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On the Kahler manifolds with the largest infimum
of spectrum of Laplace—Beltrami operators and
sharp lower bound of Ricci or holomorphic
bisectional curvatures

SONG-YING L1

The paper studies the extremal or rigidity problem associated
to the largest infimum of spectrum of Laplace-Beltrami opera-
tor Ay on Kéhler manifolds (M™, g) under the sharp lower bound
assumption on either Ricci curvature or holomorphic bisectional
curvature. The paper provides some conterexamples on those rigid-
ity problems. In particular, we consider D(A) = {z € C": |z]? +
Rezj 1 Ajz < 1} a convex domain in C™ with n > 1 and A; €
(-1,1). Assumlng go is the Ké&hler-Einstein metric on D(A), we
prove that A;(Ag,) =n? on (D(A),go), but D(A) is not biholo-
morphic to the unit ball B,, when A # 0. Moreover, we prove that
p(z) = —e* is strictly plurisubharmonic in D(A) where u is the
potential function for K&hler-Einstein metric on D(A). We also
construct a complete Kahler metric g; on D(A) with holomorphic
bisectional curvature K4, > —1 and A\;(A,,) = n?, but D(A) is not
biholomorphic to B,, when A # 0.

1. Introduction

Let (M™, g) be a Kéhler manifold of complex dimension n with Kéhler metric
g = 223:1 gﬁdzl- ® dzj. Then the Laplace-Beltrami operator with respect
to the metric g is defined as follows:

n - 52
= — [
(1.1) A, 4”2;9 5207,
where [¢¥]t = 9,7 ]] . We define
(1.2)
of o
g =it {1 [ 52 T, e cran. e =1},

7]_
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where dvg is the volume measure on M with respect to the Kéhler metric g.

When M is compact and Ay is uniformly elliptic, A1 (Ay) is the first pos-
itive eigenvalue of A4 with Dirichlet boundary condition (see, for example,
the lecture notes of Li [8] and the paper of S. Udagawa [19] and refer-
ences therein). When (M",g) is a complete noncompact Kéhler manifold,
in general, A\1(Ay) is not an eigenvalue of A, (see for example, [1, 10, 11,
16, 18]). However, it is the infimum of the positive spectrum of A,4. There
have been many researches on the analytic and geometric problems asso-
ciated with A;. An important analytic problem is to find an sharp esti-
mate on A\ (A,) with certain low bound assumptions on curvatures, which
provides sharp upper bound for Poincare inequality. An important upper
bound estimate was obtained by Li and Wang in [10]. They proved that
M (Ag) < n? if the holomorphic bisectional curvature of M is bounded below
by —1. Their estimate is sharp and equality is achieved by the complex
hyperbolic space CH". Cheng [1] proved that A;(A,) < n? if Ricci curva-
ture satisfying Rz > —ng,;. Munteanu [18] proved that Ai(Ag) < n? if the
Ricci curvature Rz > —(n+1) 9;;- His estimate is sharp because if M = B,
and g is Kihler-Einstein metric then \; = n? and Rz =—(n+1)g;. Some
more results along this line with different assumptions and estimates were
obtained in [5, 6, 11, 21] and references therein. Li and Tran [16] provided
some alternative conditions; the authors considered a bounded pseudocon-
vex domain D in C" with negative defining function p so that u = —log(—p)
is strictly plurisubharmonic in D, and Kéahler metric 95 = 8225% (induced

by u). They proved several theorems. In particular, the following result was
proved in [16] which will be used later.

Theorem 1.1. Let D be a bounded strictly pseudoconvex domain in C™
with a plurisubharmonic negative defining function p € C*(D) so that u =
—log(—p) is strictly plurisubharmonic in D. Let g be the Kdhler metric
induced by u. Then (D, g) is a complete Kihler manifold and A\1(Ag) = n?.

Geometric-type problems associated with A\i(A,) are rigidity problems.
One may raise the following general questions:

Question 1.1. Under the assumptions: holomorphic bisectional curvature
Ky > —1 and \(A,) = n%. What can one say about M ?

Question 1.2. Under the assumptions: Ricci curvature Rz > —(n+ 1)91‘3
and A1 (Ay) = n?. What can one say about M ?
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Questions 1.1 and 1.2 for the Riemannian case were studied by Li and
Wang [11, 13], and they proved a very pretty splitting theorem. Li and Wang
[10, 12] considered Ké&hler manifolds and also obtained a similar splitting
theorem. The following theorem is their results for the Kéahler case.

Theorem 1.2. Let (M",g) be a complete Kdihler manifold. Then

(i) If the Ricci curvature Rz > —(n+1)gz and A\ > ol then M must
have one infinite volume end;

(ii) If the holomorphic bisectional curvature Ky > —1 and A\ = n?, then
either M has only one end or M =R x N with N being a compact
manifold. Moreover, the metric on M is of the form

2n
(1.3) ds?; = dt* + e*w? + e Z w?,
i=3
where {wa, ... ,wan} are orthonormal basis of N with J dt = ws.

Munteanu [18] proved the same result under a weaker condition: Rz >
—(n+1)g;; and A = n?. Kong et al. [6] considered a complete quaternonic
Kihler manifold (M*4", g) and proved the same theorem under the condition:
the scalar curvature Sy > —16n(n + 2) and A\; > (2n + 1)2.

As we know that if M = B, is the unit ball in C™ and g is the Kahler—
Einstein metric then

(1.4) M(Ag) =n®, Rj=—(n+1)g5 Rgg= 959+ 99

which means that holomorphic bisectional curvature equals —1. Comparing
Obata theorem and Cheng theorem for compact Riemannian manifolds (see
[8, 9]) and result in [15]. It is natural to ask the following question.

Question 1.3. Assume that D is a smoothly bounded strictly pseudoconvez
domain in C™ with a complete Kdhler metric g satisfying either

(15) R = —(n+1)g;5

or holomorphic bisectional curvature Kg > —1. Assume that A\1(Ag) = n?.

Is D biholomorphic to the ball in C™?

The main purpose of this paper is to provide a way of constructing
some counter examples for Question 1.3. In particular, we consider strictly a
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pseudoconvex domain in C™ whose boundary is real ellipsoid. After a linearly
holomorphic change of variables, these domains can be described as follows:

(1.6) D(A)={z€C":r(2) = |2|> + Re ZAjzjz -1<0}
j=1
with

It was proved by Webster [22] that D(A) is biholomorphic to the unit ball in
C" if and only if A = (A4,...,A,) = 0. We will prove the following theorem
in this paper.

Theorem 1.3. For any 0 < Ay <--- < A, <1, we have the following:
(i) If g is the Kdihler—Einstein metric on D(A) then A\1(A,) = n?.

(i) There is a Kdihler metric g° on D(A) with A,, < 2/5 so that the holo-

morphic bisectional curvature Kgo > —1 and Ai(Ag,) = n?.

Combining Theorem 1.3 and the above theorem of Webster in [22], we
answer Question 1.3 negatively with the counter examples: D(A) with A # 0
and n > 1.

This paper is organized as follows: in Section 2, we provide an explicit
formula to approximate the potential function of the Kéhler—Einstein metric.
In Section 3, we prove part (i) of Theorem 1.3. Finally, part (ii) of Theorem
1.3 is proved in Section 4.

2. Approximation formula

Let D be a smoothly bounded pseudoconvex domain in C". A plurisubhar-
monic function u on D is said to be the potential function for the Kéahler—
Einstein metric on D if u is the solution of the Monge—Ampeére equation:

(2.1) det H(u) = ™" in D; w=+oc0 ondD.
The existence of such a solution for (2.1) was proved by Cheng and Yau [2],

the uniqueness was proved by Fefferman [3]. When D is strictly pseudocon-
vex, Cheng and Yau [2] prove that e™* € C"*3/2(D). Lee and Melrose [7]
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give the following asymptotic expansion for e™*:

22)  p(2) = o0 = 30 () loa(—(2) )
j=0

where a; € C*°(D) and p° is any negative defining function for D with p° €
C>(D). Fefferman [3] gave a method of how to approximate p(z) in terms
of p9(z). In particular, he proved ag(z) = J(p°)~ ¥/ (+1) 4 > i1 ao; (p°(2)),
where

Po 8/?0(2)}
2.3 J z)=—det| 5 ., ,
( ) (pO)( ) [(apo) H(po)
where Jpg = (g—g(l’, ol gg: ), H(p%) is the complex Hessian matrix of py on

D. Question about how to compute ag; in (2.2) in terms of p° explicitly
has been studied by Fefferman [3] and Graham [4]; they provided a certain
iteration formula for evaluating ag j, respectively. Here we give an alternative
formula for ag; or approximation p in terms of p¥ as follows.

Theorem 2.1. Let r(z) be a smooth negative defining function for D so

that ((p) 1= —log(—r(z)) is strictly plurisubharmonic in D. Let
(2.4) po(z) = 1(2),  pisa(2) = py(2)T(pj) /"B
with

R
Then

(2.6) J(pj+1)(2) =1+ 0(8(z)"?), j=0,1,....,n—1
and

(2.7) 5(2) = dist(z,0D), ag(z) = 22

Moreover, if

(2.8) B, — XEHUpa)) " H(log I(pn)) ,
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then
(2.9) J(pn+1) = 1+ O0(6(2)" log 8(2)).

Proof. Let K = J(pj)exp((n+ 1)bjp;) with B; =bjp;j(z). Then pji1 = p;
K101 ang

(2.10)

J(pj+1)
= (=pj1(2))"T det H(E(pj+1))(2)

— 209 get 1, + H(t(p;))" H(log ) (2)]

K

(n+1)

(DB, gt []n+ nilﬂ(z(pj))l(ﬂ(log J(p)(2)+ (n+1)H (bjpj))}

= e det [ 1, + L H(Upy)) " (H 108 T (p)(2)
+ H(L(py)) " (b H(pj) + (9by)* (Bp;s) + (pj)* (9by) + Pj(Z)H(bj))]
Let X = [x;;] be an n X n matrix . Then

(2.11) det[l, + X] = 1+ te(X) + O(8(2)), if @y = O(3(2)).

Notice that

N P (=p)
2.12 R - MLy
(212 = <p |07 — p) 7 opl2 — p
(s PP |0pl5(—p)
X Mo 0; ,
;1 (p lap\%—p> ’ 0pl5 — p

one has
(2.13)

tr(H (¢(p0)) ™ (b0 H (po) + (Bb0)"(Dpo) + (Bpo)"(Dbo) + pol2) H (o))
= —(n— Dbopo(z) + O(5(2)%).

If we let

1

(2:14)  to(=)polz) = Bo(2) = g tr(H (Epo) ™ H (108 T () (2),
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then by (2.10), (2.12) and (2.13), one has

tr(H(£(po)) " H (log J (po))(2)
(n+1)
— (n = Dbopo(2) — (n +1)Bo(2) + O(3(2)?)
=14+ 0(5(2)%).

(215)  J(p)(z) =1+

Assume that J(p;) = 1 + O(8(z) ™) for some 1 < j < n — 1. Then by (2.12),
one has

(2.16) tr(H (€(p;)) " H(log J(p;)) = O(S(2) ).
If one assumes (a priori) that
(217)  Bi() = bi(2)ps(2) = bolps (=), by € C(D)

and uses (2.12), then one has

(218) tr(H(€p;)) ™ (0 H (p5) + (B6;)" @py) + (Bp)" () + 3 (2) H(by))
— —(n— 1)By(2) + 2jB; — j(n — §)B; + O(3(2)"2).

Similar to (2.15), if we let

B tr(H(e(pj))*llog J(pj))

219 ISR (R
then
(2.20) J(pjs1) =1+ 0(5(2)*?)

forj=1,2,...,n—1.

Remark. We must notice here that in the proof of (2.12), we use H(p) as
positive definite near 0D. When H(p;) is not strictly positive definite, the
conclusion remains true with the following argument: let p; = p; + C p? with
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some positive number C' so that H(p;) is positive definite near dD. Then

c(1 4 2cp)

T+ ep (0pj) ® (Dp;)]

H((pj)) ™" = (1+cp) " [H(Up;)) +
= (1+O0(8(=))H (£(p;) "

With the help of the above formula, all arguments in proof of (2.12) remain
true.
When j = n, if we let

(2.21)

pnt1(z) = an(pn)il/(nJrl)eiBn(z)v Bp(2) = bppn(2)(—log(—pn(2)),

then

J(pny1) = e~ (DB et [In + THl_lH(B(pn))_l(H(log J(pn))(2)

+ (n+ 1)H(bnpn€(pn))]
— e~ ("TDBu gt [In + ni1H (£(pn))~ " H(log J(pn))(2)

+ L(pn)H(L(pn)) "  (bnH (pn) + (Obn)*(Dpn) + (Opn)* (Oby)
+ pn(2)H(bn)) + H((pn)) ™ (pn(2)bnH (€(pn) — (Obn)*(Dpn)

(@) (@) + 2 <apn>*<apn>1]

_ (B ot [In + %Hme(pn))*lﬂ(log J(on))(2)

n

+Lpn)H (E(pn)) ™ ((pn(2))" (0 + 1)[(004)* (Dpn)
+ (Dpn)* (9bn)] + (pn(2))" H (bn))]

+ H(Ep ) a2 H (o) + 20+ 1) (D) Bpo)

— H(Upn)) " o (2))™ (@) (@pn) + @pa)*(@b0))]
— 1+ 0(3(=)"*1og(5(2))

+ £(pn)bn(n+ 1) H(E(pn)) " (H (pn) +
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if we choose

_ 1 -1
(222 bul2)onl2) = gy gy U o) H 0 T(p0).
This completes the proof of Theorem 2.1. [l

3. Domain whose boundary is real ellipsoid

We consider a class of strictly pseudoconvex domains in C" with the real
ellipsoid as their boundary. After a linearly holomorphic change of variables,
those domains can be written as

(3.1) D(A) ={z€ C" :r(z) <0},

where

(32)  r(z)=[P+Re ) Ajzi -1, 0<A <A< <A, <L
Jj=1

Then H(r) = I,, and

(3.3) J(r)==r(2) + > _Irj(2)> =Re Y Ajzl + > Ad|z> + 1.
j=1

j=1 j=1
Let
(3.4) pH(z) = e ) (1) T (2),
where
1 _
(3.5) bo(z)r(z) = mtr(H(ﬁ(T)) YH(log J(1))).

Notice that

(3.6) H(J(r)) = diag(A3,..., A2), 0iJ(r) = A;Osr,
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one has
(3.7)

bo(2)r(2)

= o) ([ - @220 gy -

_ (@) S Ao (2)F D05 Aj(9m)??
 2n(n+1)J(r) <HAH2 2 J](r) + T(r)? :
Therefore,
(3.8)
- " A210r(2))? nA(O)2]?
() = 3 1770 <|,A,2_22]_1 JJ(\T)J (e \Z]_{](;)(; ?| )

By Theorem 2.1, one can easily see that if p(z) = —e ) with u is the
potential function Kahler—Einstein metric then

(3.9) det H(p) = det H(p') on D(A),

since p(2) = p'(z) + A3(2) with A3(z) = 0(6(2)3) on D(A) and H(A3)(2)=0
on 0D(A).
In order to calculate det H(p') on 0D(A), we need the following lemma.

Lemma 3.1. Let A= (A1,...,4,) and B = (By,...,By,) be two row vec-
tors in C™. Then

(3.10) det(I, — A*B — B*A) = |1 — (A, B)|> — |A*|B]%.
Moreover, if (B, A) # 1 then

1
_A* —1 — Yt
(3.11) (I~ A"B)™ = I + | 5 >A B.

Proof. First, we consider the case A = |A[(0,...,1) = |Ale,. Then
n—1
det(I, — A*B — B*A) =1 —|A|(Bn + Bn) — |A]> Y _ | B[
j=1

=1—|A|(B, + By) + |A?|Bn|* — |A*|B)?
=|1—(A,B)]* - |AP|B.
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For a general row vector A, we choose a unitary matrix U = [o;] so that
U = |Aley,. Then

det(I, — A*B — B*A) = det(I, — (AU)*(BU) — (BU)*(AU))
— 1 — (AU, BU)J? — |AUP| BUJ2
= [1— (A4, B)]> — |A]|B|*.

Since
(In—A'B) ' =I,+) (A*BY =I,+ > ((B, A 'A"B
7j=1 7j=1
4+ — B
" 1-(B,A) ’
So, the proof of the lemma is complete. O

The main purpose of this section is to prove the following theorem.

Theorem 3.1. Letu be the potential function for the Kdhler—FEinstein met-
ric on D(A), and let p(z) = —e~"?) on D. Then p(z) is strictly plurisub-
harmonic in D(A).

Proof. We first prove det H(p) > 0 on 0D(A). By (3.9), it suffices to prove

(3.12) det H(p*) >0 on 9D(A).
Let
(3.13) B = (n+1)J(r)bg0r + d.J(r)

be the row vector. Notice

n

(3.14) 0J =) " A%oir(2))?, RI(r)=>_ Aj(0r(2))
j=1

J=1

and det H(a + br(2)¥) = det H(a) on dD(A) for any k > 3. Moreover, by
the fact that |0r|> = J(r) on dD(A) and Lemma 3.1, for any z € 9D(A),
one has

det H(p").J (r)™/ ("+1)

r — bor?

= J(’r‘)n/(n—H) det H(W)
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0J) ® (0r) + (0r) ® (0J))
(n+1)J(r)

= det [H(r) — 2by(0r) ® (Or) — (

B® (0r)+ (0r) ® B}

_ (
= det [ I, - (n+ 1)J(r)

:‘ __(B,or) ‘2_ |B|[*[|or|?
(n+1)J(r) (n+1)2J(r)?

B ’1 _(n+ 1)boJ (r)|Or|? —I—RJ’2

(n+1)J(r)

(n+1)2J(r)263|0r|? + 2(n + 1)J(r)boRe (RJ) + |0J (r)|?
(n+1)2J(r)

2Re (RJ) bo|Or|? —

=1 —2bg|or|* — CERIO] + b3lor|* + 2mRe (RJ(r))
_ 2
RI(r) My 2P
+ m — b0(2)2<](’l")|a’l“|2 — mRe (RJ(’I“)) — m
_ 2
oo~ 2Re®D RO s

(+ DI i+ D22 e+ 120

2 A2
7')) TSR

2
JAI2 = 2325y A2y 2T ()~ 4 | 2, Ay (052 [ T(r)2
+ n(n+1)

A, A2
= <1_ (n+1))2_ (n+1)2

2
JAIP =242 + | 327, A; (0,77 ()2
+ n(n+1)
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9 A2 >io1 A5 (0m)? BN
a _n(n+1)+ n(n+1)

n+1 "
>0

if n > 2 (in the above inequalities, we use the assumption: 0 < Ay < --- <
2

Ap). When n = 1, we pick up the term ’ > i1 4 (0jr)?| J(r)~% = A2 in the

estimation of det H(p') on D (A); we have

24,
(3.15) det H(p) > 1~ =20 =1~ Ay >0 on 0D(4).

Notice that J(p) =1 on D(A), then

det H(p) 2
3.16 det H(p) = — > = ") (1 — |0ul?).
(3.16) (p) 70) (1 —[0ul,)
It was proved by the author in [14] that det H(p) attains its minimum over
D(A) at the some point on dD(A). By the first step, we have det H(p) > 0
on OD(A). Therefore, det H(p) > 0 on D(A) and the proof of the theorem
is complete. O

As a corollary of Theorems 3.2 and 1.1, we have proved the following
result.

Corollary 3.1. If g is the Kdhler—Einstein metric on D(A) then A\
(Ag) =n?.

This gives the proof of part (i) of Theorem 1.3.

4. Holomorphic bisectional curvatures

If (M, g) is a Kéahler manifold with Kahler metric g, then it is well known
(see [20]) that the curvature tensor is given by the following formula:

2., _
_ 995 g9 09,3
021,0%Zp 0z 0%y '

Assumes that the Kahler metric g is induced by a strictly plurisubharmonic
potential function v on M with v = +o00 on OM:

0%u

= ui;a p(Z) = _e—u(z)’
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where p becomes a negative defining function for M. We first provide a
formula for the curvature tensor with the components of holomorphic bisec-
tional curvature plus some derivatives of the defining function p.

Proposition 4.1. Let u = —log(—p) be strictly plurisubharmonic in D.
Then

(4.3) Rijkz = *(“ﬁ“kz + “k}“iz) + Ez‘jk@
where
PiGie 1 -
(4.4) Efg = —— , T [Piakppﬂ + PiakupPyz + Pyyilapik
PikP357
- (1- \8u!§) ,02] .

Note: A theorem of Lu Qi-Keng [17] states that if g is a Bergman metric
for a bounded domain in D in C" then D is biholomorphic to the unit ball
in C" if and only if Rz 7 = —(uzup + uzug) on D (or Bz =0 on D).
Next, we prove Proposition 4.1.

Proof. Notice that

. p.f
(4.5) u=—log(—p), u;= %, Uz = %; + Uz, ik = — + Uiug,
p,*. p,*.
p4*. p.*. . p —
=k —Ly, + %u; + ﬁui + 2ugupu;
- - —p —p
and
P17 Pz P:=7 Pz Pz
(A7) uge ==L+ _”; wp+ g+ = kgt g
Pig. |, Pik | Pk Prge  Prg o Pr
+ _—puj + ijjUK + Tp’UJ;g + Tpuz + _—puzue + _—puw
+ 2uizuku;- + 2uiukzu3 + 2uiukuﬁ
Piki  Pi; P57 7 Pt
- LM + Z]kUZ-F LEUk + MU;-F 7@5%
—p —p —p —p -

+ uij(ukuz + “kZ) + Uik (u;uz + uﬂ) + u@(uiu[ + uﬂ)

— BuiuFuRuy + UguRU + Uity 4 U g
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By (4.5) and (4.6), one has

pzqk
Uigk = p + Uigup — UjUglg + UikUg + Uilkg
and
Ppit
__"pj )~ = -
U575 = P T w5 U — UpUFUg + Uy pUT + Uplis .
[hus

= (gpq pquk + Sipur, — gPluzuguy + wipglug + uiékp)

Ppit
X ( o) T Uit T g gty “P“ﬂ)
_ g Pigk ijz gpq Pigk
(=p) (=p) (=p)
Ppi7 g q
" (fjp) (Oipur — g™ uiuguy, + uikg™ ug + uidyy)

+ U UR UG — UgURUUg + U Uk US + WU U

(upjuz — upuzuy + u guz + upuﬁ)

2 2
— wiugupug + |Oulgusuzupug — vinzugug — [Oulguugus;
2 2
+ wipujug — |8u]guiku;uz + uikugug + |8u|guikuﬁ
+ uk,juiuz — uiuzuk.u; + uiuj—«ukz + uiukuﬁ
g Pigk Ppjt | g Pigk
= g
(=p) (=p) (=p)

p _ _
u; + fjpz( dPluuguy + wik g ug)

Pijk P; kg
(—upuzug + upuzg) + ——up + == —)

+ uFuRUg + UgugU + UUEUS 7+ Uik UFU7 + U sy UG
2
= Buiuguzug — (1 — |Oulg)uiusupug

+ (1~ [0ulg Juikuzug + |6“|gulk“ i+ (11— |8“’§)Uiuk“ﬁ~

Therefore, by (4.1), (4.7), (4.8) and (4.5)

_ Pijkt | pgPigk Ppje
Rizp = —(ugug + wzug) — — PR A—
i p
+ p_z—qupqup( uzug +uzg) + Apegpq%(—u@-uquk + k)

- (1- |3u|§) (uikuﬂ + uitzuguy — uupus g — uik“j“?)
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Pijre
= ~(ugtyg +ugug) = —

1 g PikP7
+ ﬁgpq pighPy57 + PiaktpPss + Pyguapik| — (1= |0ul}) pgj :

This completes the proof of the proposition. O

Next we construct a Kéhler metric g on D(A) so that its holomorphic
bisectional curvature K, > —1 and A1(Ay) = n?. On D(A), we let

(4.9) p(z) =2r(z) — =r(2)?, 1<a<2,

where r(z) is given by (3.2). Notice
(4.10) H(r) =1, H(p)=(2—ar(2))l,—adr) e (0r).

It is easy to show that r(z) and —log(—p(z)) both are strictly plurisubhar-
monic negative defining functions for D(A). Let

d%u

(4.11) u(z) = —log(—p), g=g5dz®@dz; = WagjdzZ ® dZ;

is a Kéhler metric on D(A) induced by w. It is easy to prove that (D(A), g)
is a complete Kahler manifold. We will prove the following theorem.

Theorem 4.1. Let g be a Kdhler metric defined by (4.9) and (4.11) on
D(A). If A, <2/5, then the holomorphic bisectional curvature KCg > —1
on D(A).

Proof. For simplicity, we write
(4.12) p(z) =2r(z) —
Then

(4.13)  pi(z) = (r)riy  pig = @' (1) — ariry,  pix = @' (r)ri, — ariry

(4.14) Pikqg = —Q|Tqlik + Tiglk + rirkq]



Kahler manifolds with the largest infimum 571

and

0
(4.15) Pkt = —aa—@[rkrﬁ + 1k + Tiryg)
= —alrgr; +riarss+ g
= —Oé(éij(Skz + AiAj(Sik(Sjg + (5%5@)

From (4.13), one has

(4.16)
«Q 1

' L S 0= |5 @ -
pi; =@ (r) <5zy qb’(r)mrj> , pY = 50 [&j + ) = a\arPTirj] .
From (4.11) and (4.13), one has

1 1
(4.17) 9= =, |Pii + —Pif
1 ! 2
— Tp [qﬁ’(r)&ij ariry + (r) m-r]}
¢'(r) [ ¢'(r)’ +ap ]
dij + iry
- 7 ) (=p)
and
s —p ¢'(r)* +ap
4.18) ¢" = ——[0i; — brs1; d b= .
WIS 07 =yt = bl = G+ R + o
Therefore,
(4.19)
> 9 ping = %[% — brprgl(=alrgrin + rigr + ririq))
qg=1
_ -p 2
= —am (rﬁrik + ripry + rirkp — brp(|0r“ri + 2rirk)>.
Hence,
(4.20)
Z gpqpikﬁup
pg=l
/
- T
= —a—d)/(i) (Tﬁrik + 1Tk + Tivkp — brp(|0rPri + 27@-7%) ¢>_( )rp

= —a(1 = b|or)(|0r *rix + 2rik).
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(4.21)
I & o 1 —blor|?
ﬁ Z gpquppikapﬂ = —047( p|2 | )(larlzmk + Qrirk)[qbl(r)rﬂ — 047777]
P,q=1
and
(4.22)
1 — - b|or
5 3 Puapgaon =~ o b arsr s~ ar)
p,g=1
Using
(4.23)
(|0r)?ri + 2rirk)[¢’(r)rﬂ — arf-rz] + [|or*r rig+ 27777] (@ (r)rip — ariry]

= —daryrsrEry + 2¢’(r)\8r]2rzkr7 +2¢'(r)(r rigTirE + TikT37)

- 04|87“\2(7"ik7777 + 7“327“1'7"1@),

(4.21), (4.22) and (4.23), one has

1 n
02 Z “ppquﬁz + ugpy; Pik]

— blor|? a
- —2a# (G orrars + (66) - Slonf?)
X (rikryre + r3gritE) — 2047“1-777%77}
1 — blor|? a
= —2&# [¢/’8T|2Ai(5ik14j5jg + ((ﬁl — 5‘87“‘2)

X (Aibigrsry + Ajdjeriry) — 2047“1-771";@77} .

n _ —p ¢/ )2 ¢/ r
|Oul; = Z g upug = m(dpq_brprq)ég)rprq = —(p) |or[*(1—blor[?),

’ p,q=1 !
one has
o 1 ()t ap)or?
L blOrf =1 = G ) + (P02 + ap)[orP
) &(r)(—p)
FO—p) + (@2 T ap)or
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Thus,

(4.24)
1- |3u|2 =1- ¢/(T)2|8T|2 _ (—p) (' (r) — Oé|8?"|2)b
o= O+ @R T~ (@ F ap)

and
,012(1 — [0ul3)pikps
(d( ) — afor|*)b
—p)(¢'(r)* + ap)
oo s
( ,0)( ( ) —|—Oép) (d) (T) A]Alézkéje ¢( )

X (A dﬂrzrk‘ + A@dﬂﬂ“}?"z) + OéQTirj‘rkrz)-

(¢ (r)Aibir — ariry) (@' (r)Ajd0 — 00777)

Therefore,

(4.25)
(—p)
Pz

n
g (=p)
> P luppiraryz + uap oo 2 (1 = |0ul}) pirpsy
p,q=1

_ —2a¢/(n)b
(@) +ap)

X (Aibigrsry + Ajdjeriry) — 2047%‘777%7’2} -

(#1072 AidinAgbe + (¢ = Sl0rT?)
(¢/(r) — alor|®)b
(¢/(r)? + ap)
X (¢’(T)2Ain5z‘k5j€ — agj)/(r)(Ajéﬂrirk + Aiéikrjrz) 4 a27“i777”k77>
_ (aorP ) (), o agl(r)?
ST (G tap) T G0 ap)

o?b(3¢/ (1) + a|or|?)
X (Ajbjeriry + Aidikrsre) + &+ ap) TiTFTET -

Therefore, by (4.4), (4.15) and (4.25), for any &,n € C", one has

(4.26)
(_p)Eijszigj am

> 04(|§|2|77\2 + ’ > A&
i=1

)

e
i=1
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(a|or® + ¢’ (r))¢' (r)b
- <¢'<>+ap ‘Z“”

-G (£ (S Em)

3¢' )+ a|6r|2 " - 2

+2 2+ ap) ‘X;ﬂfi Zrknk‘
= k=1

)

> a(\§|2|77|2 +| ZAifmi +

2 2
_ (alor] 4 o) b‘ZMH

i

(¢'(r)? +OéP
17 2000)% 12 () + ap)
_4[( ) Jrozp)} %34 (1) + alorP) ZA’E”J‘

=a (a Inf? + | mel
¢'(r)*h 1
T ()% + ap) (39/(r) + alor]?) MZ“”]\

~a (a?mﬁﬂzgmi )
=1

P (1)*((4/)¢' (r)* + alor|* +4¢' (r)|0r*) | |
”(l G2+ ap) 36 (1) T alor?) )}Z am|

—a <§|2|77|2 + ‘ ifﬂh‘ 2)
+a(i- 0! (1)((1)(2/0) +|0r]?)? Jaen

>+ _ a\ar|2+¢< )¢ ()b
)+ ap)

(&' (r)(=p) + (¢/ (r)? + ap)|Or[*)(3¢/ (r) + a|Or[?)
Notice
(4.27) 16> ¢'(1)? > ¢ (r)? +ap =4 —4r(2) + 2r(2)? > 2¢'(r) > 4
and since |z|?(1 — A,) < 1 on D(A), one has

(4.28)  — p(z) + 2|0r(2)[?
> —2r(z) 4 2|0r(2)?
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n n n
>2(1—|2)* — ZAjRezjz- + |2 + 2ZAjRez]2- + ZA?\ZJ-\Q)
j=1 j=1 j=1

=2(1+ ) AjRez? + > A%z
i=1 i=1

n n
1
>2(1- ) Az)” - 112\2 + ) A%z
j=1 j=1

k&

22(1—7)
220 )
344,

B 2(1*An)'

Therefore, with A,, < 3/4

(4.29) ¢ (r)(=p) + (&' (r)* + ap)lor[* = ¢'(r)(—p) +2¢'(r)|Or[?
= ¢'(r)[=p -+ 200r]’)
(3—44n)¢(r)
2(1 - An) '

v

Since |0r(z)|? < ¢/(r) and computation in (4.29), one has ¢'(r) + |9r(2)|*> =
2 —2r(z) + |0r(2)|> < 4. Thus, since a € [1,2], one has

(¢'(r)(2/a) + |or]*)?
3¢/ (r) + a|or|?

< (¢/(r) + |or?) < 4.

Therefore, if A, < 2/5, then

2¢/(r)*(¢/ (r)(2/) + |0r[*)?
(@' (r)(=p) + (¢'(r)? + ap)|Or|*)(3¢/ (r) + a|Or[?)
4¢/(r)(1 — An)

>1-4

(3 - 4An)
16(1 — A,)
>1- = -
N (3 - 4An)
_13-124,
(3 - 4An)
41
> ——.

-7
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Therefore, if 0 < A,, <2/5, then

(4.30)  (=p)Egz&€miiy > o(1 — Az)lf! n? > a— \5! “Inf* > 0.

175

Therefore, the proof of the theorem is complete. O
Finally, we will prove part (ii) of Theorem 1.3.
Proof of part (ii) of Theorem 1.3.

Proof. Let r(z) = |2]* + > j—1 Re Ajz]z — 1 on D(A), and let

p2) = 20() — 1r(2P u(z) = —Tog(—p()) g=

,j=1

5, 6* dz; ® dz;.

If A, <2/5 then |r(z)| <5/3. By (4.10), it is easy to show that p(z) is
strictly plurisubharmonic in D(A). By Theorem 1.1, we have A;(4,) = n?.
By Theorem 4.2, we have K4 > —1 on D(A). Therefore, the proof of part
(ii) of Theorem 1.3 is complete. O
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