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Q-curvature flow on Sn

Pak Tung Ho

In this paper, we study the Q-curvature flow on the standard sphere
Sn and prove that the flow converges exponentially for all initial
data.

1. Introduction

The Q-curvature is a notion introduced by Branson initially defined on
manifolds of dimension four, and is a direct generalization of the Gaus-
sian curvature on compact surface. If Σ is a compact surface with Rieman-
nian metric g, under the conformal change of metric g̃ = e2wg, we have

Δg̃ = e−2wΔg and − Δgw + Kg = Kg̃e2w,

where Δg and Kg (respectively Δg̃ and Kg̃) are the Laplace–Beltrami oper-
ator and the Gaussian curvature of the metric g (respectively of g̃). This
implies the invariance of the integral

∫
Σ

Kg̃ dVg̃ =
∫

Σ
Kge−2w dVg̃ =

∫
Σ

Kg dVg

under conformal changes of the metric. In fact, the Gauss–Bonnet Theorem
asserts that

∫
Σ

Kg dVg = 2πχ(Σ),

where χ(Σ) is the Euler characteristic of Σ.
Now, consider a compact manifold M of dimension four with Riemannian

metric g. The Q-curvature is defined by

Qg = −1
6
(ΔgRg − R2

g + 3|Ricg|2g),

where Rg and Ricg denote the scalar curvature and the Ricci tensor of
g. Moreover, the Paneitz operator associated with the metric g acts on a
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smooth function f on M via

Pgf = Δ2
gf + d∗g

[(
2
3
Rgg − 2Ricg

)
df

]
.

The Q-curvature plays an important role in conformal geometry, see [4, 8–
10]. Indeed, it enjoys similar properties as the Gaussian curvature in dimen-
sion two. Under a conformal change of metric g̃ = e2wg, the Q-curvature of
g̃ can be written as

Qg̃ = e−4w(Pgw + Qg),

and the Paneitz operator associated with the metric g̃ is related to the
Paneitz operator associated with the metric g by

Pg̃f = e−4wPgf.

Moreover, we have the following Gauss–Bonnet–Chern theorem:

∫
M

(
Qg +

1
4
|W |2

)
dVg = 8π2χ(M).

Here W denotes the Weyl tensor of M .
Fefferman and Graham [16, 17] generalized the concept of Q-curvature

to higher dimensional manifolds. They showed that on an even-dimensional
Riemannian manifold (Mn, g) there exists a self-adjoint operator Pg with
leading term (−Δg)n/2 such that the Q-curvature Qg transforms accord-
ing to Qg̃ = e−nw(Pgw + Qg) under the conformal change of metric g̃ =
e2wg.

As in the two-dimensional case, it is natural to ask whether on an even-
dimensional Riemannian manifold (Mn, g) there exists a conformal metric
of constant Q-curvature. This problem has been studied in [5, 10, 12, 20].
More generally, one can ask the following prescribing Q-curvature problem:
Given a smooth function f on Mn, find a conformal metric g̃ = e2wg for
which Qg̃ = f . This problem has been studied in [1, 2, 6, 7, 13–15, 19, 21].
The flow technique has been introduced to tackle these problems. In [5],
Brendle studied the Q-curvature flow on S4:

∂

∂t
g(t) = −(Qg(t) − Qg(t))g(t),(1.1)
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where Qg(t) denotes the mean value of Qg(t). He proved that if the initial
metric is conformally equivalent to the standard metric on S4, then the
Q-curvature flow converges exponentially to a metric having constant sec-
tional curvature. In [6], Brendle obtained related results. On the even-
dimensional Riemannian manifold (Mn, g), he considered the following:

∂

∂t
g(t) = −

(
Qg(t) −

Qg(t)f

f

)
g(t),

where Qg(t) and f are the mean values of Qg(t) and f , respectively. He proved
the existence of a solution of the flow for all time and convergence to a metric
g∞ with Qg∞/f = Qg∞/f , provided that the operator Pg associated to the
initial metric g is weakly positive with kernel consisting of the constant func-
tions, and

∫
M Qg dVg < (n − 1)! ωn, where ωn is the volume of the standard

sphere Sn. See also [2, 19].
Following the arguments of Brendle in [5], we prove the following:

Theorem 1.1. Suppose that the initial metric is conformally equivalent to
the standard metric on Sn. Then the Q-curvature flow (1.1) exists for all
time, and converges exponentially to a limiting metric. The limiting metric
has constant sectional curvature and is obtained from the standard metric
by pull-back along a conformal diffeomorphism.

We remark that Theorem 1.1 is not covered in [6] since
∫
M Qg dVg =

(n − 1)!ωn for the metric g being conformally equivalent to the standard
metric on Sn. The organization of the paper is as follows. In Section 2, we
give some properties of the Q-curvature flow. In Section 3, we modify the
Q-curvature flow by conformal transformations. This allows us to prove that
the solution of the flow is bounded in W

n

2
,2 on every finite time interval.

In Section 4, we prove that the solution of the flow is bounded in Wn,2

on every finite time interval, which implies that the flow exists for all time.
In Section 5, we prove that the solution of the flow is uniformly bounded in
Wn,2. We show that the flow converges exponentially to a metric of constant
Q-curvature as t → ∞.

Notation. All norms we use are taken with respect to the standard metric g0

of Sn. For example, ‖f‖p
Lp =

∫
Sn |f |pdVg0 . The letter C represents a generic

constant which may vary from line to line.
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2. Some properties of the Q-curvature flow

From now on, we denote g0 the standard metric on the sphere Sn. The
explicit formula for Pg0 on Sn is given by (see [3])

(2.1) Pg0 =
(n−2)/2∏

k=0

(−Δg0 + k(n − k − 1)),

where Δg0 is the Laplace–Beltrami operator of g0. The Q-curvature of g0 is
equal to

Qg0 = (n − 1)!.

Let g be a metric on Sn which is conformally equivalent to the standard
metric g0. If we write g = enwg0, then

(2.2) Pg = e−nwPg0 ,

and the Q-curvature of g is given by

(2.3) Qg = e−nw (Qg0 + Pg0w) = e−nw ((n − 1)! + Pg0w) .

It follows that the quantity
∫
Sn Qg dVg is conformally invariant. The

Q-curvature flow is defined as

(2.4)
∂

∂t
g(t) = −(Qg(t) − Qg(t))g(t).

Here Qg(t) denotes the mean values of Qg(t), that is

Qg(t) =

∫
Sn Qg(t) dVg(t)∫

Sn dVg(t)
.(2.5)

Suppose that g(t) is a solution of the Q-curvature flow, and that the initial
metric is conformally equivalent to standard metric g0 on Sn. Then the
metric g(t) can be written as g(t) = e2w(t)g0, where w(t) is a real-valued
function on Sn. It follows that the equation of the Q-curvature flow (2.4)
can be written as

(2.6)
∂

∂t
w(t) = −1

2
(Qg(t) − Qg(t)).
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First, we have the following:

Proposition 2.1. The volume of Sn does not change along the Q-curvature
flow.

Proof. We have

d

dt

(∫
Sn

dVg(t)

)
=

d

dt

(∫
Sn

enw(t)dVg0

)
=

∫
Sn

nenw(t) ∂

∂t
w(t) dVg0

= −n

2

∫
Sn

(Qg(t) − Qg(t)) dVg(t) = 0,

where we have used (2.5) and (2.6). �

We claim that Qg(t) is independent of t. To see this, we note that∫
Sn Qg(t) dVg(t) is conformally invariant, which implies that

∫
Sn Qg(t) dVg(t) =∫

Sn Qg0 dVg0 = (n − 1)!
∫
Sn dVg0 . On the other hand, the volume does not

change along the Q-curvature flow by Proposition 2.1. Hence, if we let

q =
(n − 1)!

∫
Sn dVg0∫

Sn dVg(0)
,

then

(2.7) Qg(t) =

∫
Sn Qg(t) dVg(t)∫

Sn dVg(t)
=

∫
Sn Qg0 dVg0∫

Sn dVg(t)
=

(n − 1)!
∫
Sn dVg0∫

Sn dVg(0)
= q.

In particular, the equation of the Q-curvature flow (2.6) can be written as

(2.8)
∂

∂t
w(t) = −1

2
(Qg(t) − q).

The Q-curvature can be viewed as a gradient flow to a certain functional.
This functional is given by

Eg0 [w] =
n

2

∫
Sn

wPg0w dVg0 + n!
∫

Sn

w dVg0

− (n − 1)!
∫

Sn

dVg0 log
(∫

Sn enwdVg0∫
Sn dVg0

)
.(2.9)
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The functional Eg0 is non-increasing along the Q-curvature flow:

Proposition 2.2. We have

d

dt
Eg0 [w(t)] = −n

2

∫
Sn

(Qg(t) − q)2 dVg(t).

In particular, we have

Eg0 [w(t)] ≤ Eg0 [w(0)] for all t ≥ 0.

Proof. By (2.3), (2.7)–(2.9), we obtain

d

dt
Eg0 [w(t)] = n

∫
Sn

∂w

∂t
(Pg0w + (n − 1)!) dVg0

− (n − 1)!
(∫

Sn

dVg0

)
·
(

n
∫
Sn enw ∂w

∂t dVg0∫
Sn enw dVg0

)

= −n

2

∫
Sn

(Qg(t) − q)Qg(t) dVg(t)

− (n − 1)!
∫
Sn dVg0∫

Sn dVg(t)

(
−n

2

∫
Sn

(Qg(t) − q) dVg(t)

)

= −n

2

(∫
Sn

(Qg(t) − q)Qg(t) dVg(t) − q

∫
Sn

(Qg(t) − q) dVg(t)

)

= −n

2

∫
Sn

(Qg(t) − q)2 dVg(t).

Therefore, the functional Eg0 is non-increasing along the flow. From this the
assertion follows. �

We have the following proposition which is essentially due to Wei and
Xu [21]:

Proposition 2.3. We can find positive real numbers η and C such that:
for every function w satisfying

∫
Sn enwx dVg0 = 0, we have

Eg0 [w] ≥ η

∫
Sn

(
(−Δg0)

n

4 w
)2

dVg0 − C.
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Proof. According to Theorem 2.6 in [21], there exists 0 < a < 1 such that

log
(∫

Sn enw dVg0∫
Sn dVg0

)

≤ n

2(n − 1)!

[
a

(∫
Sn wPg0w dVg0∫

Sn dVg0

)
+ 2(n − 1)!

(∫
Sn w dVg0∫
Sn dVg0

)]
,

for every function w satisfying
∫
Sn enwx dVg0 = 0. Proposition 2.3 follows

from the inequality
∫
Sn wPg0w dVg0 ≥ C

∫
Sn

(
(−Δg0)

n

4 w
)2

dVg0 − C. �

3. Estimates in W
n
2

,2

Proposition 3.1. Let w be a smooth function on Sn. Then there exists a
unique vector p ∈ Bn such that

∫
Sn

enw

(
p +

1 − |p|2
1 + 2〈p, x〉 + |p|2

(
x + p

))
dVg0 = 0.

The proof of Proposition 3.1 can be avoided, since it is identical to
the proof of Proposition 6 in [5]. Therefore, if g(t) = e2w(t)g0 is a solution
of the Q-curvature flow where w(t) is a real-valued function on Sn, then
it follows from Proposition 3.1 that for every t ≥ 0, there exists a unique
vector p(t) ∈ Bn such that

(3.1)
∫

Sn

enw(t)

(
p(t) +

1 − |p(t)|2
1 + 2〈p(t), x〉 + |p(t)|2

(
x + p(t)

))
dVg0 = 0.

We define a diffeomorphism ϕ(t) : Sn → Sn by

(3.2) ϕ(x, t) = p(t) +
1 − |p(t)|2

1 + 2〈p(t), x〉 + |p(t)|2 (x + p(t)) .

For every vector ξ tangent to Sn at x, we have

ϕ(t)∗ξ =
1 − |p(t)|2

1 + 2〈p(t), x〉 + |p(t)|2
(

ξ − 2
〈p(t), ξ〉

1 + 2〈p(t), x〉 + |p(t)|2
(
x + p(t)

))
.

Since 〈x, ξ〉 = 0 and |x| = 1, it follows that

|ϕ(t)∗ξ|2 =
(

1 − |p(t)|2
1 + 2〈p(t), x〉 + |p(t)|2

)2

|ξ|2.
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Therefore, ϕ(t) is a conformal mapping. Moreover, the pull-back of the stan-
dard metric g0 is given by

ϕ(t)∗g0 =
(

1 − |p(t)|2
1 + 2〈p(t), x〉 + |p(t)|2

)2

g0.

If we consider the metric g̃(t) = e2w̃(t)g0, where

(3.3) w̃(ϕ(x, t), t) + log
(

1 − |p(t)|2
1 + 2〈p(t), x〉 + |p(t)|2

)
= w(x, t),

then the metric g̃(t) is related to the metric g(t) by ϕ(t)∗g̃(t) = g(t).
We will show that the function w̃(t) is uniformly bounded in W

n

2
,2.

Proposition 3.2. There exists a constant C depending only on the initial
data such that ‖w̃(t)‖W

n
2 ,2 ≤ C for all t ≥ 0.

Proof. By (3.1) and (3.2), we have

(3.4)
∫

Sn

enw(t)ϕ(x, t) dVg0 = 0,

which implies that

(3.5)
∫

Sn

enw̃(t)x dVg0 = 0.

By Proposition 2.3, we obtain

Eg0 [w̃(t)] ≥ η

∫
Sn

(
(−Δg0)

n

4 w̃(t)
)2

dVg0 − C

for some constant η > 0. Moreover, the functional Eg0 is invariant under
conformal transformations (see [10], part (a) of the proof of Theorem 4.1).
Therefore, by Proposition 2.2, we have

Eg0 [w̃(t)] = Eg0 [w(t)] ≤ Eg0 [w(0)].

From this it follows that
∫

Sn

(
(−Δg0)

n

4 w̃(t)
)2

dVg0 ≤ C,
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which implies that

‖w̃(t) − w̃(t)‖W
n
2 ,2 ≤ C.

Here C is a constant depending only on the initial data. Using Trudinger’s
inequality, we obtain

∫
Sn

en(w̃(t)−w̃(t)) dVg0 ≤ C.

Since
∫

Sn

enw̃(t) dVg0 =
∫

Sn

enw(t) dVg0 =
∫

Sn

dVg(t) =
∫

Sn

dVg(0) =
∫

Sn

enw(0)dVg0

by Proposition 2.1, we conclude that

w̃(t) ≥ −C

for some constant C depending only on the initial data. Putting all these
together, we obtain

‖w̃(t)‖W
n
2 ,2 ≤ C,

as required. �

Proposition 3.3. There exists a constant C such that
∣∣∣∣ d

dt
log(1 − |p(t)|2)

∣∣∣∣ ≤
∣∣∣∣
∫

Sn

enw̃(t)(Qg̃(t) − q)x dVg0

∣∣∣∣ for all t ≥ 0.

Proof. By (3.4), we have

d

dt

(∫
Sn

enw(t)ϕ(x, t) dVg0

)
= 0.

Hence, by (2.8), we obtain
∫

Sn

enw(t) ∂

∂t
ϕ(x, t) dVg0 = −n

∫
Sn

enw(t)ϕ(x, t)
∂w

∂t
dVg0

=
n

2

∫
Sn

enw(t)(Qg(t) − q)ϕ(x, t) dVg0 .
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On the other hand, by (3.2) and (3.4), we have

∫
Sn

enw(t) ∂

∂t
ϕ(x, t) dVg0

=
∫

Sn

enw(t) 2
1 − |p(t)|2

[
p′(t) − 〈p′(t), ϕ(x, t)〉ϕ(x, t)

]
dVg0

− 2
1 − |p(t)|2

[〈
p(t),

∫
Sn

enw(t)ϕ(x, t) dVg0

〉
p′(t)

−
〈

p′(t),
∫

Sn

enw(t)ϕ(x, t) dVg0

〉
p(t)

]

=
∫

Sn

enw(t) 2
1 − |p(t)|2

[
p′(t) − 〈p′(t), ϕ(x, t)〉ϕ(x, t)

]
dVg0 .

Putting these facts together, we obtain

∫
Sn

enw(t) 2
1 − |p(t)|2

[
p′(t) − 〈p′(t), ϕ(x, t)〉ϕ(x, t)

]
dVg0

=
n

2

∫
Sn

enw(t)(Qg(t) − q)ϕ(x, t) dVg0 .

This implies

∫
Sn

enw(t) 2
1 − |p(t)|2

[|p′(t)|2 − 〈p′(t), ϕ(x, t)〉2] dVg0

=
n

2

∫
Sn

enw(t)(Qg(t) − q)〈p′(t), ϕ(x, t)〉 dVg0 .

From this it follows that

∫
Sn

enw̃(t) 2
1 − |p(t)|2

[|p′(t)|2 − 〈p′(t), x〉2] dVg0

=
n

2

∫
Sn

enw̃(t)(Qg̃(t) − q)〈p′(t), x〉 dVg0 .

(3.6)

Therefore if we define

α =
∫

Sn

√
1 − x2

n+1dVg0 =
∫

Sn

√
x2

1 + x2
2 + · · · + x2

n dVg0 ,
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then we have

α2|p′(t)|2 =
(∫

Sn

√
|p′(t)|2 − 〈p′(t), x〉2 dVg0

)2

≤
(∫

Sn

enw̃(t)
(|p′(t)|2 − 〈p′(t), x〉2) dVg0

)(∫
Sn

e−nw̃(t)dVg0

)

= (1 − |p(t)|2)
(

n

4

∫
Sn

enw̃(t)(Qg̃(t) − q)〈p′(t), x〉 dVg0

)

×
(∫

Sn

e−nw̃(t) dVg0

)

≤ n

4
(1 − |p(t)|2)|p′(t)|

∣∣∣∣
∫

Sn

enw̃(t)(Qg̃(t) − q)x dVg0

∣∣∣∣
×

(∫
Sn

e−nw̃(t) dVg0

)
.

Here we have used (3.6). Using Proposition 3.2 and Trudinger’s inequality,
we obtain

∫
Sn e−nw̃(t)dVg0 ≤ C. Thus, we conclude that

|p′(t)| ≤ C(1 − |p(t)|2)
∣∣∣∣
∫

Sn

enw̃(t)(Qg̃(t) − q)x dVg0

∣∣∣∣ .

From this the assertion follows. �

Proposition 3.4. For every real number T ≥ 0, there exists a constant
C(T ) such that

1
1 − |p(t)|2 ≤ C(T ) for all 0 ≤ t ≤ T .

Proof. Integration by parts gives
∫

Sn

enw̃(t)(Qg̃(t) − q)x dVg0 =
∫

Sn

(Pg0w̃(t) + (n − 1)! − qenw̃(t))x dVg0

=
∫

Sn

(Pg0w̃(t)) x dVg0

=
∫

Sn

w̃(t)Pg0x dVg0

=
∫

Sn

w̃(t)
(n−2)/2∏

k=0

(−Δg0 + k(n − k − 1))x dVg0

=
∫

Sn

w̃(t)
(n−2)/2∏

k=0

(n + k(n − k − 1))x dVg0
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Here we have used (2.1), (2.3), (3.5) and the fact that the coordinate func-
tions are eigenfunctions of Δg0 . This implies

∣∣∫
Sn enw̃(t)(Qg̃(t) − q)x dVg0

∣∣ ≤ C

by Proposition 3.2. Using Proposition 3.3, we obtain
∣∣ d
dt log(1− |p(t)|2)∣∣ ≤ C.

From this the assertion follows. �

Corollary 3.1. Given any T ≥ 0, there exists a constant C(T ) such that

‖w(t)‖W
n
2 ,2 ≤ C(T )

for all 0 ≤ t ≤ T .

Proof. This follows from Propositions 3.2 and 3.4. �

4. Global existence

Following the proof in Section 4 of [6], we have the following:

Proposition 4.1. Given any T ≥ 0, there exists a constant C(T ) such that
‖w(t)‖W n,2 ≤ C(T ) for all 0 ≤ t ≤ T .

Proof. We define

v(t) = −1
2
e

n

2
w(t)(Qg(t) − q)

= e
n

2
w(t) ∂

∂t
w(t)

= −1
2
e−

n

2
w(t)Pg0w(t) − 1

2
e−

n

2
w(t)Qg0 +

1
2
qe

n

2
w(t).

Here we have used (2.3) and (2.8). This implies that

∂

∂t
w(t) = e−

n

2
w(t)v(t),

Pg0w(t) = −2e
n

2
w(t)v(t) − Qg0 + qenw(t).

From this we deduce that

d

dt

(∫
Sn

(Pg0w(t))2 dVg0

)

=
∫

Sn

(2Pg0w(t))Pg0

(
∂

∂t
w(t)

)
dVg0
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= 2
∫

Sn

(
−2e

n

2
w(t)v(t) − Qg0 + qenw(t)

)
Pg0

(
e−

n

2
w(t)v(t)

)
dVg0

= −4
∫

Sn

e
n

2
w(t)v(t)Pg0

(
e−

n

2
w(t)v(t)

)
dVg0

− 2
∫

Sn

Qg0Pg0

(
e−

n

2
w(t)v(t)

)
dVg0

+ 2q

∫
Sn

enw(t)Pg0

(
e−

n

2
w(t)v(t)

)
dVg0 .

This implies

d

dt

(∫
Sn

(Pg0w(t))2 dVg0

)

= −4
∫

Sn

(−Δg0)
n

4

(
e

n

2
w(t)v(t)

)
(−Δg0)

n

4

(
e−

n

2
w(t)v(t)

)
dVg0

− 2
∫

Sn

Qg0Pg0

(
e−

n

2
w(t)v(t)

)
dVg0

+ 2q

∫
Sn

(−Δg0)
n

4 (enw(t))(−Δg0)
n

4

(
e−

n

2
w(t)v(t)

)
dVg0

+ lower order terms.

Here, we adopt the convention that

(−Δg0)
m+ 1

2 = ∇g0(−Δg0)
m

for all integer m. The right-hand side involves derivatives of v and w of order
at most n

2 . Moreover, the total number of derivatives is at most n. Therefore,
we obtain

d

dt

(∫
Sn

(Pg0w(t))2dVg0

)

= −4
∫

Sn

(
(−Δg0)

n

4 v(t)
)2

dVg0

+ C
∑

k1,...,km

∫
Sn

|∇k1
g0

v(t)| · |∇k2
g0

v(t)| · |∇k3
g0

w(t)| · · · |∇km
g0

w(t)| dVg0

+ C
∑

l1,...,lm

∫
Sn

|∇l1
g0

v(t)| · |∇l2
g0

w(t)| · · · |∇lm
g0

w(t)|eαw(t) dVg0 .
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The first sum is taken over all m-tuples k1, ..., km with m ≥ 3 satisfying the
conditions

0 ≤ ki ≤ n

2
for 1 ≤ i ≤ 2,

0 ≤ ki ≤ n

2
for 3 ≤ i ≤ m,

k1 + · · · + km ≤ n.

To estimate this term, we choose real numbers p1, . . . , pm ∈ [2,∞) such that

ki ≤ n

pi
for 1 ≤ i ≤ 2,

n

pi
< ki for 3 ≤ i ≤ m,

1
p1

+ · · · + 1
pm

= 1.

Moreover, we define real numbers θ1, ..., θm by

θi =
ki − n

pi
+ n

2
n
2

∈ [0, 1] for 1 ≤ i ≤ 2,

θi =
k1 − n

pi

n
2

∈ (0, 1) for 3 ≤ i ≤ m.

Then we have θ1 + · · · + θm ≤ 2; hence θ3 + · · · + θm ≤ (1 − θ1) + (1 − θ2).
Since ‖w(t)‖W

n
2 ,2 ≤ C(T ) for all 0 ≤ t ≤ T by Corollary 3.1, this implies

that for all 0 ≤ t ≤ T

−2
∫

Sn

(
(−Δg0)

n

4 v(t)
)2

dVg0

+ C
∑

k1,...,km

∫
Sn

|∇k1
g0

v(t)| · |∇k2
g0

v(t)| · |∇k3
g0

w(t)| · · · |∇km
g0

w(t)| dVg0

≤ −‖v(t)‖2
W

n
2 ,2 + C

∑
k1,...,km

‖∇k1
g0

v(t)‖Lp1 · ‖∇k2
g0

v(t)‖Lp2

· ‖∇k3
g0

w(t)‖Lp3 · · · ‖∇km
g0

w(t)‖Lpm

≤ −‖v(t)‖2
W

n
2 ,2 + C

∑
k1,...,km

‖v(t)‖
W

k1− n
p1

+ n
2 ,2 · ‖v(t)‖

W
k2− n

p2
+ n

2 ,2

· ‖w(t)‖
W

k3− n
p3

+ n
2 ,2 · · · ‖w(t)‖

W
km− n

pm
+ n

2 ,2
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≤ −‖v(t)‖2
W

n
2 ,2 + C

∑
k1,...,km

‖v(t)‖(1−θ1)+(1−θ2)
L2 · ‖v(t)‖θ1+θ2

W
n
2 ,2

· ‖w(t)‖(1−θ3)+···+(1−θm)

W
n
2 ,2 ‖w(t)‖θ3+···+θm

W n,2

≤ −‖v(t)‖2
W

n
2 ,2 + C(T )

∑
k1,...,km

‖v(t)‖(1−θ1)+(1−θ2)
L2

· ‖v(t)‖θ1+θ2

W
n
2 ,2 · ‖w(t)‖θ3+···+θm

W n,2

≤ C(T )
∑

k1,...,km

‖v(t)‖2
L2 · ‖w(t)‖

2(θ3+···+θm)
(1−θ1)+(1−θ2)

W n,2

≤ C(T )‖v(t)‖2
L2(‖w(t)‖2

W n,2 + 1).

The second sum is taken over all m-tuples l1, ..., lm with m ≥ 1 satisfying
the conditions

0 ≤ l1 ≤ n

2
,

1 ≤ li ≤ n

2
for 2 ≤ i ≤ m,

l1 + · · · + lm ≤ n.

To estimate this term, we choose real numbers q1, .., qm ∈ [2,∞) such that

l1 ≤ n

q1
,

n

qi
< li for 2 ≤ i ≤ m,

1
2
≤ 1

q1
+ · · · + 1

qm
< 1.

Moreover, we define real numbers ρ1, ..., ρm by

ρ1 =
l1 − n

q1
+ n

2
n
2

∈ [0, 1],

ρi =
li − n

qi

n
2

∈ (0, 1) for 2 ≤ i ≤ m.

Then we have ρ1 + · · · + ρm ≤ 2; hence ρ2 + · · · + ρm ≤ 2 − ρ1. Since
‖w(t)‖W

n
2 ,2 ≤ C(T ) for all 0 ≤ t ≤ T by Corollary 3.1, this implies that for
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all 0 ≤ t ≤ T

−2
∫

Sn

(
(−Δg0)

n

4 v(t)
)2

dVg0

+ C
∑

l1,...,lm

∫
Sn

|∇l1
g0

v(t)| · |∇l2
g0

w(t)| · · · |∇lm
g0

w(t)|eαw(t)dVg0

≤ −‖v(t)‖2
W

n
2 ,2 + C(T )

∑
l1,...,lm

‖∇l1
g0

v(t)‖Lq1

· ‖∇l2
g0

w(t)‖Lq2 · · · ‖∇lm
g0

w(t)‖Lqm

≤ −‖v(t)‖2
W

n
2 ,2 + C(T )

∑
l1,...,lm

‖v(t)‖
W

l1− n
q1

+ n
2 ,2

· ‖w(t)‖
W

l2− n
q2

+ n
2 ,2 · · · ‖w(t)‖

W
lm− n

qm
+ n

2 ,2

≤ −‖v(t)‖2
W

n
2 ,2 + C(T )

∑
l1,...,lm

‖v(t)‖1−ρ1

L2 · ‖v(t)‖ρ1

W
n
2 ,2

· ‖w(t)‖(1−ρ2)+···+(1−ρm)

W
n
2 ,2 · ‖w(t)‖ρ2+···+ρm

W n,2

≤ −‖v(t)‖2
W

n
2 ,2 + C(T )

∑
l1,...,lm

‖v(t)‖1−ρ1

L2 · ‖v(t)‖ρ1

W
n
2 ,2 · ‖w(t)‖ρ2+···+ρm

W n,2

≤ C(T )
∑

l1,...,lm

‖v(t)‖
2−2ρ1
2−ρ1

L2 · ‖w(t)‖
2(ρ2+···+ρm)

2−ρ1
W n,2

≤ C(T )(‖v(t)‖2
L2 + 1)(‖w(t)‖2

W n,2 + 1).

Thus, we conclude that

d

dt

(∫
Sn

(Pg0w(t))2dVg0

)
≤ C(T )(‖v(t)‖2

L2 + 1)(‖w(t)‖2
W n,2 + 1)

for all 0 ≤ t ≤ T . Hence, by the definition that v(t) = −1
2e

n

2
w(t)(Qg(t) − q),

we obtain

d

dt

(∫
Sn

(Pg0w(t))2dVg0 + 1
)

≤ C(T )
(∫

Sn

(Qg(t) − q)2dVg(t) + 1
)(∫

Sn

(Pg0w(t))2dVg0 + 1
)

,
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for all 0 ≤ t ≤ T . On the other hand, we have
∫ T

0

∫
Sn

(Qg(t) − q)2 dVg(t) dt =
2
n

Eg0 [w(0)] − 2
n

Eg0 [w(t)] ≤ C

by Proposition 2.2. Thus, we conclude that
∫

Sn

(Pg0w(t))2 dVg0 ≤ C(T )

for all 0 ≤ t ≤ T . This completes the proof. �
Once we know that the solution is bounded in Wn,2, it is not difficult to

derive uniform estimates on any fixed time interval [0, T ]. This implies that
the flow exists for all time. More precisely, we have:

Proposition 4.2. Given any T ≥ 0 and k > n/2, there exists a constant
C(T ) such that ‖w(t)‖W 2k,2 ≤ C(T ) for all 0 ≤ t ≤ T .

Proof. Note that

d

dt

(∫
Sn

|(−Δg0)
kw(t)|2 dVg0

)
≤ −

∫
Sn

e−nw(t)|(−Δg0)
k+ n

4 w(t)|2 dVg0

+ C
∑

k1,...,km

∫
Sn

|∇k1
g0

w(t)| · · · |∇km
g0

w(t)| dVg0 ,

which implies that for 0 ≤ t ≤ T

d

dt

(∫
Sn

|(−Δg0)
kw(t)|2 dVg0

)
≤ − 1

C(T )

∫
Sn

|(−Δg0)
k+ n

4 w(t)|2 dVg0

+ C
∑

k1,...,km

∫
Sn

|∇k1
g0

w(t)| · · · |∇km
g0

w(t)| dVg0 ,

since ‖w(t)‖W n,2 ≤ C(T ) for 0 ≤ t ≤ T by (4.1). Here the sum is taken over
all m-tuples k1, ..., km, with m ≥ 3, which satisfy the conditions

1 ≤ ki ≤ 2k +
n

2
and k1 + · · · + km ≤ 4k + n.

Now we choose real numbers p1, . . ., pm ∈ [2,∞) such that

ki ≤ 2k +
n

pi
and

1
p1

+ · · · 1
pm

= 1.
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Moreover, we define real numbers θ1, ..., θm by

θi = max

{
ki − n

pi
− n

2

2k − n
2

, 0

}
.

Since m ≥ 3, we can choose p1, ..., pm ∈ [2,∞) such that

θ1 + · · · + θm < 2.

From this, it follows that for 0 ≤ t ≤ T

d

dt
‖w(t)‖2

W 2k,2

≤ − 1
C(T )

‖w(t)‖
W 2k+ n

2 ,2 + C
∑

k1,...,km

‖∇k1
g0

w(t)‖Lp1 · · · ‖∇km
g0

w(t)‖Lpm

≤ − 1
C(T )

‖w(t)‖
W 2k+ n

2 ,2 +C
∑

k1,...,km

‖w(t)‖
W

k1− n
p1

+ n
2 ,2 · · · ‖w(t)‖

W
km− n

pm
+ n

2 ,2

≤ − 1
C(T )

‖w(t)‖
W 2k+ n

2 ,2 +C
∑

k1,...,km

‖w(t)‖(1−θ1)+···+(1−θm)
W n,2 ‖w(t)‖θ1+···+θm

W 2k+ n
2 ,2

≤ − 1
C(T )

‖w(t)‖
W 2k+ n

2 ,2 + C(T )
∑

k1,...,km

‖w(t)‖θ1+···+θm

W 2k+ n
2 ,2

≤ − 1
C(T )

‖w(t)‖
W 2k+ n

2 ,2 + C(T )

≤ − 1
C(T )

‖w(t)‖W n,2 + C(T ).

Thus, we conclude that

‖w(t)‖W 2k,2 ≤ C(T )

for any k > n/2 and for all 0 ≤ t ≤ T . �

5. Uniform estimates independent of time

For brevity, let

F (t) =
∫

Sn

(Qg(t) − q)2 dVg(t).

Proposition 5.1. We have F (t) → 0 as t → ∞.
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Proof. Let ε > 0. By Proposition 2.2, we have

∫ ∞

0
F (t) dt ≤ C.

Hence, given any η > 0, we can find t0 ≥ 0 such that

F (t0) ≤ ε

2
and

∫ ∞

t0

F (t) dt ≤ η.(5.1)

We want to show that F (t) ≤ ε for all t ≥ t0. To this end, we define

(5.2) t1 = inf{t ≥ t0 : F (t) ≥ ε}.

This implies that

F (t) ≤ ε for all t0 ≤ t ≤ t1.

Since

F (t) =
∫

Sn

(Qg(t) − q)2 dVg(t)

=
∫

Sn

Q2
g(t) dVg(t) − 2q

∫
Sn

Qg(t) dVg(t) + q2

∫
Sn

dVg(t)

=
∫

Sn

Q2
g(t) dVg(t) − q(n − 1)!

∫
Sn

dVg0

by (2.7), we have

(5.3)
∫

Sn

Q2
g(t) dVg(t) ≤ q(n − 1)!

∫
Sn

dVg0 + ε

for all t0 ≤ t ≤ t1. By Proposition 3.2 and Trudinger’s inequality, we have

(5.4)
∫

Sn

e3nw̃(t)dVg0 ≤ C.
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Using (2.3), (5.3), (5.4), and Hölder’s inequality, we obtain
∫

Sn

|(n − 1)! + Pg0w̃(t)| 32 dVg0

≤
(∫

Sn

e−nw̃(t)((n − 1)! + Pg0w̃(t))2 dVg0

) 3
4
(∫

Sn

e3nw̃(t) dVSn

) 1
4

=
(∫

Sn

Q2
g̃(t) dVg̃(t)

) 3
4
(∫

Sn

e3nw̃(t) dVSn

) 1
4

≤
(

q(n − 1)!
∫

Sn

dVg0 + ε

) 3
4
(∫

Sn

e3nw̃(t) dVSn

) 1
4

≤ C

for all t0 ≤ t ≤ t1. This implies that
∫

Sn

|Pg0w̃(t)| 32 dVg0 ≤ C

for all t0 ≤ t ≤ t1. Using standard elliptic regularity theory, we obtain

(5.5) |w̃(t)| ≤ C for all t0 ≤ t ≤ t1.

Here C is a constant which only depends on the initial data.
By (2.2), (2.3) and (2.8), we have

∂

∂t
Qg(t) =

∂

∂t

(
e−nw(t)((n − 1)! + Pg0w(t))

)

= −ne−nw(t)((n − 1)! + Pg0w(t))
∂

∂t
w(t) + e−nw(t)Pg0

(
∂

∂t
w(t)

)

=
n

2
Qg(t)(Qg(t) − q) − 1

2
Pg(t)Qg(t).

From this, it follows that

d

dt

∫
Sn

(
Qg(t) − q

)2
dVg(t)

=
∫

Sn

2
(
Qg(t) − q

) ∂

∂t
(Qg(t)) dVg(t) +

∫
Sn

(
Qg(t) − q

)2 ∂

∂t
dVg(t)

=
n

2

∫
Sn

(
Qg(t) − q

)3
dVg(t) + nq

∫
Sn

(
Qg(t) − q

)2
dVg(t)

−
∫

Sn

Qg(t)Pg(t)Qg(t) dVg(t).(5.6)



Q-curvature flow on Sn 811

Using the Gagliardo–Nirenberg inequality, we have

‖Qg̃(t) − q‖3
L3 ≤ C‖Qg̃(t) − q‖2

L2 · ‖Qg̃(t) − q‖W
n
2 ,2 ,

which implies

∫
Sn

(
Qg̃(t) − q

)3
dVg0 ≤C

(∫
Sn

(
Qg̃(t) − q

)2
dVg0

)(∫
Sn

Qg̃(t)Pg0Qg̃(t)dVg0

)1
2

.

Using (2.2), we obtain
∫

Sn

e−nw̃(t)
(
Qg̃(t) − q

)3
dVg̃(t)

≤ C

(∫
Sn

e−nw̃(t)
(
Qg̃(t) − q

)2
dVg̃(t)

)(∫
Sn

Qg̃(t)Pg̃(t)Qg̃(t) dVg̃(t)

)1
2

.

Since the function w(t) is uniformly bounded for t0 ≤ t ≤ t1 by (5.5), it
follows that∫

Sn

(
Qg̃(t) − q

)3
dVg̃(t)

≤ C

(∫
Sn

(
Qg̃(t) − q

)2
dVg̃(t)

)(∫
Sn

Qg̃(t)Pg̃(t)Qg̃(t) dVg̃(t)

)1
2

for all t0 ≤ t ≤ t1. This is equivalent to
∫

Sn

(
Qg(t) − q

)3
dVg(t)

≤ C

(∫
Sn

(
Qg(t) − q

)2
dVg(t)

)(∫
Sn

Qg(t)Pg(t)Qg(t)dVg(t)

)1
2

(5.7)

for all t0 ≤ t ≤ t1. Combining (5.6) and (5.7), we have

d

dt

∫
Sn

(
Qg(t) − q

)2
dVg(t)

≤ C

∫
Sn

(
Qg(t) − q

)2
dVg(t) + C

(∫
Sn

(
Qg(t) − q

)2
dVg(t)

)2

for all t0 ≤ t ≤ t1. Hence, there exists a constant C, which depends only on
the initial data, such that

d

dt
F (t) ≤ C(F (t) + F (t)2)
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for all t0 ≤ t ≤ t1, which implies that

ε

2
≤ F (t1) − F (t0) ≤ C

∫ t1

t0

(F (t) + F (t)2) dt ≤ C(1 + ε)η.

Here we have used (5.1) and (5.2). But this is impossible if we choose η
sufficiently small. Thus, we conclude that F (t) ≤ ε for all t ≥ t0. This proves
the assertion. �

Proposition 5.2. There exists a constant C which depends only on the
initial data such that ‖w̃(t)‖W n,2 ≤ C for all t ≥ 0. Moreover, we have

∫
Sn

((n − 1)! + Pg0w̃(t) − qenw̃(t))2 dVg0 → 0

as t → ∞.

Proof. By Proposition 5.1, there exists a constant C such that F (t) ≤ C for
all t ≥ 0. This implies that

∫
Sn Q2

g(t) dVg(t) ≤ C for all t ≥ 0, hence
∫
Sn Q2

g̃(t)

dVg̃(t) ≤ C for all t ≥ 0. By (2.3), it is equivalent to

(5.8)
∫

Sn

e−nw̃(t)((n − 1)! + Pg0w̃(t))2 dVg0 ≤ C for all t ≥ 0.

Following the arguments in the proof of Proposition 5.1, we obtain
∫
Sn |(n −

1)! + Pg0w̃(t)| 32 dVg0 ≤ C for all t ≥ 0. From this it follows that

(5.9) |w̃(t)| ≤ C for all t ≥ 0.

Combining (5.8) and (5.9), we conclude that
∫

Sn

((n − 1)! + Pg0w̃(t))2dVg0 ≤ C for all t ≥ 0.

Therefore, the function w̃(t) is uniformly bounded in Wn,2. Moreover, we
have ∫

Sn

((n − 1)! + Pg0w̃(t) − qenw̃(t))2 dVg0

≤ C

∫
Sn

e−nw̃(t)((n − 1)! + Pg0w̃(t) − qenw̃(t))2 dVg0

= CF (t).

Here we have used (2.3). By Proposition 5.1, F (t) converges to 0 as t → 0.
From this, the assertion follows. �
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Proposition 5.3. We have
∥∥∥∥w̃(t) − 1

n
log

(n − 1)!
q

∥∥∥∥
W n,2

→ 0

as t → ∞.

Proof. Suppose it is not true. Then there exists a sequence of times {tk : k ∈
N} such that tk → ∞ as k → ∞ and

lim inf
k→∞

∥∥∥∥w̃(tk) − 1
n

log
(n − 1)!

q

∥∥∥∥
W n,2

> 0.

By Proposition 5.2, the sequence {w̃(tk) : k ∈ N} is uniformly bounded in
Wn,2. Hence, by passing to a subsequence if necessary, we may assume that
w̃(tk) converges to a function u in the C0-topology. The function u is a weak
solution of the equation

Pg0u + (n − 1)! = qenu.

Standard elliptic regularity theory implies that u is smooth. According to
a theorem of Chang and Yang in [11] (see also [18]), there exists a vector
p ∈ Bn such that

(5.10) u(x) = log
1 − |p|2

1 + 2〈p, x〉 + |p|2 +
1
n

log
(n − 1)!

q

for all x ∈ Sn. Using (3.5), we obtain
∫
Sn enux dVg0 = 0. Hence, by (5.10),

we have ∫
Sn

(
1 − |p|2

1 + 2〈p, x〉 + |p|2
)n

〈x, p〉 dVg0 = 0.

By a change of variable, we also have

∫
Sn

(
1 − |p|2

1 − 2〈p, x〉 + |p|2
)n

〈x, p〉 dVg0 = 0.

Hence,

∫
Sn

[(
1 − |p|2

1 − 2〈p, x〉 + |p|2
)n

−
(

1 − |p|2
1 + 2〈p, x〉 + |p|2

)n]
〈x, p〉 dVg0 = 0.
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Since the integrand is pointwise non-negative, it follows that p = 0. Thus we
conclude that

u =
1
n

log
(n − 1)!

q

by (5.10). From this, it follows that

∥∥∥∥w̃(tk) − 1
n

log
(n − 1)!

q

∥∥∥∥
C0

→ 0

as k → ∞. This implies

∥∥∥(n − 1)! − qenw̃(tk)
∥∥∥

C0
→ 0

as k → ∞. By Proposition 5.2, we have

∫
Sn

(Pg0w̃(tk) + (n − 1)! − qenw̃(tk))2 dVg0 → 0

as k → ∞. Thus, we conclude that

∫
Sn

(Pg0w̃(tk))2 dVg0 → 0

as k → ∞. From this it follows that

∥∥∥∥w̃(tk) − 1
n

log
(n − 1)!

q

∥∥∥∥
W n,2

→ 0

as k → ∞. This is a contradiction. �

Proposition 5.4. We can find positive real numbers t0 and C such that

∥∥∥∥w̃(t) − 1
n

log
(n − 1)!

q

∥∥∥∥
W n,2

≤ C

∫
Sn

(Qg(t) − q)2 dVg(t)

for all t ≥ t0.
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Proof. For abbreviation, let

z(t) = w̃(t) − 1
n

log
(n − 1)!

q
.

By Proposition 5.3, ‖z(t)‖C0 → 0 as t → ∞. This implies
∫

Sn

(Pg0z(t) − n!z(t))2 dVg0

≤ 2
∫

Sn

(Pg0z(t) + (n − 1)! − (n − 1)!enz(t))2 dVg0

+ 2
∫

Sn

((n − 1)! − (n − 1)!enz(t) − n!z(t))2 dVg0

≤ 2
∫

Sn

(Pg0w̃(t) + (n − 1)! − qenw̃(t))2 dVg0 + C

∫
Sn

z(t)4 dVg0

≤ 2
∫

Sn

enw̃(t)(Qg̃(t) − q)2 dVg̃(t) + o(1)‖z(t)‖L2 ,

where we have used (2.3) in the last inequality. Since w̃(t) is uniformly
bounded by Proposition 5.2, it follows that

∫
Sn

(Pg0z(t) − n!z(t))2 dVg0 ≤ C

∫
Sn

(Qg̃(t) − q)2 dVg̃(t) + o(1)‖z(t)‖L2 .

Moreover, we have
∣∣∣∣
∫

Sn

nz(t)x dVg0

∣∣∣∣ =
∣∣∣∣
∫

Sn

(enz(t) − 1 − nz(t))x dVg0

∣∣∣∣
≤ C

∫
Sn

z(t)2 dVg0 ≤ o(1)‖z(t)‖L2 .

Here we have used (3.5) in the first equality. Using the estimate

‖z(t)‖W n,2 ≤ C

∫
Sn

(Pg0z(t) − n!z(t))2 dVg0 + C

∣∣∣∣
∫

Sn

z(t)x dVg0

∣∣∣∣
2

,

we obtain

‖z(t)‖W n,2 ≤ C

∫
Sn

(Qg̃(t) − q)2 dVg̃(t) + o(1)‖z(t)‖L2 .

From this, the assertion follows. �
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Proposition 5.5. For every t ≥ 0, we have

∫ ∞

t

∫
Sn

(Qg(τ) − q)2 dVg(τ)dτ ≤ C

∥∥∥∥w̃(t) − 1
n

log
(n − 1)!

q

∥∥∥∥
W n,2

.

Proof. By Proposition 5.3, we have limt→∞
∥∥∥w̃(t) − 1

n log (n−1)!
q

∥∥∥
W n,2

= 0.

This implies

lim
t→∞Eg0 [w̃(t)] = 0.

Since the functional Eg0 is invariant under conformal transformations (see
[10], part (a) of the proof of Theorem 4.1), it follows that

lim
t→∞Eg0 [w(t)] = 0.

By Proposition 2.2, we obtain

∫ ∞

t

∫
Sn

(Qg(τ) − q)2 dVg(τ)dτ =
1
2
Eg0 [w(t)] =

1
2
Eg0 [w̃(t)].

On the other hand, we have

n!
∫

Sn

w̃ dVg0 − (n − 1)!
∫

Sn

dVg0 log

(∫
Sn enw̃ dVg0∫

Sn dVg0

)

≤ n!
∫

Sn

w̃dVg0 − (n − 1)!
∫

Sn

dVg0 ·
∫
Sn log(enw̃) dVg0∫

Sn dVg0

= 0

by Jensen’s inequality. Hence, by (2.9), we have

Eg0 [w̃(t)] ≤ n

2

∫
Sn

w̃(t)Pg0w̃(t)dVg0 ≤ C

∥∥∥∥w̃(t) − 1
n

log
(n − 1)!

q

∥∥∥∥
W n,2

.

Thus, we conclude that

∫ ∞

t

∫
Sn

(Qg(τ) − q)2 dVg(τ)dτ ≤ C

∥∥∥∥w̃(t) − 1
n

log
(n − 1)!

q

∥∥∥∥
W n,2

as required. �
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Corollary 5.1. There exists a constant C such that
∫ ∞

t

∫
Sn

(Qg(τ) − q)2dVg(τ)dτ ≤ C

∫
Sn

(Qg(t) − q)2 dVg(t)

for t ≥ t0.

Proof. This follows immediately from Propositions 5.4 and 5.5. �

Corollary 5.2. We can find positive constants C and α such that

∫ ∞

t

(∫
Sn

(Qg(τ) − q)2 dVg(τ)

)1
2

dτ ≤ Ce−αt

for all t ≥ 0.

Proof. If we let f(t) =
∫ ∞
t

∫
Sn(Qg(τ) − q)2 dVg(τ) dτ , then by Corollary 5.1,

we have

f(t) ≤ −C
df(t)
dt

for all t ≥ t0.

Integrating it, we obtain

e−C(t−t0) ≥ f(t)
f(t0)

for all t ≥ t0.

In particular, we have
∫ ∞

t

∫
Sn

(Qg(τ) − q)2 dVg(τ) dτ ≤ Ce−2αt

for suitable constants C, α > 0. This implies that

∫ k+1

k

(∫
Sn

(Qg(τ) − q)2 dVg(τ)

)1
2

dτ ≤ Ce−αk

by Hölder’s inequality. Summation over k gives

∫ ∞

k

(∫
Sn

(Qg(τ) − q)2 dVg(τ)

)1
2

dτ ≤ Ce−αk.

From this the assertion follows. �
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Proposition 5.6. There exists a uniform constant C such that
‖w(t)‖W n,2 ≤ C for all t ≥ 0.

Proof. By Proposition 3.3 and Hölder’s inequality, we have∣∣∣∣ d

dt
log(1 − |p(t)|2)

∣∣∣∣ ≤
∣∣∣∣
∫

Sn

(Qg̃(t) − q)x dVg̃(t)

∣∣∣∣
≤ C

(∫
Sn

(Qg̃(t) − q)2 dVg̃(t)

)1
2

= C

(∫
Sn

(Qg(t) − q)2 dVg(t)

)1
2

.

Moreover, we have
∫ ∞

0

(∫
Sn

(Qg(t) − q)2dVg(t)

)1
2

dt ≤ C

by Corollary 5.2. Hence, there exists a constant C, which depends only on
the initial data, such that 1

1−|p(t)|2 ≤ C for all t ≥ 0. On the other hand,
by Proposition 5.2, we have ‖w̃(t)‖W n,2 ≤ C for all t ≥ 0. Thus, we
conclude that ‖w(t)‖W n,2 ≤ C for all t ≥ 0. �

Proposition 5.7. There exist positive constants C and α such that

‖w(t2) − w(t1)‖L2 ≤ Ce−αt1

for all t1 ≤ t2.

Proof. By (2.8), we have

w(t2) − w(t1) = −1
2

∫ t2

t1

(Qg(τ) − q) dτ,

which implies

‖w(t2) − w(t1)‖L2 ≤ C

∫ t2

t1

(∫
Sn

(Qg(τ) − q)2 dVg(τ)

)1
2

dτ ≤ Ce−αt1

by Corollary 5.2. This proves the assertion. �
Since w(t) is uniformly bounded in Wn,2 by Proposition 5.6, it is not

difficult to derive uniform regularity estimates for w(t) by following the
proof of Proposition 4.2. Exponential convergence follows from Proposition
5.7. This proves Theorem 1.1.



Q-curvature flow on Sn 819

Acknowledgments

This paper is part of the author’s doctoral dissertation. P.T.H is indebted to
his thesis advisor, Prof. Sai-Kee Yeung, for his generous help and constant
encouragement during the preparation of this work. P.T.H would also like
to thank Prof. Simon Brendle for answering his questions.

References

[1] P. Baird, A. Fardoun and R. Regbaoui, Prescribed Q-curvature on man-
ifolds of even dimension, J. Geom. Phys. 59 (2009), 221–233.

[2] P. Baird, A. Fardoun and R. Regbaoui, Q-curvature flow on
4-manifolds, Calc. Var. Partial Differential Equations 27 (2006),
75–104.

[3] W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser–
Trudinger inequality, Ann. Math. (2) 138 (1993), 213–242.

[4] T. Branson, S.-Y.A. Chang and P. Yang, Estimates and extremals for
zeta function determinants on four-manifolds, Comm. Math. Phys. 149
(1992), 241–262.

[5] S. Brendle, Convergence of the Q-curvature flow on S4, Adv. Math.
205 (2006), 1–32.

[6] S. Brendle, Global existence and convergence for a higher order flow in
conformal geometry, Ann. Math. (2) 158 (2003), 323–343.

[7] S. Brendle, Prescribing a higher order conformal invariant on Sn,
Comm. Anal. Geom. 11 (2003), 837–858.

[8] S.-Y.A. Chang, M. Eastwood, B. Ørsted and P. Yang, What is
Q-curvature?, Acta Appl. Math. 102 (2008), 119–125.

[9] S.-Y.A. Chang, M. Gursky and P. Yang, An equation of Monge–Ampére
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