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Global existence for the Seiberg–Witten flow

Min-Chun Hong and Lorenz Schabrun

We introduce the gradient flow of the Seiberg–Witten functional
on a compact, orientable Riemannian 4-manifold and show the
global existence of a unique smooth solution to the flow. The flow
converges uniquely in C∞ up to gauge to a critical point of the
Seiberg–Witten functional.

1. Introduction

In his ground-breaking work, Donaldson applied Yang–Mills theory to con-
struct a new invariant for 4-manifolds and proved that there exist topo-
logical 4-manifolds which do not admit smooth structures, and topological
4-manifolds that admit an infinite number of distinct smooth structures
(e.g., [2]). A decade later, Seiberg and Witten, again using considerations
from gauge theory, produced some surprisingly simple equations which have
been used to produce simpler proofs of many results from Donaldson the-
ory, and also some new results [22]. In particular, the new equations are
first order and have gauge group U(1). Because of its ease of computation,
Seiberg–Witten theory has effectively succeeded Donaldson theory in many
cases.

Computing the Seiberg–Witten invariant for a given manifold involves
finding non-trivial solutions to the Seiberg–Witten equations (1.2), called
Seiberg–Witten monopoles. Therefore, an important problem in Seiberg–
Witten theory is the formulation of necessary and/or sufficient conditions
for the existence of monopoles. In [19], for instance, Taubes proved that
when a symplectic structure exists on M , there exists a monopole for a
particular canonical spinc structure. For an elementary introduction to spin
geometry and the Seiberg–Witten functional, see [8]. For a longer exposition
of Seiberg–Witten theory, see [10–12, or 14]

Let M be a compact oriented Riemannian 4-manifold with a spinc struc-
ture s. Denote by S = W ⊗ L the corresponding spinor bundle and by S± =
W± ⊗ L the half spinor bundles, and by L2 the corresponding determinant
line bundle. Recall that the bundle S+ has fibre C

2. Let A be a unitary con-
nection on L2. Note that we can write A = A0 + a, where A0 is some fixed
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connection and a ∈ iΛ1M with i =
√−1. Denote by FA = dA ∈ iΛ2M the

curvature of the line bundle connection A. Let {ej} be an orthonormal basis
of R

4. A Spin(4)c-connection on the bundles S and S± is locally defined by

(1.1) ∇A = d+
1
2
(ω +A),

where ω = ωjkejek is induced by the Levi–Civita connection matrix ωjk and
ejek acts by Clifford multiplication (see [8]). We denote the curvature of ∇A

by ΩA. The Dirac operator DA : Γ(S) → Γ(S) is given by

DAϕ = ej∇j
Aϕ,

where ∇j
A denotes covariant differentiation along the tangent vector ej ,

and ej acts via Clifford multiplication. We define the configuration space
Γ(S+) × A , where A is the space of unitary connections on L2, and let
(ϕ,A) ∈ Γ(S+) × A .

The Seiberg–Witten equations are

(1.2) D+
Aϕ = 0, F+

A =
1
4
〈ejekϕ,ϕ〉 ej ∧ ek.

Solutions with ϕ = 0 are called reducible (or trivial) solutions. Non-trivial
solutions are called (Seiberg–Witten) monopoles.

The heat flow for the Yang–Mills equations, suggested by Atiyah and
Bott, has played an important role in Yang–Mills theory. The first contribu-
tion was made by Donaldson [1] in the case of a holomorphic vector bundle.
He used the Yang–Mills heat flow to establish an important relationship
between Hermitian Yang–Mills connections and stable holomorphic vector
bundles. How to formulate a heat flow for the Seiberg–Witten equations
and use it to establish a relationship between Seiberg–Witten monopoles
and spinor bundles is a challenging question.

In order to answer this question, we introduce the gradient flow of the
Seiberg–Witten functional. The Seiberg–Witten functional SW : Γ(S+) ×
A → R is given by

SW(ϕ,A) =
∫

M
|DAϕ|2 +

∣∣∣∣F+
A − 1

4
〈ejekϕ,ϕ〉 ej ∧ ek

∣∣∣∣
2

dV.

Using the Weitzenböck formula (e.g., [8] or [10])

(1.3) D2
Aϕ = −∇∗

A∇Aϕ+
S

4
ϕ+

1
4
FA,jk(ejekϕ),



Global existence for the Seiberg–Witten flow 435

the Seiberg–Witten functional can be written in the following form:

(1.4) SW(ϕ,A) =
∫

M
|∇Aϕ|2 +

∣∣F+
A

∣∣2 +
S

4
|ϕ|2 +

1
8
|ϕ|4 dV,

where S is the scalar curvature of M . The Seiberg–Witten functional is
invariant under the action of a gauge group. The group of gauge transfor-
mations is

G = {g : M → U(1)} .
G acts on elements of the configuration space via

g∗(ϕ,A) = (g−1ϕ,A+ 2g−1dg).

It is easily seen that (1.2) and (1.4) are invariant under the action of the
gauge group.

Using the relation

(1.5) ‖FA‖L2 = 2
∥∥F+

A

∥∥
L2 − 4π2c1(L)2,

where c1(L) is the first Chern class of L (see [14]), one can also write the
functional in the form

(1.6) SW(ϕ,A) =
∫

M
|∇Aϕ|2 +

1
2
|FA|2 +

S

4
|ϕ|2 +

1
8
|ϕ|4 dV + π2c1(L)2.

Note that the term π2c1(L)2 is constant along the flow and does not affect
the flow equations. Thus in this paper, it can usually be neglected. The
Euler–Lagrange equations for the Seiberg–Witten functional are

−∇∗
A∇Aϕ− 1

4

[
S + |ϕ|2

]
ϕ = 0,(1.7)

−d∗FA − i Im 〈∇Aϕ,ϕ〉 = 0.(1.8)

The Euler–Lagrange equations for the Seiberg–Witten functional were first
investigated by Jost et al. in [9]. They proved a number of properties includ-
ing the Palais–Smale condition, compactness and the smoothness of weak
solutions to the system (1.7)–(1.8). Note that Equations (1.7)–(1.8) always
admit the trivial solutions with ϕ = 0, but among the solutions to (1.7)–(1.8)
are also any non-trivial solutions, including the Seiberg–Witten monopoles
(solutions of (1.2)).



436 Min-Chun Hong & Lorenz Schabrun

Given the above functional setting, the natural evolution equation to
choose for finding critical points is the gradient flow. Therefore, we define
the Seiberg–Witten flow by

∂ϕ

∂t
= −∇∗

A∇Aϕ− 1
4

[
S + |ϕ|2

]
ϕ,(1.9)

∂A

∂t
= −d∗FA − i Im 〈∇Aϕ,ϕ〉(1.10)

with initial data

(ϕ(0), A(0)) = (ϕ0, A0).

Note that since the connection ∇A respects the splitting S = S+ ⊕ S−,
for initial data ϕ0 ∈ Γ(S+), we have ϕ(t) ∈ Γ(S+) for each t. In this paper
we establish that these flow equations admit a smooth solution for all time,
which converges to a critical point of the functional (1.4).

Theorem 1.1. For any given smooth (ϕ0, A0), the system (1.9)–(1.10)
admits a unique global smooth solution on M × [0,∞) with initial data
(ϕ0, A0).

We show the existence of a local solution to (1.9) and (1.10) following an
idea of Donaldson for the Yang–Mills flow (e.g., [2]) which considers a gauge
equivalent flow. The critical question for the global existence of the Seiberg–
Witten flow turns out to be whether or not the energy concentrates, as in
the Yang–Mills and Yang–Mills–Higgs flows (see [17] and [4]). While this
question remains unresolved for the Yang–Mills and Yang–Mills–Higgs flows
in four dimensions (see, e.g., [6]), we fortunately show that concentration
does not occur in general for the Seiberg–Witten flow at any time T ≤ ∞.

Concerning the limiting behaviour of the flow, we show the following
theorem.

Theorem 1.2. As t→ ∞, the solution (ϕ(t), A(t)) converges smoothly, up
to gauge transformations, to a unique limit (ϕ∞, A∞), where (ϕ∞, A∞) is
a smooth solution of Equations (1.7)–(1.8). There are constants Ck and
1
2 < γ < 1 such that

(1.11) ‖(ϕ(t), A(t)) − (ϕ∞, A∞)‖Hk � Ckt
−(1−γ)/(2γ−1).

Moreover, for any λ > 0, (ϕ0, A0) → (ϕ∞, A∞) defines a continuous map on
the space {(ϕ0, A0) : SW (ϕ(t), A(t)) → λ} as t→ ∞.
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Analogous results were proven for the Yang–Mills flow in two and three
dimensions by R̊ade [13], and extended to the Yang–Mills–Higgs functional
on a Riemann surface by Wilkin [21]. Both of these extend the work of
Simon [15].

Let A = Γ(S+) × A be the configuration space and let M be the sub-
space of critical points of the Seiberg–Witten functional. We define Λ :=
{SW(ϕ∞, A∞) : (ϕ∞, A∞) ∈ M}. By the compactness result in [9] and
Lemma 5.3, we know that Λ is discrete. For each λ ∈ Λ, let Mλ be the sub-
set of critical points (ϕ∞, A∞) with SW(ϕ∞, A∞) = λ, and Aλ the subset
of A such that SW(ϕ(t), A(t)) → λ. Then A = ∪λ∈ΛAλ and M = ∪λ∈ΛMλ.
As a consequence of Theorem 1.2, the Seiberg–Witten flow defines a con-
tinuous G -equivariant flow. Furthermore, the Seiberg–Witten flow defines a
deformation retraction Φ : [0,∞] ×Aλ → Aλ of Aλ onto Mλ.

It is a very interesting question when the unique limit (ϕ∞, A∞) of the
Seiberg–Witten flow for some initial data is a Seiberg–Witten monopole. By
Lemma 5.5, if the initial data (ϕ0, A0) is sufficiently close to a non-trivial
Seiberg–Witten monopole, the flow will converge to a non-trivial Seiberg–
Witten monopole which is close to the original non-trivial monopole. If the
scalar curvature S is everywhere non-negative, the Seiberg–Witten equa-
tions (1.2) admit only the trivial solutions ϕ = 0 and F+

A = 0, and equations
(1.7)–(1.8) admit only trivial-type solutions with ϕ = 0. Thus, the flow can
only converge to a trivial critical point.

The paper is organized as follows: In Section 2, we establish some pre-
liminary estimates. In Section 3, we show the local existence of the flow. In
Section 4, we show global existence and complete the proof of Theorem 1.1.
In Section 5, we consider the limiting behaviour of the flow and prove
Theorem 1.2. Finally, in Section 6, we present a brief note about analogous
results for the flow of the perturbed Seiberg–Witten functional.

2. Preliminary estimates

The familiar Sobolev spaces of functions on Euclidean spaces can be extended
to the geometrical context. Given a connection ∇E : Ω0(E) → Ω1(E) on a
vector bundle E, we can extend it to the well-known exterior covariant
derivative dA : Ωp(E) → Ωp+1(E). There is another extension of ∇E , called
the iterated covariant derivative

∇ : ⊗pT ∗M ⊗ E → ⊗p+1T ∗M ⊗ E.
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We then define

‖ϕ‖W k,p(M) =

(
k∑

n=0

∫
M

∣∣∣∇(n)
refϕ

∣∣∣p dV
) 1

p

,

where ∇ref is a given reference connection and ∇(n)
ref denotes n iterations of

∇ref (we use the exponent n without the brackets to denote the nth com-
ponent). It is a straightforward calculation to show that different choices of
reference connection lead to equivalent norms. We define ‖A‖W k,p similarly,
where the reference connection is simply the standard connection on forms
induced by the Levi–Civita connection. We define, as usual, Hk = W k,2. We
also have the parabolic spaces Lp([0, T ];W k,p(M)), which require that the
function t→ ‖ϕ(t)‖W k,p is in Lp over [0, T ]. In particular,

‖ϕ‖2
L2([0,T ];L2(M)) =

∫
M×[0,T ]

|ϕ|2 dV dt.

We make use of another Weitzenböck formula on p-forms (one that is dis-
tinct from (1.3)). We have the covariant Laplacian ∇∗

M∇M and the Hodge
Laplacian Δ = (dd∗ + d∗d) (which has opposite sign to the standard Laplace
operator on M). They are related by

(2.1) ∇∗
M∇Mβ − Δβ = RM#β,

where β is any p-form, RM is the curvature of the Levi–Civita connection,
and # represents some multilinear map with smooth coefficients (so that
importantly |RM#β| � c |RM | |β|). See [8] for details.

We first establish a bound on |ϕ|. Let S0 = min{S(x) : x∈M}. Of course,
if S0 ≥ 0, the Seiberg–Witten equations admit only the trivial
(reducible) solutions ϕ = 0 and F+

A = 0.

Lemma 2.1. Let (ϕ,A) be a solution of (1.9)–(1.10) on M × [0, T ), and
write m = supx∈M |ϕ0|. Then for all t ∈ [0, T ), we have

(2.2) sup
x∈M

|ϕ(x, t)| � max{m,
√
|S0|}.

Proof. We note the following identity:

(2.3) Δ |ϕ|2 = 2 Re 〈∇∗
A∇Aϕ,ϕ〉 − 2 |∇Aϕ|2 ,
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which holds for any metric connection ∇A (see [8, 3.2.7]). Using this identity,
we have

∂

∂t
|ϕ|2 = 2 Re

〈
∂ϕ

∂t
, ϕ

〉

= 2 Re
〈
−∇∗

A∇Aϕ− 1
4

[
S + |ϕ|2

]
ϕ,ϕ

〉

= −Δ |ϕ|2 − 2 |∇Aϕ|2 − 1
2

[
S + |ϕ|2

]
|ϕ|2 .

Let b be any constant with 0 < b < T . Suppose φ(x, t) attains its maximum
point at (x0, t0) ∈M × [0, b] such that t0 is the first time the maximum is
reached, i.e.,

|ϕ(x0, t0)| = max
x∈M,0≤t≤b

|ϕ(x, t)|

If |ϕ(x0, t0)| ≤ max{m,√|S0|}, the claim is proved. Otherwise,

|ϕ(x0, t0)| > max{m,
√
|S0|}.

By the continuity of ϕ on M × [0, b], there is a parabolic cylinder U × [t1, t2]
inside M × [0, b] with t1 < t0 ≤ t2 such that

|ϕ(x, t)| ≥ max{m,
√
|S0|}, ∀(x, t) ∈ U × [t1, t2].

Then for all (x, t) ∈ U × [t1, t2] we have

∂

∂t
|ϕ|2 + Δ |ϕ|2 ≤ 0.

By the strong parabolic maximum principle, |φ(x, t)| must be a constant.
This is impossible. �

We have the following energy inequality.

Lemma 2.2. Let (ϕ,A) be a solution of (1.9)–(1.10) on M × [0, T ). Then

(2.4)
d

dt
SW(ϕ(t), A(t)) = −

∫
M

[
2
∣∣∣∣∂ϕ∂t

∣∣∣∣
2

+
∣∣∣∣∂A∂t

∣∣∣∣
2
]

� 0.
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Proof. For any ψ, we compute

d

dε

∣∣∣∣
ε=0

SW(ϕ+ εψ,A)

= 2
∫

M

(
Re 〈∇∗

A∇Aϕ,ψ〉 +
1
4

[
S + |ϕ|2

]
Re 〈ϕ,ψ〉

)

= 2
∫

M
Re

〈
∇∗

A∇Aϕ+
1
4

[
S + |ϕ|2

]
ϕ,ψ

〉
,

and for B ∈ iΛ1M ,

d

dε

∣∣∣∣
ε=0

SW(ϕ,A+ εB)

=
d

dε

∣∣∣∣
ε=0

∫
M

〈∇A+εB ϕ,∇A+εB ϕ〉 +
〈
F+

A+εB, F
+
A+εB

〉
+
S

4
|ϕ|2 +

1
8
|ϕ|4

=
d

dε

∣∣∣∣
ε=0

∫
M

(〈
∇Aϕ+

1
2
εBϕ,∇Aϕ+

1
2
εBϕ

〉

+
〈
F+

A + ε(dB)+, F+
A + ε(dB)+

〉 )

= 2
∫

M

(
1
2

Re 〈∇Aϕ,Bϕ〉 +
〈
F+

A , (dB)+
〉)

= 2
∫

M

(〈
i

2
Im 〈∇Aϕ,ϕ〉 , B

〉
+

〈
F+

A , dB
〉)

= 2
∫

M

(〈
i

2
Im 〈∇Aϕ,ϕ〉 +

1
2
d∗FA, B

〉)
,

where we have used that d∗(dA)+ = 1
2d

∗dA. Noting that ∂ϕ
∂t = ψ and ∂A

∂t =
B, the result follows. �

Next, integrating (2.4) in time gives

(2.5)
∫ T

0

[
2
∥∥∥∥∂ϕ∂t

∥∥∥∥
2

L2

+
∥∥∥∥∂A∂t

∥∥∥∥
2

L2

]
= SW(ϕ0, A0) − SW(ϕ(T ), A(T )).

That is,

∂ϕ

∂t
,
∂A

∂t
∈ L2([0, T ];L2(M)).
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From the Seiberg–Witten functional (1.4) we see that

‖∇Aϕ‖2
L2 +

∥∥F+
A

∥∥2

L2 +
1
4

∫
M
S |ϕ|2 � SW(ϕ,A) � SW(ϕ0, A0)

⇒ ‖∇Aϕ‖2
L2 +

∥∥F+
A

∥∥2

L2 � SW(ϕ0, A0) − 1
4

∫
M
S |ϕ|2

⇒ ‖∇Aϕ‖2
L2 +

∥∥F+
A

∥∥2

L2 � c,

since S and |ϕ| are bounded. This implies that

∇Aϕ ∈ L∞([0, T ];L2(M)).

Furthermore, since from (1.5),
∥∥F+

A

∥∥2

L2 = 1
2 ‖FA‖2

L2 + c, we also have

FA ∈ L∞([0, T ];L2(M)).

3. Local existence

In this section, we show the existence of a classical (smooth) solution of the
system (1.9)–(1.10) on M × [0, T ) for some T > 0. What we would like to
do is to make the system parabolic by adding the term dd∗A to (1.10), since
this would give us the Laplacian ΔA. Note that Δ = dd∗ + d∗d denotes the
Hodge Laplacian. Fortunately, this extra term points along the gauge orbit
of A since it is the derivative of a function on M .

In local coordinates, we write

dÃ = d+ Ã = dA0 + ã, dA = dA0 + a.

Then we consider the following system of equations:

∂ϕ̃

∂t
= −∇∗

Ã
∇Ãϕ̃− 1

4

[
S + |ϕ̃|2

]
ϕ̃+

1
2
d∗ãϕ̃,(3.1)

∂ã

∂t
= −d∗FÃ − i Im

〈∇Ãϕ̃, ϕ̃
〉 − dd∗ã,(3.2)

with initial value ã(0) = 0 and ϕ̃(0) = ϕ0.
Since FÃ = FA0 + dã and

−∇∗
Ã
∇Ãϕ̃ = −∇∗

A0
∇A0ϕ̃+ ã#∇A0ϕ̃+ ã#ãϕ̃+ ∇A0 ã#ϕ̃,

the system (3.1) and (3.2) is a quasilinear parabolic system. Thus by stan-
dard partial differential equation (PDE) theory there is a unique local
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smooth solution (ϕ̃, ã) on M × [0, T ) for some T > 0, given smooth initial
data. See for instance [3, §III.4]. However, since ã is not bounded, we do not
yet have global existence for the system (3.1) and (3.2).

We next claim that the system (3.1)–(3.2) is gauge equivalent to our orig-
inal system (1.9)–(1.10). Note that locally on the manifold we can write an
element g ∈ G as g = eif for some real-valued function f on M . By standard
ODE theory, there is a local smooth solution f to the equation

g−1dg

dt
= −d∗ã,

g(0) = I,

where (ϕ̃, ã) is the unique solution to (3.1) and (3.2). Since d∗ã is
an imaginary-valued function on M , it is easy to check that g−1 and g̃t

satisfy
dG

dt
= d∗ãG, G(0) = I.

Therefore g−1 = g̃t. Hence, g is a gauge transformation. One can check that
d(g−1dg) = 0, and g also satisfies the equation

(3.3) 2
∂

∂t

(
g−1dg

)
= −dd∗ã.

Given our local solution (ϕ̃, ã) to (3.1)–(3.2) on M × [0, T ), we solve
equation (3.3) to obtain our gauge transformation g(t). Set

(ϕ̃, dÃ) = (g∗(ϕ), g∗(dA)) = (g−1ϕ, dA − 2g−1dg).

Applying this gauge transformation, we obtain a local solution

(ϕ, dA) = (gϕ̃, dÃ − 2g−1dg)

to our original system (1.9) and (1.10) on M × [0, T ), as shown below.
Note that FÃ = FA since d(g−1dg) = 0, and that

g∇∗
Ã
◦ g−1 = ∇∗

A, g∇Ã ◦ g−1 = ∇A, |ϕ| = |ϕ̃|.

Then we have

Im
〈∇Ãϕ̃, ϕ̃

〉
= Im

〈
g∇Ãϕ̃, gϕ̃

〉
= Im 〈∇Aϕ,ϕ〉 .
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We compute

∂A

∂t
=
∂ã

∂t
− 2

∂

∂t
(g−1dg)

= −d∗FÃ − i Im
〈∇Ãϕ̃, ϕ̃

〉 − dd∗ã− 2
∂

∂t

(
g−1dg

)
= −d∗FÃ − i Im

〈∇Ãϕ̃, ϕ̃
〉

= −d∗FA − i Im 〈∇Aϕ,ϕ〉

and

∂ϕ

∂t
=

∂

∂t
(gϕ̃) =

∂g

∂t
ϕ̃+ g

∂ϕ̃

∂t

=
∂g

∂t
ϕ̃+ g

(
−∇∗

Ã
∇Ãϕ̃− 1

4

[
S + |ϕ̃|2

]
ϕ̃+

1
2
d∗ãϕ̃

)

= −g∇∗
Ã
◦ g−1 ◦ g∇Ã ◦ g−1gϕ̃− 1

4

[
S + |ϕ̃|2

]
gϕ̃

= −∇∗
A∇Aϕ− 1

4

[
S + |ϕ|2

]
ϕ.

Conversely, let (ϕ,A) be a solution to (1.9)–(1.10) with A = A0 + a. By the
standard theory of PDEs, there is a unique solution g satisfying the following
parabolic equations:

dg

dt
= −gd∗ã = −gd∗(a− 2g−1dg),

g(0) = I.

Then, we obtain a solution (ϕ̃, ã) of (3.1)–(3.2) by the above gauge trans-
formation. Therefore, we have shown the existence of the local solution of
(1.9)–(1.10).

Lemma 3.1. For any given smooth initial data (ϕ0, A0), equations (1.9)
and (1.10) admit a unique local smooth solution on M × [0, T ) for some
T > 0.

We suppose that T is maximal, that is, the solution cannot be smoothly
extended beyond time T , and contradict this assumption in the next section.

4. Global existence

In this section, we show that our local solution can be extended to a global
solution, without restrictions on the manifold, bundles, or initial data. The
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obstruction to extending the local solution of (1.9)–(1.10) on M × [0, T ) to a
global solution onM × [0,∞) is that it may cease to be smooth in finite time.
Throughout this section, (ϕ,A) will represent our smooth local solution to
the flow on M × [0, T ). For notational simplicity, we adopt the convention
that c and its variants denote positive constants, which can change from line
to line.

We next compute an estimate for ∂
∂t

(
|∇Aϕ|2 + |FA|2

)
.

Lemma 4.1. There exist positive constants c, c′ such that the following
estimate holds:

∂

∂t

(
|∇Aϕ|2 + |FA|2

)
+ Δ

(
|∇Aϕ|2 + |FA|2

)

� −c′
(∣∣∇2

Aϕ
∣∣2 + |∇FA|2

)
+ c (|FA| + 1)

(
|∇Aϕ|2 + |FA|2 + 1

)
.

Proof. We first consider |∇Aϕ|2.

∂

∂t
|∇Aϕ|2 = 2 Re

〈
∇A

∂ϕ

∂t
+

(
∂

∂t
∇A

)
ϕ,∇Aϕ

〉

= −2 Re 〈∇A∇∗
A∇Aϕ,∇Aϕ〉 − 1

2
Re

〈
∇A

[
S + |ϕ|2

]
ϕ,∇Aϕ

〉

+ Re
〈
∂A

∂t
ϕ,∇Aϕ

〉
.(4.1)

Recall that we denote the curvature of the induced connection on S+ by ΩA

with A = A0 + a, a ∈ iΛ1M . We have the well-known Ricci formula

(4.2) ∇(n)
A ∇∗

A∇Aϕ = ∇∗
A∇A∇(n)

A ϕ+
∑

j+k=n

(
∇(j)

M RM + ∇(j)
M ΩA

)
#∇(k)

A ϕ,

where RM represents the Riemannian curvature of M (see, e.g., [7, 2.2]).
Then

−2 Re 〈∇A∇∗
A∇Aϕ,∇Aϕ〉 � −2 Re 〈∇∗

A∇A∇Aϕ,∇Aϕ〉 + c |FA| |∇Aϕ|2
+ c |∇MFA| |∇Aϕ| + c |∇Aϕ|2 + c |∇Aϕ| ,(4.3)

where we note that the non-constant portion of ΩA is FA. We deal with the
first term in (4.1) by applying (2.3) to ∇Aϕ:

−2 Re 〈∇∗
A∇A∇Aϕ,∇Aϕ〉 = −Δ |∇Aϕ|2 − 2

∣∣∣∇(2)
A ϕ

∣∣∣2 .
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Considering now the second term in (4.1), we note that by the metric com-
patibility we have

d |ϕ|2 = 〈∇Aϕ,ϕ〉 + 〈ϕ,∇Aϕ〉 = 2 Re 〈∇Aϕ,ϕ〉

and so

− 1
2

Re
〈
∇A

[
S + |ϕ|2

]
ϕ,∇Aϕ

〉

= −1
2

Re
〈[
S + |ϕ|2

]
∇Aϕ+ dSϕ+ d |ϕ|2 ϕ,∇Aϕ

〉

= −1
2

[
S + |ϕ|2

]
|∇Aϕ|2 − 1

2
Re 〈dSϕ,∇Aϕ〉 − Re 〈Re 〈∇Aϕ,ϕ〉ϕ,∇Aϕ〉

= −1
2

[
S + |ϕ|2

]
|∇Aϕ|2 − 1

2
Re 〈dSϕ,∇Aϕ〉 − |Re 〈∇Aϕ,ϕ〉|2

� c |∇Aϕ|2 + c |∇Aϕ| ,

where we have used that

− Re 〈Re 〈∇Aϕ,ϕ〉ϕ,∇Aϕ〉 = −Re
〈
Re

〈
∇j

Aϕ,ϕ
〉
ϕ,∇j

Aϕ
〉

= −Re
〈
∇j

Aϕ,ϕ
〉

Re
〈
ϕ,∇j

Aϕ
〉

= − |Re 〈ϕ,∇Aϕ〉|2 .

Finally, for the third term in (4.1),

Re
〈
∂A

∂t
ϕ,∇Aϕ

〉
= −Re 〈d∗FAϕ,∇Aϕ〉 − Re 〈i Im 〈∇Aϕ,ϕ〉ϕ,∇Aϕ〉
� c |∇MFA| |∇Aϕ| + c |∇Aϕ|2 .

Combining all of the above we ultimately find

∂

∂t
|∇Aϕ|2 � −Δ |∇Aϕ|2 −

∣∣∇2
Aϕ

∣∣2 + c |∇MFA| |∇Aϕ|
+ c |FA| |∇Aϕ|2 + c |∇Aϕ|2 + c |∇Aϕ| .(4.4)

We next consider |FA|2.
∂

∂t
|FA|2 =

∂

∂t
|dA|2 = 2

〈
d
∂A

∂t
, dA

〉

= 2 〈d [−d∗FA − i Im 〈∇Aϕ,ϕ〉] , FA〉
= 2 〈−ΔFA − id Im 〈∇Aϕ,ϕ〉 , FA〉
= −2 〈ΔFA, FA〉 − 2 〈id Im 〈∇Aϕ,ϕ〉 , FA〉 ,
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where we have utilized the Bianchi identity dFA = 0, giving dd∗FA = ΔFA.
Applying the Weitzenböck formula (2.1) and recalling (2.3),

2 〈ΔFA, FA〉 � 2 〈∇∗
M∇MFA, FA〉 + c |FA|2

= −Δ |FA|2 − 2 |∇MFA|2 + c |FA|2 .

Then using metric compatibility

d Im 〈∇Aϕ,ϕ〉 = d
(
Im

〈
∇j

Aϕ,ϕ
〉
dxj

)

= dk(Im
〈
∇j

Aϕ,ϕ
〉
)dxk ∧ dxj

=
∑
k>j

(
dk(Im

〈
∇j

Aϕ,ϕ
〉
) − dj(Im

〈
∇k

Aϕ,ϕ
〉
)
)
dxk ∧ dxj

=
∑
k>j

(Im
〈
(∇k

A∇j
A −∇j

A∇k
A)ϕ,ϕ

〉
+ Im

〈
∇j

Aϕ,∇k
Aϕ

〉

− Im
〈
∇k

Aϕ,∇j
Aϕ

〉
)dxk ∧ dxj

=
∑
k>j

(
Im

〈
Ωkj

A ϕ,ϕ
〉

+ 2 Im
〈
∇j

Aϕ,∇k
Aϕ

〉)
dxk ∧ dxj ,(4.5)

so that

2 〈id Im 〈∇Aϕ,ϕ〉 , FA〉 � c |FA| |∇Aϕ|2 + c |FA|2 + c |FA| .

Finally, we have

(4.6)
∂

∂t
|FA|2 � −Δ |FA|2 − 2 |∇FA|2 + c |FA| |∇Aϕ|2 + c |FA|2 + c |FA| .

We now combine (4.4) and (4.6):

∂

∂t

(
|∇Aϕ|2 + |FA|2

)

� −Δ
(
|∇Aϕ|2 + |FA|2

)
− 2

(∣∣∣∇(2)
A ϕ

∣∣∣2 + |∇MFA|2
)

+ c |∇MFA| |∇Aϕ| + c (|FA| + 1)
(
|∇Aϕ|2 + |FA|2

)
+ c,(4.7)

where the first powers of |FA| and |∇Aϕ| can be incorporated into a constant
since if they are larger than one, they are bounded by the second powers.
We next have to deal with the derivatives of the curvature that appear in
(4.7). Fortunately, they can be controlled by the term −2 |∇MFA|2 using
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Young’s inequality

|∇MFA| |∇Aϕ| � 1
2
ε |∇MFA|2 +

1
2ε

|∇Aϕ|2 .

Then if we choose ε sufficiently small we have the desired result. �
Using local coordinates, let

PR(y, s) = {(x, t) ∈M × (0, T ) : |x− y| < R, s−R2 < t < s}

be a parabolic cylinder of radius R centered at (y, s).

Lemma 4.2. Suppose (ϕ,A) ∈ C∞(PR(y, s)) satisfies (1.9)–(1.10). Then
there exist constants δ and R0 such that if R � R0 and

sup
0<t<s

∫
BR(y)

(
|∇Aϕ|2 + |FA|2

)
dV < δ,

then
sup

PR/2(y,s)

(
|∇Aϕ|2 + |FA|2

)
� 256R−4.

Proof. The proof is similar to one in [5], but there are some differences. For
completeness, we give details here. We begin by choosing r0 < R so that

(R− r0)4 sup
Pr0 (y,s)

(
|∇Aϕ|2 + |FA|2

)

= max
0�r�R

[
(R− r)4 sup

Pr(y,s)

(
|∇Aϕ|2 + |FA|2

)]
.(4.8)

Let
e0 = sup

Pr0(y,s)

(
|∇Aϕ|2 + |FA|2

)
=

(
|∇Aϕ|2 + |FA|2

)
(x0, t0)

for some (x0, t0) ∈ P̄r0(y, s). We claim that

(4.9) e0 � 16(R− r0)−4.

Then

(R− r)4 sup
Pr(y,s)

(
|∇Aϕ|2 + |FA|2

)
� (R− r0)4 sup

Pr0 (y,s)

(
|∇Aϕ|2 + |FA|2

)

� 16(R− r0)4(R− r0)−4 = 16

for any r < R. Choosing r = 1
2R in the above, we have the required result.
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We now prove (4.9). Define ρ0 = e
−1/4
0 and suppose by contradiction

that ρ0 � 1
2(R− r0). We rescale variables via x = x0 + ρ0x̃ and t = t0 + ρ2

0t̃
and set

ψ(x̃, t̃) = ϕ(x0 + ρ0x̃, t0 + ρ2
0t̃),

B(x̃, t̃) = ρ0A(x0 + ρ0x̃, t0 + ρ2
0t̃),

giving

|∇Bψ|2 = ρ2
0 |∇Aϕ|2 ,

|FB|2 = ρ4
0 |FA|2 .

We define

eρ0(x̃, t̃) = |FB|2 + ρ2
0 |∇Bψ|2 = ρ4

0

(
|∇Aϕ|2 + |FA|2

)

so that

eρ0(x̃, t̃) � eρ0(0, 0) = 1.

We compute

sup
P̃1(0,0)

eρ0(x̃, t̃) = ρ4
0 sup

Pρ0 (x0,t0)

(
|∇Aϕ|2 + |FA|2

)

� ρ4
0 sup

P R+r0
2

(y,s)

(
|∇Aϕ|2 + |FA|2

)

= ρ4
0

(
R− r0

2

)−4 (
R− R+ r0

2

)4

sup
P R+r0

2
(y,s)

(
|∇Aϕ|2 + |FA|2

)

� ρ4
0

(
R− r0

2

)−4

(R− r0)
4 e0 = 16,

where we have used that Pρ0(x0, t0) ⊂ PR+r0
2

(y, s), and to get to the last line
we have used (4.8). This implies that

eρ0 = ρ4
0

(
|∇Aϕ|2 + |FA|2

)
� 16

on P̄1(0, 0). By Lemma 4.1,
(
∂

∂t
+ Δ

)(
|∇Aϕ|2 + |FA|2 + 1

)
� c (|FA| + 1)

(
|∇Aϕ|2 + |FA|2 + 1

)
.
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Then
(
∂

∂t̃
+ Δ̃

)
(e

ρ0
+ ρ4

0) = ρ6
0

(
∂

∂t
+ Δ

) (
|∇Aϕ|2 + |FA|2

)

� cρ6
0 (|FA| + 1)

(
|∇Aϕ|2 + |FA|2 + 1

)

on P̄1(0, 0). Note that by assumption ρ0 < R, and thus ρ2
0|FA| is bounded

by a constant. Then

(
∂

∂t̃
+ Δ̃

)(
eρ0 + ρ4

0

)
� c

(
eρ0 + ρ4

0

)

for a constant c > 0. We apply Moser’s Harnack inequality to give

1 + ρ4
0 = eρ0(0, 0) + ρ4

0 � c

∫
P̃1(0,0)

eρ0dx̃dt̃+ cρ4
0

= cρ−2
0

∫
Pρ0 (x0,t0)

(
|∇Aϕ|2 + |FA|2

)
dxdt+ cρ4

0

� c sup
0�t�s

∫
BR(y)

(
|∇Aϕ|2 + |FA|2

)
+ cR4

< cδ + cR4,

where we have used that ρ0 < R. Now if we choose R0 and δ sufficiently
small, we have the desired contradiction. �

Lemma 4.3. Let (ϕ,A) be a solution to (1.9)–(1.10). Writing

SWBR(x0)(ϕ,A) =
∫

BR(x0)
|∇Aϕ|2 +

1
2
|FA|2 +

S

4
|ϕ|2 +

1
8
|ϕ|4,

we have for any x0 ∈M and ball of radius R,

sup
t1�t�t2

SWBR(x0)(ϕ,A) � SWB2R(x0)(ϕ(t1), A(t1)) + C1(t2 − t1)R−2,

where C1 is a constant.

Proof. Let φ be a smooth test function with φ ≡ 1 on BR(x0) and zero
outside of B2R(x0). We can choose φ so that 0 � φ � 1 and |dφ| � cR−1.
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We compute

1
2
d

dt

∫
M
φ2 |FA|2 =

∫
M

〈
φ2d

∂A

∂t
, FA

〉

=
∫

M

〈
φ2∂A

∂t
, d∗FA

〉
−

∫
M

〈
dφ2 ∧ ∂A

∂t
, FA

〉

�
∫

M

〈
φ2∂A

∂t
, d∗FA

〉
+ 2

∫
M
φ |dφ|

∣∣∣∣∂A∂t
∣∣∣∣ |FA|

�
∫

M

〈
φ2∂A

∂t
, d∗FA

〉
+

∫
M
φ2

∣∣∣∣∂A∂t
∣∣∣∣
2

+
∫

M
|dφ|2 |FA|2 ,

and similarly

d

dt

∫
M
φ2 |∇Aϕ|2 = 2

∫
M
φ2 Re

〈
∇A

∂ϕ

∂t
,∇Aϕ

〉
+

∫
M
φ2 Re

〈
∂A

∂t
ϕ,∇Aϕ

〉

= 2
∫

M
φ2 Re

〈
∂ϕ

∂t
,∇∗

A∇Aϕ

〉
− 2

∫
M

Re
〈
dφ2 ⊗ ∂ϕ

∂t
,∇Aϕ

〉

+
∫

M
φ2 Re

〈
∂A

∂t
ϕ,∇Aϕ

〉
.

Furthermore, in the above

−2
∫

M
Re

〈
dφ2 ⊗ ∂ϕ

∂t
,∇Aϕ

〉
� 4

∫
M
φ |dφ|

∣∣∣∣∂ϕ∂t
∣∣∣∣ |∇Aϕ|

� 2
∫

M
φ2

∣∣∣∣∂ϕ∂t
∣∣∣∣
2

+ 2
∫

M
|dφ|2 |∇Aϕ|2

and

2
∫

M
φ2 Re

〈
∂ϕ

∂t
,∇∗

A∇Aϕ

〉

= −2
∫

M
φ2

∣∣∣∣∂ϕ∂t
∣∣∣∣
2

− 2
∫

M
φ2 Re

〈
∂ϕ

∂t
,
1
4

[
S + |ϕ|2

]
ϕ

〉

= −2
∫

M
φ2

∣∣∣∣∂ϕ∂t
∣∣∣∣
2

− d

dt

∫
M
φ2

[
S

4
|ϕ|2 +

1
8
|ϕ|4

]
.
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Thus

d

dt

∫
M
φ2 |∇Aϕ|2 � − d

dt

∫
M
φ2

[
S

4
|ϕ|2 +

1
8
|ϕ|4

]

+ 2
∫

M
|dφ|2 |∇Aϕ|2 +

∫
M
φ2 Re

〈
∂A

∂t
ϕ,∇Aϕ

〉
.

We next note that

φ2 Re
〈
∂A

∂t
ϕ,∇Aϕ

〉
= φ2 Im

∂Ak

∂t
Im

〈
∇k

Aϕ,ϕ
〉

= φ2

〈
∂A

∂t
, i Im 〈∇Aϕ,ϕ〉

〉
(4.10)

so that

φ2 Re
〈
∂A

∂t
ϕ,∇Aϕ

〉
+

∫
M

〈
φ2∂A

∂t
, d∗FA

〉
= −

∫
M
φ2

∣∣∣∣∂A∂t
∣∣∣∣
2

.

From all of the above, we finally have

d

dt

∫
M
φ2

(
|∇Aϕ|2 +

1
2
|FA|2 +

S

4
|ϕ|2 +

1
8
|ϕ|4

)

� cR−2

∫
M

(
|∇Aϕ|2 +

1
2
|FA|2

)
.

The result follows by integrating on [t1, t] and taking the supremum over
t1 � t � t2. �

Lemma 4.4. Let (ϕ,A) be a solution to (1.9)–(1.10) in M × [0, T ) with
initial values (ϕ0, A0). Suppose |∇Aϕ| � K1 and |FA| � K1 in M × [0, T )
for some constant K1 > 0. Then for any positive integer n ≥ 1, there is a
constant Kn+1 independent of T such that

∣∣∣∇(n+1)
A ϕ

∣∣∣ � Kn+1,
∣∣∣∇(n)

M FA

∣∣∣ � Kn+1 in M × [0, T ).
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Proof. We prove Lemma 4.4 by induction. We first claim that

∂

∂t

(∣∣∣∇(k+1)
A ϕ

∣∣∣2 +
∣∣∣∇(k)

M FA

∣∣∣2
)

+ c′k

(∣∣∣∇(k+2)
A ϕ

∣∣∣2 +
∣∣∣∇(k+1)

M FA

∣∣∣2
)

� −Δ
(∣∣∣∇(k+1)

A ϕ
∣∣∣2 +

∣∣∣∇(k)
M FA

∣∣∣2
)

+ ck

(∣∣∣∇(k+1)
A ϕ

∣∣∣2 +
∣∣∣∇(k)

M FA

∣∣∣2 + 1
)

(4.11)

for all non-negative integers k = 0, 1, 2, 3, . . ..
From Lemma 4.1 with the assumption of Lemma 4.4, (4.11) holds for

k = 0. Now, assume that (4.11) is true for k = n− 1 and
∣∣∣∇(k+1)

A ϕ
∣∣∣ � Kk+1

and
∣∣∣∇(k)

M FA

∣∣∣ � Kk+1 for non-negative integers k ≤ n− 1. Then we will show
(4.11) and Lemma 4.4 are also true for all n.

From (1.9), we have

∂

∂t

∣∣∣∇(n+1)
A ϕ

∣∣∣2 = 2 Re
〈
∂

∂t

(
∇(n+1)

A ϕ
)
,∇(n+1)

A ϕ

〉

= −2 Re
〈
∇(n+1)

A ∇∗
A∇Aϕ,∇(n+1)

A ϕ
〉

− 1
2

Re
〈
∇(n+1)

A

[
S + |ϕ|2

]
ϕ,∇(n+1)

A ϕ
〉

+ 2 Re
〈(

∂

∂t
∇(n+1)

A

)
ϕ,∇(n+1)

A ϕ

〉
.(4.12)

From the Ricci formula (4.2) we have

− 2 Re
〈
∇(n+1)

A ∇∗
A∇Aϕ,∇(n+1)

A ϕ
〉

� −2 Re
〈
∇∗

A∇A∇(n+1)
A ϕ,∇(n+1)

A ϕ
〉

+ c
∣∣∣∇(n+1)

M FA

∣∣∣
∣∣∣∇(n+1)

A ϕ
∣∣∣ + c

∣∣∣∇(n+1)
A ϕ

∣∣∣2 + c
∣∣∣∇(n+1)

A ϕ
∣∣∣ ,

where we recall that the non-constant part of ΩA is FA. From (2.3),

−2 Re
〈
∇∗

A∇A∇(n+1)
A ϕ,∇(n+1)

A ϕ
〉

= −Δ
∣∣∣∇(n+1)

A ϕ
∣∣∣2 − 2

∣∣∣∇(n+2)
A ϕ

∣∣∣2 .
Next, applying metric compatibility n+ 1 times, we find that the (n+ 1)th
order term of ∂(n+1) |ϕ|2 is 2 Re

〈∇(n+1)
A

ϕ,ϕ
〉

and

Re
〈
−∇(n+1)

A

1
4

[
R+ |ϕ|2

]
ϕ,∇(n+1)

A ϕ

〉
� c

∣∣∣∇(n+1)
A ϕ

∣∣∣2 + c
∣∣∣∇(n+1)

A ϕ
∣∣∣ .
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For the final term in (4.12), noting that ∂
∂t∇A = 1

2
∂A
∂t involves derivatives of

FA and ∇Aϕ and utilizing the product rule we find

2 Re
〈(

∂

∂t
∇(n+1)

A

)
ϕ,∇(n+1)

A ϕ

〉
= Re

〈 ∑
j+k=n

∇(j)
A

∂A

∂t
∇(k)

A ϕ,∇(n+1)
A ϕ

〉

� c |∇MFA|
∣∣∣∇(n+1)

A ϕ
∣∣∣ + c

∣∣∣∇(n+1)
M FA

∣∣∣
∣∣∣∇(n+1)

A ϕ
∣∣∣ + c

∣∣∣∇(n+1)
A ϕ

∣∣∣2

+ c
∣∣∣∇(n+1)

A ϕ
∣∣∣ ,

where ∇MFA is equal to ∇(n)
M FA for the case n = 1 and bounded for cases

n � 2. Thus

∂

∂t

∣∣∣∇(n+1)
A ϕ

∣∣∣2 = −Δ
∣∣∣∇(n+1)

A ϕ
∣∣∣2 − 2

∣∣∣∇(n+2)
A ϕ

∣∣∣2 + c
∣∣∣∇(n+1)

M FA

∣∣∣
∣∣∣∇(n+1)

A ϕ
∣∣∣

+ c |∇MFA|
∣∣∣∇(n+1)

A ϕ
∣∣∣ + c

∣∣∣∇(n+1)
A ϕ

∣∣∣2 + c
∣∣∣∇(n+1)

A ϕ
∣∣∣ .(4.13)

Similarly, from (1.10),

∂

∂t

∣∣∣∇(n)
M FA

∣∣∣2 =
∂

∂t

∣∣∣∇(n)
M dA

∣∣∣2 = 2
〈
∇(n)

M d
∂A

∂t
,∇(n)

M dA

〉

= 2
〈
∇(n)

M d [−d∗FA − i Im 〈∇Aϕ,ϕ〉] ,∇(n)
M FA

〉

� 2
〈
−∇(n)

M ∇∗
M∇MFA − i∇(n)

M d Im 〈∇Aϕ,ϕ〉 ,∇(n)
M FA

〉

+ c
∣∣∣∇(n)

M FA

∣∣∣2 + c
∣∣∣∇(n)

M FA

∣∣∣
� −Δ

∣∣∣∇(n)
M FA

∣∣∣2 − 2
∣∣∣∇(n+1)

M FA

∣∣∣2 −
〈
i∇(n)

M d Im 〈∇Aϕ,ϕ〉 ,∇(n)
M FA

〉

+ c
∣∣∣∇(n)

M FA

∣∣∣2 + c
∣∣∣∇(n)

M FA

∣∣∣ ,
where we have used the Weitzenböck formula (2.1), the Ricci formula (4.2)
and (2.3). Using (4.5), we have

∇(n)
M d Im 〈∇Aϕ,ϕ〉 = ∇(n)

M

∑
k>j

(〈
Ωkj

A ϕ,ϕ
〉

+ 2 Im
〈
∇j

Aϕ,∇k
Aϕ

〉)
dxk ∧ dxj .

From this and metric compatibility we find
∣∣∣
〈
i∇(n)

M d Im 〈∇Aϕ,ϕ〉 ,∇(n)
M FA

〉∣∣∣ �
∣∣∣i∇(n)

M d Im 〈∇Aϕ,ϕ〉
∣∣∣
∣∣∣∇(n)

M FA

∣∣∣
� c

∣∣∣∇(n)
M FA

∣∣∣2 + c
∣∣∣∇(n)

M FA

∣∣∣ + c
∣∣∣∇(n)

M FA

∣∣∣
∣∣∣∇(n+1)

A ϕ
∣∣∣ .
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Thus

∂

∂t

∣∣∣∇(n)
M FA

∣∣∣2 � −Δ
∣∣∣∇(n)

M FA

∣∣∣2 − 2
∣∣∣∇(n+1)

M FA

∣∣∣2 + c
∣∣∣∇(n)

M FA

∣∣∣
∣∣∣∇(n+1)

A ϕ
∣∣∣

+ c
∣∣∣∇(n)

M FA

∣∣∣2 + c
∣∣∣∇(n)

M FA

∣∣∣ .(4.14)

Combining now Equations (4.13) and (4.14) gives

∂

∂t

(∣∣∣∇(n+1)
A ϕ

∣∣∣2 +
∣∣∣∇(n)

M FA

∣∣∣2
)

� −Δ
(∣∣∣∇(n+1)

A ϕ
∣∣∣2 +

∣∣∣∇(n)
M FA

∣∣∣2
)
− 2

(∣∣∣∇(n+2)
A ϕ

∣∣∣2 +
∣∣∣∇(n+1)

M FA

∣∣∣2
)

+ c

(∣∣∣∇(n+1)
A ϕ

∣∣∣2 +
∣∣∣∇(n)

M FA

∣∣∣2
)

+ c
∣∣∣∇(n+1)

M FA

∣∣∣
∣∣∣∇(n+1)

A ϕ
∣∣∣

+ c |∇MFA|
∣∣∣∇(n+1)

A ϕ
∣∣∣ + c.

Utilizing Young’s inequality, we obtain (4.11) for k = n. We now complete
the proof of Lemma 4.4.

Case 1. Assume T ≤ 1. Multiplying (4.11) by e−cnt, the maximum principle
yields

max
x∈M,0≤t≤T

(
|∇(n+1)

A ϕ|2 + |∇(n)
M FA|2

)
≤ ecn

(
|∇(n+1)

A ϕ0|2 + |∇(n)
M FA0 |2 + 1

)
.

The required result is proved.

Case 2. Assume T > 1. Let t0 be any time with 0 ≤ t0 ≤ T . For any t0 ≤ 1,
the result follows from Case 1. For any t0 > 1, integrating (4.11) over M for
k = n− 1, we have

d

dt

∫
M

|∇(n)
A ϕ|2 + |∇(n−1)

M FA|2 dV + c′n−1

∫
M

|∇(n+1)
A ϕ|2 + |∇(n)

M FA|2 dV

≤ cn−1

∫
M

(|∇(n)
A ϕ|2 + |∇(n−1)

M FA|2 + 1) dV.

Integrating in t on [t0 − 1, t0] yields
∫ t0

t0−1

∫
M

|∇(n+1)
A ϕ|2 + |∇(n)

M FA|2 dV dt ≤ (cn−1 + 1)(2K2
n + 1)|M |

c′n−1

.

Then, using Moser’s Harnack inequality in (4.11) with k = n, the required
result follows. �
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Corollary 4.1. Let (ϕ,A) be a solution to (1.9)–(1.10). Suppose
∣∣∣∇(j)

A ϕ
∣∣∣ �

Kn and
∣∣∣∇(j−1)

M FA

∣∣∣ � Kn in P1(x0, t0) for each 1 � j � n and some constant
Kn. Then there is a positive constant Kn+1 such that

∣∣∣∇(n+1)
A ϕ

∣∣∣ � Kn+1,
∣∣∣∇(n)

M FA

∣∣∣ � Kn+1 in P1/2(x0, t0).

Proof. Let ξ be a smooth cut-off function C∞(P1) satisfying |ξ| ≤ 1 and
|∇ξ| + |Δξ| + |∂tξ| ≤ C in P1 for some constant C > 0, and ξ ≡ 1 in P3/4,
ξ ≡ 0 on the parabolic boundary of P1. Multiplying (4.11) by ξ2 for k = n− 1
and integrating on P1, we have

c′n−1

∫
P1

ξ2(|∇(n+1)
A ϕ|2 + |∇(n)FA|2) dV dt

≤ 2
∫

P1

(|ξt| + |Δξ| + |∇ξ|2)(|∇(n)
A ϕ|2 + |∇(n−1)FA|2) dV dt

+ cn−1

∫
P1

(|∇(n)
A ϕ|2 + |∇(n−1)FA|2 + 1) dV dt

≤ |B1|(2K2
n + 1)(4C + 2C2 + cn−1).

Applying Moser’s Harnack inequality to (4.11) with k = n in P3/4, the
required result follows. �

As mentioned in Section 1, we can show that concentration does not
occur in general for the Seiberg–Witten flow. We say that the energy con-
centrates at a point x0 at time t = T if there are constants δ and R0 such
that

lim sup
t→T

∫
BR(x0)

(
|∇Aϕ|2 + |FA|2

)
dV � δ

for all R ∈ (0, R0]. That is, as t→ T we have energy δ concentrating in
smaller and smaller balls. Recall that δ > 0 is the constant defined in Lemma
4.2. Concentrations of amounts of energy less than delta are ruled out by
Lemma 4.2. Using Lemma 4.3 and that the energy is bounded, it follows
from the proof of Struwe (see [16, 18]) that concentration can occur at no
more than a finite number of points at t = T .

Lemma 4.5. The energy does not concentrate at any T ≤ ∞.

Proof. We assume by contradiction that the energy concentrates at a point
x0. We choose R0 > 0 sufficiently small so that BR0(x0) contains no concen-
tration points other than x0. Then there exist sequences xm → x0, tm → T
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and a sequence of balls BRm
(xm) with Rm → 0 such that

δ > SWBRm (xm)(ϕ(tm), A(tm))

= sup
0�t�tm, x∈BR0 (x0)

SWBRm (x)(ϕ(t), A(t)) >
3δ
4

(4.15)

for each m. Choosing C2 = δ
4C1

, where C1 is the constant from Lemma 4.3,
and applying Lemma 4.3 to the time interval [t, tm] for some t ∈ [tm − C2R

2
m,

tm] gives

(4.16) SWB2Rm (xm)(ϕ(t), A(t)) � 3δ
4

− C1(tm − t)R−2
m � 3δ

4
− δ

4
=
δ

2
.

Define
Dm = {(y, s) : Rmy + xm ∈ BR0(x0), s ∈ [−C2, 0]}.

Note that as m→ ∞, Rm → 0 and Dm will expand to cover R
4 × [−C2, 0].

Similarly to the proof of Lemma 4.2, we rescale the data to

ϕm(y, s) = ϕ(Rmy + xm, R
2
ms+ tm),

Am(y, s) = RmA(Rmy + xm, R
2
ms+ tm),

so that ϕm and Am are defined on Dm and

|∇Am
ϕm|2 = R2

m |∇Aϕ|2 ,
|FAm

|2 = R4
m |FA|2 .

We next show that Rmϕm and Am converge locally to ϕ̃ and Ã, respectively,
where ϕ̃ and Ã are defined on R

4 × [−C2, 0]. We consider the rescaled equa-
tions

(4.17)
∂Rmϕm

∂s
= R3

m

∂ϕ

∂t
= −∇∗

Am
∇Am

Rmϕm − 1
4

[
R2

mS + |Rmϕm|2
]
Rmϕm,

∂Am

∂s
= R3

m

∂A

∂t
= −d∗FAm

− i Im 〈∇Am
Rmϕm, Rmϕm〉 .

(4.18)

Note that the following argument mirrors that presented in Lemma 4.2 and
Lemma 4.4 for the original equations. From (4.15) and Lemma 4.2,

(4.19) R2
m |∇Am

ϕm|2 + |FAm
|2 � K1
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locally in BR(0) × [−C2, 0] uniformly in m where K1 is independent of m.
Noting the similarity of these equations to (1.9) and (1.10), we use (4.19)
and results identical to Lemma 4.4 and Corollary 4.1 to find

(4.20)
∣∣∣∇(n+1)

Am
Rmϕm

∣∣∣2 +
∣∣∣∇(n)

M FAm

∣∣∣2 � Kn+1

in BR(0) × [−C2, 0] uniformly in m for each n ≥ 0.
If we choose our local coordinates on BR0(x0) to be orthonormal coordi-

nates, then the metric on the rescaled space is simply gij = δij . From (2.5),
we know ∂tA ∈ L2([0,∞);L2(M)) so that

∫
Dm

|∂sAm|2dyds �
∫

M×[tm−C2R2
m,tm]

|∂tA|2dV dt→ 0.

Then from (4.18), there exists some τm ∈ [−C2, 0] such that
∫
Dm(s=τm)

|d∗FAm
|2dy → 0.

By a result of Uhlenbeck in [20] ([20, Theorem 1.3], see also [5]), pass-
ing to a subsequence (without changing notation) and in an appropriate
gauge, Am(τm) → Ã and Rmϕm → ϕ̃ in C∞, where d∗FÃ = 0 in R

4 and∫
R4 |FÃ|2 dy < C for some C > 0, and ϕ̃ = 0 by the boundedness of ϕm.

Next, from (4.16),

(4.21)
∫

B2(0)
R2

m |∇Am
ϕm|2 + |FAm

|2 +
1
4
R4

m |ϕm|2 (S + |ϕm|2)dy � δ

2
.

Since Rmϕm → 0, the first and third terms of (4.21) go to zero. Then we
must have

(4.22)
∫

B2(0)

∣∣FÃ

∣∣2dy � δ

2
.

We now derive a contradiction with (4.22). Since FÃ is harmonic in R
4, the

well-known mean value formula implies that for any x0 ∈ R
4 and R > 0, we

have

|FÃ|(x0) ≤ 1
|BR(x0)|

∫
BR(x0)

|FÃ| dy ≤
(

1
|BR(x0)|

∫
BR(x0)

|FÃ|2 dy
)1/2

Letting R→ ∞, FÃ = 0 for any x0 ∈ R
4, which contradicts (4.22), as

required. �
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Next we complete a proof of Theorem 1.1.

Proof of Theorem 1.1. By the non-concentration of the energy (Lemma 4.5)
at any T ≤ ∞, there exists R > 0 such that for any point x ∈M and t ∈
[0, T ), ∫

BR(x)

(
|∇Aϕ|2 + |FA|2

)
(·, t) dV < δ.

Then by Lemma 4.2, |∇Aϕ|2 + |FA|2 is uniformly bounded on PR/2(x, t).
Since x and t are arbitrary, |∇Aϕ|2 + |FA|2 is uniformly bounded under the
flow. From this fact and Lemma 4.4 we have for each n ∈ N

sup
M×[0,∞)

(∣∣∣∇(n)
A ϕ

∣∣∣2 +
∣∣∣∇(n−1)

M FA

∣∣∣2
)

� Kn.

Note that Equations (1.9)–(1.10) depend only on these bounded quantities.
It is then elementary to show using the Sobolev embedding theorem that
(ϕ(t), A(t)) converges to smooth data (ϕ(T ), A(T )) as t→ T . In conjunction
with local existence, this shows Theorem 1.1. �

5. Convergence

In this section we prove Theorem 1.2. That is, we show that the flow (1.9)–
(1.10) converges uniquely to a critical point of the functional (1.4). Since
convergence is only possible up to gauge, throughout this section we assume
an appropriate choice of gauge. We denote a critical point of the Seiberg–
Witten functional by (ϕ∞, A∞), and write ϕ = ϕ∞ + ψ and A = A∞ + a,
where (ϕ,A) denotes a solution to the flow. For simplicity, we denote ‖ϕ‖ +
‖A‖ by ‖(ϕ,A)‖ for any norm ‖ · ‖. The proof depends on the following
lemmas.

Lemma 5.1. For each k > 0, there exist sequences {tn} and {gn} ⊂ G
with tn → ∞ such that gn · (ϕ(tn), A(tn)) converges in Hk to a critical point
(A∞, ϕ∞).

Proof. Integrating the energy inequality we find

∫ ∞

0

∥∥∥∥
(
∂ϕ

∂t
,
∂A

∂t

)∥∥∥∥
L2

� c.
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It follows that there exists a sequence {tn} such that

(5.1)
∥∥∥∥
(
∂ϕ

∂t
(tn),

∂A

∂t
(tn)

)∥∥∥∥
L2

→ 0.

Next, recall from Lemma 4.4 that we have uniform bounds on the quantities
‖ϕ‖Hk and ‖FA‖Hk for each k ≥ 0. It follows from a theorem of Uhlenbeck
[20, Theorem 1.3] that in an appropriate (time varying) gauge, we also have
uniform bounds on ‖A‖Hk for each n ≥ 0. For each k ≥ 0, from the Rellich–
Kondrachov theorem we can pass to a subsequence of {tn} (without changing
notation) such that (ϕ(tn), A(tn)) converges in Hk up to gauge to a point
(ϕ∞, A∞). It remains to show that (ϕ∞, A∞) is a critical point. From (5.1)
we have the required result. �

Lemma 5.2. On any finite time interval, the solution to the flow depends
continuously on the initial conditions. That is, if (ϕ1(t), A1(t)) and (ϕ2(t),
A2(t)) are two solutions to the flow with different initial values, then for any
T > 0 there exists a constant c such that

‖(ϕ1(T ), A1(T )) − (ϕ2(T ), A2(T ))‖Hk

� c ‖(ϕ1(0), A1(0)) − (ϕ2(0), A2(0))‖Hk .(5.2)

Proof. Recall that in the gauge of [20, Theorem 1.3], we have uniform bounds
on ϕ,A, and all of their derivatives. In this gauge, we also know that d∗A = 0.
Using these facts and the expansion

∇∗
A∇Aϕ = −∇∗

A∞∇A∞ϕ+ a#∇A∞ϕ+ ∇Ma#ϕ+ a#a#ϕ,

we can write

∂

∂t
(ϕ1 − ϕ2) = −∇∗

A∞∇A∞(ϕ1 − ϕ2) + f,(5.3)

∂

∂t
(A1 −A2) = −Δ(A1 −A2) + g,(5.4)

where f and g comprise the lower order terms from (1.9) and (1.10), and
‖f‖Hk and ‖g‖Hk are both bounded by c ‖(ϕ1 − ϕ2, A1 −A2)‖Hk . When
f = g = 0, we simply have the heat equation, whose solution depends con-
tinuously on the intial data in the Hk norm. When the data are small in
the Hk norm, the perturbations f and g will be small in the Hk norm also.
Thus ϕ and A depend continuously on their initial values. �
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Lemma 5.3 (Lojasiewicz’s inequality). Let (ϕ∞, A∞) be a critical point of
the Seiberg–Witten functional. There exist constants ε1 > 0, 1

2 < γ < 1 and
c > 0 such that if

‖(ϕ,A) − (ϕ∞, A∞)‖H1 ≤ ε1,

then

(5.5)
∥∥∥∥
(
∂ϕ

∂t
,
∂A

∂t

)∥∥∥∥
L2

≥ c |SW(ϕ,A) − SW(ϕ∞, A∞)|γ .

Note that Lemma 5.3 is analogous to [15, Theorem 3], since

‖Grad(SW)‖L2 =
∥∥∥∥
(

2
∂ϕ

∂t
,
∂A

∂t

)∥∥∥∥
L2

,

where the factor of 2 arises due to the factor of 2 introduced in our definition
of the flow equations.

Proof. The proof of this lemma is analogous to that of [13, Proposition 7.2]
and [21, Proposition 3.5]. While Wilkin considers in Section 3 of [21] the
Yang–Mills–Higgs functional, he allows in the proof of this lemma a very
general functional f : Q→ R, where Q is a Hilbert manifold and f is invari-
ant under the action of some gauge group G . To apply [21, Proposition 3.20],
we need only check that the operator

HSW + ρ∞ρ∗∞ : T∞H → T∞H

is elliptic. HereHSW represents the Hessian of the Seiberg–Witten functional
at the point (ϕ∞, A∞), and ρ∞ : Lie(G ) → T∞M is the infinitesimal action
of the gauge group G . The operator ρ∗∞ is defined by

〈ρ∗∞X,u〉Lie(G ) =
∫

M
〈X, ρ∞u〉,

for X ∈ T∞H and u ∈ Lie(G ). We begin by computing the operator

HSW(ψ, a) =
d

ds

∣∣∣∣
s=0

Grad(SW)(sψ, sa)
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where Grad(SW) represents the gradient operator of the Seiberg–Witten
functional. There holds

∂

∂s

∣∣∣∣
s=0

(
∇∗

A∞+sa∇A∞+sa(ϕ∞ + sψ) +
S

4
(ϕ∞ + sψ)

+
1
4
|ϕ∞ + sψ|2 (ϕ∞ + sψ)

)

= ∇∗
A∞∇A∞ψ +

S

4
ψ +

1
4
|ϕ∞|2 ψ +

1
2

Re 〈ϕ∞, ψ〉ϕ∞

+
〈

1
2
i Im 〈ϕ∞,∇A∞ψ〉 +

1
2
i Im 〈ψ,∇A∞ϕ∞〉 , a

〉
,

where we use a relationship analogous to that in Equation (4.10). Similarly,

∂

∂s

∣∣∣∣
s=0

1
2
d∗d(A∞ + sa)

+
1
2
i Im

〈
∇A∞(ϕ∞ + sψ) +

1
2
sa(ϕ∞ + sψ), (ϕ∞ + sψ)

〉

=
1
2
d∗da+

1
2
i Im 〈∇A∞ϕ∞, ψ〉 +

1
2
i Im 〈∇A∞ψ,ϕ∞〉 +

1
2
a |ϕ∞|2 .

Using the above and recalling the calculations in the proof of Lemma 2.2,
the Hessian at the point (ϕ∞, A∞) is given by

HSW(ψ, a) =
(
∇∗

A∞∇A∞ψ +
1
2

Re 〈ϕ∞, ψ〉ϕ∞ +
S

4
ψ +

1
4
|ϕ∞|2 ψ ,

1
2
d∗da+

1
4
|ϕ∞|2 a+ i Im 〈ϕ∞,∇A∞ψ〉 + i Im 〈ψ,∇A∞ϕ∞〉

)
.(5.6)

In the following, we continue to use (·, ·) to denote an element of the con-
figuration space, i.e., (ψ, a) ∈ Γ(S+) × A . Now, note that if g(t) represents
a path through the gauge group G with g(0) = I, then

ρ∞(g′(0)) =
1√
2
∂

∂t

∣∣∣∣
t=0

(g(t)∗(ϕ∞, A∞))

=
1√
2
∂

∂t

∣∣∣∣
t=0

(g(t)−1ϕ∞, A∞ + 2g(t)−1dg(t))

=
1√
2
(−g′(0)ϕ∞, 2dg′(0)),
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where we write g(t) = eiθ for some function θ(t, x) defined locally on the
manifold M , so that

∂

∂t

∣∣∣∣
t=0

2g(t)−1dg(t) =
∂

∂t

∣∣∣∣
t=0

2idθ = 2dg′(0).

It follows that

〈
ρ∗∞(ψ, a), g′(0)

〉
Lie(G )

=
1√
2

∫
M

〈
ψ,−g′(0)ϕ∞

〉
+

〈
a, 2dg′(0)

〉

=
1√
2

〈〈ψ,ϕ∞〉 , g′(0)
〉
Lie(G )

+
1√
2

〈
1
2
d∗a, g′(0)

〉
Lie(G )

,

that is,

ρ∗∞(ψ, a) =
1√
2

(
〈ψ,ϕ∞〉 , 1

2
d∗a

)

and

(5.7) ρ∞ρ∗∞(ψ, a) =
1
2

(−〈ψ,ϕ∞〉ϕ∞, dd∗a) .

Comparing (5.7) with (5.6), we find that HSW + ρ∞ρ∗∞ is an elliptic opera-
tor, as required. Then, the required result follows from the same arguments
as for [21, Theorem 3.19]. �

Lemma 5.4. There exists a constant c such that if T ≥ 0 and S > 1 are
such that 0 ≤ T ≤ S − 1, then

(5.8)
∫ S

T+1

∥∥∥∥
(
∂ϕ

∂t
,
∂A

∂t

)∥∥∥∥
Hk

� c

∫ S

T

∥∥∥∥
(
∂ϕ

∂t
,
∂A

∂t

)∥∥∥∥
L2

.

Proof. We define G = (G1, G2) =
(

∂ϕ
∂t ,

∂A
∂t

)
. Noting that

∇∗
A∇Aϕ = −∇∗

A∞∇A∞ϕ+ a#∇A∞ϕ+ ∇Ma#ϕ+ a#a#ϕ,

we have

∂G1

∂t
= −∇∗

A∞∇A∞G1 +G2#∇A∞ϕ+ a#∇A∞G1 + ∇MG2#ϕ+ ∇Ma#G1

+G2#a#ϕ+ a#a#G1 − S

4
G1 + ϕ#ϕ#G1,
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and

∂G2

∂t
= −d∗dG2 +G2#ϕ#ϕ+ a#ϕ#G1 + ∇A∞ϕ#G1 + ϕ#∇A∞G1.

Using the Bianchi identify and the Weitzenböck formula (2.1) we can write

−d∗dG2 = −ΔG2 − idd∗ Im 〈∇Aϕ,ϕ〉
= −∇∗

M∇MG2 − idd∗ Im 〈∇Aϕ,ϕ〉 +RM#G2.

Using metric compatibility and Equation (1.9), we compute in normal coor-
dinates

−idd∗ Im 〈∇Aϕ,ϕ〉 = id ∗ d
(
Im

〈
∇j

Aϕ,ϕ
〉
∗ dxj

)

= id ∗
([

Im
〈
∇k

A∇j
Aϕ,ϕ

〉

+ Im
〈
∇j

Aϕ,∇k
Aϕ

〉]
dxk ∧ ∗dxj

)

= id ∗
(
Im

〈
∇j

A∇j
Aϕ,ϕ

〉
dV

)
= −id Im 〈∇∗

A∇Aϕ,ϕ〉
= −i Im (〈∇A∇∗

A∇Aϕ,ϕ〉 + 〈∇∗
A∇Aϕ,∇Aϕ〉)

= −i1
4

[
S + |ϕ|2

]
Im (〈∇Aϕ,ϕ〉 + 〈ϕ,∇Aϕ〉)

− i
1
4

Im
〈[
dS + d |ϕ|2

]
ϕ,ϕ

〉

+ ϕ#∇A∞G1 + ∇A∞ϕ#G1 + a#ϕ#G1

= ϕ#∇A∞G1 + ∇A∞ϕ#G1 + a#ϕ#G1,

where the second term in line two and the first two terms in the second to
last expression are zero. Thus recalling the uniform bounds on ϕ, A and
their derivatives (see the proof of Lemma 5.1), we can combine all of the
above in the compact form

∂G

∂t
+ ∇∗∇G = V0#G+ V1#∇G,

where the Vj are smooth vectors having all derivatives uniformly bounded,
and ∇ acts as ∇A∞ on sections of S+ and as ∇M on forms. This equa-
tion is of the same form as the equation in the proof of Proposition 3.6
of [21], and the rest of the proof is the same. Note that since we have uni-
form bounds on all derivatives, we do not need to require the assumption
‖(ϕ(T ), A(T )) − (ϕ∞, A∞)‖Hk < ε as in [13] and [21]. �
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Lemma 5.5. Let (ϕ∞, A∞) is an arbitrary critical point of the SW func-
tional. For any positive integer k, there exists ε > 0 such that if for some
T > 0

(5.9) ‖(ϕ(T ), A(T )) − (ϕ∞, A∞)‖Hk < ε,

then either SW(ϕ(t), A(t)) < SW(ϕ∞, A∞) for some t > T , or (ϕ(t), A(t))
converges in Hk to a critical point (ϕ′∞, A′∞) satisfying SW(ϕ′∞, A′∞) =
SW(ϕ∞, A∞) and

(5.10)
∥∥(ϕ′

∞, A
′
∞) − (ϕ∞, A∞)

∥∥
Hk � c ‖(ϕ(T ), A(T )) − (ϕ∞, A∞)‖2(1−γ)

Hk ,

where γ is as in Lemma 5.3. We also have the following convergence esti-
mate:

(5.11)
∥∥(ϕ(t), A(t)) − (ϕ′

∞, A
′
∞)

∥∥
Hk � c(t− T )−(1−γ)/(2γ−1).

(Note that the constants throughout this section and in Lemma 5.5
in particular are considered as constants along the flow, i.e., independent
of time t. They can depend on the initial data (ϕ0, A0) and the mani-
fold M . Moreover, if we assume that (ϕ∞, A∞) is a limit of the flow, then
(ϕ∞, A∞) = (ϕ′∞, A′∞) in Lemma 5.5.)

Proof. We set

ΔSW(t) = SW(ϕ(t), A(t)) − SW(ϕ∞, A∞).

Then, we can assume that ΔSW(t) ≥ 0 for all t. Otherwise, the required
result is proved.

We note

∫
M

|∇Aϕ|2 − |∇A∞ϕ∞|2

=
∫

M

∣∣∣∣∇A∞ψ +
1
2
aϕ∞ +

1
2
aψ

∣∣∣∣
2

+ 2 Re
〈
∇A∞ϕ∞,∇A∞ψ +

1
2
aϕ∞ +

1
2
aψ

〉
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=
∫

M
|∇A∞ψ|2 +

∣∣∣∣12aϕ∞

∣∣∣∣
2

+
∣∣∣∣12aψ

∣∣∣∣
2

+ 2 Re
〈
∇A∞ψ,

1
2
aϕ∞

〉

+ 2 Re
〈
∇A∞ψ,

1
2
aψ

〉
+ 2 Re

〈
1
2
aϕ∞,

1
2
aψ

〉
+ 2 Re 〈∇A∞ϕ∞,∇A∞ψ〉

+ 2 Re
〈
∇A∞ϕ∞,

1
2
aϕ∞

〉
+ 2 Re

〈
∇A∞ϕ∞,

1
2
aψ

〉

=
∫

M
|∇A∞ψ|2 +

1
4
|ϕ∞|2 |a|2 +

1
4
|ψ|2 |a|2 + 〈a, i Im 〈∇A∞ψ,ϕ∞〉〉

+ 〈a, i Im 〈∇A∞ψ,ψ〉〉 +
1
2
|a|2 Re 〈ϕ∞, ψ〉 + 2 Re

〈∇∗
A∞∇A∞ϕ∞, ψ

〉
+ 〈a, i Im 〈∇A∞ϕ∞, ϕ∞〉〉 + 〈a, i Im 〈∇A∞ϕ∞, ψ〉〉 ,

where we again use a relationship analogous to that in Equation (4.10). It
is easy to see

∫
M

1
2
|FA|2 − 1

2
|FA∞ |2 =

∫
M

1
2
|da|2 + 〈dA∞, da〉 .

We have also
∫

M

S

4
|ϕ|2 − S

4
|ϕ∞|2 =

∫
M

S

4

(
|ψ|2 + 2 Re 〈ψ,ϕ∞〉

)

and

1
8

∫
M

|ϕ|4 − |ϕ∞|4 =
1
8

∫
M

(
|ϕ∞|2 + |ψ|2 + 2 Re 〈ϕ∞, ψ〉

)2 − |ϕ∞|4

=
1
8

∫
M

|ψ|4 + 4 Re 〈ϕ∞, ψ〉2 + 2 |ϕ∞|2 |ψ|2 + 4 |ϕ∞|2 Re 〈ϕ∞, ψ〉
+ 4 |ψ|2 Re 〈ϕ∞, ψ〉 .

Recalling that (ϕ∞, A∞) satisfies the critical point Equations (1.7) and (1.8),
we have ∫

M

〈
∇∗

A∞∇A∞ϕ∞ +
S

4
ϕ∞ +

1
4
|ϕ∞|2 ϕ∞, ψ

〉
= 0

and ∫
M

〈d∗dA∞ + i Im 〈∇A∞ϕ∞, ϕ∞〉 , a〉 = 0,
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Combining above estimates, we have

ΔSW(t) =
∫

M
|∇A∞ψ|2 +

1
2

Re 〈ϕ∞, ψ〉2 +
S

4
|ψ|2 +

1
4
|ϕ∞|2

(
|ψ|2 + |a|2

)

+
1
2
|da|2 + 〈a, i Im 〈∇A∞ψ,ϕ∞〉〉

+ 〈a, i Im 〈∇A∞ϕ∞, ψ〉〉 +O(3),(5.12)

where

O(3) =
∫

M

1
2

(
|ψ|2 + |a|2

)
Re 〈ϕ∞, ψ〉 + 〈a, i Im 〈∇A∞ψ,ψ〉〉

+
1
8
|ψ|4 +

1
4
|ψ|2 |a|2 .

Since ΔSW(t) is a polynomial functional and (A∞, ϕ∞) is a critical
point, the first-order terms of ΔSW(t) vanish. Then for ε small enough we
have

ΔSW(T ) � c ‖(ϕ(T ), A(T )) − (ϕ∞, A∞)‖2
H1

� c ‖(ϕ(T ), A(T )) − (ϕ∞, A∞)‖2
Hk .(5.13)

From the continuous dependence on initial conditions (Lemma 5.2), for ε in
(5.9) sufficiently small we have for t ∈ [T, T + 1],

(5.14) ‖(ϕ(t), A(t)) − (ϕ∞, A∞)‖Hk <
1
2
ε1.

We claim that if ε is sufficiently small, then for all t ≥ T we have

(5.15) ‖(ϕ(t), A(t)) − (ϕ∞, A∞)‖Hk < ε1.

Suppose by contradiction that S > T is the smallest number such that
‖(ϕ(S), A(S)) − (ϕ∞, A∞)‖Hk � ε1. From Lemma (5.3) we have for T ≤ t ≤
S,

d

dt
(ΔSW(t))1−γ = −c(1 − γ)(ΔSW(t))−γ

∥∥∥∥
(
∂ϕ

∂t
,
∂A

∂t

)∥∥∥∥
2

L2

≤ −c
∥∥∥∥
(
∂ϕ

∂t
,
∂A

∂t

)∥∥∥∥
L2

.(5.16)
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Integrating (5.16) in time gives

(5.17)
∫ S

T

∥∥∥∥
(
∂ϕ

∂t
,
∂A

∂t

)∥∥∥∥
L2

≤ cΔ(SW(T ))1−γ .

Recalling (5.13),

∫ S

T

∥∥∥∥
(
∂ϕ

∂t
,
∂A

∂t

)∥∥∥∥
L2

� c ‖(ϕ(T ), A(T )) − (ϕ∞, A∞)‖2(1−γ)
Hk

� cε2(1−γ).(5.18)

From (5.14) we know that S > T + 1, and then

∫ S

T+1

∥∥∥∥
(
∂ϕ

∂t
,
∂A

∂t

)∥∥∥∥
Hk

�
∥∥∥∥
∫ S

T+1

(
∂ϕ

∂t
,
∂A

∂t

)∥∥∥∥
Hk

� ‖(ϕ(S), A(S)) − (ϕ∞, A∞)‖Hk

− ‖(ϕ(T + 1), A(T + 1)) − (ϕ∞, A∞)‖Hk

� ε1 − 1
2
ε1.

Then using our results above and Lemma 5.4, we find

1
2
ε1 � cε2(1−γ),

which is impossible for ε small enough. Thus, as claimed, for ε small enough
we have ‖(ϕ(t), A(t)) − (ϕ∞, A∞)‖Hk < ε1 for all t ≥ T .

Finally, letting S → ∞ in Lemma 5.4 and (5.17) we have
∫ ∞

t1+1

∥∥∥∥
(
∂ϕ

∂t
,
∂A

∂t

)∥∥∥∥
Hk

≤ c

∫ ∞

t1

∥∥∥∥
(
∂ϕ

∂t
,
∂A

∂t

)∥∥∥∥
L2

≤ c(ΔSW(t1))1−γ(5.19)

for any t1 ≥ T . From Lemma 5.1 and Lemma 5.3, we have
∫ ∞

t1

∥∥∥∥
(
∂ϕ

∂t
,
∂A

∂t

)∥∥∥∥
Hk

→ 0

as t1 → ∞. This establishes unique convergence of the flow in the Hk norm
to a point (ϕ′∞, A′∞), provided that ‖(ϕ(T ), A(T )) − (ϕ∞, A∞)‖Hk < ε for
some T .
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As in Lemma 5.2, it follows that (ϕ′∞, A′∞) is a critical point, and it fol-
lows from Lemma 5.3 that SW(ϕ′∞, A′∞) = SW(ϕ∞, A∞). Then from (5.19)
and (5.13) we have

∥∥(ϕ(T + 1), A(T + 1)) − (ϕ′
∞, A

′
∞)

∥∥
Hk

≤
∫ ∞

T+1

∥∥∥∥
(
∂ϕ

∂t
,
∂A

∂t

)∥∥∥∥
Hk

≤ c(ΔSW(T ))1−γ

≤ c ‖(ϕ(T ), A(T )) − (ϕ∞, A∞)‖2(1−γ)
Hk

≤ c ‖(ϕ(T ), A(T )) − (ϕ∞, A∞)‖Hk ,

(5.20)

since γ ∈ (1
2 , 1). Then from Lemma 5.2,

‖(ϕ(T + 1), A(T + 1)) − (ϕ∞, A∞)‖Hk � c ‖(ϕ(T ), A(T )) − (ϕ∞, A∞)‖Hk .

The estimate (5.10) follows from the above two inequalities. It remains
to show (5.11). As in (5.20), for t ≥ T we have

∥∥(ϕ(t+ 1), A(t+ 1)) − (ϕ′
∞, A

′
∞)

∥∥
Hk � c(ΔSW(t))1−γ .

Then from Lemma 5.3 we have

d

dt
ΔSW(t) = −c

∥∥∥∥
(
∂ϕ

∂t
,
∂A

∂t

)∥∥∥∥
2

L2

� −c(ΔSW (t))2γ ,

which implies that

(5.21) ΔSW(t) � c(t− T )−1/(2γ−1).

Thus combining the above, for t ≥ T + 1 we find

(5.22)
∥∥(ϕ(t), A(t)) − (ϕ′

∞, A
′
∞)

∥∥
Hk � c(t− T − 1)−(1−γ)/(2γ−1).

Note that since the left-hand side is bounded under the flow, by adjusting the
constant c if necessary, we can drop the constant 1, and (5.11) follows. �

We now prove Theorem 1.2.

Proof of Theorem 1.2. From the convergence of a subsequence {tk} of the
flow to a critical point (ϕ∞, A∞) (Lemma 5.1), we know that there exists a
T such that ‖(ϕ(T ), A(T )) − (ϕ∞, A∞)‖Hk < ε. We can then apply Lemma
5.5. Note that in deriving (1.11), as for (5.22), by adjusting the constant c
if necessary we can drop the constant T .
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Finally, we show that the limit depends continuously on the initial data
in the space {(ϕ0, A0) : SW (ϕ(t), A(t)) → λ} as t→ ∞. Let (ϕ(t), A(t)) be a
solution to the flow which converges to (ϕ∞, A∞) as t→ ∞. Let (ϕ′(t), A′(t))
be another solution to the flow with initial data (ϕ′(0), A′(0)) with

lim
t→∞SW(ϕ′(t), A′(t)) = SW(ϕ′

∞, A
′
∞) = SW(ϕ∞, A∞).

From Lemma 5.5, for any β1 > 0 there exists a β2 > 0 such that if for some
T ≥ 0,

∥∥(ϕ′(T ), A′(T )) − (ϕ∞, A∞)
∥∥

Hk � β2,

then (ϕ′(t), A′(t)) converges in Hk as t→ ∞ to a critical point (ϕ′∞, A′∞),
and further ‖(ϕ′∞, A′∞) − (ϕ∞, A∞)‖Hk � β1. Choose T such that

‖(ϕ(T ), A(T )) − (ϕ∞, A∞)‖Hk � β2

2
.

From Lemma 5.2, there exists β3 > 0 such that if

∥∥(ϕ′(0), A′(0)) − (ϕ(0), A(0))
∥∥

Hk � β3,

then ‖(ϕ(T ), A(T )) − (ϕ′(T ), A′(T ))‖Hk � β2

2 . Applying the triangle inequal-
ity, for any β1 > 0 there exists a β3 > 0 such that if

∥∥(ϕ′(0), A′(0)) − (ϕ(0), A(0))
∥∥

Hk ≤ β3,

then
∥∥(ϕ′

∞, A
′
∞) − (ϕ∞, A∞)

∥∥
Hk ≤ β1.

This completes the proof of Theorem 1.2. �

6. Perturbed functional

One can also consider the perturbed Seiberg–Witten equations

(6.1) DAϕ = 0, F+
A =

1
4
〈ejekϕ,ϕ〉 ej ∧ ek + μ
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and the corresponding perturbed Seiberg–Witten functional

SWμ(ϕ,A) =
∫

M
|DAϕ|2 +

∣∣∣∣F+
A − 1

4
〈ejekϕ,ϕ〉 ej ∧ ek − μ

∣∣∣∣
2

.

=
∫

M
|∇Aϕ|2 +

∣∣F+
A

∣∣2 +
S

4
|ϕ|2 +

1
8
|ϕ|4

+
1
2
〈μ · ϕ,ϕ〉 − 2

〈
F+

A , μ
〉

+ |μ|2 ,(6.2)

where μ is some fixed imaginary-valued self-dual 2-form and μ · ϕ represents
Clifford multiplication. Then, we define the perturbed flow equations to be

∂ϕ

∂t
= −∇∗

A∇Aϕ− 1
4

[
S + |ϕ|2

]
ϕ− 1

2
μ · ϕ,(6.3)

∂A

∂t
= −d∗FA − i Im 〈∇Aϕ,ϕ〉 + d∗μ.(6.4)

The purpose of this section is to show that our global existence and conver-
gence results extend to these perturbed equations. Rather than duplicate
each proof, we will simply outline the differences. In Lemma 2.1, we have
instead the equation

∂

∂t
|ϕ|2 = −Δ |ϕ|2 − 2 |∇Aϕ|2 − 1

2

[
S + |ϕ|2

]
|ϕ|2 − Re 〈μ · ϕ,ϕ〉 ,

where the additional term satisfies −Re 〈μ · ϕ,ϕ〉 �
(

max
x∈M

|μ(x)|
)
|ϕ|2. Since

−1
2

[
S + max

x∈M
|μ(x)| + |ϕ|2

]
|ϕ|2 ≤ 0

for |ϕ| sufficiently large, the same argument as before yields a uniform bound
on sup {|ϕ(x, t)| : x ∈M}. The other estimates in Section 2 also continue to
hold. For the proof of local existence in Section 3, we note that the additional
terms are zeroth order and do not change the parabolicity of the gauge
transformed equations. In Section 4, in the proof of Lemma 4.1, we have
additional terms of

2 Re
〈
−1

2
∇A(μ · ϕ),∇Aϕ

〉
� c |∇Aϕ|2 + c |∇Aϕ|

and

2 〈dd∗μ, dA〉 � c |FA| ,
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and the lemma continues to hold. The proof of Lemma 4.2 relies only on
Lemma 4.1, and is unchanged. For Lemma 4.3, noting that

−2
∫

M
φ2 Re

〈
∂ϕ

∂t
,
1
2
μ · ϕ

〉
= − d

dt

∫
M
φ2 1

2
〈μ · ϕ,ϕ〉,

the proof is entirely analogous. Lemma 4.4 continues to hold for the same
reason as Lemma 4.1, as does its corollary. In Lemma 4.5, the new terms in
(4.21) are multiplied by factors of Rm, and become negligible in the limit.
This establishes global existence. In Section 5, the proofs of Lemmas 5.1
and 5.2 are unchanged. In Lemma 5.3, as for local existence, the additional
terms are of order zero and do not affect parabolicity. Finally, in Lemma 5.4,
the additional terms lead to an equation of the same form. The remaining
arguments in this section are unchanged. Thus the analogues of Theorems 1.1
and 1.2 hold also for the perturbed equations (6.3) and (6.4), for an arbitrary
perturbation parameter μ.
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