
communications in
analysis and geometry
Volume 18, Number 4, 627–647, 2010

Surfaces with maximal constant mean curvature

Jan Metzger

In this note we consider asymptotically flat manifolds with non-
negative scalar curvature and an inner boundary which is an out-
ermost minimal surface. We show that there exists an upper bound
for the mean curvature of a constant mean curvature (CMC) sur-
face homologous to a subset of the interior boundary components.
This bound allows us to find a maximizer for the CMC of a surface
homologous to the inner boundary.

With this maximizer at hand, we can construct an increasing
family of sets with boundaries of increasing CMC. We interpret
this family as a weak version of a CMC foliation.

1. Introduction

Consider a non-compact three dimensional Riemannian manifold (M, g) with
compact interior boundary ∂M , which is the only minimal surface in (M, g).
In this paper, we investigate how large the mean curvature H of an embed-
ded, constant mean curvature (CMC) surface in the homology class of ∂M
can be. The main result in this paper is an upper bound for this curvature.
Combined with an area estimate, we then show that there exists a CMC
surface which attains this maximum.

The main motivation for this work is CMC foliations. These foliations
have been used successfully in general relativity to study the center of mass
of isolated systems [8, 10] and the Riemannian Penrose inequality [4]. The
existence result in [8] constructs a CMC foliation in the asymptotic region
near infinity. The natural question arises as to how far to the interior these
foliations can be extended. It is clear that in general, topological reasons
imply non-existence of an entire smooth foliation. This calls for a weak
version of a CMC foliation.

Let us consider a different perspective. If the interior boundary ∂M
is an outermost minimal surface, that is (M, g) does not contain any other
minimal surface, then it is straightforward to construct a local CMC foliation
near ∂M , cf. Lemma 4.1. So another question is how far this interior foliation
can be extended outward, away from ∂M . This is by far an easier question
than extending the foliation inward.
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The reason is the following. Roughly speaking, if we consider a potential
CMC foliation reaching from ∂M to infinity, then the mean curvature has
to increase near ∂M , and decrease as in Euclidean space when approaching
infinity, as the surfaces of the foliation enclose increasing volume with ∂M .
This has two implications. First, there is a maximal value of CMC along this
foliation, and second that there are two types of behavior. The first type is
portions along which CMC increases and the other is where CMC decreases.
The former includes the region near ∂M , and the latter the asymptotic
region.

The region in which CMC increases is easier to handle, as the maximum
principle implies that the CMC surfaces along the foliation cannot touch. In
the exterior region it is a lot harder to get control on the separation of the
surfaces, as one can see from the many different foliations by spheres that
are possible in R3.

This result gives a partial answer to the above questions. In Section 3 we
show that there is a bound for the maximal CMC of a surface homologous to
∂M . This needs a lower bound on the scalar curvature of M , MSc ≥ −C, and
uses the fact that ∂M is area-minimizing. The condition that the surface be
homologous to ∂M is necessary, as close to maxima of the scalar curvature
a CMC foliation exists where homologically trivial spheres have unbounded
CMC [13].

In Section 4 the curvature bound is used to construct a surface which
realizes the maximal CMC Hmax. This existence result needs the stronger
assumption that MSc ≥ 0 in order to ensure that the area of CMC surfaces
is bounded. A unique such surface can be selected by demanding that it be
the innermost one.

We show that this surface bounds a region with ∂M , which can be
regarded as a manifold with boundary, cf. the discussion at the end of Sec-
tions 4 and in 5. Using the outer boundary as barrier, we can construct an
increasing family of sets bounded by surfaces with CMC ranging from 0 at
the horizon to Hmax at the boundary. This increasing family is a candidate
for a weak version of a CMC foliation reaching up to the Hmax-surface. We
explore some basic properties in the second half of Section 5.

2. Preliminaries

Let (M, g) be an asymptotically flat manifold with inner boundary ∂M
which is an outermost minimal surface. Such manifolds M are called exterior
regions. The requirement of asymptotic flatness means that there exists a
compact set K ⊂ M and a diffeomorphism x : M \ K → R3 \ B1(0) such
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that in the x-coordinates the metric g approaches the Euclidean metric δ,
that is there exists C such that

r|g − δ| + r2|∂g| ≤ C.

To say that ∂M is an outermost minimal surface, means that there does
not exist another minimal surface in M which is homologous to ∂M . For an
asymptotically flat manifold that contains minimal surfaces, the outermost
minimal surface always exists and is unique [7, Section 4]. An exterior region
M is diffeomorphic to R3 \ (

⋃N
i=1 Bi), where the Bi are open

balls with disjoint closure. Hence ∂M =
⋃N

i=1 Si, where Si = ∂Bi. This
restricted topology does not require any curvature assumptions. The fact
that ∂M is an outermost minimal surface implies furthermore that for each
I ⊂ {1, . . . , N} the set

⋃
i∈I Si minimizes area in its homology class, in par-

ticular ∂M is minimizing.
Let Σ ⊂ M be a compact, closed, immersed and two-sided surface. We

assume that one side of Σ can be identified as the outside, and denote the
outward pointing normal by ν. Later we restrict ourselves to such surfaces.
We denote by γ the induced metric. The mean curvature H = div ν is taken
with respect to the outward pointing normal as is the second fundamental
form A. By ΣSc we denote the scalar curvature of Σ. The trace free part of
the second fundamental form will be denoted by

◦
A = A − 1

2Hγ.
Consider a normal variation of Σ, that is a map F : Σ × (−ε, ε) → M

with F (·, 0) = idΣ and dF
dt

∣
∣
t=0

= fν. The linearization L of the operator
which assigns the mean curvature to the surfaces Σt = F (Σ, t) is given by

∂

∂t

∣
∣
∣
∣
t=0

F ∗
t H(Σt) = Lf = −Δf −

(
1
2

MSc − 1
2

ΣSc +
1
2
| ◦
A|2 +

3
4
H2

)

f,

where Ft = F (·, t) : Σ → Σt and Δ denotes the Laplace–Beltrami operator
along Σ. Here MSc and ΣSc denote the scalar curvature of M and Σ. L is
called the stability operator, or Jacobi operator.

When dealing with CMC surfaces, there are two types of stability dis-
cussed in the literature. The first notion is strong stability, where we assume
that L is a non-negative operator, that is

∫

Σ
f2

(
1
2

MSc − 1
2

ΣSc +
1
2
| ◦
A|2 +

3
4
H2

)

dμ ≤
∫

Σ
|∇f |2 dμ ∀f ∈ C∞(Σ).

(2.1)

Here ∇f denotes the tangential gradient of f and dμ the induces area mea-
sure. Note that strong stability means that the principal eigenvalue of L, that
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is the smallest eigenvalue, is non-negative. The second notion, simply called
stability comes from the fact that the CMC equation is the Euler–Lagrange
equation for the isoperimetric problem, that is for minimizing the area of
Σ, while keeping enclosed volume constant. Minimizers of this variational
principle satisfy the stability inequality

∫

Σ
f2

(
1
2

MSc − 1
2

ΣSc +
1
2
| ◦
A|2 +

3
4
H2

)

dμ ≤
∫

Σ
|∇f |2dμ

∀f ∈ C∞(Σ) with
∫

Σ
f dμ = 0.

Hence, strong stability implies stability, but not vice versa. For the following
discussion only strong stability plays a role.

Subsequently, we deal with surfaces that are not necessarily connected.
We say that such a surface is strongly stable if each of its components is
strongly stable, and thus if a surface is not strongly stable, it means that at
least one of its components is not strongly stable.

The surfaces Σ in question will be homologous to ∂M . In the case that
Σ does not touch ∂M this means that there exists an open set Ω such that
∂Ω is the disjoint union ∂Ω = ∂M ∪ Σ. As we orient ∂M with the normal
pointing into M , the correct orientation of Σ corresponds to the normal
vector pointing out of Ω. We will make this assumption subsequently without
further notice.

3. An upper bound for CMC

This section is devoted to derive an upper bound for the CMC of a compact,
smooth, embedded CMC surface homologous to ∂M . Note that Σ need not
be connected for the subsequent arguments. This upper bound only requires
a lower bound on the scalar curvature of M , that is MSc ≥ −C for some
C ≥ 0.

Before we can approach the main theorem, we review an existence theo-
rem for prescribed mean curvature surfaces [3, Theorem 5.1]. This theorem
implies the following existence theorem for strongly stable CMC surfaces.

Theorem 3.1. Let (Ω, g) be a compact Riemannian manifold with smooth
boundary ∂Ω which is the disjoint union ∂Ω = ∂−Ω ∪ ∂+Ω, where ∂±Ω are
smooth, non-empty and without boundary. Assume that ∂−Ω has mean cur-
vature H−, where H− is taken with respect to the normal pointing into Ω,
and ∂+Ω has mean curvature H+, where H+ is taken with respect to the
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normal pointing out of Ω. Let h be such that max∂−Ω H− ≤ h ≤ min∂+Ω H+.
Then there exists a compact, smooth, embedded, strongly stable CMC surface
Σ ⊂ Ω, homologous to ∂−Ω with H(Σ) = h.

Proof. This is a direct consequence of [3, Theorem 5.1]. To adopt the nota-
tion of the reference, let K be a symmetric bilinear form on Ω. Then for a
surface Σ one can define P = trΣ K = trM K − K(ν, ν) and θ+(Σ) = H + P ,
where H is the mean curvature of Σ as usual. From the proof of [3, Theorem
5.1] we infer that if θ+(∂−Ω) ≤ 0 and θ+(∂+Ω) ≥ 0 then there exists a com-
pact, smooth, embedded surface Σ homologous to ∂−Ω with θ+(Σ) = 0.

In the reference the theorem is first proved under the hypothesis that
the strict barriers hold, that is θ+(∂−Ω) > 0 and θ+(∂+Ω) < 0. Then it is
argued that the strict inequality can be relaxed at the interior boundary. In
the same way the strict inequality can also be relaxed at the outer boundary,
so that the statement above follows.

We apply this construction to the data (Ω, g, K = −1
2hg) such that for

any surface Σ we have θ+(Σ) = H − h. Thus θ+(∂−Ω) = H− − h ≤ 0 and
θ+(∂+Ω) = H+ − h ≥ 0, and the existence of a surface Σ with H(Σ) = h
follows from the existence part of [3, Theorem 5.1]. The reference also estab-
lishes that the resulting surface is also stable in the sense of θ+ = 0 surfaces,
which means that the smallest eigenvalue of the operator

L̃f = −Δf + 2S(∇f) + f

(

divΣ S − 1
2
|A + KΣ|2

− |S|2 +
1
2

ΣSc − μ − J(ν)
)

(3.1)

is non-negative. Here KΣ = K|Σ, S = K(ν, ·)T , where T denotes tangential
projection, μ = 1

2(MSc − |K|2 + (trM K)2) and J = div K − M∇ trM K. On
a surface with θ+ = 0 we have for our choice of K that S = 0, J = 0, |A +
KΣ|2 = |A|2 − 1

2H2 = | ◦
A|2 and μ = 1

2
MSc + 3

4H2. This notion of stability
has been introduced in [1]. Calculation reveals that L̃ is nothing but the
stability operator L and non-negativity of its first eigenvalue means strong
stability. �

Remark 3.1. A similar existence theorem could be derived by analyzing
the functional

Jh(F ) = |∂∗F | − h Vol(F )

for sets F with finite perimeter. We shall use this functional in Section 5.
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Figure 1: If a surface Σ homologous to ∂M intersects ∂M , then there is one
component of Σ which intersects ∂M such that the outer normals point in
the same direction.

Using the previous existence theorem together with the fact that ∂M
can be used as inner barrier, we infer the following lemma.

Lemma 3.1. If Σ ⊂ M is an embedded CMC surface homologous to ∂M
with H > 0, then there exists a strongly stable CMC surface Σ′ in the same
homology class with H(Σ′) = H(Σ).

Proof. First, note that Σ cannot touch ∂M (cf. figure 1). As Σ is homol-
ogous to ∂M , there exists a set Ω and a set I ⊂ {1, . . . , N} such that
∂Ω =

⋃
i∈I Si ∪ Σ0, and Σ = Σ0 ∪

⋃
i�∈I Si. As H(Σ) > 0, we have must have

I = {1, . . . , N}, and thus Σ0 = Σ and ∂M ⊂ Ω̄. Thus if ∂M and Σ intersect,
there exists a component Σ1 of Σ which intersects ∂M at a point where the
normals of Σ1 and ∂M point in the same direction. This is impossible, since
the maximum principle would imply that Σ1 ⊂ ∂M .

Hence, Σ lies completely in the interior of M and we can apply The-
orem 3.1 with the so constructed Ω where ∂M = ∂−Ω, Σ = ∂+Ω and h =
H(Σ). Thus we obtain Σ′, a smooth, embedded strongly stable CMC surface.

�

Remark 3.2. Note that we can in fact show that the constructed Σ′ cannot
touch any component of Σ which is not strongly stable, as these components
can be deformed in direction of −ν, that is into Ω in such a way that their
mean curvature increases.

It is now a simple matter to derive the claimed bound on the CMC from
strong stability. As Σ is not necessarily connected, we must make use of the
fact that ∂M is outermost to get a lower bound on the area of at least one
component of Σ.
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Lemma 3.2. Let (M, g) be asymptotically flat with inner boundary ∂M ,
which is an outermost minimal surface in M . Assume that

MSc ≥ −C.

Denote the components of ∂M by Si, i = 1, . . . , N and let A := max{|Si| :
i = 1, . . . , N}. If Σ ⊂ M is an embedded CMC surface homologous to ∂M ,
then

H(Σ)2 ≤ 16π

3A
+

2
3
C.

Remark 3.3. An obvious modification yields a similar bound if Σ is homol-
ogous to

⋃
i∈I Si, where I ⊂ {1, . . . , N} and A is replaced by A(I) =

maxi∈I |Si|.

Proof. Assume that A = |S1|. As M is topologically equivalent to R3 \⋃N
i=1 Bi, as explained in Section 2, Σ can be regarded as a surface embedded

in R3. Then any component of Σ bounds in R3, and since Σ is homolo-
gous to

⋃N
i=1 Si, we infer that there exists one component Σ1 of Σ which

is homologous to S1 ∪
⋃

i∈J Si, where J ⊂ {2, . . . , N} may be empty. Since
S1 ∪

⋃
i∈J Si is minimizing in its homology class in M we find that |Σ1| ≥

|S1 ∪
⋃

i∈J Si| ≥ |S1| = A. Pick a test function f ∈ C∞(Σ) with f = 1 on
Σ1 and f = 0 on all other components. Plugging f into the strong stability
inequality (2.1), we find that

∫

Σ1

1
2
| ◦
A|2 +

3
4
H2 dμ ≤

∫

Σ1

1
2

ΣSc − 1
2

MSc dμ.

From Gauss–Bonnet we infer that
∫

Σ1

1
2

ΣSc dμ = 4π(1 − genus(Σ1)) ≤ 4π.

As H is constant, combining the above inequality with the lower bound on
MSc yields

(3.2) H2|Σ1| ≤ 16π

3
+

2
3
C|Σ1|,

or after dividing by |Σ1|,

H2 ≤ 16π

3|Σ1| +
2
3
C,

which implies the claim, since |Σ1| ≥ A. �
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Remark 3.4. The spatial Schwarzschild manifold of mass m is given by
(R3 \ {0}, φ4ge) where φ = 1 + m

2r and ge denotes the Euclidean metric on
R3. It is scalar flat and if m > 0 it has an outermost minimal surface at
r = m

2 . Thus (R3 \ Bm

2
, φ4ge) satisfies the assumptions of Lemma 3.2 with

C = 0. The spheres Sr(0) have CMC Hr = 2
R

2r−m
2r+m where R = φ2r is the

geometric area radius of Sr with respect to gS , that is |Sr| = 4πR2. Hr

assumes its maximum where R = 3m and equals 2
3
√

3m
there. Thus, the

estimate of Equation (3.1) is sharp in this case, whereas the assertion of
Lemma 3.2 is not.

4. Existence of surfaces with maximal CMC

In this section, we construct a surface with maximal CMC. In fact, for (M, g)
as before, we can let

Hmax := sup{H(Σ) : Σ an embedded CMC surface homologous to ∂M}.

As we have seen in the previous section, Hmax is finite. Subsequently, we
show that Hmax is attained at a strongly stable surface. We start by showing
that Hmax > 0.

Lemma 4.1. There exists a foliation of a neighborhood of ∂M by CMC
surfaces Γs, s ∈ [0, ε) with H(Γs) > 0.

Proof. We construct the foliation near each component of ∂M separately.
Let Si be such a component. Note that Si is stable as a minimal surface, as
∂M is outermost. This means that the smallest eigenvalue λ of L on Si sat-
isfies λ ≥ 0. Recall that this eigenvalue is simple and that the corresponding
eigenfunction φ does not change sign.

If λ > 0, then L is invertible. In this case a foliation by CMC surfaces
can be constructed by a simple application of the implicit function theorem.
We shall not elaborate this case, as it is similar to the more difficult case
λ = 0 discussed in detail below.

Thus assume λ = 0 from now on. Let φ > 0 denote the corresponding
eigenfunction of L. In this case a CMC foliation can be constructed as in [5].
We repeat the argument here for convenience. Consider the operator

H : C∞(Si) × R → C∞(Si) × R : (u, h) 
→
(

H(graphu) − h,

∫

Si

uφ dμ

)

,
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where graphu = Fu(Si) and Fu(p) = expp(u(p)νp), where p ∈ Si and exp is
the exponential map of M . Then H(graphu) denotes the mean curvature of
graphu pulled-back to Si via Fu.

We can compute the linearization of H at (u, h) = (0, 0) in direction
(v, s) ∈ C∞(Si) × R to be

M(v, s) := DH|(0,0)(v, s) =
(

Lv − s,

∫

Si

vφ dμ

)

.

Obviously M is invertible since kerL = span{φ} and the equation Lv = g
is uniquely solvable if

∫
Si

gφ dμ = 0 and
∫
Si

vφ dμ = 0.
By the inverse function theorem applied on suitable Banach spaces, say

H : C2,α(Si) → C0,α(Si) , there exist u(t) and h(t) for small t such that

(4.1) H(u(t), h(t)) = (0, t).

This implies that the surfaces graph u(t) have CMC and regularity theory
yields the smoothness of u(t). Differentiating Equation (4.1) with respect to
t yields that

(4.2)
(

Lu′(0) − h′(0),
∫

Si

u′(0)φdμ

)

=
(
0, 1

)

and hence that h′(0) ∈ imL ⊥ ker L, that is
∫
Si

h′(0)φdμ = 0. Since h′(0) is
a constant and φ > 0, we infer h′(0) = 0. Then u′(0) ∈ kerL and u′(0) = αφ
where α > 0, by (4.2). Thus, the graphu(t) form a foliation near Si.

As ∂M is outermost, we must have that h(t) > 0 for all t, and we thus
found the foliation near Si. As h(t) is smooth, there exists a t0 such that h
is increasing on [0, t0).

Thus we can find the required CMC foliation near each component of
∂M separately and join it to give a CMC foliation near ∂M . �

Remark 4.1. A different way to see that Hmax > 0 is to use asymptotic
flatness to conclude that there exists a surface in the asymptotic end with
positive mean curvature. An application of Theorem 3.1 then yields a CMC
surface with positive CMC. However, the previous lemma emphasizes that
not only the asymptotic behavior near infinity, but also the local geometry
near ∂M gives a lower bound on Hmax.

Standard arguments show that there are uniform bounds on the second
fundamental form of strongly stable CMC surfaces.
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Lemma 4.2. If Σ is a strongly stable CMC surface then there exists a
constant C = C(‖MRm‖C0 , inj(M, g)−1, supΣ |H|) such that

sup
Σ

|A| ≤ C.

Proof. First, there exists 0 < r0 = r0(‖MRm‖C0 , supΣ |H|) such that for all
r < r0 and p ∈ Σ the area of the intrinsic balls BΣ(p, r) around p with radius
r is bounded

|BΣ(p, r)| ≤ 6πr2.

See for example [2, Theorem 8.1], which goes back to [9]. With this local
bound on area, the usual argument for deriving curvature bounds yields the
desired estimate (cf. [12]), we refer to [2, Section 6] for a detailed proof in a
slightly more general setting. Note that the claimed constant in the estimate
does not depend on the derivatives of the curvature. This improvement over
[12] can be found in [2]. �

Before we can attempt the construction of surfaces realizing Hmax, we
need a diameter bound for strongly stable CMC surfaces [11].

Lemma 4.3. Let (M, g) be a complete Riemannian 3-manifold with MSc ≥
0 and let Σ ⊂ M be a closed, compact, connected, strongly stable CMC sur-
face with H(Σ) 
= 0. Then

diam(Σ) ≤ 2π

3H
.

Proof. This estimate is a direct consequence of [11, Theorem 1]. Note that
in the reference an upper bound on the scalar curvature is assumed, which
is relevant only along Σ. Since we assume that Σ be compact, this bound is
automatic. �

Theorem 4.1. Let (M, g) be an asymptotically flat Riemannian manifold
with MSc ≥ 0 and a non-empty inner boundary ∂M , which is an outermost
minimal surface. Assume that ‖MRm‖C0 is finite and inj(M, g) is non-zero.
Then Hmax is attained at a compact, immersed, strongly stable surface Σ
homologous to ∂M . Σ is a union of spheres.

Proof. Let {Σn}{n≥1} be family of embedded CMC surfaces homologous to
∂M with

H(Σn) → Hmax.

We show that after suitable modification, the sequence Σn allows the extrac-
tion of a convergent subsequence.
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Figure 2: All components of Σ′ are needed to shield ∂M from infinity. Oth-
erwise there is a component Σ̃′ that bounds a compact region on its outside,
relative to a subset of ∂M .

In view of Lemma 3.1 we can assume that the Σn are strongly stable.
Due to Lemma 4.1 we can furthermore assume that H(Σn) ≥ ε for some
suitably chosen ε > 0.

Fix an arbitrary n and denote Σ := Σn. Let Σj be the components of Σ,
j = 1, . . . , NΣ. For j = 1, . . . , NΣ let fj be the test function which is equal to
1 on Σj and 0 on the other components. Plugging fj into the strong stability
inequality (2.1) yields that Σj is a sphere, as

∫
Σj

H(Σ)2 dμ > 0.
Let

J := {j : Σj does not bound a compact region on its inside in M}

and delete all components Σj from Σ where j 
∈ J . The surface

Σ′ :=
⋃

j∈J

Σj

is homologous to ∂M and thus separates ∂M from infinity. Recall that M
is diffeomorphic to R3 \ ⋃N

i=1 Bi and consider Σ′ ⊂ R3.
Let U ⊂ R3 be such that R3 \ U is the non-compact component of R3 \

Σ′. Note that ∂U consists of the components of Σ′ needed to shield ∂M from
infinity (figure 2). Indeed ∂U = Σ′. Otherwise there exists one component Σj

in U which bounds a compact region Ωj on its outside, relative to a subset
of ∂M as illustrated in figure 2. This is clearly impossible as the boundary
of M ′ := M \ Ωj has H(∂M ′) ≤ 0 and H(∂M ′) 
= 0. This would imply the
existence of a minimal surface outside of ∂M , contradicting the assumption
that ∂M is an outermost minimal surface.

Thus Σ′ = ∂U has at most N components, each of which is homologous
to

⋃
Ij

Si, where Ij ⊂ {1, . . . , N} is non-empty, and Ij ∩ Ij′ = ∅ for j 
= j′. To
see this, let Uj be the compact region in R3 bounded by Σj . Then Uj contains
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at least one of the Bi, so it is clear that Ij 
= ∅. Since we have Σ′ = ∂U , no
component of Σ′ is separated from infinity by another component of Σ′, in
particular the outer normal direction of Σ′ agrees with the outer normal
to ∂U . As all the Bi are contained in U and the components of Σ′ cannot
intersect, this implies that the each Bi can be in at most one Uj . Thus the
Ij are mutually disjoint. For subsequent use we relabel the (Σn)′ as Σn.

This construction yields a sequence {Σn} of CMC surfaces with H(Σn)→
Hmax, where each of the Σn is a strongly stable CMC surface with at most
N components, and each component is homologous to a non-empty union
of components of ∂M .

As H(Σn) ≥ ε, Lemma 4.3 implies that each component of Σn has
bounded diameter. Such a component of Σn encloses at least one of the Si.
We thus infer that there exists a compact set B ⊂ M such that Σn ⊂ B for
all n. Furthermore, the curvature estimates from Lemma 4.2 imply uniform
curvature bounds for Σn. Therefore, the Ricci curvature of Σn is bounded
below and standard volume comparison shows that each component of Σn

has bounded area. As there are at most N components the Σn have uni-
formly bounded area.

These three uniform estimates, area, curvature and the fact that the Σn

are contained in a compact set, imply that there exists a convergent subse-
quence and a limiting surface Σ, which has CMC and consists of strongly
stable components. A detailed presentation of this classical theorem can be
found in [2, Section 8]. Note that the limit Σ might not be embedded. Nev-
ertheless, Σ has an outward pointing normal vector field ν which is the limit
of the outward pointing normal vector fields of the subsequence of Σn. �

We now examine the limiting Hmax-surface Σ more closely. As Σ is the
limit of embedded surfaces, Σ can fail to be embedded only if Σ touches
itself, transversal self-intersections are impossible. Let p ∈ M denote such
a point. Then at p multiple sheets of Σ can come together. Since, we have
bounded curvature and bounded area, there are at most finitely many such
sheets Σp

k, k = 1, . . . , n(p), as the curvature bounds imply that each sheet
takes up a fixed amount of area in the neighborhood of p.

Around p there are coordinates {xi} of M such that the Σp
k are C∞

graphs over an open subset Up of the x1, x2-plane. That is Σp
k = {x : x3 =

uk(x1, x2)}. We can assume that uk ≤ ul whenever k ≤ l since Σ is the limit
of embedded surfaces which bound a region with respect to ∂M . Each of the
sheets comes with a normal vector field νp

k with respect to which H = Hmax.
This can be either the downward or upward pointing normal to graphuk,
and this direction alternates in k.
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Figure 3: Two sheets touching on the outside.

Figure 4: Two sheets touching on the inside.

We say that two sheets Σ1 and Σ2 touch on the outside at a point p, if
the representing functions u1 ≤ u2 of these sheets are so that the outward
normal of Σ points upward along u1 and downward along u2 (cf. figure 3).
On the other hand, if the normal along u1 points downward, and upward
along u2, we say that Σ touches itself on the inside (cf. figure 4).

The following theorem is a direct consequence of the strong maximum
principle for surfaces with prescribed mean curvature.

Theorem 4.2. Let Σ be the Hmax-surface constructed in Theorem 4.1.
Then if Σ is not embedded, Σ can only touch itself on the outside, and
no more than two sheets of Σ can meet at one point of M .

Proof. Let Σ1 and Σ2 be two sheets of Σ which meet on the inside, and
let u1 ≤ u2 be the representing functions as described above. Instead of the
upward normal, consider u2 equipped with the downward normal. Then the
mean curvature of graphu2 is −Hmax < 0 with respect to the downward
normal, and the mean curvature of graphu1 is Hmax with respect to the
downward unit normal. As graphu1 and graphu2 touch, we immediately
obtain a contradiction to the strong maximum principle.
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At any point in M where three sheets of Σ meet, Σ must touch itself on
the inside, thus this is ruled out by the above argument. �

We now want to add a few remarks about the uniqueness of the Hmax-
surfaces. Indeed, we can single out one particular Hmax-surface in (M, g) by
choosing the innermost Hmax-surface.

Theorem 4.3. Let (M, g) be as in Theorem 4.1. Then there exists a unique
innermost surface in (M, g) which is homologous to ∂M and has CMC Hmax.
The assertion of Theorem 4.2 holds for Σ.

Proof. The construction of this surface is similar to the construction of the
outermost MOTS in [3, Section 7]. Thus we mention only the key points for
the construction.
Compactness: As in the proof of Theorem 4.1, we infer compactness of the
class of Hmax-surfaces by throwing away components which bound compact
regions.
Monotonicity: Let Σi, with i = 1, 2 be two Hmax-surfaces for which the asser-
tion of Theorem 4.2 holds, and which are homologous to ∂M and bound sets
Ωi with ∂M . Then Ω1 ∩ Ω2 contains a strongly stable Hmax-surface Σ homol-
ogous to ∂M which satisfies the assertion of Theorem 4.2.

Monotonicity allows us to construct a sequence of surfaces Σk bound-
ing Ωk together with ∂M , such that the Ωk are descending. By compact-
ness we find a limiting set Ω∞ bounded by an Hmax-surface Σ∞
and ∂M . �

5. A proposal for a weak CMC foliation

In this section, we propose a weak version of a foliation by CMC surfaces of
the interior region of (M, g). There is more than one way to introduce such
a foliation, and it is not clear whether the possibility discussed below is best
suited for applications.

Let (M, g) be asymptotically flat with ∂M an outermost minimal sur-
face. Assume that MSc ≥ 0 and let Σmax be the Hmax-surface homologous
to ∂M constructed in Section 4. The interior region Ω of M is defined as
the union of the components of M \ Σmax which meet components of ∂M
(cf. figure 5). As Σmax does not touch itself on the inside, Ω can be equipped
with the structure of a smooth manifold with boundary ∂M ∪ Σmax, where
we identify Σmax and ∂M with the points added by the metric completion
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Figure 5: The interior region Ω.

of Ω. In this way, we separate the points of Σmax which are mapped to the
same point in the immersion of Σmax into M . Note that the interior Ω is not
a submanifold with smooth boundary in M if Σmax is not embedded. The
boundary of Ω consists of ∂M on the inside, subsequently denoted by ∂−Ω,
and Σmax on the outside, subsequently denoted by ∂+Ω.

5.1. Construction

To construct a weak CMC foliation for this new manifold Ω, we introduce
the following notion.

Definition 5.1. Let Σ ⊂ Ω be a smooth, embedded surface homologous to
∂−Ω, with CMC h ∈ (0, Hmax). Denote by U the region bounded by Σ and
∂+Ω. If there does not exist a smooth embedded surface Σ′ in U with the
same CMC h, then Σh is called outermost.

By Andersson and Metzger [3, Section 7], for each h ∈ (0, Hmax) there
exists a smooth, embedded surface Σh, homologous to ∂−Ω, which has CMC
h and is outermost in the sense of Definition 5.1. We denote by Ωh the open
region bounded by ∂−Ω and Σh. We define this family {Σh}h∈[0,Hmax] of sets
to be the candidate for our weak CMC foliation of Ω.

A useful side-effect of this definition is that the constructed sets are
related to a variational principle. Consider sets F of finite perimeter in Ω.
We will assume that F ⊃ Ωh for some h > 0. Thus F has one boundary
component which agrees with ∂−Ω. In accordance with the above notation,
we denote by ∂+F the reduced boundary of F without ∂−Ω, that is ∂+F =
∂∗F ∩ Ω◦, where Ω◦ denotes the interior of Ω.
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5.2. Basic properties

Consider the functional Jh, defined on the collection of sets F of bounded
perimeter in Ω,

Jh(F ) := |∂+F | − h Vol(F ).

The critical points of Jh are surfaces with CMC h, so it is natural to consider
this functional here.

We say that a set E minimizes Jh on the outside, if for all sets F ⊃ E
we have

Jh(E) ≤ Jh(F ).

Lemma 5.1. For each h ∈ (0, Hmax), the set Ωh defined above minimizes
Jh on the outside.

Proof. If Ωh does not minimize Jh on the outside, then there exists a mini-
mizer Eh for Jh outside of Ωh, with Eh 
= Ωh (cf. [6]). The outer boundary
Eh is a C1,α-surface, satisfying H ≥ h in a distributional sense (cf. [7, Theo-
rem 1.3]). It is smooth with H = h where it does not touch Σh. By the strong
maximum principle (which applies here as ∂+Eh is C1,α, see also [14, Section
3]) all components of ∂+Eh touching Σh are contained in Σh. Thus, ∂+Eh

is a smooth surface with CMC h and lies on the outside of Σh. As Σh is
outermost, Eh = Ωh as claimed. �

This lemma implies that Σh minimizes area on the outside.

Lemma 5.2. For all h ∈ (0, Hmax) and all sets of finite perimeter Ωh ⊂
F ⊂ Ω, we have

|Σh| ≤ |∂+F |,
in particular

|Σh| ≤ |∂+Ω|.

Proof. As Ωh minimizes Jh on the outside,

|Σh| + h(Vol(F ) − Vol(Ωh)) ≤ |∂+F |.
�

To conclude, we mention two other properties, which follow from the
construction.
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Lemma 5.3. (1) The sets Ωh are increasing, that is Ωh1 ⊂ Ωh2 if h1 <h2.

(2) If h ∈ (0, Hmax) is fixed and hk ∈ (0, Hmax) a sequence with hk ≥ h
and limk hk = h, then

Ω̄h =
⋂

k≥1

Ωhk
.

Here Ω̄h denotes the closure of Ωh in Ω.

Proof. Property (1) follows from Theorem 3.1, as we can always use Σh1

and ∂+Ω as inner and outer barriers for the construction of a surface with
CMC h2 outside. Note that this requires the strong maximum principle to
conclude that Σh1 is disjoint from ∂+Ω.

To prove property (2), note that clearly Ω̄h ⊂ ⋂
k≥1 Ωhk

, as there is a
positive distance between Σh and Σh′ if h < h′. On the other hand, in view
of the curvature bound on Σh and the area estimate, Lemma 5.2, we can
assume that the Σhk

converge to a smooth surface Σ′ with CMC h. By
construction, Σ′ lies on the outside of Σh and hence must agree with Σh, as
Σh is outermost. �

5.3. Level-set formulation

Clearly, the sets Ωh constructed above can be recognized as the sub-level
sets of a function u. For x ∈ Ω, we can define u(x) as follows:

(5.1) u(x) := inf{h : x ∈ Ωh}.

We denote the sub-level sets by

Eh := {x ∈ Ω : u(x) < h},
E+

h := {x ∈ Ω : u(x) ≤ h}.
We can say the following about these level sets.

Lemma 5.4. For all h ∈ [0, Hmax] we have that Eh ⊂ Ωh and E+
h = Ω̄h.

Proof. If x ∈ Eh then u(x) < h which implies x ∈ Ωh by the definition of u,
hence Eh ⊂ Ωh.

Let x ∈ E+
h , that is u(x) ≤ h. Then for all h′ > h we have that x ∈ Ωh′ .

As the intersection of all Ωh′ with h′ > h is Ω̄h by property (2) of Lemma 5.3,
we infer that E+

h ⊂ Ω̄h. To see the other inclusion, note that by the proof of
lemma 5.3, if x ∈ Ω̄h then x ∈ Ωh′ for all h′ > h. �
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Lemma 5.5. If u is as in Equation (5.1), then u ∈ BV(Ω) ∩ C0(Ω), where
BV(Ω) denotes the space of functions with bounded variation and C0(Ω)
denotes the space of bounded continuous functions.

Proof. First note that u(x) ∈ [0, Hmax] and thus u is bounded.
We show that u is continuous. First, note that since E+

h is closed, we
have that {u > h} = Ω \ E+

h is open. Furthermore,

{u = h} = Ω̄h \
⋃

h′<h

Ωh′

hence {u < h} =
⋃

h′<h Ωh′ and thus {u < h} is also open. These two prop-
erties imply the continuity of u.

Furthermore, for all k ∈ N we can choose values 0 = hk
0 < · · · < hK

N(k) =
Hmax such that |hk

i − hk
i−1| < 1/k for i = 1, . . . , N(k). Let

uk :=
N(k)∑

i=1

(hk
i − hk

i−1)χE+
hk

i

,

where χE denotes the characteristic function of a set E. Note that the uk

converge uniformly to u as k → ∞ since u is continuous. Furthermore, all
uk have their BV-norm bounded by |ΣHmax |Hmax, and thus contain a sub-
sequence that converges weakly to a limit u∞ ∈ BV. As the uk converge
uniformly to u we have that u = u∞ and hence u is in BV and has BV-norm
bounded by |ΣHmax |Hmax. �

Huisken and Ilmanen [7] introduced a notion of weak solutions to the
level-set inverse mean curvature flow. This notion motivates the following
definition of a self-referencing functional on sets F of bounded variation:

Jv(F ) := |∂+F | −
∫

F
v dx.

Based on this functional we introduce the notion of weak CMC foliations.

Definition 5.2. We say that v is a weak (respectively, sub-, super-) solu-
tion to the CMC foliation problem, if the sets E+

h := {x ∈ M : v(x) ≤ h}
minimize Jv (from the outside, inside, respectively).

With respect to the above definition, we show the following theorem.
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Theorem 5.1. The function u, as defined in Equation (5.1), is a weak
sub-solution to the CMC foliation problem.

Proof. Let F ⊃ Ω̄h = E+
h be any subset of finite perimeter. Fix ε > 0 and

pick hi ∈ (0, Hmax) such that

h = h0 < h1 < · · · < hN ,

hi − hi−1 < ε and hN is such that F ⊂ ΩhN
. For each hi we know that Ωhi

minimizes Jhi
from the outside. Hence we can compare with the set Fi :=

(Ωhi+1 ∩ F ) ∪ Ω̄hi
and find that

Jhi
(Ωhi

) ≤ Jhi
(Fi).

Expanding this out, we obtain

|Σhi
| − hi Vol(Ωhi

) ≤ |∂+F ∩ (Ω̄hi+1 \ Ω̄hi
)| + |Σhi+1 ∩ F | + |Σhi

\ F |
− hi Vol(Ωhi

) − hi Vol(F ∩ (Ω̄hi+1 \ Ω̄hi
)).

Sorting terms, this implies that

|Σhi
∩ F | − |Σhi+1 ∩ F | ≤ |∂+F ∩ (Ω̄hi+1 \ Ω̄hi

)| − hi Vol(F ∩ (Ω̄hi+1 \ Ω̄hi
)).

Taking the sum, we find that

N−1∑

i=0

(|Σhi
∩ F | − |Σhi+1 ∩ F |) ≤ |∂+F | −

N−1∑

i=0

hi Vol(F ∩ (Ω̄hi+1 \ Ω̄hi
)).

Since Ωh ⊂ F and F ⊂ ΩhN
we have that |Σh0 ∩ F | = |Σh| and |ΣhN

∩ F | =
0. So the above implies

(5.2) |Σh| ≤ |∂+F | −
N−1∑

i=0

hi Vol(F ∩ (Ω̄hi+1 \ Ω̄hi
)).

As hi ≤ u ≤ hi+1 on Ωhi+1 \ Ωhi
we can estimate

∫

F
u dx −

∫

Ωh

u dx =
N−1∑

i=0

∫

F∩(Ωhi+1\Ωhi
)
u dx

≤
N−1∑

i=0

hi+1 Vol(F ∩ (Ωhi+1 \ Ωhi
))
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≤
N−1∑

i=0

(hi + ε) Vol(F ∩ (Ωhi+1 \ Ωhi
))

≤
N−1∑

i=0

hi Vol(F ∩ (Ωhi+1 \ Ωhi
)) + ε Vol(F \ Ωh).

Combining this estimate with Equation (5.2) from above, we arrive at
∫

F
u dx −

∫

Ωh

u dx ≤ |∂+F | − |Σh| + ε Vol(F \ Ωh)

This implies that

Ju(Ωh) ≤ Ju(F ) + ε Vol(F \ Ωh)

as ε was arbitrary, this yields the claim. �

Remark 5.1. We arrived at a weak sub-solution to the CMC foliation
problem in the interior region by taking the outermost sets with curvature
Ωh. Analogously, we can construct the sets Ω̃h bounded by the innermost
surfaces with CMC h. Then the procedure above will result in surfaces min-
imizing Jh from the inside, which in turn implies that the corresponding
level-set function ũ is a super-solution to the weak CMC foliation problem.

Having these sub- and super-solutions at hand it should be possible
to construct a weak solution of the CMC foliation problem in the sense
as defined above. This is research in progress, details of which will appear
elsewhere.
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