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Hecke transformation for orthogonal bundles and

stability of Picard bundles

Indranil Biswas and Tomás L. Gómez

We define Hecke transformation for orthogonal bundles over a
compact Riemann surface. Using the cycles on a moduli space of
orthogonal bundles given by Hecke transformations, we prove that
the projectivized Picard bundle on the moduli space is stable.

1. Introduction

Given a holomorphic vector bundle F over a compact Riemann surface X,
and a subspace Sx ⊂ Fx in the fiber over a point x, the Hecke transformation
produces a new vector bundle E on X [10, 16]. The vector bundle E is the
kernel of the natural quotient map F −→ Fx/Sx. Hecke transformation is a
very useful tool to study the moduli space. For instance, they are used in
computation of cohomologies of coherent sheaves on a moduli space of vector
bundles [10]. They are also used in proving stability of various naturally
associated bundles on a moduli space [3].

When Sx varies among all subspaces of Fx (the fiber of F at x), with
x fixed, we get a family of vector bundles. Under suitable conditions for
F , these Hecke transforms are stable vector bundles, so we obtain a mor-
phism from the Grassmannian associated to Fx to the moduli space of vector
bundles. The image of this morphism is called a Hecke cycle.

An orthogonal bundle is a vector bundle F together with a homomor-
phism ψ : F ⊗ F −→M , where M is a line bundle, such that ψ is symmetric
and non-degenerate at every fiber. Equivalently, an orthogonal bundle can
be thought of as a principal GO(r,C)–bundle. Our aim here is systemati-
cally to construct Hecke transformations of orthogonal bundles. If F is an
orthogonal bundle over X of rank 2n, and Sx ⊂ Fx is an isotropic subspace
of dimension n, then the vector bundle E −→ X defined by the kernel of the
homomorphism F −→ Fx/Sx has an induced orthogonal structure. If the
orthogonal form on F takes values in a line bundle M , then the orthogo-
nal form on E takes values in M ⊗OX(−x). Summing up, we start with
a principal GO(2n,C)–bundle F and a Lagrangian subspace of Fx, and we
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obtain another GO(2n,C)–bundle. If we let Sx vary, we will obtain a family
of GO(2n,C)–bundles. Under suitable conditions on (F, ψ), all these bun-
dles are stable, hence we obtain a morphism to the moduli space of stable
orthogonal bundles, whose image is called a Hecke cycle.

For odd ranks, we consider vector bundles F −→ X of rank 2n+ 1
equipped with a symmetric bilinear form ψ which is nondegenerate on
X \ {x}, and the annihilator lx of Fx is of dimension one. For any isotropic
subspace ˜Sx ⊂ Fx of dimension n+ 1 (or, equivalently, for any isotropic sub-
space Sx ⊂ Fx/lx of dimension n), we construct an orthogonal bundle. As in
the even case, we can define a morphism to the moduli space whose image
is called a Hecke cycle. Note that in the odd case, in order to obtain a prin-
cipal bundle, we start with an object which is not a principal bundle (the
bilinear form on the fiber over x is degenerate). From this point of view, a
Hecke transformation, rather than a transformation between principal bun-
dles, is better understood as a technique for producing interesting cycles in
the moduli space.

As an application, we prove that the projectivized Picard bundle (see
Section 5 for the definition) on a moduli space of orthogonal bundles is stable
(Theorem 5.1).

In [4] we have considered symplectic Hecke transformations. At the end
of this article we comment on the differences between the symplectic and
orthogonal case.

2. Preliminaries

We fix a nondegenerate symmetric bilinear form B on C
r, r ≥ 3. The sym-

metric matrix representing B will also be denoted by B. Define the general
orthogonal group GO(r,C) to be the group of all conformally orthogonal
transformations, meaning

(2.1) GO(r,C) = {A ∈ GL(r,C) : AtBA = cB for some c ∈ C
∗}.

This group is an extension of C
∗ by the orthogonal group O(r,C)

(2.2) 1 −→ O(r,C) −→ GO(r,C)
p−→ C

∗ −→ 1,

where p(A) is the constant c in (2.1). It follows that

det(A)2 = p(A)r.
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Let X be a compact connected Riemann surface. An orthogonal bundle
on X is a pair of the form (E,ϕ), where

• E −→ X is a holomorphic vector bundle, and

• ϕ is a symmetric and nondegenerate holomorphic homomorphism

ϕ : E ⊗ E −→ L,

where L −→ X is a holomorphic line bundle.

The homomorphism ϕ induces an isomorphism E −→ E∨ ⊗ L, and this in
turn produces an isomorphism

(2.3) det(E)2 ∼−→ Lr.

An isomorphism of orthogonal bundles

(E,ϕ) −→ (E′, ϕ′)

is a pair of holomorphic isomorphisms (α : E ∼−→ E′, β : L ∼−→ L′) such that
the following diagram is commutative

E ⊗ E
ϕ ��

α⊗α
��

L

β

��
E′ ⊗ E′ ϕ′

�� L′

There is a canonical bijection between the isomorphism classes of principal
GO(r,C)–bundles and orthogonal bundles of rank r.

Let (E,ϕ : E ⊗ E −→ L) be an orthogonal bundle. If F ⊂ E is a sub-
sheaf, we define F⊥ to be the kernel of the composition

E
ϕ−→ E∨ ⊗ L −→ F∨ ⊗ L.

In other words, F∨ is the annihilator of F .

Lemma 2.1. Let (E,ϕ : E ⊗ E −→ L) be an orthogonal bundle on X, and
let F ⊂ E be a subbundle.
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(1) There is a short exact sequence on X

0 −→ F⊥ −→ E
ϕ∼= E∨ ⊗ L −→ F∨ ⊗ L −→ 0,

hence F⊥ is also a subbundle, so rkF⊥ = rkE − rkF , and degF⊥ =
degF + l( r

2 − rkF ), where l is the degree of L.

(2) There is a short exact sequence

(2.4) 0 −→ F ∩ F⊥ −→ F ⊕ F⊥ −→ F + F⊥ −→ 0.

(3) We have an inclusion F+F⊥⊂ (F
⋂

F⊥)⊥, in particular, rk(F+F⊥)≤
rk(F

⋂

F⊥)⊥.

Proof. To prove (1), note that from (2.3) it follows that degE = rl/2. Also,
F∨ is a quotient bundle of E∨ because F is a subbundle of E. Now (1)
follows from the definition of F⊥.

Part (2) is easy to check.
For (3), note that if F1 is a subsheaf of F2, then there is a natural

inclusion F⊥
2 ↪→ F⊥

1 . Since F
⋂

F⊥ ⊂ F and F
⋂

F⊥ ⊂ F⊥, we have F⊥ ⊂
(F⊥⋂F )⊥, and F = (F⊥)⊥ ⊂ (F⊥⋂F )⊥. Hence F +F⊥ ⊂ (F⊥⋂F )⊥. �

A principal GO(r,C)–bundle over a smooth complex projective curve X
is called stable (respectively, semistable) if for every reduction

σ : X −→ P/Q

to a (proper) maximal parabolic subgroup Q ⊂ GO(r,C),

deg(σ∗Trel) > 0 (respectively, deg(σ∗Trel) ≥ 0),

where Trel −→ P/Q is the relative tangent bundle for the projection P/Q −→
X (see [13, page 129, Definition 1.1] and [13, page 131, Lemma 2.1]). In terms
of orthogonal bundles, this condition is equivalent to the condition that for
all isotropic subbundles 0 �= E′ ⊂ E,

deg(E′)
rk(E′)

<
deg(E)
rk(E)

(

respectively,
deg(E′)
rk(E′)

≤ deg(E)
rk(E)

)

;

we recall that E′ is called an isotropic subbundle of E if the restriction of
ϕ to E′ ⊗ E′ ⊂ E ⊗ E is identically zero.

See [14, 15] for the construction of moduli spaces of semistable principal
GO(r,C)–bundles. We denote by ML the moduli space of stable orthogonal
bundles with values in the line bundle L.
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Lemma 2.2. If (E,ϕ) is a semistable orthogonal bundle on X, then the
underlying vector bundle E is semistable.

Proof. The natural inclusion of GO(r,C) into GL(r,C) takes the center
of GO(r,C) into the center of GL(r,C). Therefore, the lemma follows from
[12, p. 285, Theorem 3.18]. �

3. Hecke transformation for orthogonal bundles

Let X be a compact connected Riemann surface of genus g = g(X) ≥ 2. Fix
a point x ∈ X.

Proposition 3.1. Let (F, ψ : F ⊗ F −→M) be an orthogonal bundle over
X of rank r = 2n. Let Sx ⊂ Fx be an isotropic subspace of dimension n. Set
Qx = Fx/Sx, and let

(3.1) 0 −→ E −→ F −→ Qx −→ 0

be the short exact sequence, where F −→ Fx −→ Qx is the natural projection.
Then E inherits a natural orthogonal structure ϕ : E ⊗ E −→ L, where L =
M(−x) := M ⊗OX

OX(−x).

Proof. Choose a local étale trivialization of (F, ψ) around x ∈ X such that
ψ is of the form

ψ =

⎛

⎝

0 1
. . .

1 0

⎞

⎠

(so ψi,j = 0 if i+ j �= 2n, and ψi,2n−i = 1) and Sx is defined by the first n
vectors in the basis. The homomorphism E −→ F is then locally defined by
the matrix

(

1n

t1n

)

(i.e., the diagonal matrix with the first n entries equal to 1 and the last n
entries equal to t), where t is a local parameter at x ∈ X. Therefore, the
composition E ⊗ E −→ F ⊗ F −→M is

⎛

⎝

0 t
. . .

t 0

⎞

⎠
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so it vanishes at x ∈ X. Therefore, the homomorphism E ⊗ E −→M factors
through L = M(−x), and then ϕ : E ⊗ E −→ L is of the form

⎛

⎝

0 1
. . .

1 0

⎞

⎠.

This completes the proof. �

Let (E,ϕ : E ⊗ E −→ L) be an orthogonal bundle over X. Let

ϕ̂ : E −→ E∨ ⊗ L

be the isomorphism given by ϕ. Define

(3.2) ϕ−1 := (ϕ̂∗)−1,

which produces a homomorphism ϕ−1 : E∨ ⊗ E∨ −→ L∨. Note that (E∨,
ϕ−1 : E∨ ⊗ E∨ −→ L∨) is an orthogonal bundle.

Proposition 3.2. Let (E,ϕ : E ⊗ E −→ L) be an orthogonal bundle over
X of rank r = 2n. Let W be an isotropic subspace of dimension n of E∨

x .
Let F∨ be defined by the following short exact sequence

(3.3) 0 −→ F∨ −→ E∨ −→ E∨
x /W −→ 0.

Then the orthogonal form ϕ−1 on E∨ (see (3.2)) restricts to an orthogonal
form

ϕ−1 : F∨ ⊗ F∨ −→ L∨(−x)

on F∨.

Proof. The proposition follows by applying Proposition 3.1 to the orthogonal
bundle (E∨, ϕ∗ : E∨ ⊗ E∨ −→ L∨) and the subspace W ⊂ E∨

x . �

Using (3.2), the orthogonal structure on F∨ in Proposition 3.2 produces
an orthogonal structure

F ⊗ F −→ L(x)

on F .
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Proposition 3.3. Let F −→ X be a vector bundle of rank r = 2n+ 1
equipped with a symmetric bilinear form

ψ : F ⊗ F −→M

which induces a short exact sequence

(3.4) 0 −→ F −→ F∨ ⊗M −→ Cx −→ 0,

where Cx is the skyscraper sheaf of length one supported over the point x.
In other words, ψ is nondegenerate everywhere except at x, and in an étale
neighborhood of x, it is of the form

(3.5)

⎛

⎝

0 1n

t
1n 0

⎞

⎠

(i.e., the (n+ 1, n+ 1)th entry is t and any other (i, j)th entry is δ|i−j|,n+1),
where t is a local parameter at x ∈ X. Let

(3.6) 0 −→ lx −→ Fx −→ F∨
x ⊗Mx −→ Cx −→ 0

be the exact sequence obtained by restricting the above short exact sequence
to the point x. Let Sx be an isotropic subspace of dimension n of Fx/lx.
Define Qx := (Fx/lx)/Sx, and consider the short exact sequence

0 −→ E −→ F −→ Qx −→ 0.

Then ψ induces an orthogonal structure on E

ϕ : E ⊗ E −→ L := M(−x).

Proof. Choose a local trivialization such that ψ is of the form in (3.5), and
furthermore, the homomorphism β : E −→ F is of the form

⎛

⎝

1n 0
1

0 t1n

⎞

⎠.

Then the composition E ⊗ E −→ F ⊗ F −→M is
⎛

⎝

0 t1n

t
t1n 0

⎞

⎠.
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This homomorphism E ⊗ E −→M vanishes at x ∈M , hence it factors
through L := M(−x), inducing a homomorphism ϕ : E ⊗ E −→ L. This ϕ
is symmetric and nondegenerate. �

Proposition 3.4. Let (E,ϕ : E ⊗ E −→ L) be an orthogonal bundle over
X with rk(E) = 2n+ 1, and let Wx ⊂ E∨

x be an isotropic subspace of dimen-
sion n. Define F∨ using the short exact sequence

(3.7) 0 −→ F∨ −→ E∨ −→ E∨
x /Wx −→ 0.

So F ⊂ E(x) := E ⊗OX
OX(x). Consider the composition

F ⊗ F ↪→ E(x) ⊗ E(x)
ϕ−→ L(2x).

Its image lies in M := L(x) ⊂ L(2x), and the corresponding symmetric bilin-
ear form

ψ : F ⊗ F −→M

is everywhere nondegenerate except at the point x, where it is locally of the
form

⎛

⎝

0 1n

t
1n 0

⎞

⎠ .

Proof. With respect to a local trivialization of E compatible with the filtra-
tion Wx ⊂ Sx ⊂ E∨

x , we have

ϕ−1 =

⎛

⎝

0 1n

1
1n 0

⎞

⎠ and f =

⎛

⎝

1n 0
1

0 t1n

⎞

⎠

where f is the homomorphism F∨ ↪→ E∨. Therefore,

ψ′ =

⎛

⎝

0 t1n

1
t1n 0

⎞

⎠ and (ψ′)−1 =
1
t

⎛

⎝

0 1n

t
1n 0

⎞

⎠

Since (ψ′)−1 has a pole of order one at x ∈ X, it induces a homomorphism
with values on M := L(x); this induced homomorphism has the required
properties. �

We will also need to consider vector bundles F with a symmetric bilin-
ear tensor ψ : F ⊗ F −→M which can be degenerate at some point (as in
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Proposition 3.3). In this case we still say that a subsheaf F ′ ⊂ F is isotropic
if the restriction of ψ to F ′ ⊗ F ′ is identically zero.

Following [11], we define:

Definition 3.1. Let k, l be integers. A symmetric bilinear tensor (E,ϕ)
is (k, l)–stable (respectively, (k, l)–semistable) if for all isotropic subbundles
E′ of it of positive rank, the following inequality holds:

deg(E′) + k

rk(E′)
<

deg(E) + k − l

rk(E)

(respectively, deg(E′)+k
rk(E′) ≤ deg(E)+k−l

rk(E) ).

If k = l = 0 and (E,ϕ) is an orthogonal bundle (meaning ϕ is nondegen-
erate), then the above definition coincides with the definition of (semi)stable
orthogonal bundles.

For any t ∈ R, let [t] be the unique integer such that t ≤ [t] < t+ 1.

Lemma 3.1. Let (E,ϕ) be a (n, n)–stable orthogonal bundle of rank r,
where n = [r/2]. Let (F, ψ) be obtained from (E,ϕ) as in Proposition 3.2 or
Proposition 3.4 (depending on the parity of r), and let (E′, ϕ′) be obtained
from (F, ψ) as in Proposition 3.1 or Proposition 3.3. Then (E′, ϕ′) is a stable
orthogonal bundle.

Proof. By construction, we have a diagram

0

Q′
x

��

0 �� E �� F

��

�� Qx
�� 0

E′

��

0

��
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Let H ⊂ E′ be an isotropic subbundle. Then H
⋂

E is an isotropic subsheaf
of E, and degH − n ≤ degH

⋂

E, because the length of Qx is n. Therefore,

degH
rkH

≤ degH ∩ E + n

rkH
≤ degE

rkE
=

degE′

rkE′ ,

where the second inequality follows from the (n, n)–stability condition on E.
�

Proposition 3.5. Let ML be the moduli space of stable orthogonal bundles
of rank r and degree d (the line bundle L is fixed). Assume that g(X) >
n where n = [r/2]. Then the subset of ML corresponding to (n, n)–stable
bundles is nonempty Zariski open.

Proof. There is a finite set of pairs (r′, d′) ∈ N × Z such that there is a stable
orthogonal bundle (E,ϕ) ∈ ML which has a quotient of rank r′ and degree
d′ contradicting the (n, n)–stability condition. This and the properness of
the Quot scheme together imply that the condition of being (n, n)–stable is
Zariski open.

The dimension of ML is calculated using [15, Theorem 5.9] and sub-
tracting g(X), because the line bundle L where the orthogonal form takes
values is fixed. More precisely,

dimML = (g(X) − 1) dim GO(r,C) + dimZ(GO(r,C)) − g(X)

= (g(X) − 1)
r2 − r

2
.

We will now estimate the dimension of the subset of the moduli space
ML corresponding to orthogonal bundles which are not (n, n)–stable.

Let (E,ϕ) be such an orthogonal bundle, and let P be the corresponding
principal GO(r,C)–bundle. An isotropic subbundle H ⊂ E gives a reduction
of structure group PQ ⊂ P to a maximal parabolic subgroup Q ⊂ GO(r,C).

Given a principal Q-bundle EQ −→ X, we get a principal GO(r,C)–
bundle EQ ×Q GO(r,C) by extending the structure group. Since the stability
condition is open, a deformation of PQ as a principal Q-bundle will give a
deformation of P which is stable but not (n, n)–stable. Furthermore, any
deformation of P which is not (n, n)–stable must be of this form for some
parabolic subgroup Q ⊂ GO(r,C).
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The tangent space of these deformations has dimension h1(PQ(q)) −
g(X), where q is the Lie algebra of Q, and PQ(q) is the adjoint vector bundle
of PQ. We subtract g(X) because the line bundle L, where the orthogonal
form takes values, is fixed.

We claim that h0(PQ(q)) = 1. Indeed, on one hand we have

(3.8) h0(PQ(q)) ≥ dim z(q) = 1,

where z(q) is the center of the Lie algebra q. On the other hand, since P is
a stable principal GO(r,C)–bundle, we have

H0(X,P (go(r,C))) = z(go(r,C)),

where P (go(r,C)) is the adjoint bundle of P , and z(go(r,C)) ⊂ go(r,C) is
the center [13, page 136, Proposition 3.2]. Since q is a submodule of the
Q–module go(r,C), the vector bundle PQ(q) is a subbundle of the adjoint
vector bundle P (go(r,C)). Therefore,

h0(PQ(q)) ≤ h0(P (go(r,C))) = dim z(go(r,C)) = 1.

Combining this with (3.8) it follows that h0(PQ(q)) = 1.
Using Riemann–Roch,

h1(PQ(q)) − g(X) = −deg(PQ(q)) + (rk(PQ(q)) − 1) · (g(X) − 1).

Therefore, by Lemma 3.2, the codimension codimZ of the subscheme Z ⊂
ML defined by all orthogonal bundles which are not (n, n)–stable satisfies
the inequality

codimZ ≥ dimML − (h1(PQ(q)) − g)

= dim O(r)(g − 1) + degPQ(q) − (rkPQ(q) − 1)(g − 1)

= degPQ(q) + (dim O(r) − dim q + 1)(g − 1)

=
(

e

s
− d

r

)

s(r − s− 1) − 3s2 − 2rs+ s

2
(g − 1)

≥ −n(r − s− 1) − 3s2 − 2rs+ s

2
(g − 1).
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In the last line we have used the fact that H ⊂ E contradicts the (n, n)–
stability condition, which translates into the inequality e/s− d/r ≥ −n/s.

We have to show that the expression in the last line is positive. We first
assume that r is odd, so we substitute r = 2n+ 1. The first summand in the
last line is

f1(s) := −n(2n+ 1 − s− 1) = −2n2 + ns ≥ −2n2 + n

since s ≥ 1. The second summand becomes

f2(s) := −
(

3s2

2
− 2ns− s

2

)

(g − 1) = −3
2

(

s−
(

4n+ 1
3

))

s(g − 1).

The graph of the function f2(s) is a parabola, which is zero for s = 0 and s =
(4n+ 1)/3, and has a maximum for s = (4n+ 1)/6. Therefore, the minimum
value in the interval 1 ≤ s ≤ n is attained at s = 1. Consequently,

f2(s) ≥ f2(1) = −3
2

(

1 −
(

4n+ 1
3

))

(g − 1).

Finally,

codimZ ≥ f1(s) + f2(s) ≥ −2n2 + n− (1 − 2n)(g − 1),

and this is positive when g > n+ 1.
We now assume that r is even, so we set r = 2n. The first summand is

then

f1(s) := −n(2n− s− 1) ≥ −n(2n− 2)

since s ≥ 1, and the second summand becomes

f2(s) := −
(

3s2

2
− 2ns+

s

2

)

(g − 1) = −3
2

(

s−
(

4n− 1
3

))

s(g − 1).

The graph of the function f2(s) is a parabola, which is zero for s = 0
and s = (4n− 1)/3, and it is positive in between these values. Note that
(4n− 1)/3 > n, because n > 1. (Recall that we are assuming r > 2. Since
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we are in the even case r = 2n, this means that n > 1.) Hence the minimum
value in the interval 1 ≤ s ≤ n is attained at s = 1. Therefore,

f2(s) ≥ f2(1) = −3
2

(

1 −
(

4n− 1
3

))

(g − 1) = (2n− 2)(g − 1).

Finally,
codimZ ≥ f1(s) + f2(s) ≥ (2n− 2)(g − 1 − n),

and it is positive when g > n+ 1. �

Lemma 3.2. Let (E,ϕ : E ⊗ E −→ L) be an orthogonal bundle with rkE =
r and degE = d. Let P be the corresponding principal GO(r,C)–bundle. Let
H ⊂ E be an isotropic subbundle with degH = e and rkH = s. Let PQ ⊂ P
be the corresponding reduction of structure group to a maximal parabolic
subgroup Q ⊂ GO(r,C). Then

degPQ(q) =
(

e

s
− d

r

)

s(r − s− 1),

dim q =
r2 − r

2
− 2rs− 3s2 − s

2
+ 1.

Proof. Let PQ(gl(r,C)) be the Lie algebra bundle associated to PQ and
the adjoint action of Q on gl(r,C); so, PQ(gl(r,C)) ∼= E∨ ⊗ E. Since q is a
GO(r,C)–submodule of gl(r,C), the vector bundle PQ(q) is a subbundle of
E∨ ⊗ E. The subbundle PQ(q) preserves the filtration

(3.9) H ⊂ H⊥ ⊂ E,

where H⊥ is the orthogonal bundle to H with respect to the orthogonal
structure ϕ. Therefore, we have rkH + rkH⊥ = r.

Let L(Q) be the Levi quotient of the parabolic subgroup Q. Fixing

T ⊂ B ⊂ Q,

where T is a maximal torus of GO(r,C) and B a Borel subgroup of GO(r,C),
the quotient L(Q) of Q can be realized as a subgroup of Q. In fact, the
maximal connected T–invariant reductive subgroup of Q is identified with
L(Q). Fix such a subgroup of Q. This subgroup of Q will also be denoted
by L(Q); it will be called the Levi subgroup.

Let PL(Q) denote the principal L(Q)–bundle obtained by extending the
structure group of PQ using the projection of Q to its Levi quotient L(Q).
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Let PL(Q)(Q) be the principal Q-bundle obtained by extending the struc-
ture group of PL(Q) using the inclusion of the Levi subgroup L(Q) ⊂ Q that
has been fixed. The principal Q-bundle PL(Q)(Q) is topologically isomor-
phic to the principal Q-bundle PQ. Hence the two adjoint bundles PQ(q)
and PL(Q)(Q)(q) are topologically isomorphic. Therefore, to calculate the
degree of PQ(q), we can replace PQ by PL(Q)(Q). In other words, we can
assume that PQ admits a reduction of structure group PL(Q) ⊂ PQ to the
Levi subgroup L(Q) ⊂ Q. Fix a reduction of structure group PL(Q) ⊂ PQ

to L(Q).
The filtration (3.9) splits using the reduction of structure group PL(Q) ⊂

PQ. In other words, we have an isomorphism,

(3.10) E ∼= H ⊕ (H⊥/H) ⊕ (E/H⊥).

Using (3.10), a locally defined section of the adjoint bundle PQ(q) has the
form

(3.11) A =

⎛

⎝

α β γ
0 δ ε
0 0 η

⎞

⎠.

The isomorphism of vector bundles

(3.12) E −→ E∨ ⊗ L

induced by the orthogonal structure ϕ has the property that the composition

H⊥ ↪→ F−→F∨ ⊗M −→ H∨ ⊗M

vanishes. Consequently, we have an induced isomorphism

F/H⊥ ∼= H∨ ⊗M,

which we will denote by 1. Also note that ϕ induces an orthogonal structure
on the vector bundle H⊥/H. Let

ϕ′ : H⊥/H −→ (H⊥/H)∨ ⊗M

be the isomorphism induced by this orthogonal structure.
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Now, using (3.10), the isomorphism in (3.12) has the form

(3.13)

⎛

⎝

0 0 1

0 ϕ′ 0
1 0 0

⎞

⎠,

where ϕ′ is defined above.
A parabolic subalgebra q of go(r,C) is of the form q = q′ ⊕ C, where q′

is a parabolic subalgebra of so(r,C) = Lie(SO(r,C)), and the summand C is
the center of go(r,C). This decomposition is preserved by the adjoint action
of GO(r,C). Therefore,

PQ(q) = PQ(q′) ⊕OX .

The condition that the local section A, defined in (3.11), of P (gl(2n,C)) lies
in PQ(q′) is equivalent to the condition that

ϕ ◦A =

⎛

⎝

0 0 η
0 ϕ ◦ δ ϕ ◦ ε
α β γ

⎞

⎠ : E −→ E∨ ⊗ L

is skew-symmetric, where ϕ is defined in (3.13). Clearly, ϕ ◦A is skew-
symmetric if and only if the following three conditions hold:

(1) η = −αt,

(2) ε = −ϕ′−1 ◦ βt, and

(3) the homomorphisms γ and ϕ′ ◦ δ are skew-symmetric.

Therefore, there is an isomorphism

PQ(q′) ∼= End(H) ⊕
(

(

H⊥

H

)∨
⊗H

)

⊕
((

2
∧

H

)

⊗M∨
)

⊕
(

2
∧

(

H⊥

H

)∨
⊗M

)

(3.14)

defined by

A 
−→ (α, β, γ, ϕ′ ◦ δ).

From this isomorphism it follows immediately that rk(PQ(q)) = dim q.
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Using (3.14) we further have

deg(PQ(q)) = deg(PQ(q′)) =
(

e

s
− d

r

)

s(r − s− 1).

This completes the proof. �

4. Hecke cycles

In this section, we will construct a family of orthogonal bundles using the
constructions introduced in Proposition 3.1 and Proposition 3.3. If the rank
is even, then the starting point will be an orthogonal bundle. If the rank
is odd, then the starting point will be a vector bundle with a symmetric
bilinear form singular over a fixed point x (as in Proposition 3.3).

We will first describe the even case r = 2n.
Let (F, ψ : F ⊗ F −→ L(x)) be a (0, n)–stable orthogonal bundle over X

of rank r = 2n (as in Proposition 3.1). So ψ takes values in the line bundle
L(x), where x ∈ X is the fixed point. We assume that L is such that

(4.1) degF > (2g − 2)r + r + n.

Take a quotient Fx −→ Qx over the given point x ∈ X with dimQx = n.
We obtain the following commutative diagram of coherent sheaves on X:

(4.2) 0 0

0 �� Sx
��

��

Fx
��

��

Qx
�� 0

0 �� E ��

��

F ��

��

Qx
�� 0

F (−x)

��

F (−x)

��

0

��

0

��

All the quotients of Fx with the property that the corresponding kernel Sx

is an isotropic subspace of Fx are parameterized by

Y = Griso,n(Fx) ∼= GO(2n,C)/Q,
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where Q ⊂ Gp(2n,C) is the parabolic subgroup preserving a fixed isotropic
subspace of dimension n of C

2n.
All these Hecke transformations parameterized by Y combine to form

the following commutative diagram of sheaves on X × Y

(4.3) 0 0

0 �� i∗j∗S ��

��

Fx ⊗O{x}×Y ��

��

i∗j∗Q �� 0

0 �� E ��

��

p∗1F ��

��

i∗j∗Q �� 0

p∗1F (−x)

��

p∗1F (−x)

��

0

��

0

��

where i : {x} × Y −→ X × Y and j : {x} × Y −→ Y are the natural inclu-
sion and isomorphism, respectively; here p1 is the natural projection of
X × Y to X. The vector bundles S and Q are respectively the universal
subbundle and quotient bundle of Fx over Y ∼= GO(2n,C)/Q.

If the given orthogonal bundle (F, ψ : F ⊗ F −→ L(x)) is (0, n)–stable,
then all the orthogonal bundles constructed by Hecke transformations from
(F, ψ) are stable (see Lemma 3.1). The resulting classifying morphism

(4.4) Ψ : Y −→ ML

will be called the Hecke morphism, where ML as before is the moduli space
of orthogonal bundles of rank 2n with values in L.

We claim that H1(X,F (−x)) = 0. Indeed, after twisting the middle row
of (4.2) with OX(−x), the associated long exact sequence gives a surjection

H1(E(−x)) −→ H1(F (−x)).

Since (F, ψ : F ⊗ F −→ L(x)) is (0, n)–stable, the orthogonal bundle (E,ϕ :
E ⊗ E −→ L) is stable, therefore the underlying vector bundle E is
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semistable by Proposition 2.2. We have

h1(E(−x)) = h0(KX(x) ⊗ E∨)

(Serre duality). On the other hand, degE = degF − n > (2g − 2)r + r (see
(4.1)). Therefore, KX(x) ⊗ E∨ is a semistable vector bundle of negative
degree, so it cannot have nonzero sections. This proves the claim that H1

(X,F (−x)) = 0.
Applying p2∗ to (4.3), where p2 is the natural projection of X × Y to Y ,

we obtain the following commutative diagram of sheaves on Y :

(4.5) 0 0

0 �� S ��

��

Fx ⊗OY
��

��

Q �� 0

0 �� W = p2∗E ��

��

H0(F ) ⊗OY
��

��

Q �� 0

H0(F (−x)) ⊗OY

��

H0(F (−x)) ⊗OY

��

0

��

0

��

Now assume that r = 2n+ 1.
Let F −→ X be a vector bundle of rank r = 2n+ 1 with a symmetric

bilinear form

ψ : F ⊗ F −→ L(x)

which induces a short exact sequence as in (3.4) (so (F, ψ) is as in Proposi-
tion 3.3). We assume that (F, ψ) is (0, n)–stable, and also assume that (4.1)
holds.

Let Sx ⊂ Fx/lx be an isotropic subspace of dimension n. The isotropic
subspace of dimension n are parameterized by

Y = Griso,n(Fx/lx) ∼= GO(2n,C)/Q.
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This subspace Sx induces a commutative diagram

(4.6) 0 0

0 ��Sx
��

��

Fx/lx ��

��

Qx
�� 0

0 ��E ��

��

F ��

��

Qx
�� 0

F ′

��

F ′

��

0

��

0

��

Note that this diagram is different from (4.2), because in the top row we
have Fx/lx instead of Fx; in the bottom row, instead of F (−x), we have
a new vector bundle F ′. Arguing as in the even case, we finally obtain a
commutative diagram on Y , with S and Q respectively being the universal
isotropic subbundle and quotient of Fx/lx

(4.7) 0 0

0 �� S ��

��

Fx/lx ⊗OY
��

��

Q �� 0

0 �� W = p2∗E ��

��

H0(F ) ⊗OY
��

��

Q �� 0

H0(F ′) ⊗OY

��

H0(F ′) ⊗OY

��

0

��

0

��

Proposition 4.1. Let Q ⊂ GO(2n,C) be the maximal parabolic subgroup
preserving a fixed isotropic subbundle V ⊂ C

2n of dimension n. Then the
Picard group of Y = GO(2n,C)/Q is Z, the universal vector subbundle

S −→ GO(2n,C)/Q
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is stable, and the determinant of S is −2A, where A is the ample generator
of Pic(Y ).

Proof. Note that

GO(2n,C)/Q = SO(2n,C)/Q′ = Spin(2n,C)/ ˜Q′,

where Q′ = Q
⋂

SO(2n,C), and ˜Q′ is the corresponding maximal parabolic
subgroup in Spin(2n,C). Therefore, ˜Q′ −→ Q′ is a 2-to-1 covering which
restricts to t 
−→ t2 on the center.

The spin group is semisimple and simply connected, hence the Picard
group of Spin(2n,C)/ ˜Q′ is identified with the character group of ˜Q′, which is
equal to the character group of the Levi quotient L( ˜Q′); since ˜Q′ is maximal,
this character group is equal to Z. Therefore, PicY = Z ([6, 7]).

Take another isotropic subspace W ⊂ C
2n such that V +W = C

2n. The
orthogonal form on C

2n identifies W with V ∨. A Levi subgroup L(Q′) of
Q′ is defined by all orthogonal automorphisms of C

2n that preserve the
direct sum decomposition V ⊕W , i.e., automorphisms taking V to V and
W to W .

Since W = V ∨, the Levi subgroup L(Q′) ⊂ Q′ is identified with GL(V ),
sitting inside SO(2n,C) as

(4.8) A 
−→
(

A 0
0 (At)−1

)

using the above decomposition C
2n = V ⊕ V ∨. Consequently, the character

f of L(Q′) = GL(V ) defined by

f(A) 
−→ detA,

where A is as in (4.8), generates the character group of L(Q′).
Since ˜Q′ −→ Q′ is a 2-to-1 covering, restricting to t 
−→ t2 on the center,

the character f corresponds to twice the generator of the character group of
L( ˜Q′). The line bundle over Y defined by the above character f of L(Q′) coin-
cides with the top exterior power of the tautological subbundle S. Therefore,
the first Chern class of the vector bundle S over the complete homogeneous
space Y is equal to twice a generator of the Picard group of Y . It is easy to
see that c1(S) is nonpositive.

Since S is identified with the vector bundle associated to the principal
Q′-bundle over Y for an irreducible representation of the Levi quotient of
Q′, a theorem due to Ramanan and Umemura says that the vector bundle
S is stable (see [17, page 136, Theorem 2.4]). �
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Corollary 4.1. The Hecke morphism Ψ : Y −→ ML in (4.4) induces a
nonzero homomorphism Ψ∗ : PicML −→ PicY .

Proof. Since (F, ψ) is (0, n)–stable, we obtain a family of stable orthogonal
bundles (E,ϕ), and the morphism Ψ is well defined.

In the even case (respectively, odd case), it follows from (4.5) (respec-
tively, (4.7)) that degW = degS, which by Proposition 4.1 is equal to −2.
But if the induced homomorphism Ψ∗ were zero, then we would have had
degW = 0. �

5. Stability of Picard bundle

Let

(5.1) M0
L ⊂ ML

be the locus of stable principal bundles for which the automorphism group
coincides with the center of GO(r,C).

Lemma 5.1. The subset M0
L in (5.1) is Zariski open, and its complement

is of codimension at least two.

Proof. Let Z(GO(r,C)) ⊂ GO(r,C) be the center. Let EGO(r,C) ∈ ML be a
stable principal GO(r,C)-bundle. Assume that the automorphism group
Aut(EGO(r,C)) has an element τ which does not lie in Z(GO(r,C)). The Lie
algebra of Aut(EGO(r,C)) coincides with the global section H0(X,EGO(r,C)

(go(r,C))) of the adjoint vector bundle, and hence it coincides with the
center z(go(r,C)) because EGO(r,C) is stable. Therefore, the quotient Aut
(EGO(r,C))/Z(GO(r,C)) is a finite group. This implies that τ is a semisimple
element.

Since τ is semisimple, it defines a conjugacy class of elements of GO(r,C)
(see the second paragraph of [2, Section 3]). Fix an element τ ∈ GO(r,C) in
the conjugacy class given by τ . Let

Cτ ⊂ GO(r,C)

be the centralizer of τ . The principal GO(r,C)–bundle EGO(r,C) admits a
holomorphic reduction of structure group to Cτ [2, p. 230, Theorem 3.2].
Since the principal GO(r,C)-bundle EGO(r,C) is stable, it does not admit any
reduction of structure group to any Levi subgroup of some proper parabolic
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subgroup of GO(r,C). Hence Cτ is not a Levi subgroup of some proper
parabolic subgroup of GO(r,C).

Up to conjugacy, there are only finitely many semisimple elements

c′1, . . . , c
′
m ∈ GO(r,C)/Z(GO(r,C))

whose centralizer is not a Levi subgroup of some parabolic subgroup of the
semisimple group GO(r,C)/Z(GO(r,C)) (see [9, p. 113]). Fix elements

c1, . . . , cm ∈ GO(r,C)

such that ci projects to c′i.
Let

Cci
⊂ GO(r,C)

be the centralizer of ci. Let M(Cci
) be the moduli space of stable principal

Cci
–bundles over X that maps to ML by extension of structure group of

principal Cci
–bundles to GO(r,C). Note that the complement ML \M0

L is
the image of the union

⋃

i M(Cci
). From the formula for dimension of a

moduli space of principal bundles it follows immediately that

dimM(Cci
) ≤ dimML − 2.

This completes the proof of the lemma. �

The projectivized Picard bundle is a principal PGL(N,C)–bundle PPGL

on M0
L, such that for any point (E,ϕ) ∈ M0

L, the fiber over (E,ϕ) of
the associated projective bundle PPGL(PN−1) is canonically identified with
P(H0(X,E)). Note that N = dimH0(X,E). From the construction of the
moduli space it follows that the projectivized Picard bundle exists.

The moduli space ML has a natural compactification, namely the coarse
moduli space of semistable orthogonal bundles, which known to be a nor-
mal projective variety. The complement ML ⊂ ML has codimension at least
two, and hence we can think of the projectivized Picard bundle as a ratio-
nal principal bundle (their definition is recalled below) on the projective
variety ML.

Recall from [14] that a rational principal bundle on a normal projective
variety M is a principal bundle P on a big open set U ⊂M (i.e., an open
set whose complement has codimension at least two). A rational princi-
pal bundle is said to be stable (respectively, semistable) with respect to a
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polarization OM (1) if for every reduction PQ ⊂ P |V to a maximal parabolic
subgroup Q defined on big open subset V ⊂ U , and for all nontrivial dom-
inant characters of Q which are trivial on the center of G, the inequality
degPQ(χ) < 0 (respectively, degPQ(χ) ≤ 0) holds, where

PQ(χ) = (PQ × Cχ)/Q

is the line bundle over V associated to PQ for the character χ, and the
degree is calculated with respect to the polarization OM (1).

Proposition 5.1. Assume that g(X) > n where n = [r/2]. Fix distinct
points x1, . . . , xm ∈ X. Let Z be a subscheme of ML of codimension at least
two. Then there is a nonempty Zariski open subset V0 ⊂ M0

L ⊂ ML such
that the following two hold:

(1) If (E,ϕ) ∈ V0, is (n, n)–stable.

(2) Take any (E,ϕ) ∈ V0 and choose a point xi. Let (F, ψ) be a general
Hecke transformation of (E,ϕ) with respect to xi. If Ψ : Y −→ ML is
the Hecke morphism, then Ψ−1(Z) is either empty or its codimension
in Y is at least two.

Proof. We will first assume that m = 1, so there is only one point x1 = x.
If m > 1, we take the intersection of the open subsets of M0

L corresponding
to each point xi.

Let M(n,n)
L ⊂ M0

L be the open subset of (n, n)–stable orthogonal bun-
dles. This is dense because of Proposition 3.5.

Let p : Y −→ M(n,n)
L be the fibration whose fiber over any (E,ϕ) is

canonically isomorphic to Griso,n(E∨
x ), i.e., the set of isotropic subspaces

of E∨
x of dimension n. This fibration can easily be constructed because all

the points in M(n,n)
L ⊂ M0

L, by definition, correspond to orthogonal bundles
whose automorphisms are scalars. Therefore, by Proposition 3.2 or Propo-
sition 3.4, each point of Y corresponds to a short exact sequence

(5.2) 0 −→ E −→ F −→ Qx −→ 0,

where F is the corresponding Hecke transform; indeed, if we apply Hom
(·,OX) to (3.3) or (3.7) we obtain this exact sequence).

Let q : T −→ Y be the fibration whose fiber over a point corresponding
to a short exact sequence as in (5.2) is canonically isomorphic to Griso,n

(Fx/lx) if r is odd, or canonically isomorphic to Griso,n(Fx) if r is even.
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Therefore, each point of T corresponds to a diagram

(5.3) 0

Q′
x

��

0 �� E �� F

��

�� Qx
�� 0

E′

��

0

��

For all points in T , the orthogonal bundle (E,ϕ) is (n, n)–stable, hence
(F, ψ) is (0, n)–stable, and then (E′, ϕ′) is stable as an orthogonal bundle.
Therefore, by sending a point corresponding to a diagram in (5.3) to (E′, ϕ′),
we obtain a morphism p′ : T −→ ML. So,

T
q

����
��

��
��

��

p′

����
��
��
��
��
��
��
��

Y
p

��
ML M(n,n)

L

Note that, for each point y ∈ Y, the fiber q−1(y) is identified with a Hecke
cycle Y which is mapped by p′ to ML.

Let Z ′ = p′−1(Z). If q(Z ′) is not dense in Y, take an open subset in the
complement; the image of this open set under p satisfies the condition of the
proposition.

It remains to analyze the case when q(Z ′) is dense in Y. In this case, the
dimension of the generic fiber of q|Z′ is

dimZ ′ − dimY = dimZ + dim p′ − dimY = dimZ + dim p′ − dimM(n,n)
L

− dim p = (dim p− dim p′) + (dimZ − dimML)
≤ dimY − 2.

This completes the proof of the proposition. �
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We have Pic(M0
L) = Pic(ML) = Z (see [1, 5]), so M0

L has a unique
polarization.

We can now state and prove the main theorem. Let PPGL be the above
defined projectivized Picard bundle on the moduli space M0

L of stable
orthogonal bundles

(E,ϕ : E ⊗ E −→ L)

on X. Denote r = rkE = r, and d = degE.

Theorem 5.1. Assume that g(X) > n where n = [r/2]. Also assume that
d > (2g − 2)r + r. Then, the projectivized Picard bundle PPGL over the mod-
uli space M0

L is stable (since the Picard group of M0
L is Z, stability is inde-

pendent of choice of polarization).

Proof. Let

(5.4) PQ ⊂ PPGL

be a reduction of structure group of P , on a big Zariski open set U ⊂ M0
L, to

a maximal parabolic subgroup Q ⊂ PGL(N,C) (recall that by a big Zariski
open subset we mean one whose complement is of codimension at least two).
The parabolic subgroup Q is the image of a unique maximal parabolic sub-
group Q of GL(N,C) by the natural projection GL(N,C) −→ PGL(N,C).
We need to prove that for a nontrivial dominant character χ of Q, the
inequality

(5.5) deg(PQ(χ)) < 0

holds. If A is the unique proper nonzero subspace of C
N preserved by Q, then

any nontrivial dominant character of Q is a positive multiple of the character
defined by the natural action of Q on the line

∧top Hom(CN/A,A).
The strategy of the proof is to use a Hecke morphism Ψ : Y −→ ML

(defined in (4.4)). We denote the restriction to Y 0 := Ψ−1(M0
L) as

Ψ0 : Y 0 −→ M0
L.

Then we calculate the degree using the pullback of PQ to an open subset of
Y 0. For this to work, we need that the Hecke cycle be “general enough” in
the sense that Ψ−1(ML \ U) has codimension at least two. This is to ensure
that the inclusion map Y 0 ↪→ Y induces an isomorphism of Picard groups.
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Fix m distinct points x1, . . . , xm ∈ X with m > deg(E)(1 + 1/ rk(E)).
Set

Z = U c = ML \ U.
(Recall that the Picard bundle is defined on M0

L ⊂ ML, and the reduction
PQ is defined on U ⊂ M0

L.) Fix an orthogonal bundle (E,ϕ) over X cor-
responding to a point in the intersection of U with the open subset of M0

L

given by Proposition 5.1.
The reduction of structure group PQ gives a projective subbundle

PQ(PN ′−1) ⊂ PPGL(PN−1)

over U . The fiber of PPGL(PN−1) over (E,ϕ) is canonically isomorphic to
P(H0(E)), and the fiber of PQ(PN ′−1) defines a subspace V ′ ⊂ H0(E).

Fix a nonzero element

s ∈ V ′ ⊂ H0(X,E),

which we are going to consider as a section of E.
We claim that the above section s of E cannot vanish over more than

deg(E)/ rk(E) points. Indeed, if D is a subset of {x1, . . . , xm}, and s van-
ishes in all points of D, then the section s : OX −→ E factors through
OX(D), and the semistability of E (Proposition 2.2) implies that deg(D) ≤
deg(E)/ rk(E).

Analogously, if EV ′
is the coherent subsheaf of E generated by the sec-

tions V ′ ⊂ H0(X,E), then EV ′
cannot fail to be a subbundle over more than

deg(E) points. Indeed, if D is a subset of {x1, . . . , xm}, and EV ′
is not a

subbundle on all points of D, then the inclusion EV ′ ⊂ E factors through a
subsheaf ˜E ⊂ E with

deg( ˜E) ≥ deg(EV ′
) + degD.

Since EV ′
is generated by global sections, it follows that deg(EV ′

) ≥ 0. On
the other hand, the stability condition of E implies that

deg ˜E ≤ deg(E) rk( ˜E)/ rk(E) ≤ deg(E),

therefore deg(D) ≤ deg(E).
Consequently, we can choose a point x ∈ {x1, . . . , xm} such that s(x) �= 0,

the sheaf EV ′
generated by V ′ is locally free at x, and the induced homo-

morphism

(5.6) EV ′
x −→ Ex

is injective.
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If r = 2n, using Proposition 5.1, we can choose an isotropic subspace
Sx ⊂ Ex of dimension n such that

(5.7) s(x) /∈ Sx,

and the subscheme Ψ−1(Z) ⊂ Y is either empty or it is of codimension at
least two in Y = Griso,n(Fx), where Ψ : Y −→ ML is the Hecke morphism
associated to (F, ψ) and the point x ∈ X (see (4.4)).

If r = 2n+ 1, using again Proposition 5.1, we choose an isotropic sub-
space Wx ⊂ Ex of dimension n such that s(x) /∈W⊥

x .
This bound on the codimension of Ψ−1(Z) implies that Pic(Y ) = Pic(YU),

where YU := Y \ Ψ−1(Z) is the complement. Now using Corollary 4.1 it
follows that the homomorphism

Ψ∗
U : Pic(ML) −→ Pic(YU ) = Pic(Y )

is nonzero. Therefore, there is a positive rational number k such that

(5.8) deg(PQ(χ)) = k · deg(Ψ∗
UP

Q(χ)).

Let E be the family of Hecke transformations parameterized by Y (see
(4.3)). The pulled back projective bundle Ψ∗PPGL on Y lifts to the principal
GL(N,C)–bundle PGL over Y associated to

W = p2∗E ,

where p2 : X × Y −→ Y is the natural projection. This means that there is
an isomorphism

(5.9) P(W) ∼= PPGL(PN−1).

Let ΨU : YU −→ U be the restriction of Ψ to YU = Ψ−1(U). We claim
that the pullback Ψ∗

UP
Q of the reduction in (5.4) is given by a subbundle of

W. In other words, there is a subbundle

(5.10) H ↪→ W

on YU such that the subbundle P(H) ⊂ P(W) is identified with the subbundle
PQ(PN ′−1) ⊂ PQ(PN−1) by the isomorphism in (5.9).

To prove the above claim, note that, since Ψ∗
UP

Q is a reduction of struc-
ture group of Ψ∗

UP
PGL, it is given by a section of Ψ∗

UP
PGL(PGL(N,C)/Q).
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But
Ψ∗

UP
PGL(PGL(N,C)/Q) = Ψ∗

UP
GL(GL(N,C)/Q).

Hence such a section gives a reduction of structure group to Q ⊂ GL(N,C)
of the principal GL(N,C)–bundle associated to W. Since this is equivalent
to giving a subbundle H ↪→ W, the above claim, that the pullback Ψ∗

UP
Q

of the reduction in (5.4) is given by a subbundle of W, is proved.
If χ is a dominant character of Q, then it is easy to check that

(5.11) deg(Ψ∗
UP

Q(χ)) = k′(rk(W) deg(H) − deg(W) rk(H))

for some positive number k′. Indeed, this follows from the earlier remark that
any nontrivial dominant character of Q is a positive multiple of the character
defined by the natural action of Q on the line

∧top Hom(CN/A,A).
In view of (5.11), (5.8) and (5.5), to prove the theorem it is enough to

check that H does not contradict the stability of W, meaning

(5.12) rk(W) deg(H) − deg(W) rk(H) < 0.

If r is even, note that since Sx is the image of F (−x)x in Ex in diagram
(4.2), it follows that s /∈ H0(F (−x)) (see (5.7)).

If r is odd, then the vector space Sx is the image of F ′
x in Ex in diagram

(4.6), and it follows that s /∈ H0(F ′).
In both cases, using this and (4.5) (respectively, (4.7)) for the even

(respectively, odd) case we conclude that the composition

(5.13) H ↪→ W −→ S

has nonzero image.
To unify the notation for the even and odd cases, denote

F0 := F (−x)

if r = 2n, and
F0 := F ′

if r = 2n+ 1. Consider the commutative diagram

(5.14) 0 �� H0(F0) ⊗OYU
�� W �� S �� 0

0 �� H′ ����

��

H ����

��

H′′ ����

��

0



Hecke transformation for orthogonal bundles 885

We have seen that H′′ �= 0. The vector bundle S is stable of degree −2
(Proposition 4.1). We have degH′′ ≤ −1 because H′′ is a subsheaf of a stable
vector bundle of negative degree, and also degH′ ≤ 0 as it is a subsheaf of
a semistable vector bundle of degree zero; see (5.14). If degH′′ ≤ −2, then
degH ≤ −2, and hence (5.12) holds.

Therefore, for the rest of the proof we consider the case degH′′ = −1.
Assume that (5.12) does not hold, in other words, assume that

(5.15) rkH ≥ h0(E)
2

.

We have rkH′′ < rkS, because if we had equality we should have

degH′′ ≤ degS = −2,

but we are now in the case degH′′ = −1. Hence the stability condition of S
implies that

(5.16) rkH′′ <
n

2
.

By our choice of (E,ϕ) ∈ M0
L, the coherent sheaf H is locally free,

and the induced homomorphism H(E,ϕ) −→ W(E,ϕ) is injective. Let V ′ =
H(E,ϕ) ⊂ W(E,ϕ) = H0(E). By Lemma 5.2, Lemma 2.2 and (5.15),

(5.17) rkEV ′ ≥ rkE
dimV ′

h0(E)
= r

rkH
h0(E)

≥ r

2
.

By our choice of x ∈ X, the induced homomorphism EV ′
x −→ Ex is injective

(see (5.6)). Restricting the commutative diagram (5.14) to the fiber over
(E,ϕ), we obtain the following commutative diagram

Ex

p

�� ����
��

��
��

�

H0(F0) �� H0(E) ��

e
����������

Sx
�� 0

V ′ ��

��

H′′
(E,ϕ)

��

�� 0

where e is the evaluation morphism and the projection p fits in an exact
sequence

0 −→ Nx −→ Ex
p−→ Sx −→ 0.
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It follows that

H′′
(E,ϕ) = Im(V ′ → Sx) = Im(V ′ ↪→ H0(E) → Ex → Sx)

= Im(EV ′
x ↪→ Ex → Sx) ∼= EV ′

x

EV ′
x ∩Nx

.

It is easy to check that

dim
EV ′

x

EV ′
x ∩Nx

≤ dimSx,

with equality holding if Nx is a general subspace of Ex.
On the other hand, dimSx = n, and therefore, for a general Nx ⊂ Ex, we

have rkH′′ = n, which contradicts (5.16). This implies that the assumption
in (5.15) is false, meaning (5.12) holds, and the theorem if proved. �

Lemma 5.2. Let E be a semistable vector bundle on X of degree d and
rank r. If d > (2g − 2)r + r, then for all subspaces V ′ ⊂ H0(E),

r dimV ′ − rkEV ′
h0(E) ≤ 0,

where EV ′ ⊂ E is the subsheaf generated by V ′ ⊂ H0(E).

Proof. Let E′ be a semistable vector bundle of degree d′ and rank r′. If
d′ > (2g − 2)r′, then

(5.18) h0(E′) = d′ − r′(g − 1),

because h1(E′) = h0(KX ⊗ E′∨) (Serre duality), and this is zero since KX ⊗
E′∨ is a semistable vector bundle of negative degree. On the other hand, if
0 ≤ d′ ≤ (2g − 2)r′, then by Clifford’s theorem (see, for instance, [8, Theo-
rem 2.1]),

(5.19) h0(E′) ≤ d′

2
+ r′.

Therefore, if h0(E′) > (g − 1)r′ + r′, then we must be in the first case, and
hence

(5.20) d′ = h0(E′) + r′(g − 1) > 2r′(g − 1) + r′

if h0(E′) > (g − 1)r′ + r′.



Hecke transformation for orthogonal bundles 887

Let Ei, 1 ≤ i ≤ �, be the successive quotients of the Harder–Narasimhan
filtration of EV ′

. We have

dimV ′ ≤ h0(EV ′
) ≤

∑

h0(Ei),

for all i. Denote ri = rkEi. If h0(Ei) ≤ (g − 1)ri + ri, then applying (5.18)
to E, we have

r · h0(Ei) − ri · h0(E) < r(ri(g − 1) + ri) − ri(r(g − 1) + r) ≤ 0.

On the other hand, if h0(Ei) > (g − 1)ri + ri, then applying (5.20) and
(5.18) to Ei and E we have

r · h0(Ei) − ri · h0(E) = r(di − ri(g − 1)) − ri(d− r(g − 1)) ≤ 0,

by the stability condition of E. Therefore

r dimV ′ − rkEV i

h0(E) ≤
∑

(

rh0(Ei) − rih
0(E)

)

≤ 0.

This completes the proof of the lemma. �

For a fixed holomorphic line bundle ξ on X, sending any orthogonal
bundle ϕ : E ⊗ E −→ L to the orthogonal bundle (E ⊗ ξ) ⊗ (E ⊗ ξ) −→
L⊗ ξ⊗2 given by ϕ we obtain an isomorphism between the corresponding
moduli spaces. The pull-back of the projective Picard bundle under this iso-
morphism is the ξ-twisted projective Picard bundle, namely the projective
bundle whose fiber over a point corresponding to (E,ϕ) is canonically iso-
morphic to P(H0(E ⊗ ξ)). Using this isomorphism, we have the following
corollary.

Corollary 5.1. Assume that g(X) > n where n = [r/2]. Let ξ be a holo-
morphic line bundle of degree m. Assume also d+ rm > (2g− 2)r + r. Then,
the ξ-twisted projectivized Picard bundle PPGL over the moduli space M0

L is
stable with respect to the unique polarization of M0

L.

In [4], we introduced Hecke transform for symplectic bundles. In the
symplectic case we started with a (0, n)–stable symplectic bundle, performed
a Hecke transform with an isotropic subspace of dimension n, and obtained
a stable symplectic bundle.
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In the odd orthogonal case, i.e., when the group is GO(2n+ 1,C), we
cannot choose a subspace of half dimension. To obtain an orthogonal bundle
in this case, we have to start with a singular bilinear form (F, F ⊗ F −→M)
(Proposition 3.3), which does not come from a principal bundle. The naive
approach would be to start with a (0, n)–stable bundle as in Proposition 3.3
to obtain an orthogonal bundle. The difficulty is that not much is known
about the properties of the moduli space of bilinear forms with singularities
like this (neither smoothness nor dimension is known), and in particular, we
do not know if the set of (0, n)–stable bundles is dense.

The strategy is then to perform two Hecke transforms instead of just one:
we start with an (n, n)–stable orthogonal bundle. A Hecke transform with
respect to a subspace of dimension n will produce a singular (in the odd case)
bilinear bundle (F, F ⊗ F −→M), which is (0, n)-stable (Proposition 3.4),
and then we perform a second Hecke transform (see Proposition 3.3) to
get a stable orthogonal bundle. Therefore, we have to prove that the set of
(n, n)–stable orthogonal bundles is nonempty (Proposition 3.5).

Another difficulty in the orthogonal case is that the determinant of the
universal vector subbundle S on the Grassmannian parameterizing rank n
isotropic subspaces in C

2n (endowed with the standard orthogonal form) is
not a primitive element of the Picard group (see Proposition 4.1). Because
of this, the proof of Theorem 5.1 is longer than in the symplectic case,
where the determinant of the analogous universal bundle is a generator of
the Picard group.
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