
communications in
analysis and geometry
Volume 18, Number 3, 421–432, 2010

The maximum principle for minimal varieties of

arbitrary codimension

Brian White

We prove that an m-dimensional minimal variety in a Riemannian
manifold cannot touch the boundary at a point where the sum of
the smallest m principal curvatures is greater than 0. We prove a
stronger maximum principle in case the variety is a hypersurface.
We also prove analogous results for varieties with bounded mean
curvature.

Let N be a smooth Riemannian manifold with boundary. In general, N need
not be complete. Suppose X is a compactly supported C1 tangent vectorfield
on N such that

(1) X · νN ≥ 0

at all points of ∂N , where νN is the unit normal to ∂N that points into
N . Then X generates a one-parameter family t ∈ [0,∞) �→ φt of maps of N
into itself such that φ0 is the identity map and such that

d

dt
φt(·) = X(φt(·)).

If V is a C1 submanifold of N with finite area, we let δV (X) denote the first
variation of area of V with respect to X:

δV (X) =
(

d

dt

)
(t=0)

area(φt(V )).

More generally, if V has locally finite area, we let

δV (X) =
(

d

dt

)
(t=0)

area(φt(V ∩ W )),

where W is any open subset of N that contains the support of X and that
has compact closure. Even more generally, V can be any varifold in N .
(The theorems in this paper are stated for arbitrary varifolds, but readers
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unfamiliar with varifolds may subsititute “C1 submanifold” for “varifold”
throughout the paper. The appendix to [8] is a brief introduction to varifolds
that contains most of what is needed here. For a more thorough treatment,
see [6] or [1].)

We say that a varifold V in N minimizes area to first order in N provided

δV (X) ≥ 0

for every compactly supported C1 tangent vectorfield X on N satisfying (1).
In particular, any smooth minimal submanifold of N or, more generally, any
stationary varifold in N minimizes the area to first order in N .

We say that N is strongly m-convex at a point p ∈ ∂N provided

κ1 + κ2 + · · · + κm > 0,

where κ1 ≤ κ2 ≤ · · · ≤ κn−1 are the principal curvatures of ∂N at p with
respect to the unit normal νN that points into N . We say that N is
m-convex at p provided κ1 + κ2 + · · · + κm ≥ 0.

Theorem 1 (Maximum Principle for Minimal Varifolds). Let N be
a smooth Riemannian manifold with boundary, and let p be a point in ∂N
at which N is strongly m-convex. Then p is not contained in the support of
any m-dimensional varifold in N that minimizes area to first order in N .
Indeed, there is an ε > 0 such that

dist(p, spt V ) ≥ ε

for all such varifolds V .

In case V is a smooth minimal submanifold, the fact that V cannot con-
tain p was proved by Jorge and Tomi [4]. Indeed, they proved that if N is
m-convex (not necessarily strongly m-convex) at all boundary points, then
a smooth, connected minimal m-dimensional submanifold cannot touch ∂N
unless it lies entirely in ∂N . An analogous result for smooth submanifolds V
of bounded mean curvature was proved by Dierkes and Schwab [2] assuming
(in addition to the appropriate condition on ∂N) that N is flat. The proofs
here are similar to the proofs in those papers. The results here are stronger
in that they apply to nonsmooth varieties (varifolds), and in that the vari-
eties are not assumed to be stationary with respect to all variations, but
only with respect to variations that take N into itself (i.e., that satisfy (1)).
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This extra generality is important because when one solves variational prob-
lems for area in a manifold-with-boundary N , the solution surfaces need not
be stationary (or minimal), but rather only stationary with respect to vari-
ations satisfying (1). Likewise, even if a solution surface turns out to be
a differentiable manifold, it need not be smooth — it may only be C1,1.
Of course if the boundary of N is strictly m-convex, then according to
Theorem 1, the solution surface does lie in the interior of N , which implies
that it is stationary with respect to all variations, and that if it is a differ-
entiable manifold, then it is a smooth submanifold. But it is important that
these properties of the surface are conclusions of Theorem 1 rather than
hypotheses.

Theorem 1 is proved by constructing a suitable test vectorfield X.

Theorem 2. Let N be a smooth Riemannian manifold with boundary. Let
p be a point in ∂N and let η < κ1 + · · · + κm, where κ1 ≤ · · · ≤ κn−1 are
the principal curvatures of ∂N at p with respect to the unit normal νN that
points into N . Then there is a compactly supported C∞ vectorfield X on N
such that X(p) is a nonzero normal to ∂N , such that

(2) X · νN ≥ 0 at all points of ∂N ,

and such that

(3) δV (X) ≤ −η

∫
|X| dμV

for every m-dimensional varifold V in N .

Here μV is the weight measure associated with V . (If V is a C1 subman-
ifold, then the integration in (3) is simply integration over V with respect
to m-dimensional area.)

We remark that X can be chosen so that its support is contained in
an arbitrarily small neighborhood of p and so that the vectorfield X/|X|
(wherever X is nonzero) is arbitrarily C0-close to ∇ dist(·, ∂N). (In the
proof below, one simply chooses ε sufficiently small.)

To see that Theorem 1 follows from Theorem 2, note that if N is strongly
m-convex at p, then we may choose the η in Theorem 2 to be positive. If V
minimizes area to first order in N , then by definition and by Theorem 2,

0 ≤ δV (X) ≤ −η

∫
|X| dμV .
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Since η > 0, this implies that |X| vanishes μV almost everywhere and thus
that the support of V cannot contain any point where X 
= 0. Hence
dist(p, spt V ) ≥ ε, where ε is the distance from p to the nearest point where
X vanishes.

Proof of Theorem 2. Given a compactly supported C1 vectorfield X on N ,
let ΨX : N → R be the function

ΨX(x) = max(trace(∇X|P )) ,

where the maximum is over all m-dimensional linear subspaces P of Tanx N
and where

trace(∇X|P ) =
m∑

i=1

ui · ∇ui
X

for any orthonormal basis u1, . . . ,um of P .
If V is an m-dimensional C1 submanifold of N , then by the first variation

formula [6, §9.3]1

δV (X) =
∫

trace(∇X|Tanx V ) dμV x

≤
∫

ΨX dμV .(4)

More generally, if V is any m-dimensional varifold in N , then by the first
variation formula [6, §39.2],

δV (X) =
∫

(x,P )∈Gm(N)
trace(∇X|P ) dV (x, P )

≤
∫

(x,P )∈Gm(N)
ΨX(x) dV (x, P )

=
∫

ΨX dμV ,

where Gm(N) is the set of pairs (x, P ) such that x ∈ N and P is an
m-dimensional linear subspace of Tanx N .

1Equation (4) is proved by expressing the area of φt(V ) as the integral of a
Jacobian determinant and then differentiating under the integral sign. If V is
a smooth submanifold, one can then integrate by parts to express δV (X) as
− ∫

X · H dμV .
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Thus, we see that the conclusion (3) of Theorem 2 will hold provided

(5) ΨX( · ) ≤ −η |X( · )|

at all points of N .
For constructing the desired vectorfield X, we may assume that N is

part of a larger Riemannian manifold Ñ (without boundary) of the same
dimension.2 Let

Σ = {q ∈ Ñ : dist(x, N) = dist(x, p)4}.

Note that Σ and ∂N make second-order contact at p. By replacing Ñ with a
small geodesic ball around p, we may assume that Σ is a smooth hypersurface
and that there is smooth, well-defined nearest-point retraction from Ñ to Σ.
(We will later replace Ñ by an even smaller ball to ensure that additional
conditions are satisfied.)

For x ∈ Ñ , let u(x) be the signed distance from x to Σ, with the sign
chosen so that u is nonnegative on N . For q ∈ Ñ , let Σq be the level set of
u that contains q. Note that ν(q) := ∇u(q) is a unit normal to Σq. Let

(6) k1(q) ≤ · · · ≤ kn−1(q)

be the principal curvatures of Σq at q with respect to the unit normal ν(q).
Note that

(7) k1 + · · · + km > η

at p since Σ and ∂N make second-order contact at p. By replacing Ñ with a
sufficiently small ball around p, we may assume that (7) holds at all points
of Ñ , that

(8) ν · νN > 0 at all points of ∂N

and that the |ki| are uniformly bounded:

(9) |ki(q)| ≤ K (q ∈ Ñ , i ≤ n − 1).

2If the existence of a such an Ñ is not clear, note that p has a neighborhood
diffeomorphic to a closed half-space in Rn. Since Theorem 2 is local, we can assume
that N is that half-space with some smooth Riemannian metric. We can extend the
Riemannian metric to all of Rn and then let Ñ be Rn with the extended metric.
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Let ε be a positive number (to be specified later), and define a vectorfield
X on N by

X(·) = φ(u(·)) ν(·),

where

φ(t) =

⎧⎨
⎩

exp
(

1
t − ε

)
if 0 ≤ t < ε,

0 if t ≥ ε.

(We need not define φ(t) for t < 0 since u ≥ 0 on N .) Note that

φ′(t)
φ(t)

=
−1

(t − ε)2
≤ −1

ε2

for 0 ≤ t < ε, and thus

φ′(t) ≤ − 1
ε2

φ(t)

for all t ≥ 0. Thus by choosing ε ≤ K−1/2, we can ensure that

(10) φ′(t) ≤ −Kφ(t)

for all t ≥ 0.
We also choose ε small enough such that N ∩ {u ≤ ε} is compact.
We claim that the vectorfield X has the desired properties. First note

that

spt X = N ∩ {u < ε},

which is compact by choice of ε. Also,

X · νN = φ(u) ν · νN ≥ 0

at all points of ∂N by (8), since φ is nonnegative everywhere.
It remains only to show that ΨX ≤ −η |X|. Let q be any point in N . Let

e1, . . . , en−1 be principal directions in Tanq Σq corresponding to the princi-
pal curvatures k1(q), . . . , kn−1(q). Consider the bilinear form Q on Tanq N
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given by

Q(u,v) = u · ∇vX.

We wish to calculate the matrix for Q with respect to the orthonormal basis
e1, . . . , en−1, ν.

Note that if v is tangent to Σq, then

(11) ∇vX = ∇v(φ(u)ν) = φ(u)∇vν

since φ(u) is constant on Σq. Thus, if u and v are both tangent to Σq, then

Q(u,v) = φ(u)u · ∇vν = −φ(u)B(u,v),

where B is the second fundamental form of Σq with respect to the normal
ν. In particular,

Q(ei, ej) =

{
−φ(u)ki if i = j,

0 if i 
= j.

Since ‖ν‖ ≡ 1, we see that ∇vν is perpendicular to ν and thus

Q(ν, ei) = 0

by (11). Since ν is the gradient of the distance function, ∇νν = 0. Thus,

∇νX = ∇ν(φ(u)ν)
= φ′(u)(∇νu)ν + φ(u)∇νν

= φ′(u)ν,

so Q(ν, ν) = φ′(u) and Q(ei, ν) = 0.
Hence, we see that the matrix for Q with respect to the orthonormal

basis e1, . . . , en−1, ν is a diagonal matrix with diagonal elements −φ(u)ki

(for 1 ≤ i ≤ n − 1) and φ′(u). Note that

−φ(u)k1 ≥ −φ(u)k2 ≥ · · · ≥ −φ(u)kn−1 ≥ −φ(u)K ≥ φ′(u)

by (6), (9) and (10), since φ ≥ 0. In particular, since φ(u) = |X|, the largest
m eigenvalues of Q are −|X(q)| ki where 1 ≤ i ≤ m. It follows by elementary
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linear algebra that

Ψ(q) = max
P

trace(Q|P )

= −|X(q)| (k1(q) + · · · + km(q))
≤ −η |X(q)|

by (7). This completes the proof. �

Theorem 3 (Maximum Principle for Set-Theoretic Limits of Minimal
Varieties). Suppose Ni is a sequence of smooth Riemannian n-
manifolds with boundary, and suppose that the Ni converge smoothly to a
limit Riemannian manifold N . Suppose for each i that Vi is an m-
dimensional varifold in Ni that minimizes area to first order in Ni, and
suppose that the sets spt(Vi) converge to a limit set S ⊂ N . Then S does not
contain any point of ∂N at which N is strongly m-convex.

Proof. Since the result is local, we may assume that the Ni and N are all the
same as smooth manifolds but have Riemannian metrics g(i) and g where
g(i) converges smoothly to g.

Let κ1(·) ≤ · · · ≤ κn−1(·) be the principal curvatures of ∂N with respect
to the inward pointing unit normal.

Let p be a point of ∂N at which N is strongly m-convex (with respect
to g.) Let 0 < η < κ1(p) + · · · + κm(p). In the proof of Theorem 2, we con-
structed a smooth function u : N → R with the following properties (with
respect to the metric g):

(i) u(p) = 0 and u > 0 on N \ {p}.
(ii) The set C = {u ≤ ε} is compact.

(iii) κ1 + · · · + κm > η at all points of C ∩ ∂N .

(iv) ∇u never vanishes on C, and

k1(q) + · · · + km(q) > η

at each point q ∈ C, where k1(q) ≤ · · · ≤ kn−1(q) are the principal cur-
vatures of the level set Σq = {x : u(x) = u(q)} with respect to the unit
normal ∇u(q).

By the smooth convergence g(i) → g, these properties will also hold with
respect to the metric g(i) for all sufficiently large i. Fix such an i. We claim
that spt Vi cannot contain any point of C. For if it did, the function u
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restricted to C ∩ spt Vi would attain a minimum at some point q. By (iii)
and by Theorem 1, q cannot be in ∂N . By (iv), the set {u ≥ u(q)} is strongly
m-convex at q, which contradicts Theorem 1 (since q ∈ spt Vi ⊂ {u ≥ u(q)}.)
Thus, C ∩ spt Vi is empty. Since p is in the interior of C, we are done. �

In the case of hypersurfaces, we get a stronger result:

Theorem 4 (Strong Maximum Principle for Minimal Hypersurfaces). Sup-
pose that N is a smooth Riemannian manifold (not necessarily complete)
with boundary, that ∂N is connected, and that N is mean convex,
i.e., that

H · νN ≥ 0

on ∂N , where H is the mean curvature vector of ∂N and where νN is the
unit normal to ∂N that points into N . Let m = dim(N) − 1, and suppose
that V is an m-dimensional varifold that minimizes area to first order in N .

1) If spt V contains any point of ∂N , then it must contain all of ∂N and
H must vanish everywhere on ∂N .

2) If V is a stationary integral varifold, then V can be written as W + W ′

where the support of W is ∂N and the support of W ′ is disjoint from
∂N .

Proof. Assertion (1) was proved by Solomon and White [7]. Assertion (1)
also follows rather directly from Theorem 1: see [7, Step 1, p. 687] and the
comments at the end of [7].

To prove (2), we may assume that ∂N is a minimal hypersurface. (Oth-
erwise spt V is disjoint from ∂N by assertion 1, so we can let W = 0 and
W ′ = V .) Let d be the smallest integer such that there is a point p ∈ ∂N at
which the density of V is d. Let W be the m-dimensional integral varifold
whose support is ∂N and whose density is d at every point of ∂N . Then
μW ≤ μV , so (since V and W are rectifiable varifolds) W ≤ V (as measures
on the Grassman bundle.) Thus, the signed measure W ′ := V − W is in fact
a positive measure, i.e., a varifold. Since V and W are stationary integral
varifolds, so is W ′. By choice of d, the varifold W ′ has density 0 at least one
point p of ∂N . It follows that p is not in the support of W ′ (because the
density is ≥ 1 at every point in the support of a stationary integral varifold).
But then by assertion (1), sptW ′ is disjoint from ∂N. �

Assertion (2) need not hold if V is not an integer-multiplicity varifold.
For example, let N be a closed half space in R3, let Pi (i = 1, 2, 3, . . . ) be a
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sequence of planes in the interior of N that converge to ∂N , let Vi be the
varifold corresponding to Pi with multiplicity 2−i and let V be the sum of
the Vi.

See [3, 5] for other strong maximum principles for varieties of codimen-
sion 1. In particular, Ilmanen [3] gives a very general strong maximum prin-
ciple for pairs of codimension 1 minimal varieties, both of which may be
singular.

Theorem 5 (Maximum Principle for Varieties with Bounded Mean
Curvature). Let N be a smooth Riemannian manifold with boundary and
h be a nonnegative number. Suppose V is an m-dimensional varifold in N
and that

(12) δV (X) + h

∫
|X| dμV ≥ 0

for every compactly supported C1 vectorfield on N such that

(13) X · νN ≥ 0 at all points of ∂N .

Then the support of V cannot contain any point p in ∂N at which

κ1 + · · · + κm > h,

where κ1 ≤ κ2 ≤ · · · ≤ κn−1 are the principal curvatures of ∂N with respect
to the unit normal νN that points into N .

Indeed, there is an ε = ε(h) such that dist(p, spt V ) ≥ ε for all m-varifolds
V satisfying (12).

In order to understand the meaning of the hypothesis on V , suppose that
V is a smooth m-dimenisonal submanifold. In that case, inequality (12) holds
for all compactly supported C1 vectorfields if and only if the length of the
mean curvature vector of V is everywhere bounded by h. The inequality
holds for all X satisfying (13) if and only if: (i) at every point in V \∂N ,
the length of the mean curvature vector is at most h, and (ii) at every point
q ∈ V ∩ ∂N , the mean curvature vector at q can be written as the sum of a
vector of length at most h and a normal vector to ∂N that points out of N .

Theorem 5 follows from Theorem 2 exactly as Theorem 1 did. (One
chooses the η in Theorem 2 to be strictly between h and κ1(p) + · · · +
κm(p).) Note that Theorem 1 is Theorem 5 in the special case h = 0.
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Theorem 6 (Maximum Principle for Set-Theoretic Limits of Varieties with
Bounded Mean Curvature). Suppose that Ni is a sequence of smooth Rie-
mannian n-manifolds with boundary, and suppose that the Ni

converge smoothly to a limit Riemannian manifold N . Suppose for each i
that Vi is an m-dimensional varifold in Ni and that

δVi(X) + h

∫
|X| dμVi

≥ 0

for every compactly supported C1 vectorfield X on Ni such that

X · νNi
≥ 0 at all points of ∂Ni.

Suppose also that the sets spt(Vi) converge to a limit set S ⊂ N . Then S
does not contain any point of ∂N at which

κ1 + · · · + κm > h,

where κ1 ≤ κ2 ≤ · · · ≤ κn−1 are the principal curvatures of ∂N with respect
to the unit normal that points into N .

The proof is almost identical to the proof of Theorem 3.

Theorem 7 (Strong Maximum Principle for Hypersurfaces with Bounded
Mean Curvature). Let N be a smooth Riemannian manifold with boundary.
Suppose that ∂N is connected and that the mean curvature of ∂N with respect
to the inward pointing normal is everywhere ≥ h, where h > 0. Let m =
dim(N) − 1 and suppose V is an m-dimensional varifold in N and that

δV (X) + h

∫
|X| dμV ≥ 0

for every compactly supported C1 vectorfield on N such that

X · νN ≥ 0 at all points of ∂N .

1) If spt V contains any point of ∂N , then it must contain all of ∂N and
∂N must have constant mean curvature h.

2) If V is an integral varifold with mean-curvature ≤h, then V can be
written as W + W ′ where the support of W is ∂N and the support of
W ′ is disjoint from ∂N .

The proof is similar to the proof of Theorem 4, except that one uses
Theorem 5 in place of Theorem 1.
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