μ1 − μ2)2μ4

3 + (μ2 − μ3)2μ4
1),

where μi are as in Theorem 2.1.

3. Ricci deformation of three-dimensional unimodular
metric Lie algebras

We now derive the equations for Ricci flow on M. Recall that on a Rieman-
nian manifold (M, g), the Ricci flow is the solution to the equations

∂g

∂t
= −2 Rc(g).

For a left-invariant metric on a Lie group G, this flow reduces to a flow
of the inner product Q on the Lie algebra g of G; that is, it reduces to a
flow of metric Lie algebras (g, Qt). Recall that Theorem 2.1 implies that for
any inner product Q on a three-dimensional, unimodular Lie algebra, we
can find a Q-orthonormal basis B = {e1, e2, e3} for g which diagonalizes the
Ricci tensor. We will see two ways to formulate the Ricci flow:

(i) Fix the basis B̄ = {ē1, ē2, ē3} from Theorem 2.1 which is orthonormal
with respect to Q0, the initial inner product, and consider the evolution
of the metric coefficients Qt(ēi, ēj). In this case, the structure constants
λ1, λ2, λ3 with respect to the basis B̄, i.e.,

(3.1) [ē2, ē3] = λ1ē1, [ē3, ē1] = λ2ē2 and [ē1, ē2] = λ3ē3,

are fixed in time.

(ii) Evolve the basis Bt = {e1(t), e2(t), e3(t)} to be orthonormal with respect
to Qt, so that the metric is the identity in this frame, but the structure
constants a1, a2, a3 with respect to Bt, which are of the form (2.1),
depend on time.

In general, if B̄ = {ē1, ē2, ē3} is a basis which is orthogonal with respect
to a metric Q̄ and satisfies (3.1), and

qi = Q̄(ēi, ēi),
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for i = 1, 2, 3, then we see that B = {e1, e2, e3}, where ei = ēi/
√

qi, is ortho-
normal and the structure constants ai (as in Theorem 2.1) are related by

(3.2) ai =
√

qi

qjqk
λi.

This is how one can relate the solution flows in formulations (i) and (ii). As
first described in [19], in formulation (i) the Ricci curvature is diagonal with
respect to the initial metric Q0, and so the following Ricci flow evolution
can be derived for q1, q2, q3 (see formulas from Theorem 2.1):

d

dt
log q1 = −4μ2μ3 = −a2

1 + (a2 − a3)2,

d

dt
log q2 = −4μ1μ3 = −a2

2 + (a3 − a1)2,(3.3)

d

dt
log q3 = −4μ1μ2 = −a2

3 + (a1 − a2)2,

where the ai are explicit functions of the qi (with fixed parameters λi) defined
by (3.2). Thus equations (3.3) form an autonomous system of ODEs in the
variables q1, q2, q3. Since the fixed basis B̄ is orthogonal with respect to Qt (as
determined by q1(t), q2(t), q3(t)) and (3.1) continues to be satisfied at each
time t, we see that the flow (3.3) really is the Ricci flow for all time. The
fact that the flow remains diagonal is a special property of three-dimensional,
unimodular metric Lie algebras, and is not true in general (see, e.g., [20]).

Noting that the right sides of the ODEs (3.3) only contain the ai, without
explicitly containing the qi, it is natural to consider Formulation (ii). The
evolution equations for ai are easily derived using (3.3) and (3.2). Due to
Theorem 2.2 (and the preceding discussion from Section 2), we will also be
interested in

m2(t) = a2(t)/a1(t),
m3(t) = a3(t)/a1(t).(3.4)

We have the following.

Proposition 3.1. Let G be a simply connected, three-dimensional, non-
abelian, unimodular Lie group with left-invariant metric g. Then the Ricci
flow on G with initial metric g corresponds to a flow of metric Lie algebras
(g, Qt), where g is the Lie algebra of G and Q0 is g restricted to TeG ∼= g.
This flow can be realized as a flow of structure constants a1, a2, a3 (as deter-
mined by Theorem 2.1), and, if we suppose that a1 �= 0, the ratios m2 and



938 David Glickenstein & Tracy L. Payne

m3 (as defined in (3.4)) obey the equations

dm2

dt
= a2

1m2(1 − m2)(1 + m2 − m3)

dm3

dt
= a2

1m3(1 − m3)(1 − m2 + m3).(3.5)

Remark 3.1. We also note that if a1 �= 0,

d

dt
(log a1) =

1
2

[
d

dt
(log q1) − d

dt
(log q2) − d

dt
(log q3)

]
= 2K(e2 ∧ e3).

The reader may be troubled that the expressions for dm2/dt and dm3/dt
in the proposition are not solely functions of m2 and m3; however, they
are useful, because we will be interested in imagining slope fields for the
flow of m2 and m3 in the m2–m3 plane. The common (positive) term a2

1

simply affects the speed of motion and not the direction of motion, so the
trajectories of m2, m3 under the ODEs (3.5) are the same as the trajectories
of the autonomous ODEs

dm2

dt
= m2(1 − m2)(1 + m2 − m3)

dm3

dt
= m3(1 − m3)(1 − m2 + m3).(3.6)

Proof. The translation to the metric Lie algebra was described at the begin-
ning of this section. Observe that

m2 =
a2

a1
=

λ2

λ1

√
q2

q1
.

Now calculate dm2/dt using (3.3) as:

d

dt

(
a2

a1

)
=

λ2

λ1

d

dt

(√
q2

q1

)

=
λ2

λ1

√
q2

q1

1
2

d

dt
(log q2 − log q1)

=
1
2
m2((a3 − a1)2 − a2

2) − ((a3 − a2)2 − a2
1)

= m2(a1 − a2)(a1 + a2 − a3)

= a2
1m2(1 − m2)(1 + m2 − m3).

The formula for dm3/dt follows analogously. �
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Remark 3.2. Solutions to equations (3.6) with initial values in Sm (see
(2.3)) exist for all time t ≥ 0. Since Sm is an invariant set, we need only
show that m3 does not go to −∞ in finite time. It is easy to see that if
m3 ≥ 0, then it will stay so. If m3 < 0, then

dm3

dt
= m3(1 − m3)(1 − m2 + m3) ≥ m3 − m3

3 ≥ m3,

so m3(t) ≥ m3(0)et. Thus m3(t) cannot go to negative infinity for any t ≥ 0.

Remark 3.3. It is clear that the Ricci flow equations (3.3) for the qi deter-
mine the ai by (3.2), however one might ask if the Ricci flow equations for
the ai determine the qi. This is, in fact, true, since once the ai are an explicit
function of t, one can determine the qi by explicitly integrating (3.3), which
are now explicit functions of t. This was first observed in [33].

4. Dynamics of the ODEs

4.1. Dynamics in R

2

In this section we will look at the qualitative behavior of the dynamical
system (3.6). The phase plane for the system of ODEs (3.6) is displayed in
figure 3, as computed in Matlab. First, we consider the fixed points. Since
the right sides of each equation factor into linear terms, it is easy to see that
the fixed points of (m2, m3) are (0, 0), (0,±1), (±1, 0), (1, 1). Also, it is not
hard to see that the following curves are preserved by the flow: (i) m2 = 0,
(ii) m3 = 0, (iii) m2 = 1, (iv) m3 = 1 and (v) m2 = m3.

The Jacobian matrix of the right hand side of system (3.6) at a point
(m2, m3) is

(
2m2m3 − m3 − 3m2

2 + 1 m2(m2 − 1)
m3(m3 − 1) 2m2m3 − m2 − 3m2

3 + 1

)

and so we see that:

(i) (0, 0) is an unstable fixed point.

(ii) (1, 1) is a stable fixed point.

(iii) (0,−1) and (−1, 0) are saddle points. They have stable manifolds tan-
gent to the lines determined by the eigenvectors (0, 1) and (1, 0), respec-
tively. They have unstable manifolds tangent to the lines determined
by the eigenvectors (2, 1) and (1, 2).
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Figure 3: Phase plane for ODEs in equations (3.6).

(iv) (0, 1) and (1, 0) are degenerate fixed points. They have stable manifolds
tangent to the lines determined by the eigenvectors (0, 1) and (1, 0),
respectively. They have a zero eigenvalue corresponding to eigenvectors
(1, 0) and (0, 1); furthermore, one can look in the zero directions by
considering the Taylor series of solutions near s = 0 for the flow along
curves s → (s, 1) and s → (1, s). We see that, for instance, points near
(1, 0) and below the x-axis approach the fixed point, while points above
the x-axis move away from the fixed point, as seen in Figure 3.

In addition, since (0,−1) and (−1, 0) are saddle points (i.e., the lineariza-
tions at these points each have two distinct eigenvalues of opposite sign),
the Stable Manifold Theorem (see, e.g., [34, Section 2.7]) implies each has a
one-dimensional unstable manifold. Although we are unable to calculate the
trajectories explicitly, we can, for instance, compute a Taylor approximation
of the curve at (0,−1) to be

m3 = −1 +
1
2
m2 +

3
64

m3
2 +

3
128

m4
2 +

9
512

m5
2 +

57
4096

m6
2

+
1461

131 072
m7

2 + O(m8
2).(4.1)
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Furthermore, by the Hartman–Grobman Theorem ([34, Section 2.8]), the
trajectories of the differential equation in a neighborhood of (0,−1) are
homeomorphic to the trajectories of the linearization around (0,−1), and so
this curve contains the only trajectory in the fourth quadrant with m2 < 1
which contains (0,−1).

Remark 4.1. We expect that the Taylor series (4.1) has radius of conver-
gence 1, since the curve has a vertical tangent at the point (1, 0).

4.2. Dynamics on M

In this section we prove Theorem A.

Proof of Theorem A. By Theorem 2.2, we can restrict our attention to Sm

and consider it up to the equivalence ∼ determined by equation (2.4). The
discussion in Section 4.1 implies that we have the following fixed points in
Sm, none of which are equivalent in S̄m: p1 = (0, 0), p2 = (0,−1), p3 = (1, 0)
and p4 = (1, 1). It is also clear that for any sequence {(m(i)

2 , m
(i)
3 )}∞i=1 with

0 ≤ m
(i)
2 ≤ 1 and limi→∞ m

(i)
3 = −∞, we have

lim
i→∞

(m(i)
2 , m

(i)
3 ) = ∞ ∼ p1

in S̄m. Define the sets

T1,2 = {(m2, m3) : m2 = 0, −1 < m3 < 0}
∼ {(m2, m3) : m2 = 0, −∞ < m3 < −1}

T1,3 = {(m2, m3) : m3 = 0, 0 < m2 < 1}
T ′

1,3 = {(m2, m3) : m2 = 1, −∞ < m2 < 0}
T1,4 = {(m2, m3) : m2 = m3, 0 < m2 < 1}
T3,4 = {(m2, m3) : m2 = 1, 0 < m2 < 1}.

Notice that these are, in fact, trajectories of the ODEs (3.6), and correspond
to the invariant sets described in Section 4.1.

The special trajectory T2,3 is defined as the unstable manifold of the
point p2 restricted to the set {(m2, m3) : 0 < m2 < 1}. As an unstable man-
ifold, it must be invariant. Consider the set {(m2, m3) : 0 < m2 < 1 and
m3 < 0}. On this set, it follows from (3.6) that if 1 − m2 + m3 = 0 then
d
dt(m2, m3) is in the positive horizontal direction (i.e., dm2/dt > 0 and
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dm3/dt = 0). Thus the set

{(m2, m3) : 0 < m2 < 1, m3 < 0 , and 1 − m2 + m3 < 0}

is invariant. Since on this set we have

dm3

dm2
=

dm3/dt

dm2/dt
=

m3(1 − m3)(1 − m2 + m3)
m2(1 − m2)(1 + m2 − m3)

> 0,

we see that the trajectory T2,3 can be written as m3 = f(m2), where f is
a continuous, increasing function for 0 < m2 < 1 such that f(0) = −1 and
f(1) = 0.

The remaining sets in the partition of Sm are

B1,4 = {(m2, m3) : 0 < m2 < 1, 0 < m3 < m2},
B1,3 = {(m2, m3) : 0 < m2, f(m2) < m3 < 0},
B′

1,3 = {(m2, m3) : 0 < m2 < 1, m3 < f(m2)}.

These sets are invariant under the flow of the ODEs since their boundaries
are invariant. It remains to show that the sets have the appropriate forward
and backwards limit properties; a straightforward analysis of the phase dia-
gram completes the proof. �

5. The geometry of the phase space

In this section we compare the results of Theorem A with the known geom-
etry of three-dimensional, unimodular metric Lie algebras, thereby proving
Theorem B.

Proof of Theorem B. We first look at the fixed points p1, p2, p3, p4. Recall
that for a three-dimensional, unimodular metric Lie algebra (g, Q), we have
a basis {e1, e2, e3} as described in Theorem 2.1, and recall that qi = Q(ei, ei).

(i) p1 = (0, 0). This corresponds to the Lie algebra with structure con-
stants a1 = 1 and a2 = a3 = 0. By Table 1 we see that this point cor-
responds to the Heisenberg Lie algebra h(3). Up to rescaling, there is
only one metric Lie algebra corresponding to h(3), and so we see that
p1 must be that point. This point corresponds to the Ricci soliton on
H(3) found by Lauret [24], Baird–Danielo [1] and Lott [29].

(ii) p2 = (0,−1). This corresponds to the Lie algebra with structure con-
stants a1 = 1, a2 = 0, and a3 = −1. By Table 1 we see that a2 = 0 and
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a3 < 0 determines that this point corresponds to the solvable Lie alge-
bra e(1, 1). Consulting [12], we see that the left-invariant Riemannian
metrics on E(1, 1) (referred to as Sol in the reference) have the form

(5.1) q1(ezdx + e−zdy)2 + q2dz2 + q3(ezdx − e−zdy)2,

and the soliton found by Baird–Danielo [1] and Lott [29] occurs when
q1 = q3. Since at the point p2, we have m3 =

√
q3/q1λ3 = −1, we see

that q1 = q3, and so p2 corresponds to this soliton metric. Note that
among metrics (5.1 ), the soliton has the form

2q1(e2zdx2 + e−2zdy2) + q2dz2,

which has the additional symmetry of switching x and y. Also note
that switching x and y corresponds with switching q1 and q3, and
thus gives precisely the isometry that identifies the metric Lie algebras
corresponding to the sets

{(m2, m3) : m2 = 0, −1 < m3 < 0}

and
{(m2, m3) : m2 = 0, −∞ < m3 < −1},

when using the equivalence relation on Sm from (2.4).

(iii) p3 = (1, 0). This corresponds to the Lie algebra with structure con-
stants a1 = a2 = 1 and a3 = 0. By Table 1 we see that a3 = 0 and a2 > 0
determines that this point corresponds to the solvable Lie algebra e(2).
Consulting [12], we see that the left-invariant Riemannian metrics on
˜E(2) (referred to as ˜Isom(E2) in the reference) have the form

(5.2) q1(sin θdx + cos θdy)2 + q2(cos θdx − sin θdy)2 + q3dθ2,

with q1 = q2 determining the flat metric. We see that p3 corresponds to
the flat metric. Note that the flat metric is the maximally symmetric
metric of the type (5.2).

(iv) p4 = (1, 1). This corresponds to the Lie algebra su(2) with a1 = a2 =
a3 = 1, implying that q1 = q2 = q3. One easily sees from Theorem 2.1
that this metric has constant sectional curvature, and thus it cor-
responds to the round metric on the three-sphere. Again, we notice
that the round metric is maximally symmetric among all left-invariant
metrics on SU(2).
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We now look at the special trajectories. It is clear that T1,2 and T1,3

correspond to metrics on E(1, 1) and ˜E(2), respectively, and the explicit
metrics shown in (5.1) and (5.2) show the Riemannian submersion struc-
tures. In [12], the left-invariant metrics on ˜SL2(R) are given explicitly, and
one sees that on the trajectory T ′

1,3 we have m2 = −1, indicating that q1 = q2

and that the metrics have the form

q1
1
y2

(dx2 + dy2) + q3

(
dθ − 1

y
dx

)2

,

where (x, y, θ) ∈ R × R>0 × R. These metrics clearly have the form of
Riemannian submersions over the hyperbolic plane.

Now consider the trajectories T1,4 and T3,4, which we see correspond to
metrics on SU(2). Each element in the basis {e1, e2, e3} exponentiates to a
compact group K of rotations in SU(2). The quotient SU(2)/K is diffeo-
morphic to the sphere S2, and the map π : SU(2) → SU(2)/K is precisely
the Hopf fibration (see, e.g., [3]). Using 9.79 and 9.80 in [3], this can be
made into a Riemannian submersion from a left-invariant metric on SU(2)
to a SU(2)-invariant metric on S2 with totally geodesic fibers. The Berger
spheres are the metrics on SU(2) which make π a Riemannian submersion,
where SU(2)/K is given the round metric on S2. The remaining basis ele-
ments span the horizontal subspace of the submersion, and thus must have
equal length for π to be a Riemannian submersion. Thus the submersions
are represented only when m2 = 1 (so q1 = q2) or m3 = 1 (so q1 = q3) or
m2 = m3 (so q2 = q3). The round sphere is when q1 = q2 = q3. It is now
easy to see that T1,4 corresponds to the fibers being larger than the fibers
for the round sphere: q2 = q3 and m2 < 1, so we have q1 > q2 = q3. Simi-
larly, on T3,4, we have q1 = q2 and m3 < 1, so q3 < q1 = q2 and the fibers
are smaller than the fibers of the round sphere.

The descriptions of the basins B1,3, B′
1,3, and B1,4 follow immediately

from Table 1. �

Remark 5.1. We could have constructed the Riemannian submersions on
˜SL2(R) in the same way we constructed the ones for SU(2) as follows. Instead

of considering ˜SL2(R), consider PSL2(R), the orientation preserving isome-
tries of H

2. There is a compact subgroup K acting on the upper half-plane
by the isometries

z → (cos θ)z − sin θ

(sin θ)z + cos θ
,
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for all angles θ. Note that this is the isotropy group of the point i. Again,
by 9.79 and 9.80 in [3], there is a Riemannian submersion π : PSL2(R) →
PSL2(R)/K with totally geodesic fibers, where PSL2(R)/K is given the
geometry of H

2. This submersion may be lifted to the universal cover to
get a line bundle over H

2.

Remark 5.2. It is an interesting fact that each of the special points and
trajectories except for T2,3 correspond to metrics with additional symme-
try. Generically, the left-invariant metrics have isometry groups of dimen-
sion 3. The point p2 is maximally symmetric among left-invariant metrics
on E(1, 1), containing one extra symmetry, as described in the proof of
Theorem B. The points p3 and p4 have six-dimensional symmetry groups.
The trajectories T ′

1,3, T1,4, and T3,4 have the additional symmetries of repa-
rameterizing the fibers: if the fibration structure is locally trivialized as
(x, s) ∈ R

2 × S1, then the map (x, s) → (x, s + σ) is an isometry. Note that
reparameterizing the fiber is different than multiplication by the generator
of the fiber in the group. These extra symmetries give T ′

1,3, T1,4, and T3,4

four-dimensional isometry groups.

6. Remarks on convergence

In this section, we compare the convergence results of this paper with other
convergence results for Ricci flow on three-dimensional, unimodular Lie
groups. Let (g, Q) be a metric Lie algebra, and let (G, g) be the correspond-
ing simply connected Lie group with left-invariant Riemannian metric g.
Any Riemannian manifold (M, g) determines a metric space (M, dg), where
dg is the induced Riemannian distance function. Often it will be relevant
to consider quotients G/Γ which are manifolds, and in the sequel, we may
use g to denote a metric on G/Γ as well as on its universal cover G. The
following are all relevant notions of convergence:

• If the coefficients of the metrics Qt on the Lie algebra, which satisfy
the Ricci flow ODEs, converge as t → ∞, then the corresponding met-
rics g(t) converge in Ck or C∞ as tensors. We call this Ck or C∞

convergence.

• The metric spaces (G/Γ, dg(t)) converge uniformly as metric spaces
(see [4]).

• The metric spaces (G/Γ, dg(t)) converge in the pointed Gromov–
Hausdorff topology (see [13]).



946 David Glickenstein & Tracy L. Payne

• The Riemannian groupoids (G, g(t), Γ) converge in Ck or C∞ as
Riemannian groupoids (see [12, 29]).

Before we describe the previous work, let’s consider the convergence in
the present paper. We have looked at convergence of a system of ODEs
for a normalized Ricci flow equation in the space of metric Lie algebras. In
particular, the convergence is for the structure constants a1, a2, a3, which
implies convergence of the connection since the connection is determined by
the Lie brackets; in fact, if D is the Riemannian connection and {e1, e2, e3}
is an orthonormal frame as in Theorem 2.1, then

μi =
1
2
(aj + ak − ai) =

〈
Dej

ek, ei

〉
,

for {i, j, k} = {1, 2, 3} (see (2.2)). Convergence in C0 of the connections
implies convergence in C1 of the Riemannian metrics (see, e.g., [8, Chap-
ter 3]). The normalization is not given explicitly, but must be such that
none of the Lie bracket coefficients (for an orthonormal frame) become infi-
nite and the Lie algebra does not become abelian. This type of convergence
is considered on higher dimensional nilpotent metric Lie algebras in [33].

The earliest works consider either the (forward) Ricci flow equation with
no scaling [22] or the normalized Ricci flow equation where the rescaling is
based on the scalar curvature [19], and prove C0 convergence of the asso-
ciated left-invariant metrics on the simply connected Lie group. The nor-
malized Ricci flow is helpful for SU(2), since it prevents the sphere from
shrinking to a point in finite time, but otherwise the Ricci flows exist for
all time t (for both unnormalized and normalized). Some of these geome-
tries collapse, in the sense that some of the metric coefficients q1, q2, q3 go
to zero, indicating a compact quotient will have the volume go to zero, as
the sectional curvatures go to zero at a rate of 1/t. In [7], C0 convergence
of the backward direction (of normalized Ricci flow) is considered, and it
is found that the curvatures may go to infinity and convergence is often in
a Gromov–Hausdorff sense to a sub-Riemannian geometry. Similar work is
done for the cross curvature flow in [5, 6]. In each of these cases, compact
quotients are considered, and limits are considered collapsing if a fundamen-
tal domain has injectivity radius going to zero as time goes to infinity. In
many cases, compact quotients collapse with bounded curvature, i.e., the
injectivity radius goes to zero while the sectional curvatures stay bounded.

If one is interested in the simply connected Lie groups, which are dif-
feomorphic to R

3 in all cases except SU(2), the collapsing does not occur.
Instead, one can show pointed Gromov–Hausdorff convergence to Euclidean
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space (see [12]). This convergence is sometimes due to the fact that the flow
is stretching the geometry, revealing only that the Riemannian manifold is
locally Euclidean. To counteract this effect, Lott [29] considers convergence
when the metric is rescaled by 1/t to try to prevent the sectional curva-
tures from decaying to zero. In addition, Lott introduces Ck convergence
on Riemannian groupoids (see also [12]), which essentially means that the
universal cover converges in Ck while the actions of the fundamental group
change as the metric evolves. In this setting, one finds that the rescaled
solutions on the universal covers converge to expanding soliton metrics, get-
ting results similar to those in this paper. It would not be hard to carry
out a similar analysis in the backward time direction with the use of [7].
If one is not concerned with a change of topology, the methods of uniform
convergence of metric spaces will suffice, as in [4].

We note that in [12, 29], only C0 convergence of the metrics is shown
explicitly, although C∞ convergence of Riemannian groupoids is claimed. It
is also shown that the sectional curvatures converge, and so using standard
compactness arguments (see, for instance,[11, 18] [8, Chapter 3]), a subse-
quence of metrics converges in C1. Under Ricci flow, Shi’s work ([35, 36])
implies that if the curvature is bounded at t = 0, then all covariant deriva-
tives of curvature are bounded uniformly for t ≥ δ > 0. Thus, a subsequence
of metrics converges in C∞. However, since we are considering rescaling at
time t = 0, Shi’s estimates do not directly apply (unless we assume uniform
backwards existence), so an additional argument is needed to show that the
metrics converge in Ck for k > 1. We would like to have at least convergence
in C2. The cases in [12, 29] can be shown to converge in Ck with additional
work bounding the covariant derivative. We do not pursue this here, but do
present an interesting example below concerning a rescaling that does not
produce C∞ convergence.

There is one major difference between the results in this paper and the
results in [12, 29]. Metric Lie algebras of type ˜SL2(R) converge to flat metrics
in our setting, while they converge to H

2 × R in the setting of [12, 29]. We
note that H

2 × R cannot be realized as a three-dimensional, unimodular
Lie group with a left-invariant metric. We see that, if we rescale the metric
to ensure that the sectional curvatures do not go to zero, the Lie algebra
coefficients cannot stay bounded: using the computations in [12], we see that

q1, q3 ∼ 2t,

q2 ∼ E1,

for some constant E1 > 0, and two sectional curvatures are asymptotically
like 1/t2 while one is asymptotically like −1/t. The best we can do by
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rescaling is to maintain the negative sectional curvature and let the other
two curvatures go to zero. This suggests scaling the metric by 1/t. Under
this rescaling, using (3.2) we can calculate that

a1, a3 ∼
(

t

E1

)1/2

,

a2 ∼ 1
2

(
E1

t

)1/2

.

Thus we see that this rescaling would not stay in the space of unimodular
metric Lie algebras, and we must take a different scaling to stay in this
space. A different scaling will cause the sectional curvatures all to go to zero
(for instance no scaling at all), revealing Euclidean space.

Metric Lie algebras of the type ˜E(2) also converge to a flat metric, so
one might ask if rescaling by the maximum curvature can create a non-flat
limit. We will use the notation of [12]. Note that

a2 − a1 =
q2 − q1√
q1q2q3

,

and recall that in this case, Ricci flow has

q1, q2 ∼ E1

q3 ∼ E3

q1 − q2 ∼ E4e−E3t,

for constants E1, E2, E3, E4, and sectional curvatures are all proportional to
e−E3t. If we rescale, replacing qi with e−E3tqi, we see that

a2 − a1 ∼ E4e−2E3t

E5e−(3/2)E3t
= E6e−(1/2)E3t,

a1, a2 ∼ E7e(1/2)E3t,

a3 = 0.

Thus for the rescaled solution,

μ1 ∼ 1
2
E6e−(1/2)E3t

μ2 ∼ −1
2
E6e−(1/2)E3t

μ3 ∼ E7e(1/2)E3t
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and thus, using Proposition 2.1,

|D Rc |2 ∼ 8

(
(E7e(1/2)E3t)2

(
1
2
E6e−(1/2)E3t

)4

+(E6e−(1/2)E3t)2(E7e(1/2)E3t)4

+ (E7e(1/2)E3t)2
(

1
2
E6e−(1/2)E3t

)4
)

∼ 8E2
6E4

7eE3t,

and so under this rescaling, |D Rc |2 → ∞ as t → ∞. Since |D Rc |2 is not
bounded, we cannot use Arzela–Ascoli-type compactness theorems to get
convergence of the curvatures (see [11] or [8]) and the curvatures may not
converge. Thus this kind of rescaling does not necessarily result in C2 and
definitely not C3 convergence. Thus there is no natural rescaling which
results in a non-flat limit.

We can also investigate what happens in the backwards time limit and
compare to the results of [7]. The results are slightly different, since once
again the rescaling in [7] is chosen in a particular way, while we have cho-
sen a different rescaling. A comparison can be made in a straightforward
way, which we leave to the reader. However, we would like to point out the
particularly interesting case of the backwards limit of the trajectory T3,4,
which appears to converge, in our setting, to the point p3 (see figure 3),
which represents the flat metric on ˜E(2) (see Theorem B). As in the case
of convergence of the forward evolution of ˜SL2(R) metrics (i.e., those repre-
sented by B1,3, B′

1,3, T2,3, and T ′
1,3 as in Theorem A), the fact that we see

convergence to the flat metric indicates that our rescaling may be revealing
only the infinitesimal Euclidean character of the limit. In fact, as we saw in
Section 5, the trajectory T3,4 corresponds to Berger metrics which are Rie-
mannian submersions over the round two-sphere. As we follow the trajectory
backwards, the fibers shrink and so we expect convergence to the two-sphere.
The formalism in [12, 29] together with the calculations in [7] allow one to
make this convergence precise in the sense of Riemannian groupoids (and,
in particular, pointed Gromov–Hausdorff).

Finally, we note that the stability analysis of Ricci solitons differs from
that in [14]. In [14], only compactly supported variations are considered, and
it was found, for instance, that the soliton metric on H(3) is linearly stable.
We found that in the space of three-dimensional, nonabelian, unimodular
metric Lie algebras up to scaling, the soliton metric on H(3) is unstable (it
corresponds to a repulsive fixed point). These two results are not contradic-
tory, since the variations we consider are certainly not compactly supported.
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Appendix A. Three-dimensional, unimodular metric
Lie algebras

In this appendix, we prove a characterization of the space of three-dimen-
sional, nonabelian, unimodular metric Lie algebras, considered up to isome-
try and scaling. Under the correspondence of Lemma 2.1, three-dimensional,
unimodular metric Lie algebras correspond to vectors (a1, a2, a3) ∈ R

3 by
formula (2.1). To account for equivalence under scaling, we consider two-
dimensional real projective space RP

2 ∼= (R3 \ {(0, 0, 0)})/R

×, and denote
the image of (x, y, z) ∈ R

3 \ {(0, 0, 0)} in RP

2 under the quotient map as
(x : y : z). Permuting the components induces an isometry of the metric Lie
algebra, and so we define the action of σ ∈ S3, the group of permutations of
three elements, on RP

2 by σ(a1 : a2 : a3) = (aσ(1) : aσ(2) : aσ(3)). Notice that
the actions of S3 and R

× on R

3 \ {(0, 0, 0)} are commutative with respect
to each other, and thus

RP

2/S3
∼= (R3 \ {(0, 0, 0)})/(R× × S3).

We denote the image of (x, y, z) ∈ R

3 \ {(0, 0, 0)} in RP

2/S3 as [x : y : z] ,
where the use of square brackets instead of round brackets indicates the
further equivalence using the S3 action. We will now introduce a fundamental
domain for RP

2/S3. Recall the sets Sm and S̄m defined in (2.3) and (2.5)
and the equivalence relation ∼ determined by (2.4) and (2.6).

Proposition A.1. The map

Φ̃ : S̄m → RP

2/S3

defined by

Φ̃(m2, m3) = [1 : m2 : m3],

Φ̃(∞) = [1 : 0 : 0]

is surjective. Moreover, Φ̃ induces a homeomorphism

Φ : S̄m/ ∼→ RP

2/S3.

Proof. Consider a point [x : y : z] ∈ RP

2/S3. We can use multiplication by
−1 to ensure that at least one entry is positive and another is nonnegative.
Then we can use the permutations to ensure that z ≤ y ≤ x, y ≥ 0, and
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x > 0. In this case we have that

[x : y : z] =
[
1 :

y

x
:

z

x

]

with
0 ≤ y

x
≤ 1

and
z

x
≤ y

x
,

which proves the first statement.
To see that Φ is well-defined, we must check that Φ̃(0, m3) = Φ̃(0, 1/m3)

for m3 �= 0. We see that

[1 : 0 : m3] =
[

1
m3

: 0 : 1
]

=
[
1 : 0 :

1
m3

]
.

To see Φ is a bijection, we note that if

Φ̃(m2, m3) = Φ̃(m′
2, m

′
3)

then
[1 : m2 : m3] =

[
1 : m′

2 : m′
3

]
,

with

0 ≤ m2 ≤ 1, m3 ≤ m2,

0 ≤ m′
2 ≤ 1, m′

3 ≤ m′
2.

Thus (1, m2, m3) is equal to one of the following, where r �= 0: r(1, m′
2, m

′
3),

r(1, m′
3, m

′
2), r(m′

2, 1, m′
3), r(m′

3, 1, m′
2), r(m′

3, m
′
2, 1) or r(m′

2, m
′
3, 1). By

checking each of the cases, one can verify that Φ is a bijection.
To see the continuity, we note that for any sequence (m(i)

2 , m
(i)
3 ) satisfying

0 ≤ m
(i)
2 ≤ 1 and limi→∞ m

(i)
3 = −∞, we have

lim
i→∞

Φ̃(m(i)
2 , m

(i)
3 ) = lim

i→∞
[1 : m

(i)
2 : m

(i)
3 ]

= lim
i→∞

[
1 :

m
(i)
2

m
(i)
3

:
1

m
(i)
3

]

= [1 : 0 : 0].

�
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Certainly there is a map

Ψ : RP

2/S3 → M

induced by the map Ψ̃ defined in Lemma 2.1. We wish to show that this
map is bijection. It is immediate that the map is surjective, so we need only
show that it is injective. The main ideas for the proof are in the paper of
Lastaria [23], which constructs families of nonisometric metric Lie algebras
with the same Ricci tensors.

We will need two invariants for M. It is easy to see that the follow-
ing quantities are invariants of M if |Rc | �= 0 (and the case |Rc | = 0 is
distinguished from these cases as well):

(λ1 [Rc] , λ2 [Rc] , λ3 [Rc])
|Rc | ∈ S2

|D Rc |2
|Rc |3 ∈ R,

where λ1 [Rc] ≤ λ2 [Rc] ≤ λ3 [Rc] are the eigenvalues of the Ricci operator
put into ascending order. Notice that |Rc | = 0 only if (m2, m3) = (1, 0), and
so the corresponding metric Lie algebra is not isometric to any metric Lie
algebra induced by another element of S̄m/ ∼.

We will consider the map

Ẽ = E ◦ Ψ ◦ Φ̃ : Sm \ {(1, 0)} → S2 × R

where

E : M → S2 × R

gives the two invariants above. Recall that the Ricci eigenvalues are

(2μ2μ3, 2μ1μ3, 2μ1μ2),

where μ1, μ2, μ3 are as in Theorem 2.1. We want to express these in terms of
m2 and m3, so we introduce the following functions which are closely related
to the μi:

ν1 = m2 + m3 − 1,

ν2 = 1 + m3 − m2,(A.1)
ν3 = 1 + m2 − m3.
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Recall that on Sm we have m3 ≤ m2, and so ν3 ≥ 1. Also, since 0 ≤ m2 ≤ 1,
we have

(A.2) −ν3 ≤ ν1 ≤ ν2.

We define the partition

(A.3) P = {S0, S1, S2, S++, S−+, S++}

of Sm by looking at the signs of ν1 and ν2:

S0 = {(1, 0)}
S1 = {(m2, m3) ∈ Sm : ν1 = 0 < ν2}
S2 = {(m2, m3) ∈ Sm : ν1 < ν2 = 0}

S++ = {(m2, m3) ∈ Sm : 0 < ν1 ≤ ν2}
S−+ = {(m2, m3) ∈ Sm : ν1 < 0 < ν2}
S−− = {(m2, m3) ∈ Sm : ν1 ≤ ν2 < 0}.

Using Theorem 2.1 and Proposition 2.1 we can write Ẽ, which is defined on
Sm \ S0, explicitly as follows:

Ẽ(m2, m3) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
(0, 0, 1),

(ν2
2 + ν2

3)
ν2ν3

)
if (m2, m3) ∈ S1

(
(−1, 0, 0),

(ν2
1 + ν2

3)
|ν1ν3|

)
if (m2, m3) ∈ S2

(
(ν1ν2, ν1ν3, ν2ν3)

|νν| , ∗
)

if (m2, m3) ∈ S++

(
(ν1ν3, ν1ν2, ν2ν3)

|νν| , ∗
)

if (m2, m3) ∈ S−+

(
ν1ν3, ν2ν3, ν1ν2

|νν| , ∗
)

if (m2, m3) ∈ S−−,

where

∗ =
(ν1 − ν3)2ν4

2 + (ν1 − ν2)2ν4
3 + (ν2 − ν3)2ν4

1

|νν|3
and

|νν| =
√

ν2
1ν2

2 + ν2
1ν2

3 + ν2
2ν2

3 .
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Now we will show that Ẽ is injective. First we will show that no two
points in different partitions in P correspond to equivalent metric Lie alge-
bras (equivalent up to isometry and scaling). Then we will show that within
each partition, no two points correspond to equivalent metric Lie algebras.

Proposition A.2. If (m2, m3) and (m′
2, m

′
3) are in different sets from the

partition P (see (A.3)), then Ẽ(m2, m3) = Ẽ(m′
2, m

′
3) implies that

• (m2, m3) = (0, m3) ∈ S−+ and (m′
2, m

′
3) = (0, 1/m3) ∈ S−− or

• (m2, m3) = (0, m3) ∈ S−− and (m′
2, m

′
3) = (0, 1/m3) ∈ S−+.

Proof. Since Ẽ restricted to S++ ∪ S−+ ∪ S−− does not have any zeroes
in the first component, then certainly we have Ẽ(m2, m3) �= Ẽ(m′

2, m
′
3) if

(m2, m3) or (m′
2, m

′
3) is in S1 or S2. Furthermore, since the first component

has all positive entries if (m2, m3) ∈ S++, it is distinguished from S−+ and
S−−, both of which have two negative entries. This shows that Ẽ(m2, m3) �=
Ẽ(m′

2, m
′
3) for all cases except if (m2, m3) or (m′

2, m
′
3) in S−+ and the

other in S−−. Say (m2, m3) ∈ S−+ and (m′
2, m

′
3) ∈ S−− and Ẽ(m2, m3) =

Ẽ(m′
2, m

′
3). Thus we have that

(ν1ν3, ν1ν2, ν2ν3)
|νν| =

(ν ′
1ν

′
3, ν

′
2ν

′
3, ν

′
1ν

′
2)

|ν ′ν ′|
with

ν1 < 0 < ν2

ν ′
1 ≤ ν ′

2 < 0(A.4)
0 < ν3, ν

′
3.

That is, there exists c > 0 such that

(A.5)
ν1ν3

ν ′
1ν

′
3

=
ν1ν2

ν ′
2ν

′
3

=
ν2ν3

ν ′
1ν

′
2

= c,

which implies
ν1ν

2
2ν3 = c2ν ′

1(ν
′
2)

2ν ′
3.

Using (A.5), we find that
ν2
2 = c(ν ′

2)
2,

and, using (A.4) and (A.5) again, we arrive at

ν2 = −√
cν ′

2, ν3 = −√
cν ′

1, ν1 = −√
cν ′

3.
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It is a consequence of (A.2) that

−ν3 ≤ ν1 = −√
cν ′

3 ≤ √
cν ′

1 = −ν3,

so

ν1 = −ν3 and ν ′
1 = −ν ′

3.

Thus, using (A.1),

m2 + m3 − 1 = −1 − m2 + m3

m′
2 + m′

3 − 1 = −1 − m′
2 + m′

3,

or m2 = m′
2 = 0. Again by (A.1), we have the following:

ν1 = −ν3 = m3 − 1
ν2 = 1 + m3

ν ′
1 = −ν ′

3 = m′
3 − 1

ν ′
2 = 1 + m′

3.

Inserting these into (A.5) gives

(m3 − 1)2

(m′
3 − 1)2

=
m2

3 − 1
1 − (m′

3)2
,

which implies that

(m3 − 1)2(1 − (m′
3)

2) − (m2
3 − 1)(m′

3 − 1)2 = 0,

or

(m3 − 1)(m′
3 − 1)(m3m

′
3 − 1) = 0.

Since neither m3 nor m′
3 can equal one, we must have m3m

′
3 = 1. �

Proposition A.3. Ẽ is injective on S1.
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Proof. On S1, we have

0 = ν1 = m2 + m3 − 1,

which implies that
m3 = 1 − m2.

Notice that this implies that

1 − m2 = m3 ≤ m2,

or
1
2
≤ m2 < 1

(using that m2 = 1 implies m3 = 0). Now we can write ν2 and ν3 in terms
of m2:

ν2 = 1 + m3 − m2 = 2 − 2m2,

ν3 = 1 + m2 − m3 = 2m2,

so
(ν2

2 + ν2
3)

ν2ν3
=

(1 − m2)2 + m2
2

(1 − m2)m2
.

This function is one-to-one on 1/2 ≤ m2 < 1. Thus Ẽ is injective. �

Proposition A.4. Ẽ is injective on S2.

Proof. On S2, we have

0 = ν2 = 1 + m3 − m2,

which implies that
m3 = m2 − 1.

Now we can write ν1 and ν3 in terms of m2

ν1 = m2 + m3 − 1 = 2m2 − 2
ν3 = 1 + m2 − m3 = 2

so
(ν2

1 + ν2
3)

|ν1ν3| =
(m2 − 1)2 + 1

1 − m2
.

This function is strictly increasing for 0 < m2 < 1. The result follows. �
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Note that if U ⊂ S2 ∩ {(x, y, z) : z > 0} then the map φ : U →R

2 defined
by φ(x, y, z) = (x

z , y
z ) is one-to-one. We will use this to prove that Ẽ is injec-

tive on the sets S++, S−+, S−−.

Proposition A.5. Ẽ is injective on each of the sets S++, S−+, and S−−.

Proof. Let π1 be the projection onto the first component and let Ē = φ ◦
π1 ◦ Ẽ. On S++, Ē is

Ē(m2, m3) =
(

ν1

ν3
,
ν1

ν2

)
.

We compute the Jacobian determinant:

det

⎛
⎜⎜⎝

2(1 − m3)
ν2
3

2m2

ν2
3

2m3

ν2
2

2(1 − m2)
ν2
2

⎞
⎟⎟⎠ =

−4ν1

ν2
2ν2

3

< 0,

since ν1 > 0 on S++. On S−+, Ē is

Ē(m2, m3) =
(

ν1

ν2
,
ν1

ν3

)
.

Its Jacobian determinant is

det

⎛
⎜⎜⎝

2m3

ν2
2

2(1 − m2)
ν2
2

2(1 − m3)
ν2
3

2m2

ν2
3

⎞
⎟⎟⎠ =

4ν1

ν2
2ν2

3

< 0,

since ν1 < 0 on S−+. On S−−, Ē is

Ē(m2, m3) =
(

ν3

ν2
,
ν3

ν1

)
.

Its Jacobian determinant is

det

⎛
⎜⎜⎝

2
ν2
2

−2
ν2
2

2(m3 − 1)
ν2
1

−2m2

ν2
1

⎞
⎟⎟⎠ =

−4ν3

ν2
1ν2

2

> 0.

In each case we see that Ē is injective, and thus so is Ẽ. �
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As a consequence of all of these propositions, we can conclude that Ẽ is
injective, implying the following theorem, which implies Theorem 2.2. Note
that we have not yet defined a topology on M; it will be defined to allow
for the theorem.

Theorem A.1. The following spaces are homeomorphic:

(i) M
(ii) RP

2/S3

(iii) S̄m/ ∼
Proof. We have just shown that Ψ gives a bijection between RP

2/S3 and M,
and we can give M a topology which makes Ψ a homeomorphism. Proposi-
tion A.1 shows that Φ is a homeomorphism between S̄m/ ∼ and RP

2/S3. �
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