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Ricci curvature on Alexandrov spaces and

rigidity theorems

Hui-Chun Zhang and Xi-Ping Zhu

In this paper, we introduce a new notion for lower bounds of Ricci
curvature on Alexandrov spaces, and extend Cheeger–Gromoll
splitting theorem and Cheng’s maximal diameter theorem to
Alexandrov spaces under this Ricci curvature condition.

1. Introduction

Alexandrov spaces with curvature bounded below generalize successfully the
concept of lower bounds of sectional curvature from Riemannian manifolds to
singular spaces. The seminal paper [4] and the 10th chapter in the text book
[3] provide excellent introductions to this field. Many important theorems
in Riemannian geometry had been extended to Alexandrov spaces, such as
Synge’s theorem [30], diameter sphere theorem [28], Toponogov splitting
theorem [19], etc.

However, many fundamental results in Riemannian geometry (for exam-
ple, Bishop–Gromov volume comparison theorem, Cheeger–Gromoll split-
ting theorem and Cheng’s maximal diameter theorem) assume only the lower
bounds on Ricci curvature, not on sectional curvature. Therefore, it is a very
interesting question how to generalize the concept of lower bounds of Ricci
curvature from Riemannian manifolds to singular spaces.

Perhaps the first concept of lower bounds of Ricci curvature on singular
spaces was given by Cheeger and Colding (see Appendix 2 in [7]). They,
in [6, 7], studied Gromov–Hausdorff limit spaces of Riemannian manifolds
with Ricci curvature (uniformly) bounded below. Among other results in [6],
they proved the following rigidity theorem:

Theorem 1.1 (Cheeger–Colding). Let Mi be a sequence of Riemannian
manifolds and Mi converges to X in sense of Gromov–Hausdorff.

(1) If X contains a line and Ric(Mi) � −εi with εi → 0, then X is iso-
metric to a direct product R × Y over some length space Y.
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(2) If Ric(Mi) � n− 1 and diameter of Mi diam(Mi) → π, then X is iso-
metric to a spherical suspension [0, π] ×sin Y over some length space Y .

In [33], Petrunin considered to generalize the lower bounds of Ricci cur-
vature for singular spaces via subharmonic functions.

Recently, in terms of L2-Wasserstein space and optimal mass transporta-
tion, Sturm [37, 38] and Lott–Villani [16, 17] have given a generalization of
“Ricci curvature has lower bounds” for metric measure spaces,1 indepen-
dently. They call that curvature-dimension conditions, denoted by CD(n, k)
with n ∈ (1,∞] and k ∈ R. For the convenience of readers, we repeat their
definition of CD(n, k) in the Appendix of this paper. On the other hand,
Sturm in [38] and Ohta in [20] introduced another definition of “Ricci
curvature bounded below” for metric measure spaces, the measure contrac-
tion property MCP(n, k), which is a slight modification of a property intro-
duced earlier by Sturm in [39] and in a similar form by Kuwae and Shioya
in [14, 15]. The condition MCP(n, k) is indeed an infinitesimal version of the
Bishop–Gromov relative volume comparison condition. For a metric measure
space, Sturm [38] proved that CD(n, k) implies MCP(n, k) provided it is non-
branching.2 Note that any Alexandrov space with curvature bounded below
is non-branching. Recently, Petrunin [31] proved that any n-dimensional
Alexandrov space with curvature � 0 must satisfy CD(n, 0) and claimed the
general statement that the condition curvature � k (for some k ∈ R) implies
the condition CD(n, (n− 1)k) can be also proved along the same lines.

Let M be a Riemannian manifold with Riemannian distance d and Rie-
mannian volume vol. Lott and Villani in [16] and von Renesse and Sturm in
[36, 40] proved that (M,d, vol) satisfies CD(∞, k) if and only if Ric(M) � k.
Indeed, they proved a stronger weighted version (see Theorem 7.3 in [16] and
Theorem 1.1 in [36], Theorem 1.3 in [40]). Let φ be a smooth function on M
with

∫
M e−φd vol = 1. Lott and Villani in [17] proved that (M,d, e−φ · vol)

satisfies CD(n, k) if and only if weighted Ricci curvature Ricn(M) � k (see
Definition 4.20 – the definition of Ricn – and Theorem 4.22 in [17]). A similar
result was proved by Sturm in [38] (see Theorem 1.7 in [38]). In particular,
they proved that (M,d, vol) satisfies CD(n, k) if and only if Ric(M) � k
and dim(M) � n. If dim(M) = n, Ohta in [20] and Sturm in [38] proved,
independently, that M satisfies MCP(n, k) is equivalent to Ric(M) � k.

1A metric measure space is a metric space equipped a Borel measure.
2A geodesic space is called non-branching if for any quadruple points z, x0, x1, x2

with z being the midpoint of x0 and x1 as well as the midpoint of x0 and x2, it
follows that x1 = x2.



Ricci curvature on Alexandrov spaces 505

Nevertheless, since n-dimensional norm spaces (V n, ‖ · ‖p) satisfy
CD(n, 0) for every p > 1 (see, for example, in [41, p. 892]), it is impossible to
show Cheeger–Gromoll splitting theorem under CD(n, 0) for general metric
measure spaces. Furthermore, it was shown by Ohta in [22] that on a Finsler
manifolds M , the curvature-dimension condition CD(n, k) is equivalent to
the weighted Finsler Ricci curvature condition Ricn(M) � k (see also [23]
or [25], refer to [23] for the definition Ricn in Finsler manifolds). That says,
the curvature-dimension condition is somewhat a Finsler geometry charac-
ter. Seemly, it is difficult to show the rigidity theorems, such as Cheng’s
maximal diameter theorem and Obata’s theorem, under CD(n, n− 1) for
general metric measure spaces.

As a compensation, Watanabe [42] proved that if a metric measure
space M satisfies CD(n, 0) or MCP(n, 0) then M has at most two ends.
Ohta [21] proved that a non-branching compact metric measure space with
MCP(n, n− 1) and diameter = π is homeomorphic to a spherical suspension.

Alexandrov spaces with curvature bounded below have richer geomet-
ric information than general metric measure spaces. In particular, a finite
dimensional norm space with curvature bounded below must be an inner-
product space. Naturally, one would expect that Cheeger–Gromoll splitting
theorem still holds on Alexandrov spaces with suitable non-negative “Ricci
curvature condition.”

Recently in [12], Kuwae and Shioya proved the following topological
splitting theorem for Alexandrov spaces under the MCP(n, 0) condition:

Theorem 1.2 (Kuwae–Shioya). Let Mn be an n-dimensional Alexandrov
space. Assume that Mn contains a line.

(1) If M satisfies MCP(n, 0), then Mn is homeomorphic to a direct product
space R × Y over some topological space Y .

(2) If the singular set of Mn is closed and the non-singular set is an
(incomplete) C∞ Riemannian manifold of Ric � 0, then Mn is iso-
metric to a direct product space R × Y over some Alexandrov space Y .

We remark that Kuwae and Shioya actually obtained a more general
weighted measure version of the above theorem in [13].

In the following, inspired by Petrunin’s second variation of arc length
[30], we will introduce a new notion of the Ricci curvature bounded below
for Alexandrov spaces.

Let M be an n-dimensioal Alexandrov space of curvature bounded from
below locally without boundary. It is well known in [34] or [32] that, for
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any p ∈M and ξ ∈ Σp, there exists a quasi-geodesic starting at p along
direction ξ. (See [34] or [32, Section 5] for the definition and properties of
quasi-geodesics.) According to [30], the exponential map expp : Tp →M is
defined as follows. For any v ∈ Tp, expp(v) is a point on some quasi-geodesic
of length |v| starting point p along v/|v| ∈ Σp. If the quasi-geodesic is not
unique, we take one of them as the definition of expp(v).

Let γ : [0, �) →M be a geodesic. Without loss of generality, we may
assume that a neighborhood Uγ of γ has curvature � k0 for some k0 < 0.

According to Section 7 in [4], the tangent cone Tγ(t) at an interior point
γ(t) (t ∈ (0, �)) can be split into a direct metric product. We denote

Lγ(t) = {ξ ∈ Tγ(t) | ∠(ξ, γ+(t)) = ∠(ξ, γ−(t)) = π/2},
Λγ(t) = {ξ ∈ Σγ(t) | ∠(ξ, γ+(t)) = ∠(ξ, γ−(t)) = π/2}.

In [30], Petrunin proved the following second variation formula of arc-
length.

Proposition 1.1 (Petrunin). Given any two points q1, q2 ∈ γ, which are
not end points, and any positive number sequence {εj}∞j=1 with εj → 0, there
exists a subsequence {ε̃j} ⊂ {εj} and an isometry T : Lq1 → Lq2 such that

| expq1
(ε̃ju), expq2

(ε̃jTv)| �|q1q2| + |uv|2
2|q1q2| · ε̃

2
j

− k0 · |q1q2|
6

· (|u|2 + |v|2 + 〈u, v〉) · ε̃2j + o(ε̃2j )

for any u, v ∈ Lq1 .

We remark that for a two-dimensional Alexandrov space, Cao et al. in [8]
improved the second variation formula such that the above inequality holds
for all {εj}∞j=1. But for higher dimensions, to the best of our knowledge, we
do not know whether the parallel translation T in the above second variation
formula can be chosen independent of the sequences {εj}.

Based on this second variation formula, we can propose a condition which
resembles the lower bounds for the radial curvature along the geodesic γ.

Let {gγ(t)}0<t<� be a family of functions, where for each t, gγ(t) is a
continuous function on Λγ(t). For simplicity, we call {gγ(t)}0<t<� to be a
continuous function family.

Definition 1.1. A continuous function family {gγ(t)}0<t<� is said to satisfy
Condition (RC), if for any ε > 0 and any t0 ∈ (0, �), there exists a neighbor-
hood It0 := (t0 − τ∗, t0 + τ∗) ⊂ (0, �) with the following property. For any
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two number s, t ∈ It0 with s < t and for any sequence {θj}∞j=1 with θj → 0
as j → ∞, there exists an isometry T : Λγ(t) → Λγ(s) and a subsequence {δj}
of {θj} such that

| expγ(s)(δjl1Tξ), expγ(t)(δjl2ξ)|

� |s− t| + (l1 − l2)2

2|s− t| · δ2j

−
(
gγ(t)(ξ) − ε

) · |s− t|
6

· (l21 + l1 · l2 + l22
) · δ2j + o(δ2j )(1.1)

for any l1, l2 � 0 and any ξ ∈ Λγ(t).

Let F denote the set all of continuous function families{gγ(t)}0<t<�,
which satisfy Condition (RC).

Clearly, the above proposition shows that {gγ(t) = k0}0<t<� ∈ F .

Definition 1.2. We say that M has Ricci curvature bounded below by
(n− 1)K along γ, if

ρ := sup
{gγ(t)}∈F

inf
0<t<�

∮

Λγ(t)

gγ(t)(ξ) � K,(1.2)

where
∮
Λx
gx(ξ) = 1

vol(Λx)

∫
Λx
gx(ξ)dξ.

We say M has Ricci curvature bounded below by (n− 1)K on an open
set U ⊂M , if for each point p ∈ U , there is a neighborhood Up of p with
Up ⊂ U such that M has Ricci curvature bounded below by (n− 1)K along
every geodesic γ : [0, �) → Up. When U = M , we say M has Ricci curvature
bounded below by (n− 1)K and denote Ric(M) � (n− 1)K.

Remark 1.1. (i) When M is a smooth Riemannian manifold, by the
second variation of formula of arc-length, it is easy to see Condition
(RC) is equivalent to

secM (Πt) � gγ(t)(ξ),

where Πt ⊂ Tγ(t) is any two-dimensional subspace, spanned by γ′(t)
and a ξ ∈ Λγ(t). Thus in a Riemannian manifold, our definition on
Ricci curvature bounded below by (n− 1)K is exactly the classical
one.

(ii) Let M be an n-dimensional Alexandrov space with curvature � K.
The above Proposition 1.1 shows that Ric(M) � (n− 1)K.
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(iii) Recall that Petrunin in [31] proved any n-dimensional Alexandrov
space M with curvature � K must satisfy the curvature-dimension
condition CD(n, (n− 1)K). In the Appendix, by modifying Petrunin’s
proof in [31], we will show that any n-dimensional Alexandrov space
M with Ric(M) � (n− 1)K also satisfies CD(n, (n− 1)K).

(iv) At the present stage, we do not know if the Ricci curvature condition
Ric(M) � (n− 1)K is equivalent to the curvature-dimension condition
CD(n, (n− 1)K). We will investigate this question in future.

Our main results in this paper are the following splitting theorem and
maximal diameter theorem.

Theorem 1.3 (Splitting theorem). Let M be an n-dimensional complete
non-compact Alexandrov space with non-negative Ricci curvature and ∂M =
∅. If M contains a line, then M is isometric to a direct metric product
R ×N for some Alexandrov space N with non-negative Ricci curvature.

Theorem 1.4 (Maximal diameter theorem). Let M be an n-dimensional
compact Alexandrov space with Ricci curvature bounded below by n− 1 and
∂M = ∅. If the diameter of M is π, then M is isometric to a spherical
suspension over an Alexandrov space with curvature � 1.

An open question for the curvature-dimension condition CD(n, k)(k 	= 0)
is “from local to global” (See, for example, the 30th chapter in [41]). In par-
ticular, given a metric measure space which admits a covering and satisfies
CD(n, k) (k 	= 0), we do not know if the covering space with pullback metric
still satisfies CD(n, k).

One advantage of our definition of the Ricci curvature bounded below
on Alexandrov spaces is that the definition is purely local. In particular,
any covering space of an n-dimensional Alexandrov space with Ricci curva-
ture bounded below by (n− 1)K still satisfies the condition Ric � (n− 1)K.
Meanwhile, we note that Bishop–Gromov volume comparison theorem also
holds on an Alexandrov space with Ricci curvature bounded below (see
Corollary A.1 in the Appendix). Consequently, the same proofs as in Rie-
mannian manifold case (see [1] and, for example,[27, pp. 275–276]) give the
following estimates on the fundamental group and the first Betti number.

Corollary 1.1. Let M be a compact n-dimensional Alexandrov space with
non-negative Ricci curvature and ∂M = ∅. Then its fundamental group has
a finite index Bieberbach subgroup.
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Corollary 1.2. Let M be an n-dimensional Alexandrov space with non-
negative Ricci curvature and ∂M = ∅. Then any finitely generated subgroup
of π1(M) has polynomial growth of degree � n. If some finitely generated
subgroup of π1(M) has polynomial growth of degree = n, then M is compact
and flat.

Corollary 1.3. Let M be an n-dimensional Alexandrov space with
∂M = ∅.

(1) If Ric(M) � (n− 1)K > 0, then its fundamental group is finite.

(2) If Ric(M) � (n− 1)K and diameter of M � D, then

b1(M) � C(n,K2 ·D)

for some function C(n,K2 ·D).

Moreover, there exists a constants κ(n) > 0 such that if K2 ·D � −κ(n),
then b1(M) � n.

The paper is organized as follows. In Section 2, we recall some necessary
materials for Alexandrov spaces. In Section 3, we will define a new represen-
tation of Laplacian along a geodesic and will prove the comparison theorem
for the newly defined representation of Laplacian (see Theorem 3.1). In Sec-
tion 4, we will discuss the rigidity part of the comparison theorem. The max-
imal diameter theorem and the splitting theorem will be proved in Sections
5 and 6, respectively. In the Appendix, we give a modification of Petrunin’s
proof in [31] to show that the condition on Ricci curvature bounded below
implies the curvature-dimension condition (see Proposition A.1).

2. Preliminaries

A metric space (X, |·, ·|) is called a length space if for any two point p, q ∈ X,
the distance between p and q is given by

|pq| = inf
γ,γ connect p,q

Length(γ).

A length space X is called a geodesic space if for any two point p, q ∈ X,
there exists a curve γ connecting p and q such that Length(γ) = |pq|. Such
a curve is called a shortest curve. A geodesic is a unit-speed shortest curve.
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Recall that a length space X has curvature � k in an open set U ⊂ X
if for any quadruple (p; a, b, c) ⊂ U , there holds

∠̃kapb+ ∠̃kbpc+ ∠̃kcpa � 2π,

where ∠̃kapb, ∠̃kbpc and ∠̃kcpa are the comparison angles in the k-plane. A
length space M is called an Alexandrov space with curvature bounded from
below locally (for short, we say M to be an Alexandrov space), if it is locally
compact and any point in M has an open neighborhood U ⊂M such that
M has curvature � kU in U , for some kU ∈ R.

Let M be an Alexandrov space without boundary and U ⊂M be an
open set. A locally Lipschitz function u on U is said to be λ-concave on U
if for any geodesic γ ⊂ U , the one-variable function

u ◦ γ(t) − λt2/2

is concave. A function u on M is said to be semi-concave if for any point
x ∈M there is a neighborhood Ux � x and a real number λx such that the
restriction u|Ux

is λx-concave.
Let ψ : R → R be a continuous function. A function u on M called

ψ(u) − concave if for any point x ∈M and any ε > 0 there is a neighborhood
Ux � x such that u|Ux

is (ψ ◦ u(x) + ε)-concave.
If M has curvature � k in U , then it is well known that the function

u = �k ◦ distp is (1 − ku)-concave in U\{p}, where

�k(υ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
k

(
1 − cos(

√
kυ)

)
if k > 0,

υ2

2
if k = 0,

1
k

(
cosh(

√−kυ) − 1
)

if k < 0,

(see, for example,[32, Section 1]).
Let u be a semi-concave function on M . For any point p ∈M , there

exists a u-gradient curve starting at p. Hence u generates a gradient flow
Φt

u : M →M , which is a locally Lipschitz map. (Actually, it is just a semi-
flow, because backward flow Φ−t

u is not always well-defined.) Particularly, if
u is concave, the gradient flow is a 1-Lipschitz map. We refer to Sections 1
and 2 in [32] for the details on semi-concave functions, gradient curves and
gradient flows.
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3. Laplacian comparison theorem

LetM be an n-dimensional Alexandrov space without boundary. A canonical
Dirichlet form E is defined by

E(u, v) :=
∫

M
〈∇u,∇v〉 d vol, for u, v ∈W 1,2

0 (M).

(see [11]). The Laplacian associated to the canonical Dirichlet form is given
as follows. Let u : U ⊂M → R be a λ-concave function. The (canonical)
Lapliacian of u as a sign-Radon measure is defined by

∫

M
φdΔu = −E(u, φ) = −

∫

M
〈∇φ,∇u〉 d vol

for all Lipschitz function φ with compact support in U. In [31], Petrunin
proved

Δu � nλ · vol,

in particular, the singular part of Δu is non-positive. If M has curvature
� K, then any distance function distp(x) := d(p, x) is cotK ◦distp-concave
on M\{p}, where the function cotK(s) is defined by

cotK(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

√
K · cos(

√
Ks)

sin(
√
Ks)

if K > 0,

1
s

if K = 0,
√−K · cosh(

√−Ks)
sinh(

√−Ks) if K < 0.

It is a solution of the ordinary differential equation χ′(s) = −K − χ2(s).
Therefore the above inequality Δu � nλ · vol gives a Laplacian comparison
theorem for the distance function on Alexandrov spaces.

In [12], by using the DC-structure (see [29]), Kuwae–Shioya defined a
distributional Laplacian for a distance function distp by

Δdistp = Di

(√
det(gij)gij∂jdistp

)

on a local chart of M\Sε for sufficiently small positive number ε, where

Sε := {x ∈M : vol(Σx) � vol(Sn−1) − ε}
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and Di is the distributional derivative. Note that the union of all Sε has
zero measure. One can view the distributional Laplacian Δdistp as a sign-
Radon measure. In [11], Kuwae, Machigashira and Shioya proved that the
distributional Laplacian is actually a representation of the previous (canon-
ical) Laplacian on M\Sε. Moreover in [12], Kuwae and Shioya extended the
Laplacian comparison theorem under the weaker condition BG(k).

Both of the above canonical Laplacian and its DC representation (i.e.,
the distributional Laplacian) make sense up to a set which has zero measure.

In Riemannian geometry, according to Calabi, the Laplacian comparison
theorem holds in barrier sense, not just in distribution sense. In this section,
we will try to give a new representation of the above canonical Laplacian
of a distance function, which makes sense in Wp, the set of points z ∈M
such that the geodesic pz can be extended beyond z. We will also prove a
comparison theorem for the new representation under our Ricci curvature
condition.

Let M denote an n-dimensional complete Alexandrov space without
boundary. Fix a geodesic γ : [0, �) →M with γ(0) = p and denote f = distp.
Let x ∈ γ\{p} and Lx, Λx be as above in Section 1. Clearly, we may assume
that M has curvature � k0 (for some k0 < 0) in a neighborhood Uγ of γ.

Perelman in [29] defined a Hessian for a semi-concave function u on
almost all point x ∈M , denoted by Hessxu. It is a bi-linear form on Tx (=
R

n). But for the given geodesic γ, we cannot insure that the Hessian is well
defined along γ.

We now define a version of Hessian and Laplacian for the distance func-
tion f along the geodesic γ as follows. Note that the tangent space at an
interior point x ∈ γ can be split to Lx × R and f ◦ γ is linear. So we only
need to define the Hessian on the set of orthogonal directions Λx.

Throughout this paper, S will always denote the set of all sequences
{θj}∞j=1 with θj → 0 as j → ∞ and θj+1 � θj .

Definition 3.1. Let x ∈ γ\{p}. Given a sequence θ := {θj}∞j=1 ∈ S, we
define a function Hθ

xf : Λx → R by

Hθ
xf(ξ) def= lim sup

s→0, s∈θ

f ◦ expx(s · ξ) − f(x)
s2/2

;

and

Δθf(x) def= (n− 1) ·
∮

Λx

Hθ
xf(ξ).
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Since Uγ has curvature � k0, we know that f is cotk0(|px|)-concave and
distγ(�) is cotk0(|xγ(�)|)-concave near x, which imply

Hθ
xf � cotk0(|px|)(3.1)

for any sequence θ ∈ S, and

|γ(�) expx(s · ξ)| � |xγ(�)| + cotk0(|xγ(�)|) · s2/2 + o(s2)

for any ξ ∈ Λx. Then by triangle inequality, we have

Hθ
xf � − cotk0(|xγ(�)|).(3.2)

Thus Hθ
xf is well defined and bounded. It is easy to see that Hθ

xf is mea-
surable on Λx and thus it is integrable.

If there exists Perelman’s Hessian of f at a point x (see [29]), then
Hθ

xf(ξ) = Hessxf(ξ, ξ) for all ξ ∈ Λx and θ ∈ S.
Denote by Regf the set of points z ∈M such that there exists Perel-

man’s Hessian of f at z. If we write the Lebesgue decomposition of the
canonical Laplacian Δf = (Δf)sing + (Δf)ac · vol, with respect to the
n-dimension Hausdorff measure vol, then (Δf)ac(x) = Tr Hessxf = Δθf(x)
for all x ∈Wp ∩ Regf and θ ∈ S. It was shown in [24, 29] that Regf ∩Wp

has full measure in M . Thus Δθf(x) is actually a representation of the
absolutely continuous part of the canonical Laplacian Δf on Wp.

Note from the definition that if θ1 ⊂ θ2, then

Hθ1
x f � Hθ2

x f and Δθ1f(x) � Δθ2f(x).

The following lemma is a discrete version of the propagation equation of the
Hessian of f along the geodesic γ.

Lemma 3.1. Let f = distp. Given ε > 0, a continuous functions family
{gγ(t)}0<t<� and a sequence {θj}∞j=1 ∈ S. Let y, z ∈ γ with |py| < |pz|. We
assume that a isometry T : Λz → Λy and the subsequence δ := {δj} ⊂ {θj}
such that (1.1) holds. Then

Hδ
zf(ξ) � l2 ·Hδ

yf(η) +
(l − 1)2

|yz| − l2 + l + 1
3

· |yz| · (gz(ξ) − ε
)

(3.3)

for any l � 0 and any ξ ∈ Λz, η = Tξ ∈ Λy.
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Proof. For any ξ ∈ Λz, we can choose a subsequence {δ′j} ⊂ {δj} such that

Hδ
zf(ξ) = lim

j→∞
f(expz(δ′jξ)) − f(z)

δ′2j /2
.

Then, we have

f(expz(δ
′
jξ)) = f(z) +

δ′2j
2
Hδ

zf(ξ) + o(δ′2j )(3.4)

for any l � 0. By definition, we have

f(expy(δ
′
j · lη)) � f(y) +

(lδ′j)
2

2
Hδ

yf(η) + o(δ′2j ).(3.5)

Note that

f(z) − f(y) = |yz|(3.6)

and

f(expz(δ
′
jξ)) − f(expy(δ

′
j · lη)) � | expz(δ

′
jξ), expy(δ

′
j · lη)|.(3.7)

By combining (3.4)–(3.7) and using (1.1) with l1 = l, l2 = 1, we have

δ′2j
2

(
Hδ

zf(ξ) − l2 ·Hδ
yf(η)

)
+ o(δ′2j )

� δ′2j ·
((l − 1)2

2|yz| − gr(ξ) − ε

6
· |yz| · (l2 + l + 1)

)
+ o(δ′2j ),

for any l � 0. Hence

Hδ
zf(ξ) − l2 ·Hδ

yf(η) � (l − 1)2

|yz| − l2 + l + 1
3

· |yz| · (gz − ε).

This completes the proof of the lemma. �

The following result is the comparison for the above defined representa-
tion of Laplacian.

Theorem 3.1. Let f = distp and x ∈ γ\{p}. If M has Ricci � (n− 1)K
along the geodesic γ(t), then, given any sequence {θj}∞j=1 ∈ S, there exists a
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subsequence δ = {δj} of {θj} such that

Δδf(x) � (n− 1) · cotK(|px|).

(If K > 0, we add assumption |px| < π/
√
K.)

Proof. Arbitrarily fix two constants ε > 0 and K ′ < K with 10ε < K −K ′.
We can choose a point y ∈ px such that |py| > ε and

cotk0(|py|) � cotK′(|py| − ε).(3.8)

By our definition of Ricci curvature � (n− 1)K along γ, there exists a con-
tinuous function family {gγ(t)}0<t<� ∈ F such that

∮

Λγ(t)

gγ(t) � K − ε, ∀t ∈ (0, �).

We take a sufficiently small number ω > 0.
For any t0 ∈ [|py|, |px|], there is a neighborhood It0 coming from Condi-

tion (RC) such that |It0 | < ω. All of these neighborhoods form an open cov-
ering of [|py|, |px|]. Let I1, I2, . . . , IN be a finite sub-covering of [|py|, |px|].
We take xa ∈ Ia ∩ Ia+1 for all 1 � a � N − 1 and set y = x0, x = xN . We
can assume that |pxa| < |pxa+1| for all 0 � a � N − 1.

By Condition (RC), we can find a subsequence {δ1,j} ⊂ {θj} and an
isometry T1 : Λx1 → Λx0 such that (1.1) holds. Next, we can find a fur-
ther subsequence {δ2,j} ⊂ {δ1,j} and an isometry T2 : Λx2 → Λx1 such that
(1.1) holds. After a finite step of these procedures, we get a subsequence
δ = {δj} ⊂ {δN−1,j} ⊂ · · · ⊂ {θj} and a family isometries {Ta+1}N−1

a=0 , Ta+1 :
Λxa+1 → Λxa

such that, for each a = 0, 1, . . . , N − 1,

| expxa
(δjl1Ta+1ξ), expxa+1

(δjl2ξ)|

�|xaxa+1| + (l1 − l2)2

2 · |xaxa+1| · δ
2
j

−
(
gt(ξ) − ε

) · |xaxa+1|
6

· (l21 + l1 · l2 + l22
) · δ2j + o(δ2j )

for any l1, l2 � 0 and any ξ ∈ Λxa+1 .

Claim: For all 0 � a � N − 1, we have
∮

Λxa

Hδ
xa
f � cotK′(|pxa| − ε),

as ω is sufficiently small.
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We will prove the claim by induction argument with respect to a.
Firstly, we know from (3.8) that the case a = 0 is held.
Set q = xa, r = xa+1, μ = |xaxa+1| and T = Ta+1. Now we suppose that

the claim is held for the case a, i.e.,

∮

Λq

Hδ
q f � cotK′(|pq| − ε).

We need to show the claim is also held for the case a+ 1.
Consider the functions on Λr

Fl(ξ) = l2 ·Hδ
q f(T (ξ)) +

(l − 1)2

μ
− l2 + l + 1

3
· μ · (gr(ξ) − ε

)
.(3.9)

From Lemma 3.1 above, we have

Hδ
r f � Fl(3.10)

for any l � 0.
On the other hand, from (3.9),

∮

Λr

Fl = l2 ·
∮

Λr

Hδ
q f ◦ T +

(l − 1)2

μ
− l2 + l + 1

3
· μ ·

(∮

Λr

gr(ξ) − ε

)

� l2 · ( cotK(|pq| − ε)
)

+
(l − 1)2

μ
− l2 + l + 1

3
· μ · K̄(3.11)

for any l � 0, where K̄ = K − 2ε.
By setting

C1 = max
|py|�t�|px|

| cot′′K′(t− ε)|,

we have

cotK′(|pq| − ε) � cotK′(|pr| − ε) + μ
(
K ′ + cot2K′(|pq| − ε)

)
+ C1μ

2.(3.12)

Thus by combining (3.11) and (3.12), we get

∮

Λr

Fl � cotK′(|pr| − ε) +Aμ(l),(3.13)
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where

Aμ(l) =μ
(
K ′ + cot2K′(|pq| − ε)

)
+ C1μ

2 + (l2 − 1) cotK′(|pq| − ε)

+
(l − 1)2

μ
− l2 + l + 1

3
· μ · K̄.

Denote by B = 1/μ− μK̄/3 and cot = cotK′(|pq| − ε). Note that

cotK′(|px| − ε) � cot � cotK′(|py| − ε).

Since ω is small and μ � ω, we can assume that cot +B > 0. Choose l̃ =
−(B + μK̄/2)/(cot +B). Then we get

Aμ(l̃) =
−(
B + μK̄/2

)2 +
(
μ
(
K ′ + cot2

)
+ C1μ

2 − cot +B
)
· ( cot +B

)

cot +B

� K ′ − K̄ + C2μ+ C3μ
2

cot +B
,

where C2, C3 are positive constants independent of μ, ω (may be depending
on ε,K ′, x and y). Using μ � ω, we get

Aμ(l̃) � K ′ − K̄ + C2ω + C3ω
2

cot +B
� 0

as ω is sufficiently small. Hence, by combining (3.10), (3.13) and Aμ(l̃) � 0,
we get

∮

Λr

Hδ
r f �

∮

Λr

F (l̃) � cotK′(|pr| − ε).

This completes the proof of the claim. In particular, we have
∮

Λx

Hδ
xf � cotK′(|px| − ε).

Thus by the arbitrariness of ε and K ′ and a standard diagonal argument,
we obtain a subsequence of δ, denoted again by δ, such that

Δδf(x) � (n− 1) · cotK(|px|).

Therefore, we have completed the proof of the theorem. �
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4. Rigidity estimates

We continue to consider an n-dimensional complete Alexandrov space M
without boundary. Fix a geodesic γ : [0, �) →M with γ(0) = p and denote
f = distp.

Let x ∈ γ\{p} and Lx, Λx be as above. We still assume that a neigh-
borhood Uγ of γ has curvature � k0 (for some constant k0 < 0).

Lemma 4.1. Assume M has Ricci � (n− 1)K along the geodesic γ(t). Let
f = distp and x be an interior point on the geodesic γ(t). Given a sequence
θ = {θj}∞j=1 ∈ S, if

Δθ′
f(x) = (n− 1) · cotK(|px|)(4.1)

for any subsequence θ′ = {θ′j} of θ, then there exists a subsequence δ = {δj}
of θ such that

Hδ
xf(ξ) = cotK(|px|)(4.2)

almost everywhere ξ ∈ Λx.
(If K > 0, we add assumption |px| < π/

√
K.)

Proof. At first, we will prove the following claim:
Claim. For any ε > 0, we can find a subsequence {δj} of θ and an integrable
function h on Λx such that

Hδ
xf � h and

∮

Λx

(
h− cotK(|px|))2 �

(
3 + 2| cotK(|px|)|)ε.

By our definition of Ricci curvature � (n− 1)K along γ, there exists a
continuous function family {gγ(t)}0<t<� ∈ F such that

∮

Λγ(t)

gγ(t) � K − ε, ∀t ∈ (0, �).

We may assume gx � k0, otherwise, we replace it by max{gx, k0}.
By the definition of Condition (RC), we have a neighborhood I(⊂ (0, �))

of γ−1(x) such that for arbitrarily taking a point w ∈ γ(I) with |pw| <
|px|, there exists a subsequence δ̃ = {δ̃j} of θ and an isometric T : Λx → Λw
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such that (1.1) holds. By using Lemma 3.1 and choosing l = 1, we have

(gx − ε) · |xw| � H δ̃
wf −H δ̃

xf.(4.3)

By (3.2) and the fact that f is cotk0(|p · |)-concave, we have

H δ̃
xf � − cotk0(|xγ(�)|) and H δ̃

wf � cotk0(|pw|).

Thus by combining these with (4.3) and the fact gx � k0, we get

|gx| � C4(4.4)

for some constant C4, which may depend on ε, x and |I|.
Choose a point z ∈ γ(I) with |px|/2 < |pz| < |px| and |xz| � min{ε, |I|}.

Then, by Condition (RC), there exists a subsequence {δ′j} of θ and an isom-
etry T : Λx → Λz satisfying (1.1). From Theorem 3.1, we can find a subse-
quence {δj} ⊂ {δ′j} such that

Δδf(z) � (n− 1) · cotK(|pz|).(4.5)

We set, for any ξ ∈ Λx,

μ = |xz|,
l = l(ξ) =

(
1/μ+

μ

6
(gx − ε)

) ·
(
1/μ− μ(gx − ε)/3 +Hδ

zf(Tξ)
)−1

and

hxz(ξ) = l2 ·Hδ
zf(Tξ) +

(l − 1)2

μ
− l2 + l + 1

3
μ(gx − ε).(4.6)

By noting (4.4) and that

− cotk0(|xγ(�)|) � − cotk0(|zγ(�)|) � Hδ
zf � cotk0(|pz|) � cotk0(|px|/2),

we get l(ξ) > 0 for μ is sufficiently small. Thus by Lemma 3.1, we have

Hδ
xf � hxz.

Consequently,

Hδ
xf � h, on Λx,
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where h = min{hxz, cotk0(|px|)}. Then, by combining this with (4.1), we get
∮

Λx

h � cotK(|px|).(4.7)

Therefore, by (4.5) and (4.7), there holds
∮

Λx

h−
∮

Λz

Hδ
zf � cotK(|px|) − cotK(|pz|)

� −μ(
K + cot2K(|px|)) − C5μ

2,(4.8)

where

C5 = max
|pz|�t�|px|

| cot′′K(t)| � max
|px|/2�t�|px|

| cot′′K(t)|.

On the other hand, rewriting Equation (4.6), we have
(
1/μ− μ(gx − ε)/3 +Hδ

zf ◦ T
)
· hxz

= −(gx − ε) +Hδ
zf ◦ T ·

(
1/μ− μ(gx − ε)/3

)
+

(
μ(gx − ε)

)2
/12.

By the facts that h � hxz and 1/μ− μ(gx − ε)/3 +Hδ
zf ◦ T > 0, we get

(
1/μ− μ(gx − ε)/3 +Hδ

zf ◦ T
)
· h

� −(gx − ε) +Hδ
zf ◦ T ·

(
1/μ− μ(gx − ε)/3

)
+

(
μ(gx − ε)

)2
/12.

That is,
(
1/μ−D

)
· (h−Hδ

zf ◦ T ) � −(gx − ε) − h2 +
(
μ(gx − ε)

)2
/12,(4.9)

where D = μ(gx − ε)/3 − h.
Denote that C6 = max |D| = max |h+ μ(gx − ε)/3|, which is indepen-

dent of μ. Thus we get
∮

Λx

ε− gx

1/u−D
=

∮

Λx

(ε− gx)+

1/u−D
−

∮

Λx

(ε− gx)−

1/u−D

�
∮
Λx

(ε− gx)+

1/u− C6
−

∮
Λx

(ε− gx)−

1/u+ C6

=
1/μ

∮
Λx

(ε− gx) + C6

∮
Λx

|gx − ε|
1/μ2 − C2

6

.(4.10)
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By (4.4), (4.10) and the Ricci curvature condition that
∮
Λx
gx � K − ε, we

have
∮

Λx

ε− gx

1/u−D
� μ(2ε−K) + C7μ

2,(4.11)

here and in the following of this proof, all of constants C7, C8, C9 and C10

are independent of μ.
From (4.9) and (4.4), we get

∮

Λx

h−
∮

Λx

Hδ
zf ◦ T � μ(2ε−K) + C7μ

2 −
∮
Λx
h2

1/μ+ C6
+

(C4 + ε)2μ2

1/μ− C6
.

(4.12)

By combining (4.8), (4.12) and noting that T is an isometry, we have
∮

Λx

h2 � cot2K(|px|) + 2ε+ C8μ,

Therefore,
∮

Λx

h2 � cot2K(|px|) + 3ε(4.13)

as μ suffices small.
Note that (4.12) implies

∮

Λx

h �
∮

Λx

Hδ
zf ◦ T + C9μ,

Using (4.5) and noting that T is an isometry, we have
∮

Λx

h � cotK(|pz|) + C9μ � cotK(|px|) + μ
(
K + cot2K(|pz|)) + C9μ.

Since |px|/2 < |pz| < |px|, we have
∮

Λx

h � cotK(|px|) + C10μ,

Thus, when μ is sufficiently small, we get
∮

Λx

h � cotK(|px|) + ε.(4.14)
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By combining (4.7) and (4.14), we obtain

cotK(|px|) ·
∮

Λx

h � cot2K(|px|) − ε · | cotK(|px|)|.(4.15)

Hence, by (4.13) and (4.15), we have
∮

Λx

(
h− cotK(|px|))2 �

(
3 + 2| cotK(|px|)|) · ε.

This completes the proof of the claim.
Now let us continue the proof of the lemma.
Given any ε1 > 0, the above claim implies that the measure

ν
({ξ ∈ Λx : Hδ

xf � cotK +ε1}
)

� ν
({ξ ∈ Λx :

∣
∣h− cotK(|px|)∣∣ � ε1}

)
�

(
3 + 2| cotK(|px|)|)ε/ε21.

Letting ε→ 0+, by a standard diagonal argument, we can obtain a subse-
quence of δ, still denoted by δ, such that

ν
({ξ ∈ Λx : Hδ

xf � cotK +ε1}
)

= 0.

By the arbitrariness of ε1, after a further diagonal argument, we obtain a
subsequence of δ, denoted by δ again, such that

ν
({ξ ∈ Λx : Hδ

xf > cotK}) = 0.

Thus we have

Hδ
xf � cotK(|px|)

almost everywhere in Λx.
Finally, by combining (4.1) and the definition of Δδf , we conclude that

Hδ
xf = cotK(|px|)

almost everywhere in Λx. Therefore we have completed the proof of the
lemma. �

In order to deal with the zero-measure set in the above lemma, we need
the following segment inequality of Cheeger and Colding [6]. See also [35] for
a statement that is stronger than the following proposition.
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Proposition 4.1 (Segment inequality). Let M be an n-dimensional
Alexandrov space with curvature � k0 (for some constant k0 < 0). Let A1,
A2 ⊂M be two open sets, and let γy1,y2 be a geodesic from y1 to y2 with
arc-parametrization. Assume W ⊂M is an open set with

⋃

y1∈A1, y2∈A2

γy1,y2 ⊂W.

If e be a non-negative integrable function on W , then

∫

A1×A2

∫ |y1y2|

0
e(γy1,y2(s))ds � C(n, k0, D) ·D · (vol(A1) + vol(A2)

) ∫

W
e,

(4.16)

where D = supy1∈A1, y2∈A2
|y1y2| and

C(n, k0, D) =
(
sinh(

√
−k0D)/ sinh(

√
−k0D/2)

)n−1
.

We now define the upper Hessian of f , Hessxf : Tx → R ∪ {−∞} by

Hessxf(v, v) def= lim sup
s→0

f ◦ expx(s · v) − f(x) − dxf(v) · s
s2/2

(4.17)

for any v ∈ Tx.
Clearly, this definition also works for any semi-concave function on M .

If u is a λ-concave function, then its upper Hessian Hessxu(ξ, ξ) � λ for any
ξ ∈ Σx.

For a semi-concave function u, we denote its regular set Regu by

Regu :=
{
x ∈M : there exists Perelman′s Hessian of u at x

}
.

It was showed in [29] that Regu has full measure for any semi-concave func-
tion u. It is clear that Hessxu = Hessxu for any x ∈ Regu.

Definition 4.1. Let p ∈M . The cut locus of p, denoted by Cutp, is defined
to be the set all of points x in M such that geodesic px, from p to x, can
not be extended.

It was shown in [24] that Cutp has zero (Hausdorff) measure (see also
[26]).

Set Wp = M\({p} ∪ Cutp). For any two points x, y ∈M with x 	= y, a
direction from x to y is denoted by ↑y

x.
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The following two lemmas are concerned with the rigidity part of The-
orem 3.1.

Lemma 4.2. Let M be an n-dimensional Alexandrov space with Ricci cur-
vature � (n− 1)K and let f = distp. Suppose that Bp(R)\{p} ⊂Wp for
some 0 < R � π/

√
K (if K � 0, we set π/

√
K to be +∞). Assume that

for each x ∈ Bp(R)\{p}, there exists a sequence θ := {θj}∞j=1 ∈ S such that

Δθ′
f(x) = (n− 1) · cotK(|px|)

for any subsequence θ′ ⊂ θ.
Then the function �K ◦ f is (1 −K · �K ◦ f)-concave in Bp(R)\{p}.

Proof. It suffices to show one variable function hp := �K ◦ f ◦ γ(s) satisfies
that

h′′p � 1 −Khp

for any geodesic γ(s) ⊂ Bp(R)\{p}. Let χ(s) be an continuous function on an
open interval (a, b). Here and in the sequel we write χ′′(s) � B for s ∈ (a, b)
if χ(s+ τ) � χ(s) +A · τ +B · τ2/2 + o(τ2) for some A ∈ R. χ′′(s) < +∞
means that χ′′(s) � B for some B ∈ R. If χ1 is another continuous function
on (a, b), then χ′′ � χ1 means χ′′(s) � χ1(s) for all s ∈ (a, b).

Fix a geodesic γ ⊂ Bp(R)\{p}. Let x = γ(0), y = γ(l). Without loss of
generality, we can assume that γ is the unique geodesic from x to y and

|px| + |py| + |xy| < 2R.

We consider the function u : Wp → R
+ ∪ {0},

u(z) = sup
ξ∈Σz

∣
∣
∣Hesszf(ξ, ξ) − cotK(|pz|) · sin2(|ξ, ↑p

z |)
∣
∣
∣.(4.18)

For any point z ∈ Regf ∩Bp(R), Hesszf is a bilinear form on Tz and
Hesszf(↑p

z, ↑p
z) = 0. Let

Λz = {ξ ∈ Σz : ∠(ξ, ↑p
z) = π/2}.

By Lemma 4.1, we have Hesszf(ξ, ξ) = Hδ
zf = cotK(|pz|) on Λz for some

subsequence δ of θ, and hence u(z) = 0.
Since Regf has full measure in Bp(R), we conclude that u ≡ 0 almost

everywhere in Bp(R).
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Given any positive number ε > 0 such that

ε� min
{|px|, |py|, |xy|, 2R− (|px| + |py| + |xy|)}.

Let x1 ∈ Bx(ε) and y1 ∈ By(ε), and let γx1,y1(s) be a geodesic from x1 to y1.
By triangle inequality, it is easy to see

|px1| + |x1y1| + |py1| < 2R

as ε is sufficiently small. Thus γx1,y1 ∈ Bp(R).
Set ux1,y1(s) = u(γx1,y1(s)). By applying Proposition 4.1 to A1 = Bx(ε),

A2 = By(ε), W = Bp(R) and function u, we know that there exist two points
x1 ∈ Bx(ε) and y1 ∈ By(ε) such that ux1,y1(s) = 0 almost everywhere on
(0, |x1y1|).

Consider a s0 ∈ (0, |x1, y1|) such that ux1,y1(s0) = 0. Set z = γx1,y1(s0),
ζ+ = γ+

x1,y1
(s0) and ζ− = γ−x1,y1

(s0). Then we have

Hesszf(ζ+, ζ+) = Hesszf(ζ−, ζ−) = cotK(|pz|) sin2(|ζ+, ↑p
z |).

Therefore, for function f̃(s) = f ◦ γx1,y1(s), we get

f̃(h+ s0) � f̃(s0) + hf̃+(s0) + F (s0) · h2/2 + o(h2),

f̃(−h+ s0) � f̃(s0) − hf̃−(s0) + F (s0) · h2/2 + o(h2),
(4.19)

for any h > 0, where

F (s0) = cotK(|pz|) · sin2(|ζ+, ↑p
z |) = cotK(|pz|) · (1 − cos2(|ζ+, ↑p

z |)).

By the first variation formula of arc-length, we have

f̃+(s) = − cos(|ζ+, ↑p
z |) and f̃−(s) = − cos(|ζ−, ↑p

z |).

Note that γx1,y1 ∈Wp,

|ζ+, ↑p
z | + |ζ−, ↑p

z | = π,

which implies that f̃(s) is continuously differential. Then by combining this
with (4.19), we have

f̃ ′′(s) � F (s) = cotK f̃(s) · (1 − f̃ ′
2
(s)

)
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for almost everywhere s ∈ (0, |x1y1|). Thus the function h̃(s) = �K ◦ f̃(s)
satisfies

h̃′′(s) � 1 −Kh̃(s)

for almost everywhere s ∈ (0, |x1y1|). On the other hand, the fact f is semi-
concave implies that h̃′′(s) < +∞ for all s ∈ (0, |x1y1|). Thus, from 1.3(3)
in [34], we have

h̃′′ � 1 −Kh̃.

Letting ε→ 0+, we can get point sequences {xi} and {yi} such that
xi → x, yi → y and

h̃′′i � 1 −Kh̃i,

where h̃i = �K ◦ f ◦ γxi,yi
(s). Since the geodesic from x to y is unique, there

exists a subsequence of geodesics γxi,yi
, which converges to geodesic γ uni-

formly. Hence h̃i converges to h uniformly, and the desired result follows
from 1.3(4) in [34]. Therefore, we have completed the proof. �

Lemma 4.3. Let σ(t) and ς(t) be two geodesics in Bp(R) with σ(0) =
ς(0) = p, and let

ϕ(τ, τ ′) = ∠̃Kσ(τ)pς(τ ′)

be the comparison angle of ∠σ(τ)pς(τ ′) in the K-plane. Then, under the
same assumptions as Lemma 4.2, we have ϕ(τ, τ ′) is non-increasing with
respect to τ and τ ′.

(If K > 0, we add the assumption that τ + τ ′ + |σ(τ)ς(τ ′)| < 2π/
√
K).

Proof. Firstly, we claim that for any triangle �pxy (if K > 0, we assume
that |px| + |py| + |xy| < 2π/

√
K), there exists a comparison triangle �p̄x̄ȳ

in the K-plane M2
K such that

∠p̄x̄ȳ � ∠pxy, ∠p̄ȳx̄ � ∠pyx.(4.20)

Indeed, for any triangle �pxy ∈ Bp(R), there exists a triangle �p̂x̂ŷ in
M2

K such that

|p̂x̂| = |px|, |x̂ŷ| = |xy|, ∠p̂x̂ŷ = ∠pxy,
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and by Lemma 4.2, we have

|p̂ŷ| � |py|.

So by an obvious reason, we get the required triangle �p̄x̄ȳ.
Fix τ ′ > 0 and write ς = ς(τ ′). We only need to show ϕ(τ) := ϕ(τ, τ ′) is

non-increasing with respect to τ.
Let �σ̄(τ)p̄ς̄ be a comparison triangle of �σ(τ)pς in the K-plane M2

K

and extend the geodesic p̄σ̄(τ) slightly longer to σ̄(τ + s) for small s > 0.
Since the function distς is λ-concave for some number λ ∈ R, we have

|ςσ(τ + s)| � |ςσ(τ)| + s · (−cos ∠σ(τ + s)σ(τ)ς
)

+ s2λ/2.(4.21)

On the other hand, we have

|ς̄ σ̄(τ + s)| = |ς̄ σ̄(τ)| + s · (−cos ∠σ̄(τ + s)σ̄(τ)ς̄
)

+ s2λ̄/2 + o(s2)(4.22)

for some number λ̄ ∈ R. Note from (4.20) that

∠σ̄(τ + s)σ̄(τ)ς̄ � ∠σ(τ + s)σ(τ)ς.

By combining this with (4.21), (4.22) and |ςσ(τ)| = |ς̄ σ̄(τ)|, we have

|ςσ(τ + s)| � |ς̄ σ̄(τ + s)| + (−λ+ λ̄)s2 + o(s2).(4.23)

Now, if K > 0, by cosine law in M2
K , we have

cos ∠̃Kσ(τ + s)pς − cos ∠̃Kσ(τ)pς

=
cos(

√
K|ςσ(τ + s)|) − cos(

√
K|ς̄ σ̄(τ + s)|)

sin(
√
K|pσ(τ + s)|) · sin(

√
K|pς|)

� −(λ+ λ̄)
sin(

√
K|pσ(τ + s)|) · sin(

√
K|pς|) · s2.

Hence, we get

d+

dτ
cos ∠̃Kσ(τ)pς � 0.

If K � 0, using a similar argument, we can get d+

dτ ∠̃Kσ(τ)pς � 0. Therefore
we have completed the proof of the lemma. �



528 Hui-Chun Zhang & Xi-Ping Zhu

5. Maximal diameter theorem

The main purpose of this section is to prove Theorem 1.4.
Bonnet–Myers’ theorem asserts that if an n-dimensional Riemannian

manifold has Ric � n− 1, then its diameter � π. Furthermore, its funda-
mental group is finite.

The first assertion, the diameter estimate, has been extend to metric
measure space with CD(n, n− 1) (see [38]) or MCP(n, n− 1) (see [20]).
Since our condition Ric � n− 1 implies the curvature-dimension condition
CD(n, n− 1), the first assertion of Bonnet–Myers’ theorem also holds on an
n-dimensional Alexandrov space M with Ric(M) � n− 1 and ∂M = ∅.

Now we consider the second assertion: finiteness of the fundamental
group.

Proposition 5.1. Let M be an n-dimensional Alexandrov space without
boundary and Ric(M) � n− 1. The order of fundamental group of M ,
ordπ1(M), satisfies

ordπ1(M) � ωn

vol(M)

where ωn is the volume of n-dimensional standard sphere S
n. In particular,

if add assumption vol(M) > ωn/2, M is simply connected.

Proof. Let M̃ be the universal covering of M . We have Ric(M̃) � n− 1.
Therefore, by Bishop–Gromov volume comparison theorem (see Corollary
A.1 in the Appendix), we get

ordπ1(M) · vol(M) = vol(M̃) � ωn.

This completes the proof. �

Now, we are in position to prove Theorem 1.4. We rewrite it as following

Theorem 5.1. LetM be an n-dimensional Alexandrov space with Ric(M) �
n− 1 and ∂M = ∅. If diam(M) = π, then M is isometric to suspension
[0, π] ×sin N, where N is an Alexandrov space with curvature � 1.

Proof. Takes two points p, q ∈M such that |pq| = π.
Exactly as in Riemannian manifold case, by using Bishop–Gromov vol-

ume comparison theorem, we have the following assertions:
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Fact: (i) For any point x ∈M , there holds |px| + |qx| = π. This implies
Wp = Wq = M\{p, q}.

(ii) For any x ∈M , we can extend the geodesic px to a geodesic from p
to q. We will denote it by pxq.

(iii) For any non-degenerate triangle �pxy, we have |px| + |py| + |xy| <
2π.

(iv) For any direction ξ ∈ Σp, there exists a geodesic γξ such that γξ(0) =
p, γ+

ξ (0) = ξ and its length is equal to π.
Indeed, the first assertion (i) is an immediate consequence of Bishop–

Gromov volume comparison theorem (see, for example,[27, p. 271]). Gluing
geodesics px and qx, the result curve has Length = π = |pq|. Thus it is
a geodesic. This proves the second assertion (ii). The third assertion (iii)
follows directly from triangle inequality

|px| + |py| + |xy| < |px| + |py| + |qx| + |qy| � 2π.

To show (iv), we consider a sequence of direction ξi ∈ Σp such that ξi → ξ
and there exists geodesics αi with αi(0) = p and α+

i (0) = ξi. From (ii), we
can extend each αi to a new geodesic with Length = π, denoted by αi again.
By Arzela–Ascoli Theorem, we can take a limit from some subsequence of
αi. Clearly, the limit is the desired geodesic. This proves the last assertion
(iv).

Let f = distp and f̄ = distq. For any point x 	= p, q, we set Λx ⊂ Σx all
of directions which are vertical with the geodesic pxq.

Fix a sequence θ = {θj}∞j=1 ∈ S. By Theorem 3.1, we can find a subse-
quence δ ⊂ θ such that

Δδf(x) � (n− 1) · cot(|px|) and Δδf̄(x) � (n− 1) · cot(|qx|).(5.1)

The above fact (i) implies f + f̄ = π. Thus

Hδ
xf̄(ξ) = − lim inf

s→0 s∈δ

f ◦ expx(s · ξ) − f(x)
s2/2

.(5.2)

By Definition 3.1, we have Hδ′
x f � −Hδ

xf̄ for any subsequence δ′ ⊂ δ. Hence,
by combining this with (5.1) and the definition of Δδf , we get

Δδ′
f(x) � −Δδf̄(x) � −(n− 1) cot(|qx|) = (n− 1) · cot(|px|).

Note also that

Δδ′
f(x) � Δδf(x).
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By combining this with (5.1), this implies that

Δδ′
f(x) = (n− 1) cot(|px|)

for any subsequence δ′ ⊂ δ.
From Lemma 4.2, − cos f is cos f -concave in Bp(π)\{p} = Wp. Given

any geodesic σ(s) : [0, L] →Wp with L < π, we have

(−cos f ◦ σ)′′(s) � cos f ◦ σ(s), ∀s ∈ (0, L).(5.3)

Similarly, − cos f̄ is cos f̄ -concave in Wq = Wp and

(−cos f̄ ◦ σ)′′(s) � cos f̄ ◦ σ(s), ∀s ∈ (0, L).(5.4)

Since f + f̄ = π, cos f = − cos f̄ , by combining this with (5.3) and (5.4), we
get

(−cos f ◦ σ)′′(s) = cos f ◦ σ(s), ∀s ∈ (0, L).(5.5)

Denote by

M+ =
{
x ∈M : f(x) � π/2

}
, M− =

{
x ∈M : f(x) � π/2

}

and N = M+ ∩M− = {x ∈M : f(x) = π/2}. Set

vx = (geodesic pxq) ∩N,

which is consisting of a single point.
We claim that N is totally geodesic in M .
Indeed, take any two points v1, v2 ∈ N with |v1v2| < π. Let σ(s) be a

geodesic connected v1 and v2. By (5.5) and noting that

cos f(v1) = cos f(v2) = 0,

we have cos f ◦ σ(s) ≡ 0. This tells us σ ⊂ N and N is totally geodesic.
Now we are ready to prove that M is isometric to suspension

[0, π] ×sin N . Consider any two points x, y ∈M\{p, q}.
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If x, y ∈M+, we know from Lemma 4.3 that

∠̃1xpy � ∠̃1vxpvy and ∠̃1xqy � ∠̃1vxqvy.(5.6)

Note from Fact (i) that

∠̃1xpy = ∠̃1xqy.

Thus we obtain

∠̃1xpy = ∠̃1vxpvy.(5.7)

Clearly, if x, y ∈M−, the same argument also deduces the equality (5.7).
While if x ∈M+ and y ∈M−, by Lemma 4.3 again, we have

∠̃1xpy � ∠̃1vxpy = ∠̃1vxpvy and ∠̃1xpy � ∠̃1xpvy = ∠̃1vxpvy,

which implies the equality (5.7).
Then by applying the cosine law to the comparison triangle, we get

cos(|xy|) = cos(|px|) · cos(|py|) + sin(|px|) · sin(|py|) cos ∠̃1vxpvy.

This proves that M is isometric to suspension [0, π] ×sin N.
It remains to show that N has curvature � 1.
We define a map Φ : N → Σp by

Φ(v) =↑v
p, ∀v ∈ N.

Since N ⊂Wp and |pv| = π/2 for all v ∈ N , Φ is well defined.
Given two points v1, v2 ∈ N , for any x1 ∈M lies in geodesic pv1q and

any x2 ∈M lies in geodesic pv2q, the equality (5.7) implies

∠̃1x1py1 = ∠̃1v1pv2 = |v1v2|.

Since ∠v1pv2 = limx1→p,x2→p ∠̃1x1py1, we have

| ↑v1
p ↑v2

p |Σp
= |v1v2|.

This shows that Φ is an isometrical embedding. On the other hand, by Fact
(iv), Φ is surjective. Therefore, Φ is an isometry. Thus N has curvature � 1.
Therefore, we have completed the proof of the theorem. �
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Corollary 5.1. Let M be an n-dimensional Alexandrov space with Ric(M)
� n− 1 and ∂M = ∅. If rad(M) = π, then M is isometric to the sphere S

n

with standard metric.

Proof. For any point p ∈M , there exists a point q such that |pq| = π. From
the proof of Theorem 5.1, we have that − cos distp is cos distp-concave in
Bp(π)\{p}. Thus M has curvature � 1. It is well known (see, for example,
[3, Lemma 10.9.10]) that an n-dimensional Alexandrov space with curvature
� 1 and rad = π must be isometric to the sphere S

n with standard metric.
�

Remark 5.1. Colding in [5] had proved the corollary for limit spaces
of Riemannian manifolds. That is, if Mi is a sequence of m-dimensional
Riemannian manifolds with RicMi

≥ m− 1 and converging to a metric space
X with radX = π, then X is isometric to the sphere S

m′
with standard met-

ric for some integer m′ � m.

6. Splitting theorem

In this section, M will always denote an n-dimensional Alexandrov space
with curvature bounded below locally, Ric(M) � 0 and ∂M = ∅. The main
purpose of this section is to prove Theorem 1.3.

A curve γ : [0,+∞) →M is called a ray if |γ(s)γ(t)| = s− t for any 0 �
t < s < +∞. A curve γ : (−∞,+∞) →M is called a line if |γ(s)γ(t)| = s−
t for any −∞ < t < s < +∞. For a line γ, obviously, γ|[0,+∞) and γ|(−∞,0]

form two rays.
Given a ray γ(t), we define the Busemann function bγ for γ on M by

bγ(x) = lim
t→+∞

(
t− |xγ(t)|).

Clearly, it is well defined and is a 1-Lipschitz function.
From now on, in this section, we fix a line γ(t) in M and set γ+ =

γ|[0,+∞), γ− = γ|(−∞,0]. Let b+ and b− be the Busemann functions for rays
γ+ and γ−, respectively.

Let us recall what is the proof of the splitting theorem in the smooth
case. When M is a smooth Riemannian manifold, Cheeger–Gromoll in [9]
used the standard Laplacian comparison and the maximum principle to
conclude that b+ and b− are harmonic on M . Then the elliptic regularity
theory implies that they are smooth. The important step is to use Bochner
formula to show that both ∇b+ and ∇b− are parallel. Consequently, the
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splitting theorem follows directly from de Rham decomposition theorem.
In [10], Eschenburg–Heintze gave a proof avoiding the elliptic regularity,
while the Bochner formula is essentially used. But for the general Alexandrov
spaces case, the main difficulty is the lack of Bochner formula.

We begin with a lemma which was proved by Kuwae and Shioya for
Alexandrov spaces with MCP(n, 0) and hence for Alexandrov spaces with
non-negative Ricci curvature. (See Lemma 6.5 and the proof of Theorem 1.3
in [12]).

Lemma 6.1. b+(x) + b−(x) ≡ 0, on M .

Lemma 6.2. For any point x ∈M , there exists a unique line γx such that
x = γx(0) and b+ ◦ γx is a linear function with (b+ ◦ γx)′ = 1.

Proof. Existence. If x ∈ γ, then we can write x = γ(t0). Hence we set γx(t) =
γ(t+ t0), which is a desired line.

We then consider the case x 	∈ γ. Let σt,+(s) be a geodesic from x to
γ+(t). By using Arzela–Ascoli Theorem, we can take a sequence tj → +∞
such that σtj ,+ converges to a limit curve σ∞,+(s) : [0,+∞) →M . It is easy
to check (see, for example,[27, p. 286]) that σ∞,+ is 1-Lipschitz and

b+ ◦ σ∞,+(s) = s+ b+ ◦ σ∞,+(0) = s+ b+(x) for all s � 0.

By a similar construction, we can obtain a 1-Lipschitz curve σ∞,−(s′) :
(−∞, 0] →M such that σ∞,−(0) = x and

b− ◦ σ∞,−(s′) = −s′ + b−(x) for all s′ � 0.

Let σ∞ = σ∞,+ ∪ σ∞,− : (−∞,+∞) →M . This is a 1-Lipschitz curve. By
Lemma 6.1, we have

b+ ◦ σ∞(s) = s+ b+(x) for all s ∈ (−∞,+∞).(6.1)

Then for any −∞ < t < s <∞, by (6.1), we get

s− t = b+ ◦ σ∞(s) − b+ ◦ σ∞(t) � |σ∞(s) σ∞(t)| � s− t.

Thus σ∞ is a line. Equation (6.1) shows that it is a desired line.
Uniqueness. Argue by contradiction. Suppose that there exist two such

lines γ1, γ2.
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The equations (b+ ◦ γ1)′ = (b+ ◦ γ2)′ = 1 implies

b+ ◦ γ1(−1) = b+(x) − 1 and b+ ◦ γ2(1) = b+(x) + 1

Hence

b+ ◦ γ2(1) − b+ ◦ γ1(−1) = 2.

Since b+ is 1-Lipschitz, we get

|γ1(−1) γ2(1)| � b+ ◦ γ2(1) − b+ ◦ γ1(−1) = 2.(6.2)

On the other hand,

Length
(
γ1([−1, 0]) ∪ γ2([0, 1])

)
= 2.

Thus γ1([−1, 0]) ∪ γ2([0, 1]) is a geodesic. This contradicts to that M is non-
branching. The proof of the lemma is completed. �

For any point x ∈M , we take the line γx in Lemma 6.2. Let

Lx = {ξ ∈ Tx | ∠(ξ, γ+
x (0)) = ∠(ξ, γ−x (0)) = π/2},

Λx = {ξ ∈ Σx | ∠(ξ, γ+
x (0)) = ∠(ξ, γ−x (0)) = π/2}.

Given a sequence θ := {θj} ∈ S, we define a function Hθ
xb+ : Λx → R by

Hθ
xb+(ξ) def= lim sup

s→0, s∈θ

b+ ◦ expx(s · ξ) − b+(x)
s2/2

and

Δθb+(x) def= (n− 1) ·
∮

Λx

Hθ
xb+(ξ).

In the following Lemma 6.3, we will prove that both b+ and b− are semi-
concave. Thus, by Lemma 6.1, Hθ

xb+ is well defined and is locally bounded.
It is easy to see that Hθ

xb+ is measurable, so Δθb+(x) is also well defined.

Lemma 6.3. b+(x) is a semi-concave function in M . Moreover, for any
point x ∈M and any sequence θ = {θj} ∈ S, there exists a subsequence δ ⊂ θ
such that Δδb+(x) � 0.
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Proof. Fix a point x ∈M , we will construct a semi-concave support function
for b+ near x.

We take the line γx in Lemma 6.2 and choose a point p ∈ γx such that
b+(p) � b+(x).

The equation (b+ ◦ γx)′ = 1 implies

b+(x) − b+(p) = |px|.(6.3)

On the other hand, since b+ is 1-Lipschitz, we have

b+(y) − b+(p) � |py|(6.4)

for any y ∈M . By combining (6.3) and (6.4), we know that function distp(·)
+ b+(p) supports b+ near x.

This tells us b+ is a semi-concave function. Furthermore, from Theo-
rem 3.1, we can find a subsequence δ̃ ⊂ θ such that Δδ̃b+(x) � (n− 1)/|px|.
By letting |px| → ∞ and a diagonal argument, we can choose a subsequence
δ ⊂ δ̃ such that Δδb+(x) � 0. Therefore the proof of the lemma is
completed. �

The following lemma is similar to Lemma 4.2.

Lemma 6.4. Assume that for each point x ∈M , there exists a sequence
θ := {θj} ∈ S such that Δθ′

b+(x) = 0 for any subsequence θ′ ⊂ θ. Then b+
is a concave function in M .

Proof. It suffices to show that b+ is concave on an arbitrarily given bounded
open set Ω ⊂M . Clearly, we may assume M has curvature � kΩ in Ω for
some constant kΩ.

In the following, we divide the proof into three steps.

Step 1. Let γx be the line in Lemma 6.2. Replacing Equations (3.6) and
(3.7) by the facts that |b+(y) − b+(z)| = |yz| for any y, z ∈ γx and b+ is 1-
Lipschitz, the same proof in Lemma 3.1 shows that the lemma also holds
when we replace f = distp by b+.

Step 2. Similar as Lemma 4.1, we want to show Hδ
xb+ = 0 almost every-

where in Λx, for some subsequence δ = {δj} ⊂ θ.
We now follow the proof of Lemma 4.1. Firstly, from Lemma 6.3, we

know that both b+ and b− are semi-concave. In turn, Lemma 6.1 gives a
bound for Hθ

xb+ . Secondly, we use Lemma 3.1 for b+ (i.e., the above Step 1)
and replace Theorem 3.1 by the above Lemma 6.3 in the proof of Lemma 4.1.
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We repeat the same proof of Lemma 4.1 to get Hδ
xb+ = 0 almost everywhere

in Λx, for some subsequence δ ⊂ θ.
Step 3. Following the proof of Lemma 4.2, we then deduce that b+(x) is
concave in Ω. Therefore b+(x) is concave in M and the proof of the lemma
is completed. �

Now, we are in a position to prove Theorem 1.3.

Proof of Theorem 1.3. Given a sequence θ = {θj} ∈ S, from Lemma 6.3, we
can find a subsequence δ ⊂ θ such that

Δδb+(x) � 0 and Δδb−(x) � 0.(6.5)

By the definition of Δδb+(x) and Δδb−(x), we have

Δδ′
b+(x) � Δδb+(x) and Δδ′

b−(x) � Δδb−(x)

for any subsequence δ′ ⊂ δ. So (6.5) holds for any subsequence δ′ ⊂ δ.
On the other hand, by Lemma 6.1 and the definition of Δθb+(x), we

have

Δϑb+(x) + Δϑb−(x) � 0

for any sequence ϑ = {ϑj} ∈ S. Therefore, by combining with (6.5), we get

Δδ′
b+(x) = 0 and Δδ′

b−(x) = 0

for any subsequence δ′ ⊂ δ.
Then we can apply Lemma 6.4 to conclude that both b+ and b− are

concave. By using Lemma 6.1 again, we deduce that b+ ◦ ς(s) is a linear
function on any geodesic ς(s) in M . In particular, the level surfaces L(a) :=
b−1
+ (a) are totally geodesic for all a ∈ R.

Set N = L(0) = b−1
+ (0). It is an Alexandrov space with curvature

bounded below locally.
When M is an Alexandrov space with curvature � −κ2 for some κ > 0.

Mashiko, in [18], proved that if there exists a function u such that u ◦ γ
is a linear function for any geodesic γ ⊂M and u ∈ D2,2 (see [18] for the
definition of the class of D2,2), then M is isometric to a direct product R × Y
over an Alexandrov space Y has curvature � −κ2. Later in [2], Alexander
and Bishop removed the condition u ∈ D2,2.

Since we do not assume that M has a uniform lower curvature bound,
we adapt Mashiko’s argument as follows.



Ricci curvature on Alexandrov spaces 537

For any x ∈ N and any a ∈ R, let γx be the line obtained in Lemma 6.2.
Note that (b+ ◦ γx)(s)′ = 1 which implies ∇b+(γx(s)) = γ+

x (s). Thus γx

is a gradient curve of b+.
It is easy to check that γx ∩ L(a) is a set of single point. We define

Φa : N → L(a) by Φa(x) = γx ∩ L(a). Φa and Φ−1
a are the gradient flows

of b+ and b−, respectively. Since a gradient flow of a concave function is
non-expanding, we have that Φa is an isometry.

Now we are ready to show that M is isometric to the direct product
R ×N . Consider any two points x, y ∈M .

Without loss of generality, we may assume that x ∈ N and y ∈ L(a) with
a > 0. Let z = γy ∩N , where γy comes from Lemma 6.2.

We take a C1 curve σ(s) ⊂ N with σ(0) = x and σ(Length(σ)) = z,
|σ′(s)| = 1. Define a new curve σ̄(s) by

σ̄(s) = γσ(s)

( a

Length(σ)
· s

)
.

Clearly, we have σ̄(0) = x, σ̄(Length(σ)) = γz(a) = y and

b+(σ̄(s)) =
a

Length(σ)
· s.(6.6)

Fixed any s ∈ (0,Length(σ)), we set u = σ(s) and v = σ̄(s).
We claim that

∠(∇ub+, σ
+(s)) = ∠(↑v

u, σ
+(s)) = π/2.(6.7)

Indeed,

|vσ(s′)| � b+(v) − b+(σ(s′)) = b+(v) = |vu|

for any s′ ∈ (0,Length(σ)). Then by the first variation formula of arc-length,
we have

∠(↑v
u, σ

+(s)) � π/2 and ∠(↑v
u, σ

−(s)) � π/2.(6.8)

On the other hand,

∠(↑v
u, σ

+(s)) + ∠(↑v
u, σ

−(s)) = π.(6.9)

Thus the desired (6.7) follows from (6.8) and (6.9).
Now let us calculate the length of the curve σ̄.
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Figure 1: Isometric splitting.

Clearly, we may assume that a neighborhood of σ̄ has curvature � k (for
some k < 0).

Fixed s ∈ (0,Length(σ)). Let h > 0 be a small number. We set w̄ =
σ̄(s+ h) and w = γσ(s+h)

(
a

Length(σ) · s
)

(see figure 1).
By cosine law in 0−plane R

2, we have

|σ̄(s+ h)σ̄(s)|2 = |vw̄|2 = |vw|2 + |ww̄|2 − 2|ww̄| · |vw| · cos ∠̃0vww̄.

(6.10)

Note that

|vw̄| = |σ(s)σ(s+ h)| = |σ+(s) · h+ o(h)| = h+ o(h),(6.11)

|ww̄| = (b+(w̄) − b+(w)) =
a

Length(σ)
· h.(6.12)

By using Lemma 11.2 in [4], we have

∠̃kvww̄ → ∠vww̄ = π/2(6.13)

as h→ 0. On the other hand, note that

∠̃0vww̄ − ∠̃kvww̄ → 0(6.14)

as h→ 0. We have cos ∠̃0vww̄ → 0 as h→ 0.
Combining this and (6.10)–(6.12), we have

|σ̄(s+ h)σ̄(s)|2 =
(
1 +

( a

Length(σ)

)2) · h2 + o(h2).(6.15)
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Hence,

|σ̄(s)|+ =
(
1 +

( a

Length(σ)

)2)1/2
.

Similarly, we can get

|σ̄(s)|− =
(
1 +

( a

Length(σ)
)2

)1/2
.

So

Length(σ̄) =
∫ length(σ)

0
|σ̄|′ds =

(
a2 +

(
Length(σ)

)2)1/2
.(6.16)

If we take σ1 to be a geodesic xz, we get, from (6.16), that

|xy|2 � (Length(σ̄1))2 = |xz|2 + a2 = |xz|2 + |yz|2.(6.17)

While if we take σ2 to be the projection of a geodesic xy to N , we get, from
(6.16), that

|xy|2 = (Length(σ2))2 + a2 � |xz|2 + |yz|2.(6.18)

The combination of (6.17) and (6.18) implies that

|xy|2 = |xz|2 + |yz|2.(6.19)

This says that M is isometric to the direct product N × R.
Lastly, we need prove that N has non-negative Ricci curvature.
Let γ(t) : (−�, �) → N be a geodesic in N . Assume that N has curvature

� K in a neighborhood of γ and for some K < 0. Otherwise, there is nothing
to prove. Hence M has curvature � K in a neighborhood of γ in M .

Let p and q be two interior points in γ. We denote the tangent spaces,
exponential map in N (or M , resp.) by TpN , expN

p (or TpM = T(p,0)M ,
expM

p = expM
(p,0), resp.) and

ΛN
p = {ξ ∈ TN

p :
〈
ξ, γ′

〉
= 0}.

Let ΛM
p := ΛM

(p,0) = {ξ ∈ TM
p : 〈ξ, γ′〉 = 0}. Then ΛM

p = S(ΛN
p ) with ver-

tex ζ±, where ζ± are the directions along factor R in M = N × R. For any
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ξ ∈ TpN , we have

expM
p (ξ, t) = (expN

p (ξ), t).(6.20)

Suppose that a family of continuous functions {g(γ(t),0)(ξ, η)}−�<t<� on
ΛM

p = S(ΛN
p ) satisfies Condition (RC) on geodesic (γ(t), 0) in M and

∫

ΛM
p

g(γ(t),0)(ξ, η)d volΛM
p

� −ε

for a given small number ε > 0.
Given a sequence {s̃j} ∈ S, the isometry T : LM

(p,0) → LM
(q,0) and sub-

sequence {sj} ⊂ {s̃j} come from the definition of Condition (RC). Recall
Petrunin’s construction for T , we can assume that T (ζ+) = ζ+, hence T :
LN

p ⊂ TN
p → LN

q ⊂ TN
q .

Given a quasi-geodesic σ(s) in N , setting σ̄(s) = (σ(as), bs) for any two
number a, b ∈ R with a2 + b2 = 1, we will prove that σ̄(s) is a quasi-geodesic
in M .

Let u(z, r) be a λ-concave function, defined in a neighborhood of γ in
M = N × R. So function u(·, r) is λ-concave in N and u(z, ·) is λ-concave in
R for all r ∈ R and z ∈ N . Since σ is quasi-geodesic in N ,
we have

u′′
(
σ(as), r

)
� a2 · λ

for all r ∈ R. Now

u′′
(
σ(as), bs

)
� (a2 + b2) · λ = λ.

By definition of quasi-geodesic [32], we get that σ̄(s) is a quasi-geodesic inM .
Fix any non-negative number l1 and l2. Let ξ ∈ ΛN

p . For any constant
A ∈ R, we have (see figure 2)

| expN
p (sj · l1ξ), expN

q (sj · l2Tξ)|2
=

∣
∣
(
expN

p (sj · l1ξ), sjl1Aζ
+
)
,
(
expN

q (sj · l2Tξ), sjl2Aζ
+
)∣
∣2−A2(l1− l2)2 · s2j

=
∣
∣ expM

p

(
sj · l1(ξ, Aζ+)

)
,
(
expM

q

(
sj · l2(Tξ,Aζ+)

)∣
∣2 −A2(l1 − l2)2 · s2j

� |pq|2 + s2j ·
(
(l1 − l2)2 − gp(ξ, Aζ+) · (1 +A2)

3
|pq|2(l21 + l1 · l2 + l22)

)

+ o(s2j ).

(6.21)
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Figure 2: Curvature of factor N .

We set β = ∠
(
(ξ, 0), (ξ, Aζ+)

)
and then A = tanβ, β ∈ (−π/2, π/2).

For each t ∈ (−�, �) and A ∈ R, we define a function gA,γ(t) : ΛN
γ(t) →

R by

gA,γ(t)(ξ) : = g(γ(t),0)(ξ, Aζ
+) · (1 +A2)

= g(γ(t),0)(ξ, Aζ
+)/ cos2 β.(6.22)

From (6.21), for any A ∈ R, the family of continuous functions {gA,γ(t)

(ξ)}−�<t<� satisfies Condition (RC) on γ.
On the other hand, we have

−ε �
∫

ΛM
p

g(γ(t),0)(ξ, η)d volΛM
p

=
∫

ΛN
p

∫ π/2

−π/2
g(γ(t),0)(ξ, η) cosn−2 βdβd volΛN

p

=
∫

ΛN
p

∫ π/2

−π/2
gA,γ(t)(ξ) cosn βdβd volΛN

p

=
∫ π/2

−π/2

∫

ΛN
p

gA,γ(t)(ξ) cosn βd volΛN
p
dβ.(6.23)

Thus, we can choose some A ∈ R such that

∫

ΛN
p

(
gA,γ(t)(ξ)

)
d volΛN

p
� −cn · ε,
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for some constant cn. This completes the proof that N has non-negative
Ricci curvature. Therefore the proof of Theorem 1.3 is completed. �

7. Appendix A

In the Appendix, we will recall the definition of curvature-dimension con-
dition CD(n, k) which is given by Sturm [38] and Lott–Villani [16] (see
also [41]). After that we will present a proof, due to Petrunin [31], for the
statement that an n-dimensional Alexandrov space with Ricci curvature
� (n− 1)K and with ∂M = ∅ must satisfy CD(n, (n− 1)K).

Let (X, d,m) be a metric measure space, where (X, d) is a complete
separable metric space.

Given two measures μ and ν on X, a measure q on X ×X is called a
coupling (or transference plan) of μ and ν if

q(A×X) = μ(A) and q(X ×A) = ν(A)

for all measurable A ⊂ X.
The L2-Wasserstein distance between two measures μ, ν is defined by

d2
W (μ, ν) = inf

q

∫

X×X
d2(x, y)dq(x, y),

where infimum runs over all coupling q of μ and ν. If μ(X) 	= ν(X), we set
dW (μ, ν) = +∞.

Let P2(X) be the space of all probability measures ν on X with finite
second moments:

∫

X
d2(o, x)dν(x) <∞

for some (hence all) point o ∈ X.
L2-Wasserstein space is a complete metric space (P2(X), dW ). (see [37]

for the geometry of L2-Wasserstein space.) Fix a Borel measure m on X. We
denote L2-Wasserstein space by P2(X, d) and its subspace of m-absolutely
continuous measures is denoted by P2(X, d,m).

Given k ∈ R, n ∈ (1,∞], t ∈ [0, 1] and two points x, y ∈ X, we define
β

(k,n)
t as follows:
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(1) If 0 < t � 1, then

β
(k,n)
t (x, y)

:=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
(k

6
(1 − t2) · d2(x0, x1)

)
if n = ∞,

∞ if n <∞, k > 0 and α � π,
(sin(tα)
t sinα

)n−1
if n <∞, k > 0 and α ∈ [0, π),

1 if n <∞, k = 0,
(sinh(tα)
t sinhα

)n−1
if n <∞, k < 0,

where α = d(x, y) · √|k|/(n− 1).
(2) β

(k,n)
0 (x, y) = 1.

The curvature-dimension condition CD(n, k) is defined as follows (see
[41, 29.8, 30.32]):

Definition A.1. Let (X, d,m) be a non-branching locally compact com-
plete separable geodesic space equipped with a locally finite measure m.3

Given two real numbers k and n with n > 1, the metric measure space
(X, d,m) is said to satisfy the curvature-dimension condition CD(n, k) if and
only if for each pair compactly supported μ0, μ1 ∈ P2(X, d,m) there exists
an optimal coupling q of μ0 = �0m and μ1 = �1m, and a geodesic path4

μt : [0, 1] → P2(X, d) connecting μ0 and μ1, with

Hn(μt|m) � − (1 − t)
∫

X×X

( �0(x)

β
(k,n)
1−t (x, y)

)−1/n
dq(x, y)

− t

∫

X×X

( �1(y)

β
(k,n)
t (x, y)

)−1/n
dq(x, y)(A.1)

for all t ∈ [0, 1], where Hn(·|m) : P2(X, d) → R is Rényi entropy functional
with respect to m,

Hn(μ|m) := −
∫

X
�−1/ndμ

and � denotes the density of the absolutely continuous part in the Lebesgue
decomposition μ = �m+ μc of μ.

3Lott–Villani and Sturm defined curvature dimension condition on general metric
measure spaces.

4Constant-speed shortest curve defined on [0, 1].
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From now on, in the Appendix, M will always denote an n-dimensional
Alexandrov space with Ric(M) � (n− 1)K and ∂M = ∅.

Our purpose of this Appendix is to prove the following proposition, which
is essentially due to Petrunin [31].

Proposition A.1. Let M be an n-dimensional Alexandrov space without
boundary and Ric(M) � (n− 1)K. Let vol denote the n-dimensional Haus-
dorff measure on M . Then the metric measure space (M, | · ·|, vol) satisfies
CD(n, (n− 1)K).

From [38], we know that the curvature-dimension condition CD(n, (n−
1)K) implies Bishop–Gromov volume comparison theorem. Consequently,
we get the following

Corollary A.1. Let M be as in above proposition. Then the function, for
any p ∈M ,

vol Bp(r)
vol Bn

K(r)

is non-increasing in r > 0, where Bn
K(r) is a geodesic ball of radius r in

the n-dimensional simply connected Riemannian manifold with constant sec-
tional curvature K.

Before beginning the proof of Proposition A.1, let us review some indis-
pensable materials.

For a continuous function f , we define its Hamilton–Jacobi shift Htf for
time t > 0 by

Htf
def= inf

y∈M

{
f(y) +

1
2t
|xy|2}.

Denote by ft = Htf . A solution of α+(t) = ∇α(t)ft is called a ft-gradient
curve.

Refer to [31] for the existence and uniqueness of ft-gradient curve and
basic propositions of Hamilton–Jacobi shifts. Now we list only facts that is
necessary for us to prove Proposition A.1.

Fact A: Let f : M → R be bounded and continuous function and ft = Htf.
Assume γ : (0, 1) →M is a ft-gradient curve which is also a constant-speed
shortest curve. We have
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(i) ft1(x) � ft0(y) + |xy|2
2(t1−t0)

for any t1 > t0 > 0 and x, y ∈M ;

(ii) ft1(γ(t1)) = ft0(γ(t0)) + |γ(t0)γ(t1)|2
2(t1−t0)

;

(iii) ∇ft = γ+ and |∇ft| = |γ(t0)γ(t1)|
t1−t0

= |γ(0)γ(1)|.
The following result is a modification of [31, Proposition 2.2], where we

replace the condition curvature � K by the condition Ric(M) � (n− 1)K.

Proposition A.2. Let M be an n-dimensional Alexandrov space with Ricci
curvature � (n− 1)K. f : M → R be bounded and continuous function and
ft = Htf. Assume γ : (0, 1) →M is a ft-gradient curve which is also a
constant-speed shortest curve. Suppose that the bilinear form Hessγ(t)ft is
defined for almost all t ∈ (0, 1).

Then

h′T � −h2
T ,

h′V � −(n− 1)K|γ(0)γ(1)|2 − h2
V

n− 1

in the sense of distributions, where

hT (t) def= Hessγ(t)ft

( γ+

|γ+| ,
γ+

|γ+|
)

and hV is the trace of Hessγ(t)ft in the vertical space Lγ(t), i.e.,

hV (t) def= TraceLHessγ(t)ft.

Proof. Since the bilinear form Hessγ(t)ft is defined for almost all t ∈ (0, 1),
we know from [30] that all Tγ(t), t ∈ (0, 1), are isometric to n-dimensional
Euclidean space. In particular, all Lγ(t), t ∈ (0, 1), are isometric to R

n−1.
Take two points 0 < t0 < t1 < 1, we may assume that Hessγ(t)ft is defined

at t0 and t1.
Denote by the direction ξt = γ+(t)/|γ+(t)|, t ∈ (0, 1). Then we have

ft0

(
γ(t0 + s)

)
=ft0

(
γ(t0)

)
+ s · 〈∇ft0 , γ

+(t0)〉
+
s2

2
· Hessγ(t0)ft0(ξt0 , ξt0) · |γ+(t0)|2 + o(s2)
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and

ft1

(
γ(t1 + ls)

)
=ft1

(
γ(t1)

)
+ ls · 〈∇ft1 , γ

+(t1)〉
+

(ls)2

2
· Hessγ(t1)ft1(ξt1 , ξt1) · |γ+(t1)|2 + o(s2)

for any l � 0. Combining these and the Fact A, we get

l2 · hT (t1) − hT (t0) � (l − 1)2

t1 − t0

for any l � 0.
Thus, by choosing l =

(
1 − (t1 − t0)hT (t1)

)−1 (when t1 − t0 suffices
small, 1 − (t1 − t0)hT (t1) is positive), we get

hT (t1) − hT (t0)
t1 − t0

� −hT (t1) · hT (t0).

That is,

h′T � −h2
T .

Fix arbitrary ε > 0. By our definition of Ricci curvature � (n− 1)K
along γ, there exists a continuous function family {gγ(t)}0<t<1 ∈ F such
that

∮

Λγ(t)

gγ(t) � K − ε, ∀t ∈ (0, 1).(A.2)

We may assume t1 − t0 so small that we can use Equation (1.1) for some
isometry T : Λγ(t1) → Λγ(t0) and some sequence {sj} ∈ S.

Given any direction η ∈ Λγ(t1), by setting σ0(s) = expγ(t0)(s · Tη) and
σ1(s) = expγ(t1)(sη), we know from (1.1) that

|σ0(sj) σ1(lsj)|2 � |γ(t0)γ(t1)|2

+
(
(l − 1)2 − (gγ(t1) − ε) · |γ(t0)γ(t1)|2

3
(l2 + l + 1)

)
· s2j + o(s2j ).

(A.3)

Note that

ft0(σ0(s)) = ft0(σ0(0)) +
s2

2
· Hessγ(t0)ft0(Tη, Tη) + o(s2),

ft1(σ1(ls)) = ft1(σ1(0)) +
(ls)2

2
· Hessγ(t1)ft1(η, η) + o(s2)

(A.4)
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for any l � 0. By combining (A.3), (A.4) and Fact A, we get

l2 · Hessγ(t1)ft1(η, η) − Hessγ(t0)ft0(Tη, Tη)

� (l − 1)2

t1 − t0
− (t1 − t0)|γ+|2 · (gγ(t1)(η) − ε

) · l
2 + l + 1

3
(A.5)

for any l � 0. Set τ = t1 − t0 and G = |γ+(t1)|2 · (gγ(t1)(η) − ε). By choosing

l =
(
1/τ + τG/6

) · (1/τ − τG/3 − Hessγ(t1)ft1(η, η)
)−1

(when τ suffices small, 1/τ − τG/3 − Hessγ(t1)ft1(η, η) and l are positive),
we get

(1
τ
− τG/3

)
· (Hessγ(t1)ft1(η, η) − Hessγ(t0)ft0(Tη, Tη)

)

� −Hessγ(t1)ft1(η, η) · Hessγ(t0)ft0(Tη, Tη) −G+ τ2G2/12.(A.6)

Note the simple fact that for a bilinear form β(a, a) on a m-dimensional
inner product space V m,

traceV mβ =
m

vol(S)

∫

S
β(a, a)da,

where S is the unit sphere of V m with canonical measure. By taking trace
for Hessγ(t0)ft0 ( and Hessγ(t1)ft1 ) in Lγ(t0) (and Lγ(t1), respectively), we
get, from (A.2) and (A.6), that

hV (t1) − hV (t0)
τ

� − 1
2(n− 1)

(
h2

V (t0) + h2
V (t1)

)

− (n− 1)(K − 2ε)|γ+(t1)|2 + o(1)(A.7)

when we fix t1 and let t0 → t1.
On the other hand, by setting l = 1 in (A.5) and taking trace, we have

hV (t1) − hV (t0)
τ

� −(n− 1)(K − 2ε)|γ+(t1)|2.

This and (A.7) tell us that hV is locally Lipschitz almost everywhere in
(0, 1).
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By using (A.7), the arbitrariness of ε and Fact A (iii), we get

h′V � −(n− 1)K|∇ft|2 − h2
V

n− 1
.

Therefore, we have completed the proof of this proposition. �
Now we can follow Petrunin’s argument in [31] to prove the above Propo-

sition A.1.

Proof of Proposition A.1. Let μ0, μ1 ∈ P(M,d,m) with compactly sup-
ported sets spt(μ0), spt(μ1) and μt ∈ P(M,d) be a geodesic path. We have

spt(μt) ⊂
⋃

x∈spt(μ0), y∈spt(μ1)

γx,y ∀t ∈ [0, 1],

where γx,y is any one geodesic path between x and y. Thus we can choose
a big enough ball B such that spt(μt) ⊂ B for all t ∈ [0, 1]. We can find a
negative constant k such that M has curvature � k in B.

As shown in [41, 7.22], there is a probability measure Π on the space of
all geodesic paths in M such that if Γ = spt(Π) and et : Γ →M is evaluation
map et(γ) = γ(t) then μt = (et)#Π. Let Γ be equipped a metric

|γ γ′|Γ := max
t∈[0,1]

|γ(t)γ′(t)|.

According to [41, 5.10], there are a pair of optimal price functions φ and
ψ on M such that

φ(y) − ψ(x) � 1
2
|xy|2

for any x, y ∈M and equality holds for any (x, y) ∈ spt
(
(e0, e1)#Π

)
.

By considering the Hamilton–Jacobi shifts

ψt = Htψ and φt = H1−t(−ψ),

Petrunin in [31] proved that, for any t ∈ (0, 1), μt is absolutely continuous
and the evaluation map et is bi-Lipschitz (where the bi-Lipschitz constant
depends on k). Hence for any measure χ on M , there is uniquely determined
one-parameter family of pull-back measures χ∗

t on Γ such that χ∗
t (E) =

χ(etE) for any Borel subset E ⊂ Γ (refer to [31] for details).
Fix the measure ν̃ = vol∗t0=1/2 on Γ. We write vol∗t = ewt · ν̃ for some

Borel function wt : Γ → R, since et is bi-Lipschitz and vol∗t is absolutely
continuous with respect to ν̃ for any t ∈ (0, 1).



Ricci curvature on Alexandrov spaces 549

In [31], Petrunin proved that, for Π−a.e. γ ∈ Γ,

wt =
∫ t

t0

∂ws

∂s
ds a.e. t ∈ (0, 1)(A.8)

and

∂wt

∂t
= ht a.e. t ∈ (0, 1)(A.9)

where

ht(γ) = TraceHessγ(t)φt.(A.10)

Noting that ht = hT (t) + hV (t), we set

w
(1)
t =

∫ t

t0

hT (s)ds, B1(t) = exp(w(1)
t )

and

w
(2)
t =

∫ t

t0

hV (s)ds, B2(t) = exp
( w

(2)
t

n− 1

)
.

By applying Proposition A.2, we get

B1(t) � (1 − t)B1(0) + tB1(1),

B2(t) � (1 − t)β1/(n−1)
1−t B2(0) + tβ

1/(n−1)
t B2(1),

(A.11)

where

βt = β

(
(n−1)K,n

)

t (γ(0), γ(1)).

Setting D(t) = exp(wt/n) and using Hölder inequality

(
a+ b

)1/n · (c+ d)(n−1)/n � a1/n · c(n−1)/n + b1/n · d(n−1)/n ∀a, b, c, d > 0,
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we have

D(t) = B
1/n
1 ·B(n−1)/n

2

�
(
(1 − t)B1(0) + tB1(1)

) 1
n ·

(
(1 − t)β

1
n−1

1−t B2(0) + tβ
1

n−1
t B2(1)

)n−1
n

� (1 − t)β1/n
1−tB1(0)B2(0)(n−1)/n + tβ

1/n
t B1(1)B2(1)(n−1)/n

= (1 − t)β1/n
1−tD(0) + tβ

1/n
t D(1).

(A.12)

Note that Petrunin in [31] had represented Hn(μt|m) in terms of wt(γ)
as follows:

Hn(μt|m) = −
∫

Γ
exp(wt(γ)/n) · adΠ

for some non-negative Borel function a : Γ → R. The combination of this
with (A.12) implies the desired inequality (A.1) in the definition of
CD(n, (n− 1)K). Therefore we have completed the proof of
Proposition A.1. �
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