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On long-time existence for the flow of static metrics

with rotational symmetry

Liljana Gulcev, Todd A. Oliynyk and Eric Woolgar

B List has proposed a geometric flow whose fixed points correspond
to solutions of the static Einstein equations of general relativity.
This flow is now known to be a certain Hamilton–DeTurck flow
(the pullback of a Ricci flow by an evolving diffeomorphism) on R ×
Mn. We study the SO(n) rotationally symmetric case of List’s flow
under conditions of asymptotic flatness. We are led to this problem
from considerations related to Bartnik’s quasi-local mass definition
and, as well, as a special case of the coupled Ricci-harmonic map
flow. The problem also occurs as a Ricci flow with broken SO(n+
1) symmetry, and has arisen in a numerical study of Ricci flow
for black hole thermodynamics. When the initial data admits no
minimal hypersphere, we find the flow is immortal when a single
regularity condition holds for the scalar field of List’s flow at the
origin. This regularity condition can be shown to hold at least for
n = 2. Otherwise, near a singularity, the flow will admit rescalings
which converge to an SO(n)-symmetric ancient Ricci flow on R

n.

1. Introduction

1.1. List’s flow

Many of the most exciting recent developments in geometric analysis have
arisen from the study of geometric flow equations. Among the most promi-
nent examples, the Ricci flow has yielded a proof of the Poincaré and
Thurston conjectures [11, 26, 30, 31] and the diffeomorphic 1

4 -pinched sphere
theorem [6], while the inverse mean curvature flow has been used to prove the
Riemannian Penrose conjecture [18, 19]. The latter has important conse-
quences in physics, prompting the question of whether other geometric flow
problems might also arise from physics.

In physics one is often led to consider a metric of Lorentzian signa-
ture. Many geometric flow equations in Riemannian geometry are second-
order parabolic (or at least quasi-parabolic), and therefore they can be
studied with the powerful tools of the maximum principle and entropies.
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The problem is that this power is generally lost in passing to Lorentzian
signature.

However, Riemannian metrics can arise in physics problems, as the case
of the Riemannian Penrose conjecture shows. To see how this can occur, con-
sider the class of stationary spacetimes in general relativity. These spacetimes
have metrics that admit a timelike Killing vector field. Examples are the
Gödel and exterior Kerr metrics [16], in which there are preferred observers
who view the time evolution of spacetime as nothing more than constant
rotation. Quotienting a stationary spacetime by the isometry generated by
the timelike Killing vector field, one obtains a Riemannian metric on the base
manifold, which is smooth if the spacetime has no closed timelike curves and
if the Killing orbits are complete [15].

If the timelike Killing field is hypersurface-orthogonal, we arrive at the
class of static spacetimes, among which are the exterior Schwarzschild and
flat Minkowski spacetimes. For static spacetimes, the rotation vanishes and
the spacetime metric splits as a warped product of a one-dimensional fibre
over a Riemannian base manifold. In particular, a static spacetime metric
on R ×Mn, n > 2, can be written as

(1.1)

ds2 = gμνdx
μdxν = −e2udx0dx0 + e−

2u

n−2 gijdx
idxj ,

∂u

∂x0
= 0,

∂gij

∂x0
= 0.

Here gμν is a metric on R ×Mn, while gij is a metric on Mn. Coordinates
on Mn+1 are (xμ) = (x0, xi), so Greek indices run over one more value than
Roman ones.

The vacuum Einstein equation is the condition that the metric (1.1) has
vanishing Ricci curvature. If we apply the vacuum Einstein equation to the
metric gμν in (1.1), we obtain the equations

Rij −
(
n− 1
n− 2

)
∇iu∇ju = 0 ,(1.2)

Δu = 0 ,(1.3)

for the Ricci tensor of the base (Mn, gij). Here Δu := gij∇i∇ju is the Lapla-
cian constructed from the connection ∇i compatible with gij (note our sig-
nature choice for the Laplacian). We note that Equation (1.3) is redundant
in that it can be derived from (1.2) using the contracted second Bianchi
identity. It is therefore merely an integrability condition for (1.2).
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Definition 1.1. Equations (1.2), (1.3) (or (1.2) alone) are known as the
static vacuum Einstein equations. Solutions gij are called static vacuum
metrics.

B List [24, 25], in his Ph.D. thesis under the direction of G. Huisken,
presented a system of flow equations whose fixed points solve the static
vacuum Einstein equations.

Definition 1.2. List’s system of equations is the system

∂gij

∂t
= −2

(
Rij − k2

n∇iu∇ju
)
,(1.4)

∂u

∂t
= Δu.(1.5)

Note that t is the flow parameter, not the time coordinate in the space-
time metric (which we denote by x0). The metrics gij(t;x) are a family of
Riemannian metrics on an n-manifold, u(t;x) are a family of functions and
kn is an arbitrary constant. When kn =

√
n−1
n−2 , the fixed points of List’s

system are exactly the static vacuum metrics, together with a harmonic
function u. However, we will keep kn as an arbitrary constant (which obvi-
ously can be absorbed in u) so that we can consider all n ≥ 2.

A particularly useful equation easily derived from (1.4), (1.5) is

(1.6)
∂

∂t
|∇u|2 = Δ|∇u|2 − 2|∇∇u|2 − 2k2

n

(|∇u|2)2 .
It is now realized that List’s system of flow equations is in fact a certain

Hamilton-DeTurck flow in one higher dimension; i.e., List’s system is really
a Ricci flow, modified by pulling back along an evolving diffeomorphism
(e.g., [22]). This does not make List’s flow any less interesting however.
Recall that Hamilton–DeTurck flow is given by

(1.7)
∂gμν

∂λ
= −2Rμν + £Xgμν ,

where X is a vector field. To obtain List’s system, choose

gμνdx
μdxν = e2knudτ2 + gijdx

idxj ,(1.8)

X = − (gij∇iu
) ∂

∂xj
.(1.9)

Note that the gμν in (1.8) differs from that in (1.1).
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It is the purpose of this paper to study the long-time existence properties
of solutions of List’s system of equations that evolve from a complete, asymp-
totically flat and rotationally symmetric initial pair (g(0), u(0)), subject to
the restriction that g(0) does not admit a minimal hypersphere.

It will be convenient to choose a certain coordinate system throughout
the flow which will enable us to exploit the initial absence of minimal hyper-
spheres. This will require that we work with a DeTurck version of List’s
equations; i.e., that we pull back by a further diffeomorphism on the base
manifold. The DeTurck version of equations (1.4) to (1.6) is

∂gij

∂t
= −2

(
Rij − k2

n∇iu∇ju
)

+ £Xgij ,(1.10)

∂u

∂t
= Δu+ £Xu(1.11)

∂

∂t

(|∇u|2) = Δ|∇u|2 − 2|∇∇u|2 − 2k2
n

(|∇u|2)2 + £X

(|∇u|2) ,(1.12)

where the vector field X generates the aforementioned diffeomorphism, and
it is this system that we will work with directly.

1.2. Motivations

List’s flow appears as a relatively simple case of the Ricci-harmonic map
flow, which has been studied in [27]. The general form of this flow is

∂gij

∂t
= −2Rij +Gab∇iu

a∇ju
b ,(1.13)

∂ua

∂t
= Δua + gijΓa

bc∇iub∇juc ,(1.14)

where the ua are embedding functions ua : (Mn, gij) ↪→ (Mm, Gab) mapping
one Riemannian manifold to another and the Γa

bc are the coefficients of the
Levi–Cività connection of Gab. In the case that Mm = R, ua = u and Gab =
2k2

n, these equations reduce to List’s flow. Thus, List’s flow is the special case
of the coupled Ricci-harmonic map flow where the target space (Mm, Gab)
is the real line.

List’s flow with rotational symmetry also appears if rotational symme-
try is broken in Ricci flow in one more dimension. Rotationally symmetric,
asymptotically flat Ricci flow in dimension n ≥ 3 was studied in connec-
tion with a conjecture in string theory regarding the limiting behaviour of
Arnowitt-Deser-Misner (ADM) mass as the flow converges [13] (see [21] for
an earlier study and see [33] for the n = 2 case). This is now well-understood,
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at least in the absence of minimal hyperspheres [29] (see also [12]). It is
interesting to ask how this understanding is modified if the rotational sym-
metry is broken down to a subgroup. By the above correspondence between
flows, we see that List’s flow with rotational symmetry can be thought of
as Ricci flow on an (n+ 1)-manifold with R × SO(n) symmetry, which has
n(n−1)

2 + 1 generators, or n− 1 fewer generators than the n(n+1)
2 generators

of full rotational symmetry in (n+ 1)-dimensions.
However, there is a another reason to study this system, which may

prove to be the most compelling. List’s equations were conceived as a tool
to address conjectures about static metrics in general relativity [20]. We
briefly discuss two of these.

We recall Bartnik’s quasi-local definition of mass [4]. In an (n+ 1)-
dimensional spacetime, consider a moment of time symmetry (i.e., a spacelike
hypersurface with zero extrinsic curvature) and in it a bounded n-dimen-
sional region B. Consider all asymptotically flat Riemannian n-manifolds N
of non-negative scalar curvature R ≥ 0 into which B can be isometrically
embedded (smoothly in the interior of B), such that the induced metric and
mean curvature must match from both sides of ∂B. Further assume that
N has no stable minimal sphere lying outside the image of B. Then N is
called an admissible extension of B. By the positive mass theorem N has
non-negative ADM mass. Consider all such admissible extensions of B and
take the infimum of the ADM masses. This infimum is the Bartnik mass mB

of the region B. It is clearly non-negative.
What is not so clear from the definition is whether the mass ever differs

from zero. This led Bartnik to make the following conjecture which, if true,
would guarantee that the Bartnik mass is nontrivial:

Static minimization conjecture (Bartnik). The infimum is a mini-
mum, and is realized as the ADM mass of a solution of the static vacuum
Einstein equations.

Huisken and Ilmanen [19] have since shown by other methods that Bart-
nik’s mass is nonzero except when B is a domain in flat space, thus proving
the nontriviality of the Bartnik mass. However the static minimization con-
jecture has remained open up to now.1

1However, as we were preparing the final draft of this manuscript, a preprint
appeared [2] announcing a proof that for any bounded three-dimensional spatial
region whose boundary has positive Gauss curvature, there exists an extension
satisfying the static Einstein equations with suitable boundary conditions (Bartnik’s
geometric conditions).
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One strategy to address this conjecture may be to choose one admis-
sible, asymptotically flat extension of B and use it as the initial condition
for List’s flow. Boundary conditions, such as Bartnik’s geometric conditions
([5]) that fix the boundary mean curvature and induced metric, must also
be imposed at ∂B. The idea is then to use the flow to produce a mass-
minimizing sequence which converges to a fixed point, hence to a static
metric.

A test case would be to employ this strategy on R
n, with no inner

boundary. Ideally this would produce sequences of metrics that converge to
flat space.2 Huisken and Ilmanen [19] have discussed such mass minimizing
sequences, and suggest a more complicated view.

Conjecture (Huisken and Ilmanen). Suppose (M, gi) is a sequence of
asymptotically flat, mass-minimizing, non-negative scalar curvature three-
metrics tending to zero mass. Then there is a set Zi such that |∂Zi| → 0 and
(M\Zi, gi) has a flat Gromov–Hausdorff limit.

This foresees that an obstruction to convergence may arise in rotationally
symmetric, asymptotically flat List flow, in the form of a locally collapsed
long, thin tube growing at the origin.3

There is some numerical evidence in favour of convergence to flat space.
As part of a study motivated by black hole thermodynamics, Headrick and
Wiseman [17] examined Ricci flow manifolds-with boundary with U(1) ×
SO(3) symmetry, including S1 × B

3 where B
3 denotes a three-ball in R

3.
They thus had a finitely distant spatial boundary and imposed a Dirichlet
condition there. On S1 × B

3 they found convergence to flat S1 × R
3, known

in the physics literature as “hot flat space.”
We therefore undertook a study of the long-time existence properties of

this flow, with a view to shedding analytical light on these conjectures and
numerical results.

2Note that the manner in which List’s flow would produce mass-minimizing
sequences will be similar to that of the Ricci flow. There the mass remains con-
stant throughout the flow but will jump to a minimizing value in the limit as
t→ ∞, while various measures of the quasi-local mass within bounded regions flow
smoothly toward minimizing values [12, 13, 29].

3We expect that if collapse occurred elsewhere, the rotational symmetry would
force this to be preceded by formation of a minimal surface. But we will show that
the absence of an initial minimal surface implies that none can form later.
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1.3. Overview and main results

Even with the restriction to rotational symmetry, the above conjectures are
not easy to address, and our results are only a starting point. We prove the
following:

Theorem 1.3. Let (g̃ij(r), ũ(r)) be asymptotically flat and rotationally
symmetric initial data for the system of flow equations (1.10) to (1.12) on
R

n such that the metric g̃ij(r) admits no minimal hypersphere. Then this
system of equations has an asymptotically flat, rotationally symmetric solu-
tion (gij(t, r), u(t, r)) on [0, TM ) × [0,∞) for some maximal time of existence
TM ∈ (0,∞]. No minimal hypersphere forms at any t <∞. Furthermore,

(i) If n = 2, then the flow is immortal (TM = ∞).

(ii) If n ≥ 3, and if there is a function F : [0,∞) → (0,∞) such that
1
r |∇u|(t,r) ≤ F (t), then the flow is immortal.

In the case where the flow fails to exist, we can go some short distance
towards analyzing the kind of singularity that develops. List has shown in
his thesis [24] that where the flow fails to exist, the norm of the Riemann
tensor diverges. We therefore borrow the following definition from the Ricci
flow.

Definition 1.4. For TM the maximal time of existence of the Ricci flow,
an essential blow-up sequence (tk, xk) is a sequence of spacetime points
such that tk ↗ TM and sup[0,tk]×[0,∞) |Riem|(t, r) ≤ C|Riem(tk, rk)| =: Bk

for some constant C ≥ 1.

Theorem 1.5. Let (g(t), u(t)) be a rotationally symmetric solution of
(1.10) to (1.12) developing from initial data as in Theorem 1.3, with maxi-
mal time of existence TM <∞, and let (ḡ(t), ū(t)) = ϕ∗

t (g, u) be the corre-
sponding solution of (1.4, 1.5). Let (tk, rk), tk ↗ TM , be an essential blow-up
sequence for (ḡ(t), ū(t)). Set Bk := |Riem|(tk, rk) and define the rescalings

g(k)(s) := Bk · ḡ(tk + s/Bk) ,
u(k)(s) := ū(tk + s/Bk) ,(1.15)

s ∈ [−Bk(1 + tk), 0] .

Then there is a subsequence of the pointed sequence (Rn, g(k)(s), u(k)(s), rk)
which converges smoothly on all compact subsets of (−∞, 0] × R

n to (Rn,
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g(∞)(s), const, r∞) with (Rn, g(∞)(s)) a complete, ancient solution of the
Ricci flow. Sectional curvature in planes tangent to the orbits of the rota-
tional symmetry group is non-negative, and so is the scalar curvature. In
n = 3 dimensions, sectional curvature in planes containing the radial vector
is also non-negative.

Theorem 1.5 does not confirm the conjecture above of Huisken–Ilmanen,
as it leaves open the possibility that the flow is noncollapsed below some
finite scale at the singularity time. When that occurs, then in any dimension,
after rescaling, the resulting limit would be noncollapsed below any scale
and, in the n = 3 case, would have non-negative sectional curvatures. By
rotational symmetry, the limit would then be a Bryant soliton for n = 3.

In Section 2 we discuss the notion of asymptotic flatness that we use,
and survey results of List on local existence and continuation, making minor
modifications where necessary. Section 3 discusses rotational symmetry and
its implications. It is in this section that we state the evolution equations in
the form that we use and define the basic quantities whose flow we analyse in
subsequent sections. Section 4 contains estimates that are valid in arbitrary
dimension with no further assumptions beyond rotational symmetry and
asymptotic flatness. In Section 5, we assume either that 1

r |∇u| is bounded
on any closed time interval or that the dimension is n = 2 (in which case it
is shown in Section 4 that 1

r |∇u| is bounded on closed time intervals). Under
either of these assumptions, we are then able to obtain all further estimates
required to show boundedness of sectional curvatures on finite time intervals.
The proofs of Theorems 1.3 and 1.5 then follow easily form these results.
These proofs are given in Section 6.

Our sign and index conventions are as follows. As previously stated, we
take the (rough or scalar) Laplacian to be Δ := gab∇a∇b. We define the
curvature Ra

bcdx
byczd := ∇y∇zx−∇z∇yx−∇[y,z]x, and we write Rabcd :=

gaeR
e
bcd. The Ricci tensor is Rbd := Ra

bad. We endeavour where possible to
denote constants that bound a function h (say) by C+

h for an upper bound
(i.e., to indicate that h(t, r) ≤ C+

h for all t) and C−
h for a lower bound,

though we sometimes deviate from this practice for reasons of convenience.

2. Preliminaries: asymptotic flatness

The definition of asymptotic flatness, more properly called local asymptotic
flatness when n = 2, can be formulated on any Riemannian manifold with
dimension n ≥ 2 which admits the notion of an asymptotic end. However,
since we work on R

n, complete generality is not necessary here, though it
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can be achieved with minor changes to the formulation below. On the other
hand, our results will hold with a much more general notion of asymptotic
flatness for n ≥ 3 than the usual notion.

To begin, we let

(2.1) eij =

{
δij for n ≥ 3
δij + axixj

r2 for n = 2

where r =
√∑n

i=1(xi)2 and, in dimension n = 2, xi = δijx
j , a > −1, and

the deficit angle of the flat cone metric is 2π
(
1 − 1√

1+a

)
.

Following [24, 25], we define

Definition 2.1. For n ≥ 3, (M, g, u) is asymptotically flat (of order one) if
there is a compact subsetK ⊂M such thatMK := M\K is diffeomorphic to
R

n\B1(0) where B1(0) is the Euclidean unit ball and, on MK , (g, u) satisfies

|gij − eij | ≤ C0/r ,(2.2)

|∂kg| ≤ Ck/r
k+1 , k = 1, 2, 3,(2.3)

|u| ≤ D0/r ,(2.4)

|∂ku| ≤ Dk/r
k+1 , k = 1, 2, 3,(2.5)

where Ck, Dk are constants (k ∈ {0, 1, 2, 3}), r2 = x2
1 + · · · + x2

n with the
xi being Cartesian coordinates for eij , and ∂k is the Cartesian coordinate
derivative.

We choose to work in this class for three reasons. The first is that a local-
in-time existence theorem within this class is already available [24, 25]. The
second is that these fall-off conditions are well-suited to the arguments in
subsequent sections. The third is that our results are, in fact, not very sen-
sitive to the precise choice of definition of asymptotic flatness. We therefore
settle on a convenient choice rather than the most general one, for which
the preliminaries would be a greater distraction.4

Having said that, we note that when n > 3 this definition is in fact much
weaker than most, which tend to require the difference between the metric

4For example, a definition based on weighted Sobolev spaces was used for a similar
problem in [29]. One can augment that definition by including a condition that u
lie in a weighted Sobolev space Hk

δ with k, the number of derivatives in the Sobolev
norm, chosen such that k > 3 + n/2 and δ, the exponent in the weight factor rδ,
any negative number. Then local-in-time existence can be obtained in this class, by
modifying the argument in [29] and papers cited therein.
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and eij to decay at O(1/rn−2). However, for n = 3, the present definition is
stronger than necessary.

Proposition 2.2 (List). Let (ĝ, û) be asymptotically flat. Then there exists
a T > 0 such that (g(t), u(t)) solves (1.4, 1.5) for all 0 ≤ t < T and g(0) = ĝ,
u(0) = û. Furthermore, (g(t), u(t)) is asymptotically flat for all 0 ≤ t < T .

Proof. See [24], Theorems 3.12 and 9.7, or [25], Theorems 4.1 and 8.6. �

Remark 2.3. In fact, List gives a detailed proof of Theorem 2.1 assuming
stronger asymptotic flatness conditions and then notes that the proof obvi-
ously goes through as well for asymptotic flatness conditions which agree
with those above when n ≥ 3. This is clearly the case, and furthermore it is
also the case for n = 2, with eij used in place of δij at one step in the proof
(Equation (9.7) of [24] or Equation (8.5) of [25]).

It is now possible to state a criterion for the flow to exist for all future
time, in the form of a continuation principle which states that, as with Ricci
flow, the flow can be continued beyond t = T unless the norm of the Riemann
curvature diverges there.

Proposition 2.4. Let (ĝ, û) be a asymptotically flat initial data. Then the
system (1.4, 1.5), with the initial conditions g(0) = ĝ, u(0) = û has a unique
solution on a maximal time interval 0 ≤ t < TM ≤ ∞. If TM <∞ then

(2.6) lim sup
t↗TM

sup
x∈Rn

|Rm(t, x)|g(t,x) = ∞.

Moreover, for any T ∈ [0, TM ), if K = sup0≤t≤T supx∈Rn |Rm(t, x)|g(t,x), and
C = supx∈Rn |∇û(x)|2g(x), then

(2.7) e−(2nK+4C)T ĝ ≤ g(t) ≤ e(2nK+4C)T ĝ for all t ∈ [0, T ].

Proof. List gives a partial proof for complete manifolds (Theorem 3.22 of
[24]) and a full proof for closed manifolds (Theorems 3.11 and 6.22 of [24]).
The full proof uses the closedness of the manifold only to invoke the maxi-
mum principle for non-negative scalar functions; in particular, norms of ∇u,
Riem and derivatives thereof. By Proposition 2.2 and equations (2.2) to
(2.5), each such quantity tends to zero as r → ∞, 0 ≤ t ≤ T , and thus the
maximum principle applies to these functions on complete manifolds as well,
provided the initial data obey asymptotic flatness. �
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3. Rotational symmetry

3.1. The coordinate system

Now assume the flow that solves (1.4), (1.5) evolves from rotationally sym-
metric C2 initial data (ĝ, û) with

(3.1) dŝ2 = ĝijdx
idxj = a2(ρ)dρ2 + ρ2dΩ2,

where dΩ2 is the constant curvature sec = 1 metric on the (n− 1)-sphere.
We take a(0) = 1, a′(0) = 0.

Ricci flow preserves isometries. List’s flow, in turn, preserves symmetries
of the pair (g, u) (i.e., isometries of g that commute with u). Combining this
fact with Proposition 2.4, then there will be a maximal time of existence
TM ∈ (0,∞], a coordinate system in which (2.1) to (2.5) hold, and coor-
dinate transformations taking the metric to a spherical coordinate system
xi = (ρ, θA) (with θA the coordinates on the ρ = const spheres). In these
coordinates, the flow is

t 
→ (ḡ(t, ρ), ū(t, ρ))

ds̄2 = ḡijdx
idxj = q2(t, ρ)dρ2 + h2(t, ρ)dΩ2.(3.2)

This metric solves (1.4), (1.5). The coordinate functions q and h are C2 in
ρ and, in the one-sided sense, C1 in t at t = 0 and ρ > 0, and are smooth in
t and r for all r > 0 and t ∈ (0, TM).

Now introduce a new coordinate system at each time, obtained via acting
with the family of diffeomorphisms

(3.3) ψt(ρ, θA) :=
(
h(t, ρ), θA

)
=: (r, θA) .

Note that since h(0, ρ) = ρ then ψ0 = id, and also, since ∂h
∂ρ (0, ρ) = 1, then

for T sufficiently small, there are (possibly T dependent) constants C±
∂h(T )

such that

(3.4) 0 < C−
∂h(T ) ≤ ∂h

∂ρ
(t, ρ) ≤ C+

∂h(T )

whenever 0 ≤ t ≤ T and T < T̃ , where T̃ ≤ TM is defined to be the supre-
mum of T -values for which (3.4) is true.

Proposition 3.1. T̃ = TM.
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Proof. Given in Subsection 4.2.2. �
We can now write the flow in “area radius gauge” as

t 
→ (g(t, r), u(t, r))

g(t, r) :=
(
ψ−1

t

)∗
ḡ(t, ρ) = f2(t, r)dr2 + r2dΩ2 ,(3.5)

u(t, r) :=
(
ψ−1

t

)∗
ū(t, ρ) = u (t, h(t, ρ)) ,

where

(3.6) f(t, r) :=
q (t, ρ(t, r))
∂h
∂ρ (t, ρ(t, r))

.

Let the generator of the family ψt be written as Xj = gij∇iφ(t, r) for
some scalar φ(t, r). Inserting this and (3.5) into (1.10), we obtain the pair
of equations

∂f

∂t
= −(n− 1)

rf2

∂f

∂r
+ k2

nf |∇u|2 +
1
f

∂2φ

∂r2
− 1
f2

∂f

∂r

∂φ

∂r
,(3.7)

0 =
r

f3

∂f

∂r
+ (n− 2)

(
1 − 1

f2

)
− r

f2

∂φ

∂r
.(3.8)

The latter yields

(3.9)
∂φ

∂r
=

1
f

∂f

∂r
+

(n− 2)
r

(f2 − 1),

We substitute this into (3.7) and (1.11) and define

(3.10) z :=
1
f

∂u

∂r

so that z2 = |∇u|2 in rotational symmetry. Then Equations (1.10), (1.12)
reduce to the system of equations which we study herein, namely:

Definition 3.2. The rotationally symmetric flow equations are the system

∂f

∂t
=

1
f2

∂2f

∂r2
− 2
f3

(
∂f

∂r

)2

+
(
n− 2
r

− 1
rf2

)
∂f

∂r

− (n− 2)
r2f

(f2 − 1) + k2
nfz

2,(3.11)

∂z

∂t
=

1
f2

∂2z

∂r2
+
[

1
rf2

+
n− 2
r

]
∂z

∂r
−
[
n− 1
r2f2

+ k2
nz

2

]
z.(3.12)
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Next, define

λ1(t, r) :=
1
rf3

∂f

∂r
,(3.13)

λ2(t, r) :=
1
r2

(
1 − 1

f2

)
.(3.14)

Lemma 3.3. When n = 2, λ1 is the Gauss curvature. When n ≥ 3, λ1

is the sectional curvature in planes containing ∂
∂r and λ2 is the sectional

curvature in planes tangent to the r = const spheres. As well, we have

|Riem|2 = RijklR
ijkl = 2(n− 1)λ2

1 + (n− 1)(n− 2)λ2
2 ,(3.15)

∂λ2

∂r
=

2
r

(λ1 − λ2) .(3.16)

Proof. The curvature interpretations of λ1 and λ2 follow from trivial com-
putations, and then (3.15) follows immediately from rotational symmetry.
Equation (3.16) is obvious (expand both sides) and is, in fact, the second
Bianchi identity. �

Note that (3.16) shows that λ1 = λ2 at the origin and, more generally, at
any spatial or spacetime extremum of λ2. Also note that, using Proposition
3.1 and Lemma 3.3, we can adapt the continuation principle (Proposition
2.4) to the area-radius gauge:

Proposition 3.4. If there exists a constant Cλ > 0 independent of TM such
that

(3.17) |λ1(t, r)| ≤ Cλ if n = 2,

or

(3.18) |λ1(t, r)| + |λ2(t, r)| ≤ Cλ if n ≥ 3,

for all (t, r) ∈ [0, TM) × [0,∞) then TM = ∞.

We shall eventually see that it suffices to bound λ1 or, equivalently, R
from above.

4. A priori bounds

In this section and the next, we always assume that (g(t), u(t)), 0 ≤ t ≤ T ,
is a solution of (1.10) to (1.12) and that (M, g(t), u(t)) is asymptotically flat
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(of order one; as in Definition 2.1) for all t ∈ [0, T ]. For now T < T̃ ≤ TM,
but after we prove Proposition 3.1 we will be able to set T̃ = TM.

4.1. Elementary bounds on scalar quantities

In his thesis [24, 25], List shows that a modified form of the usual Ricci flow
lower bound on scalar curvature of compact manifolds holds for List’s flow.
He also shows that |∇u|2 is bounded above by const/(1 + t) on a compact
manifold. These results are simple applications of the maximum principle.
In this section, we adapt the maximum principle to the complete, asymp-
totically flat setting and obtain bounds on R and |∇u|2 for asymptotically
flat manifolds as corollaries.

Lemma 4.1. Let Ψ be a solution of

(4.1)
∂Ψ
∂t

≤ ΔΨ + ∇Y Ψ − k2Ψ2

for some vector field Y and constant k on the domain D(T ) := [0, T ] × R
n �

(t, x), such that Ψ → 0 as x→ ∞. (i) If Ψ(0, x) ≤ 0 for all x ∈ R
n then

Ψ(t, x) ≤ 0 for all (t, x) in D(T ), and otherwise (ii) if k �= 0 we have Ψ ≤
C+

Ψ/(1 + t) for C+
Ψ := max

{
1
k2 , supx∈Rn Ψ(0, x)

}
.

Proof. Consider the domain Dε(T ) := [0, T ] ×Bn(1/ε) for Bn(1/ε) the
n-ball of radius 1/ε > 0 with respect to the Euclidean metric centred at the
origin in R

n. To prove (i), we note that (4.1) implies that ∂Ψ
∂t ≤ ΔΨ + ∇Y Ψ,

and so standard maximum principle arguments show that Ψ must take its
maximum on the parabolic boundary of Dε (i.e., points where either t = 0
or r = 1/ε). Taking ε→ 0, we see by the asymptotic condition on Ψ that
either the supremum is 0 or the supremum occurs at t = 0, in which case it
is again zero by assumption.

To prove (ii), we define the function G := (1 + t)Ψ and see that from
(4.1) it obeys

(4.2)
∂G

∂t
≤ ΔG+ ∇YG+

G

1 + t

[
1 − k2G

]
.

If the maximum of G on Dε occurs at some (t, x) in the parabolic interior
of Dε (i.e., the complement of the parabolic boundary), we see immediately
from (4.2) that G ≤ 1/k2, and so Ψ ≤ 1

k2(1+t) . If instead the maximum of
G occurs on the boundary of Bn(1/ε) at some 0 < t < T , then by taking ε
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small enough we see that the maximum approaches zero. Alternatively, the
maximum can occur at t = 0, and since G(0, x) = Ψ(0, x) then in this case
Ψ(t, x) ≤ supx

G(0,x)
1+t = supx

Ψ(0,x)
1+t . �

This immediately yields Propositions 4.2 and 4.4.

Proposition 4.2. Let (g, u) be an asymptotically flat solution of the flow
on the domain [0, T ] × R

n. 0 < T < T̃ Then for any n ≥ 2

(4.3) |∇u(t, r)| ≤ 1√
1 + t

C+
|∇u|,

where C+
|∇u| is a constant depending only on the initial data and kn.

Proof. Equation (1.12) yields

(4.4)
∂

∂t

(|∇u|2) ≤ Δ
(|∇u|2)+ ∇X

(|∇u|2)− 2k2
n

(|∇u|2)2 .
Apply Lemma 4.1 with Ψ = |∇u|2 and k2 = 2k2

n. This proves the proposition

and shows that C+
|∇u| = max

{
1√
2k2

n

, supx |∇u|(0,x)

}
. �

Remark 4.3. In rotational symmetry, we have |z| =
∣∣∣ 1f ∂u

∂r

∣∣∣ = |∇u| and we
write this bound as

(4.5) |z| ≤ C+
z√

1 + t
,

where C+
z := C+

|∇u|.

Next, from (1.10) it is easy to derive (see [24, Ch. 2]) that

(4.6)
∂R

∂t
= ΔR+ 2RijR

ij + 2k2
n(Δu)2 − 2k2

n|∇∇u|2 − 4k2
nRij∇iu∇ju+ ∇XR.

Unlike in the Ricci flow, this equation does not lead to the preservation of
scalar curvature. However, defining

(4.7) Sij := Rij − k2
n∇iu∇ju,
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and using (1.12), then (4.1) leads to

∂S

∂t
= ΔS + 2SijS

ij + 2k2
n(Δu)2 + ∇XS

= ΔS+ 2
(
Sij − 1

n
gijS

)(
Sij − 1

n
gijS

)
+

2
n
S2 + 2kn

2 (Δu)2 +∇XS

≥ ΔS +
2
n
S2 + ∇XS,(4.8)

where S := gijSij . Then we obtain

Proposition 4.4. Let (g, u) be an asymptotically flat solution of the flow
on the domain [0, T ] × R

n, 0 < T < T̃ . For any n ≥ 2

(4.9) S := R− k2
n|∇u|2 ≥ C−

S

1 + t
,

where C−
S ≤ 0 is a constant depending only on the initial data and n, and if

S(0, x) ≥ 0 for all x ∈ R
n, then S(t, x) ≥ 0 for all t ≥ 0 and all x ∈ R

n.

Proof. Use (4.8) to apply Lemma 4.1 to −S. The k2 of Lemma 4.1 takes the
value −2/n. This yields C−

S = min
{−n

2 , infx S(0, x)
}
. �

Note that List’s flow does not necessarily preserve positive scalar curva-
ture, though it does preserve the positivity of R− k2

n|∇u|2.

4.2. Bounds that hold in rotational symmetry

The bounds of the previous subsection are valid with or without rotational
symmetry. We now specialize to the rotationally symmetric flow equations
(3.11), (3.12) on [0, T ] × [0,∞) � (t, r), 0 < T < T̃ .

4.2.1. Bounds on f. In this subsection, we derive bounds on f :=
√
grr.

These bounds allow us to address two concerns. The first is that our coordi-
nate system may break down during the flow. This will happen if f diverges
to +∞ or approaches zero along the flow. Note that f diverges at some r > 0
iff the mean curvature H of the r = const sphere goes to zero. The mean
curvature is given by

(4.10) H =
n− 1
rf

.

Thus, divergence of f at finite r implies the presence or formation of a
minimal hypersphere. We will show that this cannot happen.
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The second concern arises because positivity of the scalar curvature is
not strictly preserved along the flow, even though the results of the previous
subsection show that R is bounded below and the bound tends to zero in
time. One may wonder whether this is enough for purposes of the static
minimization conjecture, where one seems to want the static metric to arise
as a limit of a sequence of positive scalar curvature metrics.

Here we show that the rotationally symmetric flow (3.11), (3.12) on R
3

does preserve the positivity of the Brown-York and Misner-Sharpe quasi-
local masses. The Brown-York mass of a closed embedded hypersurface
Σ ↪→ R

3 is defined to be μBY[Σ] :=
∫
Σ (H0 −H) dΣ, where H is the mean

curvature of Σ and H0 is the mean curvature of an isometrically embedded
image of Σ in flat space. In our case, for a sphere of radius r about the
origin, we have

(4.11) μBY[Σ] :=
8π
r

(
1 − 1

f(t, r)

)
.

The Misner–Sharpe mass is defined only for rotationally symmetric metrics
and is given for n = 3 by

(4.12) μMS :=
8π
r

(
1 − 1

f2(t, r)

)
=
(

1 +
1
f

)
μBY,

so it is positive if and only if the Brown–York mass is.
We now show that for any finite t along the flow, f(t, r) is bounded above

and below. As a result, if no minimal sphere is present initially then none
will form, and for n = 3 if μBY is initially positive then it will always be so
(likewise for μMS). In fact, this will hold in any dimension if we take (4.11)
and (4.12), without modification, to be the definitions of μBY and μMS in
any dimension (this is not what is usually done, however).

Proposition 4.5.

(4.13) C−
f ≤ f(t, r) ≤ C+

f (1 + t)p ,

where p = 1 + (knC
+
z )2 for all n ≥ 2. The constants C±

f depend only on the
initial data {(f(0, r), z(0, r))} and, for n = 2, f∞ (equivalently, the n = 2
mass).
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Proof. Let w(t, r) = f2(t, r) − 1. Then (3.11) yields

(4.14)

∂w

∂t
=

1
f2

∂2w

∂r2
− 3

2f4

(
∂w

∂r

)2

+
(
n− 2
r

− 1
rf2

)
∂w

∂r
− 2(n− 2)

r2
w+ 2k2

nf
2z2,

subject to the boundary conditions

(4.15) w(t, r) →

⎧⎪⎨
⎪⎩

0 for r → 0 and all n ≥ 2,
w∞ := f2∞ − 1 for r → ∞ and n = 2, and
0 , for r → ∞ and n > 2.

Now consider the closed annular region Aε(T ) := [0, T ] × [ε, 1
ε

] � (t, r).

(i) Case n > 2: By (4.15), inf{w(t, r)|0 ≤ t ≤ T, r ≥ 0} ≤ 0. We observe
from (4.14) that if w(t, r) has a negative minimum in Aε(T ), such a
minimum must lie on the parabolic boundary.5 Taking ε sufficiently
large, then by the boundary conditions, the negative minimum must
lie on the initial boundary, so then w(t, r) ≥ infr {w(0, r)}.

(ii) Case n = 2: We consider the functionWε(t, r) =w(t, r) + ε · t onAε(T ).
From (4.14), W has the following evolution equation:

(4.16)
∂Wε

∂t
=

1
f2

∂2Wε

∂r2
− 3

2f4

(
∂Wε

∂t

)2

− 1
rf2

∂Wε

∂r
+ 2k2

nf
2z2 + ε ,

with boundary conditions Wε(t, r) → ε · t as r → 0 and Wε(t, r) →
w∞ + ε · t as r → ∞. For δ > 0, the minimum of Wε on Aε(T ) must
lie on the parabolic boundary. Taking ε→ 0, then we obtain w(t, r) ≥
min {0, w∞, infr {w(0, r)}}.

This proves the left-hand (i.e., inferior) inequality in (4.13) and shows that

(4.17) C−
f =

{
infr {f(0, r)} for n > 2,
min {1, f∞, infr {f(0, r)}} for n = 2.

To prove the superior inequality, consider the function

(4.18) Q(t, r) :=
w(t, r)

(1 + t)2p
.

5e.g., Let Ψ = −w and then observe that the inequality (4.1) applies on Aε(T )
(with k = 0), so we can use Lemma 4.1(i).
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For t< τ,Q obeys Q(0, r) =w(0, r), Q(t, 0) =0, and either limr→∞Q(t, r) =
0 if n > 2 or limr→∞Q(t, r) = w∞

(1+t)2p if n = 2. As well, Q solves the PDE

∂Q

∂t
=

1
f2

∂2Q

∂r2
− 3(1 + t)2p

2f4

(
∂Q

∂r

)2

+
(
n− 2
r

− 1
rf2

)
∂Q

∂r

+
(

2k2
nz

2 − 2(n− 2)
r2

− 2p
1 + t

)
Q+

2k2
n

(1 + t)2p
z2

≤ 1
f2

∂2Q

∂r2
− 3(1 + t)2p

2f4

(
∂Q

∂r

)2

+
(
n− 2
r

− 1
rf2

)
∂Q

∂r

+
(

2k2
n(C+

z )2

1 + t
− 2(n− 2)

r2
− 2p

1 + t

)
Q+

2k2
n(C+

z )2

(1 + t)2p+1
(4.19)

using (4.5). Choose

(4.20) p := 1 +
(
knC

+
z

)2
.

Then (4.19) yields

(4.21)
∂Q

∂t
≤ 1
f2

∂2Q

∂r2
+
(
n− 2
r

− 1
rf2

)
∂Q

∂r
+

2
1 + t

(
(knC

+
z )2

(1 + t)2p
−Q

)

whenever Q ≥ 0, where we have discarded some manifestly negative terms.
Clearly this equation does not permitQ to have a maximum on the parabolic
interior of [0, T ] × [ε, 1/ε] unless Q ≤ (knC+

z )2

(1+t)2p , whence by (4.18) we get

w(t, r) ≤ (knC
+
z )2 and then

(4.22) f(t, r) ≤
√

1 + (knC
+
z )2.

Otherwise, the maximum of Q can occur on the parabolic boundary. Then
taking ε sufficiently small, if a positive maximum for Q occurs either:

(a) The maximum ofQ occurs on the initial boundary t= 0. This can occur
for any n ≥ 2. Using (4.18), w= f2 − 1, and the fact that Q(0, r) =
w(0, r) = f2(0, r) − 1, then f2(t, r) ≤ 1 + (1 + t)2p supr{f2(0, r)− 1} ≤
(1 + t)2p supr{f2(0, r)}. Combining this with (4.22) yields

(4.23)

f(t, r) ≤ max
{√

1 + (knC
+
z )2, (1 + t)p sup

r
{f(0, r)}

}
≤ C+

f (1 + t)p

for C+
f = max

{√
1 + (knC

+
z )2, supr {f(0, r)}

}
, or
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(b) n = 2 and the maximum of Q is w∞
(1+t)2p < max{0, w∞}. Combining this

with (4.22) and (4.23), we obtain

(4.24)

f(t, r) ≤ max
{
f∞,

√
1 + (knC

+
z )2, (1 + t)p sup

r
{f(0, r)}

}
≤ C+

f (1 + t)p,

for C+
f = max

{
f∞,

√
1 + (knC

+
z )2, supr {f(0, r)}

}
. �

Corollary 4.6. (i) If no minimal hypersphere is present initially, none
forms at any t <∞. (ii) For n = 2, if the Brown–York mass μBY(0, r) of
every r = const hypersphere about the origin is ≥ 0 at t = 0, then μBY(t, r) ≥
0 for every r ∈ R and every t > 0; the same holds for the Misner–Sharpe
mass.

Proof. The first statement follows immediately from (4.23) and (4.10). The
second statement follows from (4.17), (4.13) and (4.11) (or, for the Misner–
Sharpe mass, (4.12)). �

Remark 4.7. If the assumptions of (ii) hold and if the flow converges
(R3, g(t), 0) in the pointed Cheeger–Gromov sense to (R3, g∞, 0), then (R3,
g∞) will have non-negative Brown–York mass at each r (by (4.11) and the
fact that the sign of 1 − 1

f will be preserved under the diffeomorphisms
(R3, g(t), 0) → (R3, g∞, 0)). Since limr μBY = mADM := 1

16π

∫
S2∞

δij (gki,j −
gij,k) dSi (we take this limit along r = const → ∞ spheres), the ADM mass
of the limit manifold will be non-negative.

4.2.2. Proof of Proposition 3.1

Proof. Setting t=0 in (4.13), we see that C−
f ≤ f(0, r) ≡ a(r)≡ q (0, ρ(r)) ≤

C+
f . Assume, by way of contradiction, that T̃ < TM. Then, by Proposition

2.4, there are constants K and C such that

(4.25) e−(2nK+4C)T
(
C−

f

)2 ≤ q2(t, ρ) ≤ e(2nK+4C)T
(
C+

f

)2

for 0 ≤ t ≤ T . Furthermore, (4.13) holds for all t ∈ [0, T ] so, dividing (4.25)
by (4.13) and using (3.6), we get

(4.26)

e−(2nK+4C)T

(
C−

f

C+
f (1 + T )p

)2

≤ q2(t, ρ(r))
f2(t, r)

=
(
∂h

∂ρ

)2

≤ e(2nK+4C)T

(
C+

f

C−
f

)2
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for all t ∈ [0, T ]. We can replace T using that T ≤ T̃ < TM, obtaining

(4.27) e−(2nK+4C)TM

(
C−

f

C+
f (1 + TM )p

)2

≤
(
∂h

∂ρ

)2

≤ e(2nK+4C)TM

(
C+

f

C−
f

)2

.

By comparison, we see that the constants in the inequality (3.4) are in fact
independent of T . Since the inequalities hold for any T < T̃ and are closed
relations, they hold for T = T̃ as well and, by adjusting the constants slightly
if necessary (keeping the inferior one positive of course), then (3.4) holds for
t-values beyond T̃ , contradicting the assumption. �

4.2.3. A bound on tangential sectional curvature. We will now
obtain a bound on the behaviour of f at the origin. This is in fact a lower
bound on λ2, which for n ≥ 3 is the sectional curvature in planes tangent to
the r = const spheres.

Proposition 4.8. For all n ≥ 2, λ2(t, r) is bounded below by a constant
−C−

λ2
≤ 0 which depends only on the initial data f(0, r) such that λ2(t, r) ≥

−C−
λ2
/(1 + t).

Proof. In close (but not exact) analogy to [29], we will approximate λ2 by a
sequence of functions um(t, r), 0 < m < 2, defined by

um(t, r) :=
(

2
rm + r2

)(
1 − 1

f2

)
for r > 0,(4.28)

um(t, 0) := lim
r→0

um(t, r) .(4.29)

The um(t, r) functions have the following useful properties:

(i) um(t, 0) = 0 for all 0 < m < 2 and limr→∞ um(t, r) = 0 for all 0<m≤ 2.

(ii) For fixed t and r �= 0, the map m 
→ um(t, r) is continuous at m = 2,
and in fact

(4.30) λ2 = u2.
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Now define new functions

(4.31) Um(t, r) = (1 + t)um(t, r),

and note that Um(0, r) = um(0, r). From (3.11) we obtain an evolution equa-
tion for Um(t, r) given by

∂Um

∂t
=

1
f2

∂2Um

∂r2
+

(rm + r2)
4(1 + t)

(
∂Um

∂r

)2

+
(2r +mrm−1)

2(1 + t)
Um

∂Um

∂r

+
[
2(2r +mrm−1)
f2(rm + r2)

− 1
rf2

+
(n− 2)

r

]
∂Um

∂r

+
1

2(1 + r2−m)(1 + t)

[
(4−m)(m+n− 2) +m(n− 2) + 2(n− 1)r2−m

+ rm−2(2 −m)(m+ n− 2) + rm−2m
(m

2
+ n− 2

)]
U2

m

− (2 −m)(m+ n− 2)
r2(1 + r2−m)

Um +
(

4(1 + t)
rm + r2

)
k2

nz
2

− 2k2
nz

2Um +
1

(1 + t)
Um

(4.32)

≥ 1
f2

∂2Um

∂r2
+
[
(2r +mrm−1)

2(1 + t)
Um +

2(2r +mrm−1)
f2(rm + r2)

− 1
rf2

+
(n− 2)

r

]
∂Um

∂r

+
1

1 + t

[
(n− 1)U2

m +Um

]− (2 −m)(m+ n− 2)
r2(1 + r2−m)

Um − 2k2
nz

2Um,

(4.33)

where the inequality holds at least for 1 ≤ m < 2 and n ≥ 2. Furthermore, if

(4.34) Um < − 1
n− 1

,

we then obtain

∂Um

∂t
>

1
f2

∂2Um

∂r2
+
[
(2r +mrm−1)

2(1 + t)
Um +

2(2r +mrm−1)
f2(rm + r2)

− 1
rf2

+
(n− 2)

r

]
∂Um

∂r
(4.35)
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As with Proposition 4.5, we work first on the annulus Aε(T ). From (4.34)
and (4.35), we see that Um cannot have a minimum < − 1

n−1 at some (t0, r0)
in the parabolic interior of the annulus. The minimum, if < − 1

n−1 , must
lie on the parabolic boundary of Aε(T ). Taking ε→ 0 and recalling that
um(t, ε) → 0 and um(t, 1/ε) → 0, whence Um(t, ε) → 0 and Um(t, 1/ε) → 0
as well, then the minimum, if < − 1

n−1 , must lie at t = 0; that is,

Um(t, r) ≥ min
{
− 1
n− 1

, inf
r
{Um(0, r)}

}
= min

{
− 1
n− 1

, inf
r
{um(0, r)}

}

= min
{
− 1
n− 1

, inf
r

{
2

rm + r2

(
1 − 1

f2(0, t)

)}}

≥ min
{
− 1
n− 1

, inf
r

{
2
r2

(
1 − 1

f2(0, t)

)}}

= min
{
− 1
n− 1

, 2 inf
r
{λ2(0, r)}

}
=: −C−

λ2
,(4.36)

where C−
λ2

≥ 0. We now take m↗ 2 in (4.36), so that Um → (1 + t)λ2 by
(4.30) and (4.31). Using (4.34) and (4.35) as well, (4.36) yields

(4.37) λ2(t, r) ≥ − C−
λ2

(1 + t)
,

�

4.2.4. Smoothness of |∇u| for n = 2

Proposition 4.9. Assume n = 2. Then

(4.38)
1
r
|∇u(t, r)| ≤ C+

ζ ,

where the constant C+
ζ depends only on the (smooth) initial data for ∇u.

Proof. Let ζm(t, r) = 2 z(t,r)
r+rm for 0 < m < 1. Computing from (3.12) we then

obtain that ζm obeys

∂ζm
∂t

=
1
f2

∂2ζm
∂r2

+
{

3 + (2m+ 1)rm−1

rf2(1 + rm−1)
+

(n− 2)
r

}
∂ζm
∂r

+
(m− 1)rm−1

r2(1 + rm−1)

{
m+ 1
f2

+ (n− 2)
}
ζm

+ (n− 2)λ2ζm − k2
nz

2ζm.(4.39)
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For ζm > 0, m < 1, and n = 2, (4.39) reduces to

(4.40)
∂ζm
∂t

≤ 1
f2

∂2ζm
∂r2

+
[
3 + (2m+ 1)rm−1

rf2(1 + rm−1)

]
∂ζm
∂r

.

As usual, restrict attention to the annulus Aε(T ) := [0, T ] × [ε, 1/ε], for some
chosen ε > 0 and T < τ , τ as above. By the maximum principle, ζm must
have a maximum in Aε(T ), but by (4.40) this cannot occur in the parabolic
interior of Aε(T ). If the maximum occurs at r = ε, then take ε→ 0. By regu-
larity, ∂u

∂r ∈ O(r) as r → 0, so ζm(t, ε) ∈ O(ε1−m) → 0, ∀t ∈ [0, T ]. Similarly,
at large r, ∂u

∂r ∈ O(1/r) and so ζm → 0 as r = 1/ε→ ∞. Thus, for ε small
enough, ζm cannot have a positive maximum at any t > 0, and since the
supremum of ζm is non-negative on the t = 0 boundary then

(4.41) |ζm(t, r)| ≤ sup
r
{|ζm(0, r)|} ≤ sup

r

{
2
r
|z(0, r)|

}
=: C+

ζ ,

where the smoothness of the initial data is used to infer the boundedness
of |z(0, r)|/r. Finally, since C+

ζ is independent of m, we can take m↗ 1 to
complete the argument. �

4.3. Summary of a priori bounds

In summary, we have the following bounds for all t ∈ [0, T ], for all x ∈ R
n,

and, assuming rotational symmetry, for all r ∈ [0,∞).

1. const ≤ f2 ≤ const · (1 + t)p.

2. R(t, x) ≥ − const
1+t .

3. R(t, x) ≥ k2
n|∇u|2 for all (t, x) if it holds at t = 0.

4. λ2(t, r) ≥ − const
(1+t) and λ2(t, r) ≥ 0 if f(0, r) ≥ 1 for all r.

5. |∇u|2 ≤ const
1+t .

6. 1
r |∇u| ≤ const when n = 2.

The constants denoted const here are positive and distinct. These constants,
and p, depend only on the initial data, n, kn and (for n = 2) f∞, and do not
depend on T , as can be seen by the explicit expressions for the constants
given in the preceding section.

For n ≥ 3, we can summarize the picture that these bounds present as
follows.
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Proposition 4.10. Assume n ≥ 3. One of the following possibilities holds:

1. The flow (3.12), (3.13) exists for all (t, r) ∈ [0,∞) × [0,∞).

2. There is a sequence of points (tk, rk) with rk → 0 such that λ1(tk, rk) =
λ2(tk, rk) → +∞ as tk ↗ TM.

3. There is a sequence of points (tk, rk) along which λ1(tk, rk) → +∞ as
tk ↗ TM but λ2(tk, rk) remains bounded along every such sequence.

Remark 4.11. The considerations of the next section will eliminate the
third possibility from this list.

Corollary 4.12. Either the flow exists for all t > 0 or lim supt↗TM
supr

λ1 = ∞ and lim supt↗TM
supr R = ∞.

Remark 4.13. The Corollary is also true for n = 2, since then 2λ1 =
R ≥ − const

1+t .

Proof of 4.10. By the continuation principle, either the flow exists for all t >
0 or at least one sectional curvature diverges as t→ TM. We first consider the
case of λ2 → ∞. Then there is a sequence of points (tk, rk), tk < tk+1 < TM,
along which λ2 assumes successive maximum values; λ2(tk, rk) ≥ λ2(t, r) for
all (t, r) ∈ [0, tk] × [0,∞). From the definition of λ2, we see that rk → 0 along
any such sequence, and at these points, the Bianchi identity (3.16) shows
that λ1(tk, rk) = λ2(tk, rk).

Since λ2 ≥ − const
1+t , the only remaining cases are those for which λ2

remains bounded. But then λ1 cannot diverge to −∞ because (n− 1) (2λ1 +
(n− 2)λ2) ≡ R ≥ − const

1+t . Thus we have eliminated all possibilities that are
not enumerated in the proposition. �

5. Smoothness of |∇u| and long-time existence

5.1. Smoothness of |∇u| and an upper bound on λ2

In this section, we will show that whenever 1
r |∇u| remains finite, the flow

exists for all t > 0. When n = 2, we have already shown in Proposition 4.9
that 1

r |∇u| remains bounded. In this subsection, the first proposition we
present shows that this will also be the case for n > 3, provided that λ2

remains finite. In consequence, the n ≥ 3 flow will fail to exist only if λ2

diverges at finite T . We then show that, conversely, when 1
r |∇u| remains

finite, so does λ2. This follows for all dimensions, including n = 2, and is
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useful when n = 2 even though the combination λ2 = 1
r2

(
1 − 1

f2

)
is of course

not a sectional curvature in that case.

Proposition 5.1. Assume that there is a function F+
λ2

: [0,∞) → [0,∞)
such that λ2(t, r) ≤ F+

λ2
(T ) for all 0 ≤ t ≤ T . Then there is a function F+

ζ :
[0,∞) → [0,∞) such that

(5.1)
z

r
≡ 1
r
|∇u(t, r)| ≤ F+

ζ (T ) whenever 0 ≤ t ≤ T .

Proof. By Proposition 4.9, this is true for n = 2 (without the assumption on
λ2 and with F+

ζ = C+
ζ = const). Thus, assume n ≥ 3. Choose some T > 0

and define ξm := ζm/(1 + t)(n−2)F+
λ2

(T ) for 0 ≤ t ≤ T . Then from (4.39) with
0 < m < 1 and ξm > 0, we obtain

(5.2)
∂ξm
∂t

≤ 1
f2

∂2ξm
∂r2

+
[
3 + (2m+ 1)rm−1

rf2(1 + rm−1)

]
∂ξm
∂r

,

and the proof proceeds precisely as in Proposition 4.9. This implies that ξm
is bounded above by a constant depending only on initial data, and thus
ζm ≤ F+

ζ (T ) := const · (1 + t)(n−2)F+
λ2

(T ). Since F+
λ2

is defined for all T > 0,
so is F +

ζ , and since the bound is m-independent, we extend to m = 1. �

Proposition 5.2. Conversely, assume that Equation (5.1) holds for all
T > 0. Then there is a function F+

λ2
: [0,∞) × [0,∞) such that

(5.3) λ2(t, r) ≤ F+
λ2

(T ) whenever 0 ≤ t ≤ T.

Proof. We work, as always, on a compact annular domain Aε(T ) := [0, T ] ×
[ε, 1/ε] � (t, r). Choose a positive function F : [0,∞) → (0,∞) such that
F (0) = 1 and define functions

Vm(t, r) :=
(

F (t)
rm + r2

)(
f2(t, r) − 1

)
for r > 0,(5.4)

Vm(t, 0) := lim
r→0

Vm(t, r).(5.5)

Note that

(5.6) λ2 =
2

F (t)f2(t, r)
V2.

We will show by the maximum principle that the Vm(t, r) functions have
a uniform bound in m. From (3.11), we obtain an evolution equation for
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Vm(t, r) given by

∂Vm

∂t
=

1
f2

∂2Vm

∂r2
+
[
2(mrm−1 + 2r)
f2(rm + r2)

− 3(rm + r2)
2f4F

∂Vm

∂r

− 3(mrm−1 + 2r)
f4F

Vm +
n− 2
r

− 1
rf2

]
∂Vm

∂r

+
rm−2

rm + r2

[
m(m− 2)

f2
Vm + (n− 2)(m− 2)Vm + 2k2

n |∇u|2 r2−mF

]

+
[
2k2

n |∇u|2 +
F ′

F

]
Vm − 3(mrm−1 + 2r)2

2f4F (rm + r2)
V 2

m.(5.7)

If Vm(t, r) attains a positive maximum Vm(t0, r0) < 1 for all m < 2, we
are done, so assume to the contrary that the maximum is > 1. As well,
for the moment assume that the maximum occurs at a point (t0, r0) in the
parabolic interior of Aε(T ). All the terms in (5.7) that do not contain a
derivative will be negative provided that

(5.8)
2k2

n |∇u|20
rm
0 + r20

F (t0) + 2k2
n |∇u|20 Vm(t0, r0) +

F ′(t0)
F (t0)

Vm(t0, r0) ≤ 0.

Observe that this implies that F ′(t0) < 0, so take it to be decreasing for
all t ≥ 0. Then 0 < F (t) ≤ 1 and so (5.8) will hold if it holds with F (t0)
replaced by 1 in the first term on the left. Then, in the limit as m↗ 2, this
first term becomes k2

n

(
1
r |∇u|0

)2. Since we assume that (5.1) holds, we can
control this term. Then we obtain the sufficient condition

(5.9) 2k2
n

(
F+

ζ (T )
)2

+
[
2k2

n(C+
z )2 +

F ′(t0)
F (t0)

]
Vm(t0, r0) ≤ 0.

Since V (t0, r0) ≥ 1 by assumption, a choice of F that satisfies this con-
dition is

(5.10) F (t) = e−Pt , P := 2k2
n

[(
F+

ζ (T )
)2

+
(
C+

z

)2]
.

That is, choosing F in (5.4) to be given by (5.10), then either (i) Vm

is bounded above on Aε(T ) by 1 or the maximum of Vm on Aε(T ) resides
on the parabolic boundary of Aε(T ). On the spatial part of this boundary
at r0 = 1/ε, as ε→ 0 we see from (5.4), (5.6), and asymptotic flatness that
Vm → 0, so for any fixed ε small enough, if the maximum were to occur on
this part of the boundary it would be less than 1. Likewise, if it occurs at
r0 = ε, then from (5.4) we would have Vm(t0, ε) ∼ F (t0)(f2 − 1)/εm, m < 2,
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and then local existence implies Vm(t0, ε) → 0 as ε→ 0, so again for any
fixed but sufficiently small ε we would have Vm < 1 at its maximum. Thus,
the maximum, if > 1, occurs on the initial boundary, and so

Vm(t, r) ≤ max
{

1, sup
r
{Vm(0, r)}

}
≤ max

{
1, sup

r
{2V2(0, r)}

}

= max
{

1, sup
r
{2λ2(0, r)}

}
,(5.11)

for any m < 2. Since the right-hand side is independent of m < 2, the propo-
sition now follows by taking m↗ 2 and using (5.10), (5.6) and the inferior
part of (4.13). We note that we obtain F+

λ2
(T ) ≤ const · ePT with P as in

(5.10). �
It immediately follows that the other sectional curvature, λ1, is bounded

below:

Corollary 5.3. Assume that (5.1) holds for all T > 0. Then there is a
function F−

λ1
: [0,∞) × [0,∞) such that

(5.12) λ1(t, r) ≥ −F−
λ1

(T ) whenever 0 ≤ t ≤ T.

Proof. In rotational symmetry, we have

(5.13) R = 2(n− 1)λ1 + (n− 1)(n− 2)λ2.

The result then follows from (4.9) and Proposition 5.2, and indeed F−
λ1

(T ) ≤
const · ePT with P as in (5.10). �

5.2. Bounding the Hessian of u

Finally we seek an upper bound for λ1. To find it, we must first bound the
second r-derivative of u.

Proposition 5.4. Assume that (5.1) holds for all T > 0. Then there is a
function F+

|z′| : [0,∞) × [0,∞) such that

(5.14)
∣∣z′(t, r)∣∣ ≤ F+

|z′|(T ) whenever 0 ≤ t ≤ T.

Proof. Recall that in rotational symmetry we have |z| =
∣∣∣ 1f ∂u

∂r

∣∣∣ = |∇u|, with

|z′| =
∣∣∣ ∂
∂r

(
1
f

∂u
∂r

)∣∣∣ = ∂
∂r |∇u|. The evolution equation for (z′)2 can be derived
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from (3.11), (3.12) and is given by

∂

∂t

[
(z′)2

]
=

1
f2

∂2

∂r2
[
(z′)2

]
+
(

1
rf2

+
n− 2
r

− 2
f3

∂f

∂r

)
∂

∂r

[
(z′)2

]
(5.15)

− 2
f2

(
∂z′

∂r

)2

− 2
(
R+

n(n− 1)
r2f2

)(
(z′)2

n− 1
+
z

r
z′
)

− 6k2
nz

2(z′)2 − 2
r2

(n− 1)(n− 2)
(

(z′)2

(n− 1)f2
− z

r
z′
)

Set 0 ≤ t ≤ T and define

(5.16) Z := e−2κt(z′)2 ,

where the constant κ > 0 will be chosen below. Then from (5.15) we compute
that

∂Z
∂t

=
1
f2

∂2Z
∂r2

+
(

1
rf2

+
n− 2
r

− 2
f3

∂f

∂r

)
∂Z
∂r

− 1
2f2Z

(
∂Z
∂r

)2
(5.17)

− 2
(
R+

n(n− 1)
r2f2

)[ Z
n− 1

+
z

r
e−κt

√
Z
]

− 2
r2

(n− 1)(n− 2)
[ Z
(n− 1)f2

− z

r
e−κt

√
Z
]
− 2

[
3k2

nz
2 + κ

]Z.

By asymptotic flatness, Z → 0 as r → ∞ for an t < T . Since Z ≥ 0 by
definition, either Z = z′ = 0 everywhere or Z has a positive maximum. Say
the maximum of Z occurs at a spacetime point q = (t, r).

(i) Case R =: Rq ≥ 0 at q and r(q) �= 0: From (5.17) it follows that at q
we must have

0 ≤ ∂Z
∂t

≤ −2
[
Rq +

n(n− 1)
r2f2

] [ Z
n− 1

+
z

r
e−κt

√
Z
]

− 2
r2

(n− 1)(n− 2)
[ Z
(n− 1)f2

− z

r
e−κt

√
Z
]
,(5.18)

and so we must have that

(5.19)
√
Z ≤ −(n− 1)

z

r
e−κt ≤ (n− 1)F+

ζ (T )e−κt
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if n = 2, and if n > 2 then either (5.19) must hold or

(5.20)
√
Z ≤ (n− 1)f2 z

r
e−κt ≤ F+

ζ (T )(C+
f )2(1 + t)2pe−κt

must hold instead, using (5.1) and (4.13) of Proposition 4.5 (where p
is defined) and (4.5). In either case, Z and, thus, z′ are bounded above
at any t ≥ 0.

(ii) Case R < 0 at q and r(q) �= 0: We further assume that neither (5.19)
nor (5.20) holds at the maximum, since otherwise we would have an
upper bound on Z. Then the terms in square brackets in (5.17) are
non-negative so where they are multiplied by negative coefficients in
(5.17) we can drop them and obtain that

(5.21) 0 ≤ ∂Z
∂t

≤ −2Rq

( Z
n− 1

+
z

r
e−κt

√
Z
)
− 2κZ

at the point q where Z takes its maximum. Choose κ such that κ+
Rq

n−1 > 0. For example, choose

(5.22) κ = 1 +

∣∣C−
S

∣∣
n− 1

,

where C−
S is a lower bound for R (cf (4.9)). Then (5.21) yields

(5.23)
√
Z ≤ −Rq

z

r
e−κt ≤ |C−

s |F+
ζ (T )e−κt.

(iii) Maximum occurs at r = r(q) = 0: By local existence, f and z and their
spatial derivatives are bounded for 0 ≤ t ≤ T , for any T < τ = maxi-
mal time of existence. Thus the same is true for Z and for its first time
derivative. Examining the behaviour of coefficients in (5.17) as r → 0,
keeping in mind that z/r is bounded, we see that this implies that

(5.24)
n

f2

[ Z
n− 1

+
z

r
e−κt

√
Z
]

+ (n− 2)
[ Z
(n− 1)f2

− z

r
e−κt

√
Z
]
∈ O(r2)

as r → 0 for all 0 ≤ t ≤ T . Taking the limit as r → 0 of (5.24), we
obtain either

(5.25)
√
Z(t, 0) = 0,
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or

(5.26)
√

Z(t, 0) =
1
2
f2

(
n− 2 − n

f2

)
z

r
e−κt.

(iv) Maximum occurs at t = 0: Then from (5.16) we get

(5.27)
√
Z(0, r) ≡ ∣∣z′(0, t)∣∣ ≤ const,

since the initial data for z′ is bounded.

At least one of the bounds given by (5.19), (5.20), (5.23), (5.25) to
(5.27) must hold and so, using the definition (5.16) with κ given by (5.22),
we obtain (5.14). �

5.3. An upper bound on transverse sectional curvature

With the Hessian bound in hand, the following estimate then gives the
desired upper bound for λ1.

Proposition 5.5. Assume that (5.1) holds for all T > 0. Then there is a
function F+

λ1
: [0,∞) × [0,∞) such that

(5.28) λ1(t, r) ≤ F+
λ1

(T ) whenever 0 ≤ t ≤ T.

Proof. We first define

(5.29) y(t, r) :=

{
1
2r

∂
∂r

[
1
r2

(
1
f − 1

)]
for r > 0 ,

0 for r = 0 ,

and we note that

(5.30) y =
f

(1 + f)
λ2 − 1

2
fλ1 for r > 0 ,

so we seek a lower bound for y. To see that y is continuous at r = 0, use the
Bianchi identity (3.16) to write (5.30) as

(5.31) y = − rf

2(1 + f)
∂λ2

∂r
+
f(1 − f)
2(1 + f)

λ1 .

Since 1 − f ∈ O(r2) and ∂λ2
∂r ∈ O(r) as r → 0, we see that y → 0 as r → 0.
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Computing from (3.11) and (5.29), we see that for r > 0 y obeys

∂y

∂t
=

1
f2

∂2y

∂r2
+
(α
r

) ∂y
∂r

+
8
f
y2 +

1
r2

[βy + γ]

− k2
nz

2y + k2
n

z2

r2
− k2

n

f

z

r
z′,(5.32)

α :=
4r2

f
y +

5
f2

− 4
f

+ n− 2 ,(5.33)

β :=
4
f2

− 8
f

+ (n− 2)
(

1 − 3
f2

)
,(5.34)

γ :=
(n− 2)
r2

(
1 − 1

f

)3

.(5.35)

Using the definition of λ2, we simplify β and γ as follows:

β

r2
=
(
n− 2 − 4

(1 + f)

)
λ2 − 4

r2f
− 2(n− 2)

r2f2

≤
(
n− 2 − 4

(1 + f)

)
λ2 ,(5.36)

γ

r2
= (n− 2)

f(f − 1)
(f + 1)2

λ2
2 ≥ −(n− 2)f

(f + 1)2
λ2

2 .(5.37)

Then whenever y < 0 and r > 0 we have that (5.32) yields

∂y

∂t
≥ 1
f2

∂2y

∂r2
+
(α
r

) ∂y
∂r

+
8
f
y2 +

(
n− 2 − 4

(1 + f)

)
λ2y

− (n− 2)f
(1 + f)2

λ2
2 −

k2
n

f

z

r
z′.(5.38)

In particular, we work as usual on the domain Aε(T ) := [0, T ] × [ε, 1
ε

]
and

then observe immediately from (5.38) that, if y takes its minimum in the
parabolic interior, then y(t, r) is bounded below by

y(t, r) ≥ −1
2

(
n− 2 − 4

(1 + f)

)
fλ2

8

−
[(

n− 2 − 4
(1 + f)

)2 f2λ2
2

64
+

(n− 2)f2

8(1 + f)2
λ2

2 +
k2

n

8
z

r
z′
]1/2

,(5.39)

and then the bounds (4.13), (4.37), (5.1), (5.3) and (5.14) on the quantities
appearing on the right-hand side prove the proposition.
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On the other hand, y could have its minimum on the parabolic boundary
of Aε(T ). If the minimum occurs at t = 0, then y is bounded below by
min {0, infr{y(0, r)}}, again proving the proposition. If, however, the min-
imum occurs at r = ε or r = 1/ε, then if we choose ε small enough this
minimum would approach zero (since y(t, ε) → 0 as r → 0 by the argument
at the start of the proof, and y(t, 1/ε) → 0 by asymptotic flatness, as seen
from, say, (5.30)). �

6. Proofs of Theorems 1.3 and 1.5

Proof of 1.3. By assumption, there is no minimal hypersphere at t = 0. By
(4.10) and (4.13), then no minimal hypersphere can form at any t ∈ [0, TM).

Furthermore, λ2 is bounded below for all t > 0 (Proposition 4.8). Now
assume that Equation (5.1) holds. Then for all t > 0, λ2 is bounded above
(Proposition 5.1) and λ1 is bounded below (Corollary 5.3) and above (Propo-
sition 5.5). Thus the maximal time of existence is TM = ∞ (Proposition 3.4).

In particular, if n = 2, then (5.1) holds (Proposition 4.9). �

Proof of 1.5. There are no closed geodesics of g(t), for if there were then
by rotational symmetry such a geodesic would necessarily lie on a minimal
hypersphere, and we have shown that there are none of those. Then by
standard results ([32], paragraph 6.6.1), the injectivity radius of the manifold
at time t will be equal to the conjugate radius and thus bounded below by
π/
√

supr |Riem(t, r)|. These facts are diffeomorphism invariant and so apply
equally to ḡ(t) (see (3.2, 3.5)). Choosing an essential blow-up sequence for
ḡ, ū) and rescaling as in (1.15), then along each rescaled flow (g(k), u(k)) the
injectivity radius of g(k)(s) is uniformly (in s and in k) bounded below by
π/

√
C.
In view of Equation (1.9), define Xi

(k) := −gij
(k)∇(k)u(k). Note that

∣∣X(k)

∣∣2 :=
[
gij
(k)∇

(k)
i u(k)∇(k)

j u(k)

]
s

=
[

1
Bk

ḡij∇̄iū∇̄j ū

]
(tk+s/Bk)

≤ const
Bk(1 + tk + s/Bk)

→ 0(6.1)

In particular, for each k the diffeomorphisms generated by X(k) are defined
(and, indeed, getting smaller). Thus, we can use the correspondence between
List’s flow and Ricci flow (1.7) to (1.9) to express the sequence (g(k)(s),



738 Liljana Gulcev, Todd A. Oliynyk & Eric Woolgar

u(k)(s)) as a sequence of Ricci flows G(k)(s) in (n+ 1)-dimensions. Because
∂
∂τ (cf (1.8)) is a Killing vector field, the injectivity radius remains bounded
below by π/

√
C. Let xk := (τk, rk) and choose τk = 0 (since ∂

∂τ is a Killing
vector field, the choice is irrelevant). By a theorem of Hamilton [14], the
pointed sequence (M,G(k)(s), xk) converges to a complete pointed Ricci flow
(M,G(s), x). The domain of s is the limit of the intervals [−Bk(1 + tk), 0]
and is thus (−∞, 0], so G is an ancient solution of Ricci flow. The injectivity
radius of (M,G(s)) is bounded below (uniformly in s) at x.

We see from (6.1) that u(∞) is constant in r. It is constant in τ = x0

by assumption and then is constant in the flow time s (equivalently, in
t) as well by the asymptotic condition u(t, r) → const as r → ∞. It fol-
lows that the Ricci flow for the limit metric G(s) in (n+ 1)-dimensions
is trivial in the τ direction, and splits as an ancient Ricci flow for g (the
induced metric for τ = 0) in n-dimensions, together with the equation u =
const.

Since λ2(t) ≥ −const for the flow (Prop 4.8) of (g, u) (and thus for the
unrescaled flow of (ḡ, ū) since the condition is natural with respect to dif-
feomorphisms) and since rescaling divides λ2 by the maximum of the norm
of the curvature, the limit of rescaled flows is a flow with λ2(s) ≥ 0. That
is, the limit flow has non-negative sectional curvature in planes tangent to
the orbits of symmetry. By Theorem 2.4 of [8], any ancient, complete, three-
dimensional solution of Ricci flow has non-negative sectional curvatures in all
planes, thus including radial planes as well as tangential planes when n = 3.
Chen also observed that any ancient, complete flow has R ≥ 0, but here we
can see this directly by the same argument as with λ2, since R ≥ −const
along the original flow (Proposition 4.4). �
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[23] A. Lichnerowicz, Théories rélativistes de la gravitation et de
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