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Explicit construction of moduli space of bounded

complete Reinhardt domains in C
n

Rong Du, Yun Gao and Stephen S. T. Yau

One of the most fundamental problems in complex geometry is to
determine when two bounded domains in C

n are biholomorphically
equivalent. Even for complete Reinhardt domains, this fundamen-
tal problem remains unsolved completely for many years. Using
the Bergmann function theory, we construct an infinite family
of numerical invariants from the Bergman functions for complete
Reinhardt domains in C

n. These infinite family of numerical invari-
ants are actually a complete set of invariants if the domains are
pseudoconvex with C1 boundaries. For bounded complete
Reinhardt domains with real analytic boundaries, the complete
set of numerical invariants can be reduced dramatically although
the set is still infinite. As a consequence, we have constructed the
natural moduli spaces for these domains for the first time.

1. Introduction

One of the basic problems in complex geometry is to find a reasonable object
which parametrizes all non-isomorphic complex manifolds. This is the well-
known moduli problem. Let D1 and D2 be two domains in C

n. One of the
most fundamental problems in complex geometry is to find necessary and
sufficient conditions which will imply that D1 and D2 are biholomorphically
equivalent. For n = 1, the celebrated Riemann mapping theorem states that
any simply connected domains in C are biholomorphically equivalent. For
n � 2, there are many domains which are topologically equivalent to the ball
but not biholomorphically equivalent to the ball (see [14]). Poincaré studied
the invariance properties of the CR manifolds, which are real hypersurfaces
in C

n, with respect to biholomorphic transformations. The systematic study
of such properties for real hypersurface was made by Cartan [2] and later
by Chern and Moser [3]. A main result of the theory is the existence of
a complete system of local differential invariants for CR-structures on real
hypersurface. In 1974, Fefferman [5] proved that a biholomorphic mapping
between two strongly pseudoconvex domains is smooth up to the boundaries
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and the induced boundary mapping is a CR-equivalence on the boundary.
Thus, one can use Chern–Moser invariants to study the biholomorphically
equivalent problem of two strongly pseudoconvex domains. Using the Chern–
Moser theory, Webster [18] gave a complete characterization when two ellip-
soids in C

n are biholomorphically equivalent. In 1978, Burns et al. [1] showed
that the “number of moduli” of a “moduli space” of a strongly pseudoconvex
bounded domain has to be infinite. Thus the moduli problem of open mani-
folds is really a very difficult one. Lempert [10] made significant progress in
the subject. He was able to construct the moduli space of bounded strictly
convex domains of C

n with marking at the origin. Although the theory
established by Lempert is beautiful, the computation of his invariants is a
hard problem. For more details on the global and local equivalence problem
for real sub-manifolds in C

n, we refer the readers to the survey paper by
Huang [8].

Recall that an open subset D ⊆ C
n is called a complete Reinhardt

domain if, whenever (z1, . . . , zn) ∈ D, then (ζ1z1, . . . , ζnzn) ∈ D for all com-
plex numbers ζj with |ζj | � 1. There is a beautiful theorem of Sunada [17]
which relates two such domains by a permutation map. For constructing the
biholomorphic moduli space of bounded complete pseudoconvex Reinhardt
domains with C1 boundary in C

2, by using a result of Sunada one may
identify this moduli space with the quotient space of curves in R

2
+ given in

polar coordinates by r = f(θ) where f : [0, π
2 ] → R+ is C1 satisfying

f(0) = 1 = f
(π

2

)
, f ′(0) = 0 = f ′

(π
2

)

f ′(θ) + cot(θ) · f(θ)
f ′(θ) − tan(θ) · f(θ)

increasing,

modulo identification of each curve with the companion curve obtained by
switching the roles of the x1- and x2-axis; equivalently, the desired moduli
space can be identified with the space of functions f satisfying the above con-
ditions modulo identification of f(θ) with f(π

2 − θ). Apparently, this result
cannot be regarded as a solution from algebraic geometry point of view
because of lack of coordinates on the quotient space of functions. In the
spirit of our methods, one can try to remedy this by providing a complete
set of invariants:

α(θ) = f(θ) + f
(π

2

)
,

β(θ) = f(θ) · f
(π

2

)
,
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γ(θ, ψ) =
(
f(θ) − f

(π
2
− θ

))
·
(
f(ψ) − f

(π
2
− ψ

))
.

To get a countable complete set of invariants, one can restrict to a countable
dense subset of θ’s and ψ’s. However, there are three major drawbacks for
this approach. The first one is that the embedding constructed in this way
is not canonical. The other one is that it lacks the uniform solution to all
dimensions. Thirdly, it is difficult if not impossible to identify the image of
the embedding. The results of this paper will solve these problems.

Recently Du and Yau [4] studied the moduli problem of complete
Reinhardt domains in C

2 from a different point of view. The main tool
to solve this moduli problem with geometry information is the new biholo-
morphic invariant Bergman function defined by Yau [20] on pseudoconvex
domains in a variety with only isolated singularity. Du and Yau discovered
that the moduli problem of complete Reinhardt domains in C

2 is equiva-
lent to the moduli problem of complete Reinhardt domains in An-variety
{(x, y, z) : xy = zn+1}, which is the quotient of C

2 by a cyclic group of order
n+ 1. The great advantage of working on the moduli problem of domains in
An-variety is that the biholomorphic maps between these domains are dra-
matically smaller. This is because these biholomorphic maps not only have
to send the boundary of one domain to the boundary of another domain,
but also have to leave the An-variety invariant. In addition, these biholomor-
phic maps need to preserve the Bergman functions which are positive func-
tions. Du and Yau used these facts to show that all the biholomorphic maps
between complete Reinhardt domains in An-variety must be of the special
form: permutation of coordinates modulo scalar multiplication. This result
is much stronger than the corresponding result obtained by Sunada [17]. In
principle, the method introduced by Du and Yau [4] could be used to study
the biholomorphic equivalence problem or moduli problem for more general
pseudoconvex domains in An-variety.

The purpose of this paper is to show that Yau’s Bergman function theory
can also solve the biholomorphic equivalence problem or moduli problem for
complete Reinhardt pseudoconvex domains in C

n for all n � 2. In order
to describe the complete biholomorphic invariants of bounded complete
Reinhardt domains in C

n, we introduce the following notations. Let Sn be
the symmetric group of degree n. Recall that the group ring R[Sn] is a ring
of the form R[τ1, τ2, . . . , τn!] with τi ∈ Sn for 1 � i � n!. Let

∑
i xiτi and∑

j yjτj , where xi, yj are in R, be two elements in R[Sn]. Then (
∑

i xiτi)
(
∑

j yjτj) :=
∑

i,j xiyj(τi · τj), where τi · τj is the product in the group Sn.
We shall consider R[Sn] × · · · × R[Sn] the product of the group ring with
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itself. Such a product has a natural Sn-module structure in the following
manner. Let σ ∈ Sn and (

∑
i xiτi, . . . ,

∑
yiτi) ∈ R[Sn] × · · · × R[Sn]. Then

(1.1) σ

(∑
i

xiτi, . . . ,
∑

yiτi

)
:=

(∑
i

xi(τiσ), . . . ,
∑

yi(τiσ)

)
.

Definition 1.1. Two elements f, g in R[Sn] × · · · × R[Sn] are said to be
equivalent and denoted by f ∼ g if there exists a σ ∈ Sn such that σ(f) = g.

Before we can describe our main results, we need the following nota-
tions. Let �α = (α1, . . . , αn) be an n-tuple of non-negative integers. Denote
φ�α = (

∏n
i=1 z

αi

i ) dz1 ∧ dz2 ∧ · · · ∧ dzn. For a domain D in C
n, we shall use

notation ‖φ�α ‖2
D =

∫
D φ�α ∧ φ�α. In this paper, we show that all the biholo-

morphic invariants of a bounded complete Reinhardt domain are contained
in (R[Sn] × · · · × R[Sn])/ ∼ where there are n! copies of R[Sn] and ∼ is the
equivalent relation defined in Definition 1.1.

Theorem A. Let D be a bounded complete Reinhardt domain in C
n. Let

�α = (α1, . . . , αn) be a n-tuple of non-negative integers. For any τ ∈ Sn,
denote

(1.2) gτ
D(�α) =

‖φ�0‖Σαi−1
D ‖φτ(�α)‖D∏n
i=1 ‖φ�ei

‖ατ(i)

D

where τ(�α) = (ατ(1), . . . , ατ(n)) and �ei = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the
ith component. Then for all n-tuples of non-negative integers �β1, . . . , �βn!,
ξ

�β1,..., �βn!

D = (
∑

τ∈Sn
gτ
D( �β1)τ, . . . ,

∑
τ∈Sn

gτ
D(�βn!)τ) as an element in

(R[Sn] × · · · × R[Sn])/ ∼ is a biholomorphic invariant. In fact, if D1 and
D2 are two such domains which are biholomorphically equivalent, then there
exists a σ ∈ Sn such that gτ

D1
(�α) = gτ ·σ

D2
(�α) ∀τ ∈ Sn and ∀�α n-tuple of non-

negative integers.

The invariants in Theorem A are complete invariants for bounded com-
plete Reinhardt pseudoconvex domains with C1 boundaries.

Theorem B. Let Di, i = 1, 2, be two bounded complete Reinhardt pseudo-
convex domains in C

n with C1 boundaries. If for all �α, . . . , �αn! n-tuples of
non-negative integers, ξ�α,...,�αn!

D1
= ξ�α1,...,�αn!

D2
in (R[Sn] × · · · × R[Sn])/ ∼,

where ξ�α1,...,�αn!

D = (
∑

τ∈Sn
gτ
D(�α1)τ, . . . ,

∑
τ∈Sn

gτ
Di

(�αn!)τ), then there exists
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σ ∈ Sn and a biholomorphic map

Ψσ(z1, . . . , zn) =
(
a1zσ(1), . . . , anzσ(n)

)
,

where ai = ‖φ�0‖D1‖φ�ei
‖D2

‖φ�eσ(i)‖D1‖φ�0‖D2
, such that Ψσ sends D1 onto D2.

Theorem A and Theorem B above give a complete characterization of
two bounded complete Reinhardt domains in C

n to be biholomorphically
equivalent in terms of the quotient of group ring (R[Sn] × · · · × R[Sn])/ ∼. In
case n = 2, we can actually write down the complete numerical invariants for
two bounded complete Reinhardt in C

2 to be biholomorphically equivalent.

Theorem C. Let D1, D2 be two bounded complete Reinhardt pseudoconvex
domains in C

2 with C1 boundaries. Then D1 is biholomorphic to D2 if and
only if

gD1(α1, α2) + gD1(α2, α1) = gD2(α1, α2) + gD2(α2, α1),(1.3)

gD1(α1, α2)gD1(α2, α1) = gD2(α1, α2)gD2(α2, α1),(1.4)

(gD1(α1, α2) − gD1(α2, α1)) (gD1(β1, β2) − gD1(β2, β1))
= (gD2(α1, α2) − gD2(α2, α1)) (gD2(β1, β2) − gD2(β2, β1))(1.5)

for all non-negative integers αi, βi, where

gDi
(α1, α2) =

‖φ�0‖α1+α2−1
Di

‖φ(α1,α2)‖Di∏2
j=1 ‖φ�ej

‖αj

Di

.

Corollary D. The moduli space of bounded complete Reinhardt pseudocon-
vex domains with C1 boundaries in C

2 can be constructed explicitly as the
image of the complete family of numerical invariants:

gD(α1, α2) + gD(α2, α1),
gD(α1, α2)gD(α2, α1),

and

(gD(α1, α2) − gD(α2, α1)) · (gD(β1, β2) − gD(β2, β1))

∀ αi, βi non-negative integers.
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In order to find the complete numerical biholomorphic invariants of
bounded complete Reinhardt domain in C

n for n � 3, we need to consider
the finite symmetric group Sn = {σ1, σ2, . . . , σn!} of degree n acting on the
affine space C

n!n! = C
n! × · · · × C

n!, which is the product of n! copies of C
n!,

in the following manner. Let τ ∈ Sn and (xσ1 , . . . , xσn! ; . . . ; yσ1 , . . . , yσn!) ∈
C

n! × · · · × C
n! = C

n!n!. Then τ(xσ1 , . . . , xσn! ; . . . ; yσ1 , . . . , yσn!) = (xσ1τ ,
. . . , xσn!τ ; . . . ; yσ1τ , . . . , yσn!τ ). Since Sn is linearly reductive, by Hilbert theo-
rem, the ring of invariants C[xσ1 , . . . , xσn! ; . . . ; yσ1 , . . . , yσn! ]Sn is finitely gen-
erated. Moreover, the generators can be listed explicitly by Göbel’s theo-
rem [6]. Before we give the statement of Göbel’s theorem, we will introduce
some definitions first.

Definition 1.2. Suppose that a finite group G acts as permutations on a
finite set X. We then refer to X together with the G-action as a finite G-set.
A subset B ⊂ X is called an orbit if G permutes the elements of B among
themselves and the induced permutation action of G on B is transitive.

Definition 1.3. If K = (k1, . . . , kn) is an n-tuple of non-negative integers,
then K is called an exponent sequence. The associated partition of K is
the ordered set consisting of the n numbers k1, . . . , kn rearranged in weakly
decreasing order. We denote by λ(K) the partition associated to K, so

λ(K) = (λ1(K) ≥ λ2(K) ≥ · · · ≥ λn(K))

and the n-tuple (λ1(K), λ2(K) · · ·λn(K)) is a permutation of k1, . . . , kn.
The monomial xK is called special if the associated partition λ(K) of the
exponent sequence K satisfies

(1) λi(K) − λi+1(K) ≤ 1 for all i = 1, . . . , n− 1, and

(2) λn(K) = 0.

Notice that if two exponent sequences A and B are permutations of each
other, then λ(A) = λ(B).

Theorem 1.1 (M. Göbel). Let G be a finite group, X a finite G-set, and R
a commutative ring. Then the ring of invariants R[X]G is generated as an
algebra by e|X| =

∏
x∈X x, the top degree elementary symmetric polynomial

in the elements of X, and the orbit sums of special monomials.

Theorem E. Let f1, . . . , fN ∈ C[xσ1 , . . . xσn! ; . . . ; yσ1 , . . . yσn! ]Sn be the gen-
erators of the ring of invariant polynomials computed by Theorem 1.1. Let
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D be a bounded complete Reinhardt domain in C
n. Then, for �α1, �α2, . . . , �αn!

n-tuples of non-negative integers,

f1(gσ
D(�α1), . . . , gσ

D(�αn!))σ∈Sn
, . . . , fN (gσ

D(�α1), . . . , gσ
D(�αn!))σ∈Sn

are biholomorphic invariants, where

gσ
D(�β) =

‖φ�0‖Σβi−1
D ‖φ

σ(�β)
‖D

∏n
i=1 ‖φ�ei

‖βσ(i)

D

, �β = (β1, β2, . . . , βn).

The following theorem says that the above invariants are actually com-
plete in case the domain D is pseudoconvex.

Theorem F. Let Di, i = 1, 2, be two bounded complete Reinhardt pseudo-
convex domains in C

n with C1 boundaries. Let f1, . . . , fN ∈ C[xσ1 , . . . , xσn! ;
. . . ; yσi

, . . . , yσn! ]Sn be the generators of the ring of invariant polynomials
computed by Theorem 1.1. If for all �α1, . . . , �αn! n-tuples of non-negative
integers

fi(gσ
D1

(�α1), . . . , gσ
D1

(�αn!))σ∈Sn
= fi

(
gσ
D2

(�α1), . . . , gσ
D2

(�αn!)
)
σ∈Sn

,

i = 1, 2, . . . , N,

then there exists τ ∈ Sn and a biholomorphic map Ψτ : C
n → C

n, Ψτ (z1, . . . ,
zn) = (a1zτ(1), . . . , anzτ(n)), where

ai =
‖φ�0‖D1‖φ�ei

‖D2

‖φ�eτ(i)‖D1‖φ�0‖D2

,

such that Ψτ sends D1 onto D2.

Corollary G. The moduli space of bounded complete Reinhardt pseudocon-
vex domains with C1 boundaries in C

n can be constructed explicitly as the
image of the complete family of numerical invariants:

fi(gσ
D(�α1), . . . , gσ

D(�αn!))σ∈Sn
, 1 � i � N,

where �α1, . . . , �αn! are all possible n-tuples of non-negative integers.

Remark. One can compute explicitly the relation of the generators f1, . . . ,
fN ∈ C[xσ1 , . . . xσn! ; . . . ; yσ1 , . . . yσn! ]Sn . These relations define an algebraic
variety in R

∞ where the moduli space lies.
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For complete Reinhardt pseudoconvex domains with real analytic bound-
aries, we can use fewer numerical invariants to characterize these domains.
More precisely, we have the following theorems.

Theorem B′. Let Di, i = 1, 2, be two bounded complete Reinhardt pseu-
doconvex domains in C

n with real analytic boundaries. Then D1 is biholo-
morphically equivalent to D2 if and only if for all �α n-tuple of non-negative
integers, ξ�α

D1
= ξ�α

D2
in R[Sn]/ ∼, where ξ�α

Di
=

∑
τ∈Sn

gτ
Di

(�α)τ . In this case,
there exists σ ∈ Sn and a biholomorphic map

Ψσ(z1, . . . , zn) = (a1zσ(1), . . . , anzσ(n)),

where ai =
‖φ�0‖D1‖φ�e‖D2

‖φ�eσ(i)‖D1‖φ�0‖D2

, such that Ψσ sends D1 onto D2.

Theorem C′. Let D1, D2 be two bounded complete Reinhardt pseudoconvex
domains in C

2 with real analytic boundaries. Then D1 is biholomorphic to
D2 if and only if

gD1(α1, α2) + gD1(α2, α1) = gD2(α1, α2) + gD2(α2, α1),
gD1(α1, α2)gD1(α2, α1) = gD2(α1, α2)gD2(α2, α1)

for all non-negative integers α1, α2, where

gDi
(α1, α2) =

‖φ�0‖α1+α2−1
Di

‖φ(α1,α2)‖Di∏2
j=1 ‖φ�ej

‖αj

Di

.

Theorem F′. Let Di, i = 1, 2, be two bounded complete Reinhardt pseudo-
convex domains in C

n with real analytic boundaries. Let

f1, . . . , fN ∈ C[xσ1 , . . . , xσn! ]
Sn

be the generators of the ring of invariant polynomials computed by Theorem
1.1. Then D1 is biholomorphically equivalent to D2 if and only if for all �α
n-tuples of non-negative integers

fi(gσ
D1

(�α))σ∈Sn
= fi(gσ

D2
(�α))σ∈Sn

, i = 1, 2, . . . , N.

In this case, there exists τ ∈ Sn and a biholomorphic map Ψτ : C
n → C

n

Ψτ (z1, . . . , zn) = (a1zτ(1), . . . , anzτ(n)), where ai =
‖φ�0‖D1‖φ�ei

‖D2

‖φ�eσ(i)‖D1‖φ�0‖D2

, such

that Ψτ sends D1 onto D2.
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Our paper is organized as follows. In Section 2 we recall the basic notion
of the Bergman function and some well-known results which are needed for
later discussion. In Section 3, we construct continuous invariants of bounded
complete Reinhardt domains in C

n and prove Theorem A and Theorem B
(B′). In Section 4, the Hilbert 14th problem and Göbel’s theorem are dis-
cussed and complete continuous numerical invariants of bounded complete
Reinhardt pseudoconvex domains are constructed. Theorem C (C′), Theo-
rem E and Theorem F (F′) are proved in this section. In Section 5, we give
applications to some concrete examples.

2. Preliminaries

In this section, we shall recall some basic definitions and results in our
previous papers [4, 20] which will facilitate our subsequent discussion. LetM
be a pseudoconvex complex manifold and A be a compact complex analytic
variety in the interior of M .

Definition 2.1. Let FM (respectively, FM,A) be the space of all L2-inte-
grable holomorphic n-form on M (respectively, vanishing at the compact
analytic subset A in M). Let {ωj} (respectively, {ωA

j }) be a complete ortho-
normal basis of FM (respectively, FM,A). The Bergman kernel (respectively,
Bergman kernel vanishing at A) is defined to be KM (z) =

∑
j ωj(z) ∧ ωj(z)

(respectively, KM,A(z) =
∑

j ω
A
j (z) ∧ ωA

j (z)).

Lemma 2.1. (a) Bergman kernel KM,A(z) vanishing at the compact ana-
lytic subset A is independent of the choice of the complete orthonormal basis
of FM,A.

(b) Let Φ: (M1, A1) → (M2, A2) be a biholomorphic map such that
Φ(A1) = A2. Then KM1,A1(z) = Φ∗KM2,A2(z).

Definition 2.2. The Bergman function BM,A on M is defined to be
KM,A(z)/KM (z).

The following Theorem 2.1 can be found in [20].

Theorem 2.1. Let A1 (respectively A2) be compact analytic variety in com-
plex manifold M1 (respectively M2). If Φ: (M1, A1) → (M2, A2) is a biholo-
morphic map, then BM1,A1(z) = BM2,A2(Φ(z)).

In what follows, we shall recall the following beautiful theorem of Sunada.
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Theorem 2.2 (Sunada [17]). Two n-dimensional bounded Reinhardt
domains D1 and D2 are biholomorphically equivalent if and only if there
exists a linear transformation Φ: C

n → C
n given by zi �→ rizσ(i) (ri > 0, i =

1, . . . , n and σ being a permutation of the indices i) such that Φ(D1) = D2.

The following proposition, which is a corollary to Satz 1 in [13], is stated
as Proposition 1 in [12].

Proposition 2.1 (Pflug [13]). The Bergman kernel blows up at every
boundary point in a pseudoconvex domain with C1-bounding in C

n.

3. Continuous invariants of bounded complete Reinhardt
domains in C

n

In what follows, we shall use the following notations �ei = (0, . . . , 0, 1, 0, . . . , 0)
with 1 in the ith position.

Z+ = set of non-negative integers
�α = (α1, . . . , αn) ∈ Z

n
+.

Proposition 3.1. Let D be a bounded complete Reinhardt domain in C
n.

Let φ�α =
∏n

i=1 z
αi

i dz1 ∧ dz2 ∧ · · · ∧ dzn, αi ∈ Z+. Then
{

φ�α

‖φ�α‖D

}
is a com-

plete orthonormal base of FD, and
{

φ�α

‖φ�α‖D
: �α = 0

}
is a complete orthonor-

mal basis of FD,0. The Bergman kernel KD,0 vanishes at the origin and the
Bergman kernel KD are given by

(3.1) KD,0 = ΘD dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

and

(3.2) KD =
(

1
‖φ�0‖2

D

+ ΘD

)
dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

where

(3.3) ΘD =
∑
�α�=0

∏n
i=1 |zi|2αi

‖φ�α‖2
D

.

Proof. This is a consequence of the proof of Proposition 3.2 of [20]. �
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Proposition 3.2. Let D be a bounded complete Reinhardt domain in C
n.

With the notations in the above proposition, ‖φ�0‖2
DΘD is invariant under

biholomorphic maps which send the origin to the origin.

Proof. Let Ψ: D1 → D2 be a biholomorphic map between two bounded com-
plete Reinhardt domains such that Ψ(0) = 0. By Theorem 2.1 and Proposi-
tion 3.1, we have

BD1(z) = BD2(Ψ(z))

⇒ ΘD1(z)
1

‖φ�0‖2
D1

+ ΘD1(z)
=

ΘD2(Ψ(z))
1

‖φ�0‖2
D2

+ ΘD2(Ψ(z))

⇒ ‖φ�0‖2
D1

ΘD1(z) = ‖φ�0‖2
D2

ΘD2(Ψ(z)).
�

Theorem 3.1. Let Di, i = 1, 2, be two bounded complete Reinhardt
domains in C

n. If D1 is biholomorphically equivalent to D2, then there exists
a biholomorphic map Ψσ of the following form:

(3.4) Ψσ(z) =
(
a1zσ(1), . . . , anzσ(n)

)
,

where σ is in Sn, a symmetric group of order n, and

(3.5) ai =
‖φ�0‖D1‖φ�ei

‖D2

‖φ�eσ(i)‖D1‖φ�0‖D2

.

Proof. In view of Theorem 2.2, there exists a biholomorphism Ψσ : D1 → D2

of the form (3.4). By Proposition 3.2

‖φ�0‖2
D1

ΘD1(z) = ‖φ�0‖2
D2

ΘD2(Ψσ(z)),

⇒ ‖φ�0‖2
D1

∑
�α�=0

∏n
i=1 |zn|2αi

‖φ�α‖2
D1

= ‖φ�0‖2
D2

∑
�α�=0

∏n
i=1 |aizσ(i)|2αi

‖φ�α‖2
D2

.(3.6)

Comparing the coefficient of |zi|2 in (3.6), we can get

‖φ�0‖2
D1

1
‖φ�ei

‖2
D1

=
‖φ�0‖2

D2
|aσ−1(i)|2

‖φ�eσ−1(i)
‖2

D2

⇒ aσ−1(i) =
‖φ�0‖D1‖φ�eσ−1(i)

‖D2

‖φ�ei
‖D1‖φ�0‖D2

i.e., ai =
‖φ�0‖D1‖φ�ei

‖D2

‖φ�eσ(i)‖D1‖φ�0‖D2

. �
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Now we are ready to prove Theorem A.

Proof of Theorem A. Let D1 and D2 be biholomorphically equivalent
bounded complete Reinhardt domains. By Theorem 3.1, there exists a
biholomorphic map

Ψσ : D1 −→ D2

(z1, . . . , zn) −→ (a1zσ(1), . . . , anzσ(n)),

where

ai =
‖φ�0‖D1‖φ�ei

‖D2

‖φ�eσ(i)‖D1‖φ�0‖D2

.

By Proposition 3.2

‖φ�0‖2
D1

∑
�α �=0

∏n
i=1 |zi|2αi

‖φ�α‖2
D1

= ‖φ�0‖2
D1

ΘD1(z)

= ‖φ�0‖2
D2

ΘD2 (Ψσ(z))

= ‖φ�0‖2
D2

∑
�α�=0

∏n
i=1 |aizσ(i)|2αi

‖φ�α‖2
D2

.

Comparing the coefficient of |z1|2α1 |z2|2α2 . . . |zn|2αn in the identity above,
we get

‖φ�0‖2
D1

‖φ�α‖2
D1

=
‖φ�0‖2

D2
· ∏n

i=1 |aσ−1(i)|2αi

‖φσ(�α)‖2
D2

⇒ ‖φ�0‖2
D1

‖φ�α‖2
D1

=
‖φ�0‖2

D2

‖φσ(�α)‖2
D2

n∏
i=1

(‖φ�0‖D1‖φ�eσ−1(i)‖D2

‖φ�ei
‖D1‖φ�0‖D2

)2αi

⇒ ‖φ�0‖Σαi−1
D1

· ‖φ�α‖D1∏n
i=1 ‖φ�ei

‖αi

D1

=
‖φ�0‖Σαi−1

D2
· ‖φσ(�α)‖D2∏n

i=1 ‖φ�eσ−1(i)
‖αi

D2

=
‖φ�0‖

∑
αi−1

D2
‖φσ(�α)‖D2∏n

i=1 ‖φ�ei
‖ασ(i)

D2

(3.7)

i.e., gId
D1

(�α) = gσ
D2

(�α).
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Similarly, by comparing the coefficient of |z1|2ατ(1) |z2|2ατ(2) . . . |zn|2ατ(n) , we
know

gτ
D1

(�α) = gτ ·σ
D2

(�α),

which implies
∑
τ∈Sn

gτ
D1

(�α)τ =
∑
τ∈Sn

gτ ·σ
D2

(�α)τ

=
∑
τ∈Sn

gτ ·σ
D2

(�α)τ · σ · σ−1

= σ−1

( ∑
τ∈Sn

gτ
D2

(�α)τ

)
.(3.8)

For the same reason, we have

(3.9)
∑
τ∈Sn

gτ
D1

(�αi)τ = σ−1

( ∑
τ∈Sn

gτ
D2

(�αi)τ

)
, i = 1, . . . , n!.

From (3.9), we have ξ�α,...,�αn!

D1
∼ ξ�α,...,�αn!

D2
.

Next we claim that ∃σ ∈ Sn such that gτ
D1

(�α) = gτ ·σ
D2

(�α) ∀τ ∈ Sn and ∀�α
n-tuple of non-negative integers. For any �α n-tuple of non-negative integers,
let

I�α = {σ ∈ Sn : gτ
D1

(�α) = gτ ·σ
D2

(�α), ∀τ ∈ Sn}.

If our claim is not true, then ∀σi ∈ Sn = {σ1, . . . , σn!}, ∃�αi, n-tuple of non-
negative integers such that σi /∈ I�αi

. It follows that

n!⋃
i=1

(Sn \ I�αi
) = Sn,

which implies
⋂n!

i=1 I�αi
= ∅. On the other hand for these n-tuples of inte-

gers �α1, . . . , �αn!, we have ξ�α1,...,�αn!

D1
= ξ�α1,...,�αn!

D2
, i.e., ∃σ�α1,...,�αn! ∈ Sn such that

(3.10) hold. Let τ(�α1,...,�αn!) = (σ�α1,...,�αn!)−1. In view of (3.10), one easily sees
that τ(�α1,...,�αn!) ∈

⋂n!
i=1 Iαi

. This leads to a contradiction and our claim is
proven. �

In order to prove Theorem B, we need to establish the following theorem.
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Theorem 3.2. Let Di, i = 1, 2, be two bounded complete Reinhardt
domains in C

n. Suppose for all �α1, . . . , �αn! n-tuples of non-negative inte-
gers, ξ�α1,...,�αn!

D1
= ξ�α1,...,�αn!

D2
in (R[Sn] × · · · × R[Sn])/ ∼, i.e., ∃σ�α1,...,�αn! ∈ Sn

such that

(3.10) ξ�α1,...,�αn!

D1
= σ �α1,..., �αn!

(
ξ�α1,...,�αn!

D2

)
.

Then, there exists σ ∈ Sn and a biholomorphic map

Ψσ : C
n −→ C

n

(z1, . . . , zn) −→ (
a1zσ(1), . . . , anzσ(n)

)
,

where ai =
‖φ�0‖D1‖φ�ei

‖D2

‖φ�eσ(i)‖D1‖φ�0‖D2

, such that BD1(z) = BD2(Ψσ(z)).

Proof. By Theorem A, we now take σ in the claim of Theorem A and let

Ψσ : C
n −→ C

n

(z1, . . . , zn) −→ (
a1zσ(1), . . . , anzσ(n)

)
,

where ai =
‖φ�0‖D1‖φ�ei

‖D2

‖φ�eσ(i)‖D1‖φ�0‖D2

. After computation as in the proof of

Theorem A, we get

‖φ�0‖2
D1

∑ |z1|2α1 . . . |zn|2αn

‖φ�α‖D1

= ‖φ�0‖2
D2

∑ ∏n
i=1 |aizσ(i)|2αi

‖φσ(�α)‖2
D2

.

It follows that BD1(z) = BD2 (Ψσ(z)). �
Now we are ready to prove Theorem B.

Proof of Theorem B. It is easy to see that the Bergman function BDi
is

zero at the origin and 0 < BDi
< 1 on Di \ {(0, 0, . . . , 0)}. In view of Propo-

sition 2.1, BDi
is identically equal to 1 on ∂Di. By Theorem 3.2, there exists

a biholomorphic map Ψσ from C
n to C

n such that BD1(z) = BD2(Ψσ(z)).
In particular Ψσ preserves the level sets of the Bergman functions. It follows
that Ψσ sends ∂D1 to ∂D2. �

4. Complete continuous numerical invariants

We shall now construct the complete continuous numerical invariants for
complete Reinhardt domains with C1 boundaries. For n = 2, we have
Theorem C stated in Section 1.
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Proof of Theorem C. Since (1.3), (1.4) and (1.5) hold for all non-negative
integers αi, βi, we have either

(1) gD1(α1, α2) = gD2(α1, α2), gD1(α2, α1) = gD2(α2, α1),
gD1(β1, β2) = gD2(β1, β2), gD1(β2, β1) = gD2(β2, β1),

or

(2) gD1(α1, α2) = gD2(α2, α1), gD1(α2, α1) = gD2(α1, α2),
gD1(β1, β2) = gD2(β2, β1), gD1(β2, β1) = gD2(β1, β2),

for all non-negative integers αi, βi. It is easy to see that in both cases, we
get

ξ�α,�β
D1

:=
(
gD1(α1, α2) · Id + gD1(α2, α1) · σ,

gD1(β1, β2) · Id + gD2(β2, β1) · σ
)

∼ ξ�α,�β
D2

:=
(
gD2(α1, α2) · Id + gD2(α2, α1) · σ,

gD2(β1, β2) · Id + gD2(β2, β1) · σ
)
,(4.1)

where S2 = {Id, σ}. In view of Theorem B, we know thatD1 is biholomorphic
to D2.

Conversely ifD1 is biholomorphic toD2, then by Theorem A, (4.1) holds.
Then it is easy to check that (1.3), (1.4) and (1.5) hold. �

Theorem C says that

gD(α1, α2) + gD(α2, α1),
gD(α1, α2) · gD(α2, α1)

and

(gD(α1, α2) − gD(α2, α1)) (gD(β1, β2) − gD(β2, β1)) ,

∀αi, βi � 0, αi, βi ∈ Z+, are complete numerical biholomorphic invariants of
bounded complete Reinhardt pseudoconvex domains in C

n with C1 bound-
aries. If we want to find the complete numerical biholomorphic invariants
for bounded complete Reinhardt pseudoconvex domains in C

n, n � 3, we
need to consider the following problem.
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Let Sn be the symmetric group of order n. Sn acts on C[xσ, . . . , yσ] in
the following manner:

τ ∈ Sn, τ(xσ) = xσ·τ , . . . , τ(yσ) = yσ·τ

Let R be subring of invariants in C[xσ, . . . , yσ]. In other words,

R := C[xσ, . . . , yσ]Sn = {f ∈ C[xσ, . . . , yσ] : ∀τ ∈ Sn, τ(f) = f}.

We want to know whether R is finitely generated and what are the generators
of R. Actually the first problem is a special case of Hilbert’s 14th problem.
At the International Congress of Mathematicians at Paris in 1900, David
Hilbert asked the following question.

Hilbert 14th Problem. If an algebraic group acts linearly on a polynomial
ring in finitely many variables, is the ring of invariants always finitely gen-
erated?

Recall that an algebraic group G is said to be linearly reductive if, for
every epimorphism φ : V →W of G representations, the induced map on
G-invariants φG : V G →WG is surjective. The answer to the Hilbert 14th
problem is positive if the group G is linearly reductive [7]. In fact, the answer
is also positive if G is additive (non-reductive) group C (or, more generally,
the field k. See [16, 19]). In view of the following lemma, we know that finding
the complete numerical biholomorphic invariants is equivalent to finding the
generators of R.

Lemma 4.1. Let the symmetric group Sn = {σ1, . . . , σn!} act on C
n!n! via

the following formula:

τ ∈ Sn, p = (xσ1 , . . . , xσn! , . . . , yσ1 , . . . , yσn!) ∈ C
n!n!,

τ(p) = (xσ1τ , . . . , xσn!τ , . . . , yσ1τ , . . . , yσn!τ ) .

Let π : C
n!n! → C

n!n!/Sn be the quotient map. For any p and p′ in C
n!n!, the

following two statements are equivalent:

(1) π(p) = π(p′).

(2) For any f ∈ R = C [xσ1 , . . . , xσn! , yσ1 , . . . , yσn! ]
Sn, f(p) = f(p′).

Proof. See [11, p. 167, Theorem 5.16]. �
In view of Lemma 4.1, we want to show that R = C[x1, . . . , xn!, . . . ,

y1, . . . , yn!]Sn is finitely generated.
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Proposition 4.1. Every finite group is linearly reductive.

Theorem 4.1 (Hilbert [7]). For linearly reductive group, the ring of invari-
ant polynomials is finitely generated.

From Proposition 4.1 and Theorem 4.1, we know that

R = C[xσ1 , . . . , xσn! , . . . , yσ1 , . . . , yσn! ]
Sn

is finitely generated. Now we assume that the generators of R are f1(xσ, . . . ,
yσ), . . . , fN (xσ, . . . , yσ) where σ runs over all the elements in Sn. We want
to show that

f1 (gσ
D(�α1), . . . , gσ

D(�αn!))σ∈Sn
, . . . , fN (gσ

D(�α1), . . . , gσ
D (�αn!))σ∈Sn

,

for all n-tuples of non-negative integers �α1, . . . , �αn!, are complete numerical
invariants of bounded complete Reinhardt pseudoconvex domains in C

n.

Proof of Theorem E. Let D1, D1 be two bounded complete Reinhardt
domains in C

n. If D1 is biholomorphic to D2, then there exists τ ∈ Sn such
that gσ

D1
(�α) = gστ

D2
(�α), ∀σ ∈ Sn, ∀�α n-tuple of non-negative integers. We take

Pi =
(
gσ1
Di

(�α1), . . . , gσn!
Di

(�α1) , . . . , gσ1
Di

(�αn!) , . . . , gσn!
Di

(�αn!)
) ∈ C

n!n!,

where i = 1, 2 and Sn = {σ1, σ2, . . . , σn!}. Then π(P1) = π(P2) where π :
C

n!n! → C
n!n!/Sn is the quotient map in Lemma 4.1. It follows that

fi

(
gσ
D1

(�α1), . . . , gσ
D(�αn!)

)
σ∈Sn

= fi

(
gσ
D2

(�α1), . . . , gσ
D2

(�αn!)
)
σ∈Sn

,

1 � i � N.
�

Proof of Theorem F. Since

fi

(
gσ
D1

(�α1), . . . , gσ
D1

(�αn!)
)
σ∈Sn

= fi

(
gσ
D2

(�α1), . . . , gσ
D2

(�αn!)
)
σ∈Sn

,

i = 1, 2, . . . , N

and {f1, . . . , fN} generates C[xσ1 , . . . xσn! , . . . , yσ1 , . . . , yσn! ]Sn , we know by
Lemma 4.1 that

P1 =
(
gσ1
D1

(�α1), . . . , gσn!
D1

(�α1), . . . , gσ1
D1

(�αn!), . . . , gσn!
D1

(�α)
)
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and P2 =
(
gσ1
D2

(�α1), . . . , gσn!
D2

(�αn!), . . . , gσ1
D2

(�αn!), . . . , gσn!
D2

(�αn!)
)

are in the
same Sn orbit. Hence there exists σ�α1,...,�αn! ∈ Sn such that

(4.2) gσ
D1

(�α1) = gσ·σ�α1,...,�αn!

D2
(�α1), . . . , gσ

D1
(�αn!) = gσ·σ�α1,...,�αn!

D2
(�αn!).

Equation (4.2) implies that ξ�α1,...,�αn!

D1
= ξ�α1,...,�αn!

D2
in (R[Sn] × · · · × R[Sn])/ ∼.

By Theorem 3.2, there exists σ ∈ Sn and a biholomorphic map Ψσ : C
n → C

n

such that BD1(z) = BD2(Ψσ(z)). The proof of Theorem B shows that Ψσ

sends D1 onto D2. �

For complete Reinhardt pseudoconvex domains with real analytic bound-
aries, we can use fewer numerical invariants to characterize these domains.

Proof of Theorem B ′.

“⇒” This follows from the proof of Theorem A.

“⇐” Suppose that for all �α n-tuple non-negative integers,

ξ�α
D1

= ξ�α
D2

in R[Sn]/ ∼ .

Then ∃σ�α ∈ Sn such that

∑
τ∈Sn

gτ
D1

(�α)τ = σ�α

( ∑
τ∈Sn

gτ
D2

(�α)τ

)

=
∑
τ∈Sn

gτ
D2

(�α)τ · σ�α

=
∑
τ∈Sn

g
τ ·σ−1

�α

D2
(�α)τ

⇒ gτ
D1

(�α) = g
τ ·σ−1

�α

D2
.(4.3)

Let Sn = {τ1, . . . , τn!}. Denote Ij = {�α ∈ (Z+)n : σ−1
�α = τj}, j = 1, 2, . . . , n!.

We shall introduce the concept of partial Bergman function in the following
manner. Let

Θ(j)
D (z) =

∑
�α∈Ij

∏n
h=1 |zk|2αk

‖φ�α‖2
D

, B
(j)
D (z) =

Θ(j)
D (z)

1
‖φ�α‖2

D

+ Θ(j)
D (z)

.
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Clearly, we have

(4.4) ΘD(z) =
∑
�α �=0

∏n
k=1 |zk|2αk

‖φ�α‖2
D

=
n!∑

j=1

Θ(j)
D (z).

In view of (4.3), by routine computation we get

(4.5) ‖Φ�0‖2
D1

Θ(j)
D1

(z) = ‖φ�0‖2
D2

Θ(j)
D2

(Ψτj
(z))

and

(4.6) B
(j)
D1

(z) = B
(j)
D2

(Ψτj
(z)),

where

Ψτj
: C

n −→ C
n

(z1, . . . , zn) −→ (
a1zτj(1), . . . , anzτj(n)

)

ai =
‖φ�0‖D1‖φ�ei

‖D2

‖φ�eτj(i)‖D1‖φ�0‖D2

By Proposition 2.1, the Bergman kernel and hence ΘD1 blows up at the
boundary points. It follows from (4.4) that there exists some m such that
Θ(m)

D1
is infinite on a non-empty open set U1 of ∂D1. It follows that B(m)

D1
(z) is

equal to 1 in the non-empty open set U1 of ∂D1. Recall that by the definition,
B

(m)
Di

is zero at the origin and is 0 < B
(m)
Di

< 1 on Di \ {(0, . . . , 0)}. Since
B

(m)
D1

(z) = B
(m)
D2

(Ψτm
(z)), we see immediately that Ψτm

sends U1 ⊆ ∂D1 to
an open subset of ∂D2. In view of the fact that ∂Di, i = 1, 2, are real analytic
and compact, it follows easily that Ψτm

sends ∂D1 to ∂D2. �
Proof of Theorem C ′. This follows immediately from Theorem B′. �
Proof of Theorem F ′.

“⇒” This follows from the proof of Theorem E.

“⇐” Suppose that for all �α n-tuple non-negative integers, we have

fi

(
gσ
D1

(�α)
)
σ∈Sn

= fi

(
gσ
D2

(�α)
)
σ∈Sn

, i = 1, . . . , N.

Then by the analogy of Lemma 4.1, we have

π
(
gτ1
D1

(�α), . . . , gτn!
D1

(�α)
)

= π
(
gτ1
D2

(�α), . . . , gτn!
D2

(�α)
)
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when π : C
n! −→ C

n!/Sn. Therefore, there exist σ�α such that
gσ
D1

(�α) = gσ·σ�α

D2
(�α) for all σ ∈ Sn. By the proof similar to the proof of

Theorem B′, we get a biholomorphic map Ψτ which sends D1 onto D2. �
Actually, the generators of R = C [xσ1 , . . . , xσn! ; . . . ; yσ1 , . . . , yσn! ]

Sn can
be listed explicitly by a theorem in Section 1 discovered by Göbel [6].

5. Application in concrete examples

In [9], Huang communicated to us the following state of art of determin-
ing when two complete Reinhardt domains is biholomorphically equivalent.
Assume that D1, D2 are two bounded Reinhardt domains. Di is defined
by real analytic function fi(|z1|, . . . , |zn|) < 0. Let T (Di) = {(|z1|, . . . , |zn|) :
(z1, . . . , zn) ∈ Di}. By Sunada’s theorem, D1 is biholomorphic to D2 if and
only if there is a permutation σ ∈ Sn such that σ(T (D1)) = T (D2). Thus
the biholomorphic problem for Reinhardt domains is converted to the iden-
tification problem up to permutation for domains in (R+)n with points
Pj = (0, . . . , 0, 1, 0, . . . , 0) (in the jth component) being the boundary points.
This method is effective when fi, i = 1, 2 are irreducible polynomial. For
example, let

D1 = {(z1, z2) ∈ C
2 :

f(|z1|, |z2|) = |z1|N + |z2|N +
N−1∑
j=1

cj |z1|j |z2|N−j − 1 < 0},

D2 = {(z1, z2) ∈ C
2 :

f(|z1|, |z2|) = |z1|N + |z2|N +
N−1∑
j=1

ej |z1|j |z2|N−j − 1 < 0},

under the assumption that f1, f2 are irreducible, we get that D1 is biholo-
morphic toD2 if and only if either (e1, . . . , eN−1) = (c1, . . . , cN−1) or (e1, . . . ,
eN−1) = (cN−1, cN−2, . . . , c1). But this method cannot handle the case when
fi is not irreducible.

Example 5.1. Let

D1 = {z ∈ C
2 : f1(|z1|, |z2|) =
(|z1||z2| + |z1| + |z2| − 1)

(
1
2
|z1||z2| + |z1| + |z2| − 1

)
< 0},

D2 = {z ∈ C
2 : f2(|z1|, |z2|) =
(|z1||z2| + |z1| + |z2| − 1)

(
1
3
|z1||z2| + |z1| + |z2| − 1

)
< 0}.
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Notice that P1 = (1, 0) and P2 = (0, 1) are both the outermost boundary
points for D1 and D2. Also, T (Dj) are invariant under the action of S2.
Hence, D1 and D2 are holomorphically equivalent if and only if T (D1) =
T (D2) in (R+)n. But this is impossible, for (1/3, 4/7) is a boundary point
of T (D1) while it is an interior point of T (D2). From this example , we can
see that there is no easy way for this method to handle the biholomorphic
equivalent problem for general Reinhardt domains.

However, we can easily use our theory to show that D1 is not biholo-
morphic to D2 as follows. Let

‖φ�α‖2
D =

∫

D
φ�α ∧ φ�α =

∫

D
|z1|2α1 |z2|2α2 dz1 ∧ dz2 ∧ dz1 ∧ dz2

= (4π)2
∫∫

{(r1,r2) : f(r1,r2)<0}
r2α1+1
1 r2α2+1

2 dr1 dr2.

By computation, we get

‖φ�0‖2
D1

=
(
−57

4
+ 42 ln 3 − 46 ln 2

)
· (4π)2,

‖φ(1,0)‖2
D1

= ‖φ(0,1)‖2
D1

=
(
−2903

24
+ 312 ln 3 − 320 ln 2

)
· (4π)2,

‖φ(2,0)‖2
D1

= ‖φ(0,2)‖2
D1

=
(

1824 ln 3 + 836 ln 2 − 2925
4

)
· (4π)2,

‖φ�0‖2
D2

= (−49 + 356 ln 2 − 180 ln 3) · (4π)2,

‖φ(1,0)‖2
D2

= ‖φ(0,1)‖2
D2

=
(

5824 ln 2 − 2500
3

− 2916 ln 3
)
· (4π)2,

‖φ(2,0)‖2
D2

= ‖φ(0,2)‖2
D2

=
(
−163457

45
+ 75804 ln 2 − 37908 ln 3

)
· (4π)2.

Let S2 = {τ1 = Id, τ2 = (1, 2)} be the symmetric group of degree 2. We shall
take �β = (2, 0). Then

gDi
(2, 0) =

‖φ�0‖Di
‖φ(2,0)‖Di

‖φ(1,0)‖2
Di

, i = 1, 2,

gDi
(0, 2) =

‖φ�0‖Di
‖φ(0,2)‖Di

‖φ(0,1)‖2
Di

= gDi
(2, 0), i = 1, 2.

Since gD1(2, 0) + gD1(0, 2), which is approximately equal to 25.277 is not
equal to gD2(2, 0) + gD2(0, 2), which is approximately equal to 2.637, we
conclude that D1 is not biholomorphic to D2 by Theorem C.
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In 1907 Poincaré discovered the following theorem [15, p. 24].

Theorem 5.1 (Poincaré). Let Bn = {z ∈ C
n | ∑n

i=1 |zi|2 < 1} be the unit
ball and Δn = {z ∈ C

n | |zi| < 1, i = 1, . . . , n} be the unit polydisc in C
n,

then there exists no biholomorphic map between Δn and Bn.

Using our method, we can easily get this result.
Notation: �0 = (0, . . . , 0), �ei = (0, . . . , 1, . . . , 0), �α = (2, 0, . . . , 0).

Proof of Theorem 5.1. For any �β ∈ Z
n, D = {z ∈ C

n | f(z1, . . . , zn) < 0} is
the bounded Reinhardt domain.

‖φ�β
‖D =

∫

D
φ�β

∧ φ�β

=
∫

D
|z1|2β1 . . . |zn|2βndz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn

= (4π)n

∫
· · ·

∫

n
{�r : f(r1,...,rn)<0}

n∏
j=1

r
2βj+1
j dr1 ∧ · · · ∧ drn.

After computation, we get

‖φ�0‖2
Δn

= (4πn)
∫

· · ·
∫

Δn

r1r2 . . . rn dr1 . . . drn = (2π)n,

‖φ�e1‖2
Δn

= (4πn)
∫

· · ·
∫

Δn

r31r2 . . . rn dr1 . . . drn =
1
2
· (2π)n,

‖φ�α‖2
Δn

= (4πn)
∫

· · ·
∫

Δn

r51r2 . . . rn dr1 . . . drn =
1
3
· (2π)n,

‖φ�0‖2
Bn

= (4πn)
∫

· · ·
∫

Bn

r1r2 . . . rn dr1 . . . drn =
(4π)n

∏n
i=1 2i

,

‖φ�e1‖2
Bn

= (4πn)
∫

· · ·
∫

Bn

r31r2 . . . rn dr1 . . . drn =
(4π)n

∏n+1
i=1 2i

,

‖φ�α‖2
Bn

= (4πn)
∫

· · ·
∫

Bn

r51r2 . . . rn dr1 . . . drn =
(4π)n

∏n+2
i=3 2i

.

For Δn and Bn are symmetric domains

‖φ�ei
‖Δn

= ‖φ�ej
‖Δn

, ‖φ�ei
‖Bn

= ‖φ�ej
‖Bn

, ∀i, j ∈ {1, . . . , n},
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‖φ�α‖Δn
= ‖φτ(�α)‖Δn

, ‖φ�α‖Bn
= ‖φτ(�α)‖Bn

, ∀τ ∈ Sn,

gτ
Δn

(�α) = gId
Δn

(�α) =
‖φ�0‖

∑
αi−1

Δn
‖φ�α‖Δn∏n

i=1 ‖φ�ei
‖αi

Δn

=
2
√

3
3
,

gτ
Bn

(�α) = gId
Bn

(�α) =
‖φ�0‖

∑
αi−1

Bn
‖φ�α‖Bn∏n

i=1 ‖φ�ei
‖αi

Bn

=

√
2(n+ 1)(n+ 2)

n+ 2
.(5.1)

So
∑

τ∈Sn
gτ
Δn

(�α) · τ = ∑
τ∈Sn

gτ
Bn

(�α) · τ in R[Sn]/ ∼.
Then Δn is not biholomorphic to Bn by Theorem A. �

Example 5.2. In addition, we can show An = {z ∈ C
n | ∑n

i=1 |zn| < 1} is
not biholomorphic to Bn

‖φ�0‖An
= (4πn)

∫
· · ·

∫

An

r1r2 . . . rn dr1 . . . drn =
(4π)n

∏2n
i=1 i

,

‖φ�e1‖An
= (4πn)

∫
· · ·

∫

An

r31r2 . . . rn dr1 . . . drn =
(4π)n

∏2(n+1)
i=4 i

,

‖φ�α‖An
= (4πn)

∫
· · ·

∫

An

r51r2 . . . rn dr1 . . . drn =
(4π)n

∏2(n+2)
i=6 i

.

Using the same method, we get

gτ
An

(�α) = gId
An

(�α) =
‖φ�0‖

∑
αi−1

An
‖φ�α‖An∏n

i=1 ‖φ�ei
‖αi

An

=

√
5(2n+ 1)(2n+ 2)√
3(2n+ 3)(2n+ 4)

So
∑

τ∈Sn
gτ
Bn

(�α) · τ = ∑
τ∈Sn

gτ
An

(�α) · τ in R[Sn]/ ∼.

Then Bn is not biholomorphic to An by Theorem A.

Example 5.3. Δn is not biholomorphic to An.
According to the computation above,

∑
τ∈Sn

gτ
Δn

(�α) · τ =
∑
τ∈Sn

gτ
An

(�α) · τ in R[Sn]/ ∼ .

So Δn is not biholomorphic to An.
From the examples above, it is reasonable to suspect the problem lies

with the fact that Bn has a C∞ smooth boundary, whereas Δn and An

have “corners” in its boundaries. However, Δn is not biholomorphic to An
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though their boundaries both have “corners”. So the biholomorphic equiva-
lence problem of domains in C

n is very complicated even in the Reinhardt
domain case.
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