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Genuine deformations of submanifolds II:
the conformal case

Luis A. Florit and Ruy Tojeiro

We extend to the conformal realm the concept of genuine deforma-
tions of submanifolds, introduced by Dajczer and the first author
for the isometric case. Analogously to that case, we call a confor-
mal deformation of a submanifold Mn genuine if no open subset of
Mn can be included as a submanifold of a higher dimensional con-
formally deformable submanifold in such a way that the conformal
deformation of the former is induced by a conformal deformation
of the latter. We describe the geometric structure of a submani-
fold that admits a genuine conformal deformation and give several
applications showing the unifying character of this concept.

1. Introduction

An isometric immersion f̂ : Mn → R
n+q with codimension q of an n-dimen-

sional Riemannian manifold Mn into Euclidean space is said to be a genuine
isometric deformation of a given isometric immersion f : Mn → R

n+p if f
and f̂ are nowhere (i.e., on no open subset of Mn) compositions, f = F ◦ j
and f̂ = F̂ ◦ j, of an isometric embedding j : Mn ↪→ Nn+r into a Rieman-
nian manifold Nn+r with r > 0 and isometric immersions F : Nn+r → R

n+p

and F̂ : Nn+r → R
n+q:
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��(1.1)

More geometrically, an isometric deformation of an Euclidean submanifold
Mn is genuine if no open subset of Mn can be included as a submanifold
of a higher dimensional isometrically deformable submanifold in such a way
that the isometric deformation of the former is induced by an isometric
deformation of the latter.
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This concept was introduced in [4], where it was proved that if an
isometric immersion f : Mn → R

n+p and a genuine isometric deformation
f̂ : Mn → R

n+q of it have sufficiently low codimensions then they are mutu-
ally (isometrically) ruled, that is, Mn carries an integrable d-dimensional
distribution Dd ⊂ TM whose leaves are mapped diffeomorphically by f and
f̂ onto open subsets of affine subspaces of R

n+p and R
n+q, respectively. The

authors also obtained a sharp estimate on the dimension d of the rulings
and proved that the normal connections and second fundamental forms of
f and f̂ satisfy strong additional relations.

Besides containing several previous results on isometric deformations
of submanifolds as particular cases, this concept has given new geometric
insight on the structure of isometrically deformable submanifolds, showing
that genuinely deformable submanifolds are rather special and providing an
important step for extending to higher codimensions the classical Sbrana–
Cartan theory of isometrically deformable hypersurfaces [1, 9, 13].

Our goal in this article is two-fold. First, to extend the notion of genuine
deformations to the conformal realm, and to give a similar description as in
[4] of the geometric nature of a submanifold that admits such a deformation.
In particular, to provide a unified account of several known results on confor-
mal deformations of submanifolds. Second, to understand geometrically the
similitude between the theories of isometric and conformal deformations of
submanifolds. In order to state our results we first set up some terminology.

A conformal structure on a manifold Mn is an equivalence class of con-
formal Riemannian metrics on Mn. Recall that two Riemannian metrics 〈 , 〉
and 〈 , 〉′ on Mn are conformal if there exists a positive smooth function ϕ
on Mn such that 〈 , 〉′ = ϕ2〈 , 〉. We call ϕ the conformal factor relating the
metrics 〈 , 〉 and 〈 , 〉′. Clearly, every Riemannian manifold has a canonical
conformal structure determined by its metric.

Given an immersion f : Mn → M̄m between differentiable manifolds,
since conformal metrics on M̄m are pulled-back by f to conformal metrics
on Mn, a conformal structure on M̄m induces a conformal structure on Mn,
the conformal structure on Mn induced by f . If Mn is already endowed
with a conformal structure, we call f conformal if such conformal structure
coincides with that induced by f .

A pair {f, f̄} of conformal immersions f : Mn → R
n+p and f̄ : Mn →

R
n+q will be referred to simply as a conformal pair . We say that the confor-

mal pair {f, f̄} extends conformally when there exists a conformal embed-
ding j : Mn → Nn+r, with r ≥ 1, and conformal immersions F : Nn+r →
R

n+p and F̄ : Nn+r → R
n+q such that f = F ◦ j and f̄ = F̄ ◦ j; see (1). We

call the (ordered) conformal pair {F, F̄} a conformal extension of {f, f̄}.
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The conformal pair {f, f̄} is said to be genuine if there is no open subset
U ⊆ Mn such that the restricted pair {f |U , f̄ |U} extends conformally. If
{f, f̄} is a genuine conformal pair, we also say that each of its elements is a
genuine conformal deformation of the other.

A conformal immersion f : Mn → R
n+p is genuinely conformally rigid

in R
n+q for a fixed integer q > 0 if, for any given conformal immersion

f̄ : Mn → R
n+q, there is an open dense subset U ⊂ Mn such that the pair

{f |U , f̄ |U} extends conformally.
Similar definitions can be given for any ambient spaces carrying con-

formal structures, as well as for isometric immersions between arbitrary
semi -Riemannian manifolds, in the same way as in [4].

We say that an immersion f : Mn → R
n+p is Dd-conformally ruled if

Mn carries an integrable d-dimensional distribution Dd ⊂ TM whose leaves
are mapped diffeomorphically by f onto open subsets of affine subspaces or
round spheres of R

n+p. Then, at each point x ∈ Mn we have a symmetric
bilinear form βf = βf (x) : TxM × TxM → T⊥

x M defined by

βf (Z, X) := αf (Z, X) − 〈Z, X〉η(x)

and a subspace of the normal space T⊥
x M of f at x given by

Lc
D(x) = Lc

D(f)(x) = span{βf (Z, X) : Z ∈ Dd(x) and X ∈ TxM}.

Here αf : TM × TM → T⊥
f M stands for the second fundamental form of

f and η(x) for the normal component of the mean curvature vector of the
(image by f of the) leaf of D through x ∈ Mn. We always work on open sub-
sets where the dimension of Lc

D(x) is constant, in which case such subspaces
form a smooth subbundle of T⊥

f M that we denote by Lc
D. Observe that, since

βf (D, TM) ⊆ Lc
D, we have D ⊆ N (βf

Lc
D

⊥), where N (β) denotes the nullity
space of a symmetric bilinear form β, and a subspace as a subscript means
to take the orthogonal projection onto that subspace.

We are now in a position to state the main result of this paper. As we
will see, it implies or even generalizes main results in several other works,
e.g.,[3, 7, 10–12].

Theorem 1.1. Let f : Mn → R
n+p and f̄ : Mn → R

n+q form a genuine
conformal pair, with p + q ≤ n − 3 and min {p, q} ≤ 5. Then, along each con-
nected component of an open dense subset of Mn, the immersions f and f̄
are mutually conformally Dd-ruled, with

Dd = N (βf
L⊥) ∩ N (βf̄

L̄⊥) and d ≥ n − p − q + 3�c
D,



400 Luis A. Florit & Ruy Tojeiro

where L := Lc
D(f), L̄ := Lc

D(f̄) and �c
D := rankL = rank L̄. Moreover, there

exists a parallel vector bundle isometry T : L → L̄ such that βf̄
L̄

= ϕT ◦ βf
L,

where ϕ is the conformal factor relating the metrics induced by f and f̄ .

In other words, up to an identification, the normal bundles of the immer-
sions contain a subbundle L = L̄ with the same normal connections and the
same (conformal) second fundamental forms. On the other hand, the com-
mon conformal rulings Dd of the immersions are the nullity of the (confor-
mal) second fundamental forms on their orthogonal complements L⊥ and
L̄⊥. The larger is L, the bigger is d. We point out that Example 2 in [4] also
shows that the estimate on d in Theorem 1.1 is sharp.

As a consequence of Theorem 1.1, we obtain the following conformal
version of the main result of [6]. We recall from [3] that the conformal
s-nullity νc

s(x) of an immersion f : Mn → R
n+p at a point x ∈ Mn is defined

for 1 ≤ s ≤ p by

νc
s(x) = max{dim N

(
αf

V s(x) − 〈 , 〉fζ
)

: V s ⊂ T⊥
x M, ζ ∈ Vs},

where 〈 , 〉f stands for the metric on Mn induced by f .

Corollary 1.1. Let f : Mn → R
n+p be an immersion and let q be a positive

integer with p ≤ q ≤ n − p − 3. Suppose that p ≤ 5 and that f satisfies

νc
s ≤ n + p − q − 2s − 1 for all 1 ≤ s ≤ p.

For q ≥ p + 5 assume further that νc
1 ≤ n − 2(q − p) + 1. Then, any immer-

sion f̄ : Mn → R
n+q conformal to f is locally a composition, i.e., there exists

an open dense subset V ⊆ Mn such that the restriction f̄ to any connected
component U of V satisfies f̄ |U = h ◦ f |U , where h : W ⊂ R

n+p → R
n+q is

a conformal immersion of an open subset W ⊃ f(U).

For p = q, the preceding corollary extends up to codimension p = 5 the
main theorem of [3], which ensures conformal rigidity of f in R

n+p whenever
p ≤ 4 and νc

s ≤ n − 2s − 1 for all 1 ≤ s ≤ p. The latter, in its turn, is a
generalization of Cartan’s classical criterion νc

s ≤ n − 2 for conformal rigidity
of hypersurfaces. Corollary 1.1 also generalizes the main result of [11], which
deals with the special case p = 1, as well as [14] up to codimension 5.

If we apply Theorem 1.1 for p = q = 2, the estimate on d implies that
�c
D ≤ 1. This yields d ≥ n − 4 if �c

D = 0 and d ≥ n − 1 if �c
D = 1. In both

cases, the conformal nullity νc = νc
2 of both immersions satisfies νc ≥ n − 4.
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Therefore, under the assumptions that n ≥ 7 and νc
f ≤ n − 5 everywhere,

we conclude that f is genuinely conformally rigid. Here, this means that
if f̄ is a conformal deformation of f , then there exists an open and dense
subset of Mn on each connected component of which either f̄ is conformally
congruent to f or f can be included as a submanifold of either a conformally
flat or a Cartan hypersurface and f̄ is induced by a conformal deformation
of such hypersurface. This is the content of the main theorem in [12].

Clearly, Theorem 1.1 yields the following criterion for genuine conformal
rigidity.

Corollary 1.2. Let f : Mn → R
n+p be a conformal immersion and let

q be a positive integer with p + q ≤ n − 3 and min {p, q} ≤ 5. If f is not
(n−p−q)–conformally ruled on any open subset of Mn, then f is genuinely
conformally rigid in R

n+q.

Our next result gives a geometric way to construct genuine conformal
pairs by means of isometric ones, explaining the similarity between Theo-
rem 1.1 and its isometric counterpart in [4]. To do this, we need to introduce
some further terminology.

Let L
N+2 denote the (N + 2)–dimensional Lorentz space, and let

V
N+1 = {x ∈ L

N+2 : 〈x, x〉 = 0}

be the light cone in L
N+2. Fix a pseudo-orthonormal basis {e0, e1, . . . , eN+1}

of L
N+2, that is,

〈e0, e0〉 = 〈e1, e1〉 = 0, 〈e0, e1〉 = 1

and {e2, . . . , eN+1} is an orthonormal basis of the Riemannian subspace
{e0, e1}⊥. Then

E
N = {x ∈ V

N+1 : 〈x, e0〉 = 1}
is a model of N–dimensional Euclidean space: the map Ψ: R

N → L
N+2

defined by

(1.2) Ψ(x) = −‖x‖2

2
e0 + e1 +

N∑
i=1

xiei+1

is an isometric embedding with Ψ(RN ) = E
N .

Given an immersion g : Mn → V
N+1 of a differentiable manifold Mn,

for any positive μ ∈ C∞(Mn) the map h : Mn → V
N+1 given by h = μg
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is also an immersion, and the induced metrics 〈 , 〉g and 〈 , 〉h are related
by 〈 , 〉h = μ2〈 , 〉g. Therefore, if 〈 , 〉g = ϕ2〈 , 〉 for some fixed metric 〈 , 〉 on
Mn, then h can be made isometric with respect to 〈 , 〉 by choosing μ = ϕ−1.
In particular, if g = Ψ ◦ f for some conformal immersion f : Mn → R

N of
a Riemannian manifold, then such an h is denoted by I(f) and called the
isometric light cone representative of f .

On the other hand, if g : Mn → V
N+1 is such that g(Mn) ⊂ V

N+1 \ Re0 ,
where Re0 = {te0 : t > 0}, define C(g) : Mn → R

N by Ψ ◦ C(g) = 〈g, e0〉−1g.
Since Ψ is an isometric immersion, it follows that g and C(g) induce con-
formal metrics on Mn with conformal factor 〈g, e0〉−1. Clearly, g = I(f) if
f = C(g) for an isometric immersion g : Mn → V

N+1 of a Riemannian man-
ifold.

This leads to the following procedure to construct a conformal pair
of immersions f : Mn → R

n+p and f̄ : Mn → R
n+q: start with a Rieman-

nian manifold Nn+1 that admits an isometric immersion F ′ : Nn+1 → R
n+p

and an isometric embedding F̂ : Nn+1 → L
n+q+2 transversal to the light

cone V
n+q+1. Then set Mn := F̂−1(F̂ (Nn+1) ∩ V

n+q+2), f = F ′ ◦ i and f̄ =
C(F̂ ◦ i), where i : Mn → Nn+1 is the inclusion map.

The following result states that any genuine conformal pair {f, f̄} of
Euclidean submanifolds in sufficiently low codimensions is locally produced
in this way from a genuine isometric pair {F, F̂} as above.

Theorem 1.2. Assume that f : Mn → R
n+p, p ≥ 1, and f̄ : Mn → R

n+q

form a genuine conformal pair, with p + q ≤ n − 3 and min {p, q} ≤ 5. Sup-
pose further that f̄ is nowhere conformally congruent to an immersion that
is isometric to f . Then (locally on an open dense subset of Mn) there
exist a Riemannian manifold Nn+1 that admits an isometric immersion
F ′ : Nn+1 → R

n+p and an isometric embedding F̂ : Nn+1 → L
n+q+2 trans-

versal to the light cone V
n+q+1, and a conformal diffeomorphism i : Mn →

F̂−1(F̂ (Nn+1) ∩ V
n+q+1) such that {F ′, F̂} is a genuine isometric pair, f =

F ′ ◦ i and f̄ = C(F̂ ◦ i).

Note that the assumption that f̄ is nowhere locally conformally con-
gruent to an immersion that is isometric to f is always satisfied if f is
genuinely isometrically rigid in R

n+q, for instance if Mn does not carry any
ruled open subset with rulings of dimension at least n − p − q. In particular,
this is always the case after composing f with a suitable inversion of R

n+p.
For p = 1, Theorem 1.2 says that any hypersurface f : Mn → R

n+1 that
admits a genuine conformal (but not isometric) deformation in R

n+q, q ≤
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n − 4, can be locally produced as the intersection of an (n + 1)-dimensional
flat submanifold of L

n+q+2 with the light cone:

Corollary 1.3. Let f : Mn → R
n+1 and f̄ : Mn → R

n+q form a conformal
pair, with q ≤ n − 4. Assume that there exists no open subset Mn along
which f̄ is either a composition or it is conformally congruent to an iso-
metric deformation of f . Then, (locally on an open dense subset of Mn)
there exist an isometric embedding F̄ : U ⊂ R

n+1 → L
n+q+2 transversal to

the light cone V
n+q+1 and a conformal diffeomorphism τ : Mn → M̄n :=

F̄−1(F̄ (U) ∩ V
n+q+1) ⊂ U such that f = i ◦ τ and f̄ = C(F̄ ◦ τ), where

i : M̄n → U is the inclusion map.

In the particular case q = 1, the above reduces to Theorem 1 in [10],
which can be regarded as a nonparametric description of Cartan’s confor-
mally deformable hypersurfaces.

Another important special case of Theorem 1.2 occurs when q = 0. In
this situation, we consider a conformally flat submanifold f : Mn → R

n+p,
which clearly forms a genuine conformal pair with any conformal diffeomor-
phism f̄ : Mn → U ⊂ R

n onto an open subset. Then we recover Theorem 1
from [7], which gives a geometric procedure to construct all conformally flat
Euclidean submanifolds in low codimension:

Corollary 1.4. Let f : Mn → R
n+p, n ≥ 5, p ≤ n − 3, be a conformal

immersion of a conformally flat manifold. Assume that the metric induced by
f is nowhere flat. Then (locally on an open dense subset) there exist a Rie-
mannian manifold Nn+1 that admits an isometric immersion F : Nn+1 →
R

n+p and an isometric embedding F̄ : Nn+1 → L
n+2, and a conformal dif-

feomorphism τ : Mn → M̄n := F̄−1(F̄ (Nn+1) ∩ V
n+1) such that f = F ◦ τ .

Our approach to study the geometric structure of a conformal pair of
immersions f : Mn → R

n+p and f̄ : Mn → R
n+q is, as usual, to fix on Mn

the Riemannian metric induced by one of the immersions, say, f , and to
reduce the problem to the study of the isometric pair of immersions {f, f̂}
that arises by considering the isometric light cone representative f̂ of f̄ .
In contrast to the theory developed in [4], there are two cases to consider.
The first (nondegenerate) case can be treated in a similar way as in [4].
However, in the second one it appears a certain degeneracy condition that
requires a more delicate approach involving the light cone representatives of
both f and f̂ . Therefore, as a first and main step, in the next section we
extend the theory developed in [4] to isometric pairs of immersions into flat
semi-Riemannian spaces.
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Before we conclude this introduction, one final remark is in order. Alth-
ough we deal only with pairs of immersions in this paper, when studying
some rigidity phenomena of submanifolds one is naturally led to consider
sets of immersions, not only pairs. For instance, it was shown in Theorem 5
in [5] that the associated family {fθ : M2n → R

2n+2 : θ ∈ [0, π)} of a minimal
nonholomorphic Kahler submanifold f0 of rank two in codimension two does
not extend isometrically, although for any θ1 �= θ2 ∈ [0, π) the pair {fθ1 , fθ2}
does extend. Here, we say that a set {fi : Mn → Nn+pi

i : i ∈ I} of isometric
(resp., conformal) immersions indexed by an arbitrary set I extends isomet-
rically (resp., conformally), when there exist an isometric (resp., conformal)
embedding j : Mn → Nm, with m > n, and a set {Fi : Nm → Nn+pi

i : i ∈ I}
of isometric (resp., conformal) immersions such that fi = Fi ◦ j, for all i ∈ I.

2. Isometric pairs into flat semi-Riemannian spaces

In this section, we study the structure of the tangent and normal bundles of
a pair of isometric immersions into flat semi-Riemannian spaces. Our goal is
to give conditions that allow the construction of isometric ruled extensions.

2.1. Semi-Riemannian ruled isometric extensions

In this subsection, we give general conditions for the existence of isometric
ruled extensions of a pair of isometric immersions into flat semi-Riemannian
spaces. The proofs are identical to the ones for the Riemannian case [4] and
will be omitted.

Throughout the paper, given a bilinear form β : V n × Um → W between
finite-dimensional real vector spaces, we denote by S(β) ⊂ W the subspace
spanned by the image of β, that is,

S(β) = span{β(X, Y ) : X ∈ V n and Y ∈ Um},

and by N (β) ⊂ V n the (left) nullity space of β defined as

N (β) = {X ∈ V n : β(X, Y ) = 0 for all Y ∈ Um}.

If W is endowed with a nondegenerate inner product 〈 , 〉 and T ⊆ W is a
nondegenerate subspace with respect to 〈 , 〉, we denote βT = πT ◦ β, where
πT is the orthogonal projection onto T . Then

N (βT ) = {X ∈ V n : 〈β(X, Y ), ξ〉 = 0 for all Y ∈ Um, ξ ∈ T}.
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We also denote by N (βT ) the subspace defined as above even if T is
degenerate.

Let R
m
a stand for R

m with the standard flat semi-Riemannian metric of
index a. In particular, R

m
1 = L

m. Let f : Mn → R
n+p
a and f̂ : Mn → R

n+q
b

form an isometric pair. Assume that there exists a vector bundle isometry

T : L ⊂ T⊥
f M → L̂ ⊂ T⊥

f̂
M

between nondegenerate subbundles such that

D = N (αL⊥) ∩ N (α̂L̂⊥) ⊂ TM

defines a smooth subbundle of TM and such that the pair (T , D) satisfies
the following two conditions:

(2.1)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(C1) The isometry T is parallel and preserves second
fundamental forms,

(C2) The subbundles L and L̂ are parallel along D

in the normal connections.

Let φ : (TM ⊕ L) × TM → L⊥ × L̂⊥ be the bilinear form given by

(2.2) φ(Y + ξ, X) =
(
(∇̃X(Y + ξ))L⊥ , (∇̃X(Y + T ξ))L̂⊥

)
,

where ∇̃ stands for the connections of both R
n+p
a and R

n+q
b , and assume

further that the vector subspaces

Δ := N (φ) ⊂ TM ⊕ L

have constant dimension on Mn. By condition (C1), the vector bundle isome-
try defined as T0 = I ⊕ T : f∗TM ⊕ L → f̂∗TM ⊕ L̂ is parallel with respect
to the connections induced by the Euclidean ambient spaces. It follows that
T0 |Δ : Δ → Δ̂ is a parallel vector bundle isometry, and hence, we may iden-
tify Δ̂ with Δ.

Lemma 2.1 [4]. The distribution D ⊂ Δ is integrable and Δ ∩ TM = D
holds.

Consider the vector bundle π : Λ = Λ̂ → Mn determined by the orthog-
onal splitting Δ = D ⊕ Λ, and define F ′ : N → R

n+p
a as the restriction of
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the map

(2.3) λ ∈ Λ �→ f(π(λ)) + λ

to a tubular neighborhood N of the 0-section j : Mn ↪→ N ⊂ Λ of Λ along
which F is an immersion. Similarly, define F̂ : N → R

n+q
b . Henceforth, L⊥

and Δ will be understood as vector bundles over N ⊂ Λ by means of L⊥(λ) =
L⊥(π(λ)) and Δ(λ) = Δ(π(λ)).

Proposition 2.1 [4]. The immersions F ′ and F̂ are isometric Δ-ruled
extensions of f and f̂ . Moreover, there are smooth orthogonal splittings

(2.4) T⊥
F ′N = L ⊕ L⊥ and T⊥

F̂
N = L̂ ⊕ L̂⊥

and a vector bundle isometry T : L → L̂ such that

(2.5) Δ = N (αF ′

L⊥) ∩ N (α̂F̂
L̂⊥),

and the pair (T, Δ) satisfies conditions (C1) and (C2) in (2.1).

Observe that if the ruled extensions F ′ and F̂ are trivial (i.e., dimN = n)
then f and f̂ are themselves D-ruled.

2.2. Construction of the pair (T , Dd) and the estimate on d

In this subsection we show how to construct a pair (T , Dd) satisfying con-
ditions (C1) and (C2) in (2.1) for a pair of isometric immersions f : Mn →
R

n+p
a and f̂ : Mn → R

n+q
b , and we obtain an estimate on d. We follow closely

the strategy in [4] for the case a = 0 = b. Here, however, two distinct cases
arise, depending on whether a certain nondegeneracy condition is satisfied
or not. The degenerate case requires several modifications in the arguments
of [4], which will be carried out in Section 2.2.2 only in the case that is
needed for our study of conformal pairs of immersions into Euclidean space.

Given an isometric pair of immersions f : Mn → R
n+p
a and f̂ : Mn →

R
n+q
b , denote by α and α̂ their respective second fundamental forms and

endow the vector bundle T⊥
f M ⊕ T⊥

f̂
M with the indefinite metric of type

(p, q) given by

〈〈 , 〉〉T ⊥
f M⊕T ⊥

f̂
M = 〈 , 〉T ⊥

f M − 〈 , 〉T ⊥
f̂

M .

Set α ⊕ α̂ : TM × TM → S(α) ⊕ S(α̂) ⊂ T⊥
f M ⊕ T⊥

f̂
M .
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Definition 2.1. We say that the pair {f, f̂} as above is nondegenerate
if the projections of Ω = Ω(f, f̂) := S(α ⊕ α̂) ∩ S(α ⊕ α̂)⊥ ⊂ S(α) ⊕ S(α̂)
onto T⊥

f M and T⊥
f̂

M are injective. When this condition is nowhere sat-
isfied, we say that the pair is degenerate.

Note that {f, f̂} is nondegenerate if both S(α) and S(α̂) are nonde-
generate. In particular, this is the case if a, b and the index of Mn are all
equal.

2.2.1. The nondegenerate case Assuming {f, f̂} to be nondegenerate,
we have orthogonal splittings

S(α) = Γ ⊕ Γ⊥ and S(α̂) = Γ̂ ⊕ Γ̂⊥,

where Γ = S(α) ∩ Ω⊥ and Γ̂ = S(α̂) ∩ Ω⊥, and an isometry J : Γ⊥ → Γ̂⊥

such that
Ω = {(η,J η) : η ∈ Γ⊥} ⊂ Γ⊥ ⊕ Γ̂⊥

and α̂Γ̂⊥ = J ◦ αΓ⊥ . From now on we identify Γ⊥ with Γ̂⊥ by means of J ,
and hence

(2.6) α̂Γ̂⊥ = αΓ⊥ .

Define β : TM × TM → Γ ⊕ Γ̂ as β = αΓ ⊕ α̂Γ̂, and a vector subbundle
Θ ⊂ TM by

Θ = N (β).

The vector subbundle S ⊂ Γ⊥(= Γ̂⊥) defined by

(2.7) S = S(α|Θ×TM )

satisfies Θ = N (αS⊥) ∩ N (α̂Ŝ⊥). Now, given X ∈ TM , denote by K(X) ∈
Λ2(S) the skew-symmetric tensor given by

K(X)η = (∇⊥
Xη)S − (∇̂⊥

Xη)Ŝ ,

and define a vector subbundle S0 ⊂ S by

S0 =
⋂

X∈TM

ker K(X).

Then, define vector subbundles L� ⊂ S0 and Dd ⊂ Θ as

(2.8) L� = {δ ∈ S0 : ∇⊥
Y δ ∈ S and ∇̂⊥

Y δ ∈ Ŝ for all Y ∈ Θ}
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and

Dd = N (αL⊥) ∩ N (α̂L̂⊥),

and let T : L� → L� be the induced vector bundle isometry given by

T = J |L : L� ⊂ T⊥
f M → L� ⊂ T⊥

f̂
M.

With these definitions, we have the following:

Theorem 2.1 [4]. Let f : Mn → R
n+p
a and f̂ : Mn → R

n+q
b form a nonde-

generate isometric pair of immersions of a semi-Riemannian manifold with
index min{a, b}. Then, along each connected component of an open dense
subset of Mn, the pair (T , Dd) satisfies (C1) and (C2) in (2.1). In particu-
lar, f and f̂ have (possibly trivial) maximal isometric Δd+r-ruled extensions
F ′ : Nn+r → R

n+p
a and F̂ : Nn+r → R

n+q
b , 0 ≤ r ≤ �, which form a nonde-

generate pair and satisfy the conclusions of Proposition 2.1.
Moreover, if p + q ≤ n − 1 and min {p + b − a, q + a − b} ≤ 6 then

(2.9) d + r ≥ n − p − q + 3�,

unless min {p + b − a, q + a − b} = 6 and � = 0 in which case d + r ≥ n −
p − q + 3� − 1.

Remark 2.1. (i) The hypothesis on the codimensions in Theorem 2.1 is
required in a fundamental algebraic result needed in its proof, whose most
general version is Theorem 3 in [6]. Unfortunately, this algebraic result is
false without that assumption [8].

(ii) We can relax the hypothesis on the index of M by asking S in (2.7)
to be Riemannian.

The proof of the above result follows exactly as those of Theorems 11
and 14 in [4], where of course no hypothesis on the nondegeneracy was
needed since both normal spaces are Riemannian when both ambient spaces
are Euclidean. The only extra property to verify is that the pair {F ′, F̂} in
Theorem 2.1 is nondegenerate, but this is immediate from Proposition 2.1,
since αf

L = αf̂

L̂
, αF ′

L = α̂F̂
L̂ , αF ′

L⊥ |TM×TM = αf
L⊥ , αF̂

L̂⊥ |TM×TM = αf̂

L̂⊥ and Δ =

N (αF ′

L⊥) ∩ N (α̂F̂
L̂⊥).

2.2.2. The degenerate case In this subsection we address the degen-
erate case in the setting that will be needed for the next section, namely,
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for a pair of isometric immersions f : Mn → R
n+p and f̂ : Mn → V

n+q+1 ⊂
L

n+q+2 of a Riemannian manifold, under the assumptions that

(2.10) p + q ≤ n − 1 and min {p, q} ≤ 5.

The main difficulty here is that the subbundle Γ⊥, constructed in the pre-
ceding subsection for the nondegenerate case, is no longer well defined. To
deal with this issue, we need to consider also the isometric representative of
f into the light cone.

Thus, here we assume that there is a null vector field 0 �= ξ0 ∈ S(α̂) ∩
S(α̂)⊥ such that (0, ξ0) ∈ S(α ⊕ α̂) ∩ S(α ⊕ α̂)⊥. Set f ′ = I(f) : Mn →
V

n+p+1 ⊂ L
n+p+2 and denote by α′ its second fundamental form. Then,

the position vector fields of both f ′ and f̂ are normal, and

(2.11) Af ′

f ′ = Af̂

f̂
= −I, Af ′

e0
= Af̂

ξ0
= 0.

Observe that (f ′, f̂) ∈ S(α′ ⊕ α̂)⊥, but (f ′, f̂) �∈ S(α′ ⊕ α̂). Since the normal
spaces of f̂ have index 1, we can assume further that 〈f̂ , ξ0〉 = 1.

We will make a similar construction as in the nondegenerate case, but
now for the pair {f ′, f̂}. The idea is to force the inclusion of the vector
(f ′, f̂) in Ω, despite the fact that (f ′, f̂) �∈ S(α′ ⊕ α̂). We then define Ω ⊂
span{(f ′, f̂)} ⊕ S(α′) ⊕ S(α̂) as the vector bundle with null fibers

Ω := span{(f ′, f̂)} ⊕
(
S(α′ ⊕ α̂) ∩ S(α′ ⊕ α̂)⊥

)
.

Note that, by (2.11) and the definition of ξ0, we get that (e0, ξ0) ∈ Ω. As
before, there are orthogonal splittings

span{f ′} ⊕ S(α′) = Γ ⊕ Γ⊥ and span{f̂} ⊕ S(α̂) = Γ̂ ⊕ Γ̂⊥,

where Γ = S(α′) ∩ Ω⊥ ⊆ span{f ′, e0}⊥ and Γ̂ = S(α̂) ∩ Ω⊥ ⊆ span{f̂ , ξ0}⊥

are Riemannian, and an isometry J : Γ⊥ → Γ̂⊥ such that

Ω = {(η,J η) : η ∈ Γ⊥} ⊂ Γ⊥ ⊕ Γ̂⊥,

with α̂Γ̂⊥ = J ◦ α′
Γ⊥ giving the same identification as before. Note that

J (f ′) = f̂ and J (e0) = ξ0.
The preceding ad hoc inclusion in Γ⊥ and Γ̂⊥ of the position vectors

f ′ and f̂ , respectively, despite the fact that they are not contained in the
subspaces spanned by the images of α′ and α̂, requires a few arguments to
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show that some properties of the bundles used in the proofs in [4], which
were automatic in the Riemannian case, still hold in our situation. We will
prove these in the form of numbered claims.

Define β and Θ as in the nondegenerate case, but S ⊆ Γ⊥(= Γ̂⊥) as

S = span{f ′} ⊕ S(α′|Θ×TM ).

Claim 1. The subbundle S is Lorentzian.

Proof. As in the beginning of the proof of Lemma 13 in [4], we easily check
that S(β) is nondegenerate. By (2.10) and Theorem 3 in [6] (see also Corol-
lary 17 in [4]), we have that dim Θ ≥ n − dim S(β) ≥ n − p − q > 0. The
claim follows from the definition of S and the fact that f ′ ∈ S is null, since
by (2.11),

(2.12) 〈α′(Z, Z), f ′〉 = −‖Z‖2 �= 0, for all 0 �= Z ∈ Θ.

�
We also have that Θ = N (α′

S⊥) ∩ N (α̂Ŝ⊥). Then, we define S0,K, L�, T
and Dd just as before. Observe that, since f ′ and f̂ are normal parallel, we
obtain

(2.13) f ′ ∈ L� ⊆ S0.

Claim 2. The subbundle S0 ⊆ S is Lorentzian.

Proof. In our setting, the proof of Lemma 12 in [4] implies that the tensor K
as a map K : TM → Λ2(S) satisfies that Im K(Z) ⊂ S ∩ S(α′|Θ×TM )⊥, for
all Z ∈ Θ. But since f ′ ∈ Ker K(Z) = (Im K(Z))⊥, we obtain that Im K(Z)
⊂ S ∩ S⊥ = 0, that is,

K(Z) = 0, for all Z ∈ Θ,

and the statement of Lemma 12 in [4] holds here also. But then α′(Z, Z) ∈
S0, and the result follows from (2.12) and the fact that f ′ ∈ S0 is null. �

By the above two claims and the antisymmetry of K, exactly as in [4]
we have the orthogonal splitting

S = S0 ⊕⊥ S1,

with S1 = span{K(X)S1 : X ∈ TM}, which is a Riemannian subbundle.
Moreover, by Claim 2 and (2.10) we have that dimS1 ≤ 5.
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Claim 3. The bilinear map γ = α′
S1

|Θ×TM satisfies S1 = S(γ).

Proof. Consider ξ ∈ S1 ∩ S(γ)⊥. Hence, ξ ∈ S(α′|Θ×TM )⊥ since S0 ⊥ S1.
But then ξ ⊥ f ′ ∈ S0, and ξ ∈ S ∩ S⊥ = 0. �

Claim 4. It holds that d > 0, and the subbundle L� is Lorentzian.

Proof. Using the previous claims, one can argue exactly as in the proof of
Theorem 14 in [4] to conclude that

d ≥ n − p − q + 2� > 0,

bearing in mind Remark 20 part 3 in [4]. Now, we get from the definition
of D and (2.12) applied to 0 �= Z ∈ D that f ′ �∈ L⊥. The result now follows
from the fact that f ′ ∈ L. �

These claims are all we need to make a straightforward check that the
proofs of Theorems 11 and 14 in [4] still work in the degenerate case with
the preceding definitions. We obtain that, along each connected component
of an open dense subset of Mn, the pair (T , Dd) for {f ′, f̂} satisfies (C1) and
(C2) in (2.1), and that the immersions f ′ and f̂ have mutually Δd+r-ruled
isometric extensions F ′ : Nn+r → L

n+p+2 and F̂ : Nn+r → L
n+q+2. Since

f ′ ∈ L�, we have that f ′ ∈ Δd+r = N (φ) as in (2.2). Thus, by (2.3), both
F ′(N) and F̂ (N) are cones, where a subset C ⊆ R

m being a cone means that
x ∈ C implies tx ∈ C for t close to 1.

Observe also that the extensions F ′ and F̂ are Lorentzian, since f ′ ∈
Δd+r ⊂ TN and, for 0 �= Z ∈ Dd, we get that ∇̃ZZ ∈ Δd+r and 〈∇̃ZZ, f ′〉 =
〈α′(Z, Z), f ′〉 = −‖Z‖2 < 0. We also conclude that Δd+r is strictly larger
than Dd ⊕ span{f ′} (and is, in fact, a Lorentzian subbundle), hence
Lemma 2.1 implies that r ≥ 2.

Moreover, by the observation after Definition 2.1, the pair {F ′, F̂} is
nondegenerate. Hence, under the codimension assumption (2.10), we may
apply Theorem 2.1 to {F ′, F̂} to conclude that

d + r ≥ n + r − (p + 2 − r) − (q + 2 − r) + 3(� − r) = n − p − q + 3� − 4.

Summarizing, we have the following result:

Proposition 2.2. Let f : Mn → R
n+p and f̂ : Mn → V

n+q+1 ⊂ L
n+q+2

form a degenerate isometric pair of immersions, and set f ′ = I(f) : Mn →
V

n+p+1 ⊂ L
n+p+2. Assume that p + q ≤ n − 1 and min {p, q} ≤ 5. Then,

along each connected component of an open dense subset of Mn, the
immersions f ′ and f̂ have mutually Δs-ruled isometric Lorentzian conical
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extensions F ′ : Nn+r → L
n+p+2 and F̂ : Nn+r → L

n+q+2 such that
〈F ′, F ′〉 = 〈F̂ , F̂ 〉, with

s ≥ n − p − q + 3� − 4, 2 ≤ r ≤ �.

Moreover, there exists a vector bundle isometry T : Ll−r → L̂l−r satisfying
the conclusions of Proposition 2.1.

Remark 2.2. Theorem 2.1 still holds if the pair is degenerate without the
codimension assumption (2.10), but the proof is not completely analogous
to the one in [4]. We omit it here since it is not needed for our purposes.

3. The main result

The purpose of this section is to prove Theorem 3.1 below, a slightly more
general version of Theorem 1.1. It states that a conformal pair in low codi-
mension extends conformally (possibly trivially), with the extensions satis-
fying additional properties. The idea is to use the results in the previous
section to get a certain type of mutually ruled isometric extensions of the
isometric light cone representatives of the conformal immersions. Then, we
show how these yield the desired conformal extensions.

We start with the following preliminary fact.

Lemma 3.1. Let f : Mn → R
n+p be a conformal immersion of a Rieman-

nian manifold, and let f ′ = I(f) : Mn → V
n+p+1 ⊂ L

n+p+2 be its isometric
light cone representative. If f ′ is Δ-conformally ruled, then the same holds
for f . Moreover, the following holds:

(i) There exists λ ∈ C∞(M) such that the conformal factor ϕ ∈ C∞(M)
relating the metrics 〈 , 〉f and 〈 , 〉f ′ satisfies Hessϕ|Δ×Δ = λ〈, 〉f ′ |Δ×Δ;

(ii) The normal components of the mean curvature vector fields η and η′

of the leaves of Δ for f and f ′ are related by

(3.1) η′ = ϕ−1(dΨ(η) − ϕξ + λf ′),

where ξ = ϕ−1e0 − d(Ψ ◦ f) gradϕ;

(iii) The symmetric bilinear forms βf = αf − 〈 , 〉fη and βf ′
= αf ′ − 〈 , 〉f ′

η′ are related by

(3.2) βf ′
= ϕdΨ(βf ) + ϕ−1(Hessϕ( , ) − λ〈 , 〉f ′)f ′,

where the Hessian and the gradient are computed with respect to 〈 , 〉f ′.
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Proof. By Lemma 4 in [15], the second fundamental forms of f and f ′ are
related by

(3.3) αf ′
( , ) = dΨ(ϕαf ( , )) − 〈 , 〉f ′ξ + ϕ−1Hess ϕ( , )f ′.

Since f ′ is Δ-conformally ruled, there exists a normal vector field η′ ∈ T⊥
f ′ M

such that αf ′ |Δ×Δ = 〈 , 〉f ′ |Δ×Δη′. It follows that there exists a normal vec-
tor field η ∈ T⊥

f M and λ ∈ C∞(M) such that αf |Δ×Δ = 〈 , 〉f |Δ×Δη and
Hess ϕ|Δ×Δ = λ〈 , 〉f ′ |Δ×Δ. Replacing into (3.3) yields (3.1) and (3.2). �

Theorem 3.1. Let f : Mn → R
n+p and f̄ : Mn → R

n+q form a conformal
pair, with p + q ≤ n − 3 and min {p, q} ≤ 5. Then (locally on an open dense
subset of Mn) the pair {f, f̄} extends conformally (possibly trivially) to a
mutually Δs-conformally ruled pair of immersions F : Nn+r → R

n+p and
F̄ : Nn+r → R

n+q, with

Δs = N (βF
L⊥) ∩ N (βF̄

L̄⊥) and s ≥ n − p − q + 3(�c + r),

where L := Lc
Δ(F ), L̄ := Lc

Δ(F̄ ) and �c := rankL = rank L̄. Moreover, there
exists a parallel vector bundle isometry T : L → L̄ such that T ◦ βF

L = ϕβF̄
L̄ ,

where ϕ is the conformal factor relating the metrics induced by F̄ and F .

Proof. Set f̂ = I(f̄) : Mn → V
n+q+1 ⊂ L

n+q+2, so that {f, f̂} becomes an
isometric pair. We consider separately the two possible cases:

(i) The pair {f, f̂} is nondegenerate.
In this case, Theorem 2.1 applies and yields maximal isometric Δs0

0 -
ruled extensions F ′ : Nn+r0

0 → R
n+p and F̂ : Nn+r0

0 → L
n+q+2, which form

a nondegenerate pair and satisfy the conclusions of Proposition 2.1. Since f̂
takes values in the light cone and Mn is Riemannian, f̂ cannot be ruled, and
thus r0 ≥ 1. In particular, we have � = �0 + r0 ≥ 1, and hence (2.9) gives

s0 ≥ n − p − q − 2 + 3(�0 + r0),

where �0 is the rank of the subbundle L given by (2.8) for the pair {F ′, F̂},
which we denote by L0. Moreover, F̂ is transversal to the light cone, for
Nn+r0

0 is Riemannian and F̂ is ruled. By restricting to an open subset
if necessary, we may assume that F̂ is an embedding, and hence N :=
F̂−1(F̂ (N0) ∩ V

n+q+1) ⊇ Mn is an (n + r0 − 1)-dimensional manifold.
Set F = F ′ ◦ i and F̄ = C(F̂ ◦ i) : N → R

n+q, where i : N → N0 is the
inclusion map. Then {F, F̄} is a conformal pair, F ◦ j = f and F̄ ◦ j = f̄ ,
where j is the inclusion of M into N , and hence {F, F̄} is a conformal
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extension of {f, f̄}. Moreover, F and F̄ are mutually Δs-conformally ruled,
where s = s0 − 1 and Δs is the distribution on M defined by dF̂ (Δ) =
dF̂ (Δ0) ∩ TV

n+q+1. Therefore,

s ≥ n − p − q + 3(�0 + r),

with r = r0 − 1, and hence the estimate on s will follow once we prove that
�0 ≥ �c.

First observe that L̂ := Lc
Δ(F̂ ◦ i) ⊂ L̂0 ⊕ span{dF̂ (η)}, where η(x) ∈

TxN0 ∩ T⊥
x N is the normal component of the mean curvature vector at

x ∈ N of the leaf of Δs through x. On the other hand, we obtain from
(3.2) that dΨ(L̄) ⊂ L̂ ⊕ span{F̂ ◦ i}, hence

(3.4) dΨ(L̄) ⊂ L̂0 ⊕ span{dF̂ (η)} ⊕ span{F̂ ◦ i}.

Now, for a unit vector Z ∈ Δ, we have αF̂◦i(Z, Z) = dF̂ (η). So 〈dF̂ (η),
F̂ ◦ i〉 = −1, since 〈αF̂◦i( , ), F̂ ◦ i〉 = −〈 , 〉. It follows that the subspace V
on the right-hand side of (3.4) is Lorentzian. Therefore, the subspace dΨ(L̄)
is a Riemannian subspace of V that is orthogonal to the null vector F̂ ◦
i ∈ V , hence dΨ(L̄) has codimension at least two in V . We conclude that
rank L̄ ≤ �0, as we wished.

We show now that

(3.5) T (βF (Z, X)) = ϕβF̄ (Z, X), for Z ∈ Δ, X ∈ TN,

defines a parallel vector bundle isometry T : L → L̄ such that T ◦ βF
L =

ϕβF̄
L̄ .
Extend T0 to a vector bundle map T1 between L1 := L0 ⊕ span{ηF } ⊂

T⊥
F N and L̂1 := L̂0 ⊕ span{ηF̂◦i} ⊂ T⊥

F̂◦i
N by setting T1|L0 = T0 and T1(ηF )

= ηF̂◦i. Since ηF = dF ′(η) and ηF̂◦i = dF̂ (η) belong to TN0, it is easily
seen that T1 is also a parallel vector bundle isometry with Δ = N (αF

L⊥
1
) ∩

N (αF̂◦i
L̂⊥

1
) and αF̂◦i

L̂1
= T1 ◦ αF

L1
. Moreover, since L ⊂ L1, the restriction T =

T1|L : L → L̂ defines a parallel vector bundle isometry such that βF̂◦i
L̂ =

T ◦ βF
L .

By (3.2) we have

P ◦ βF̂◦i = dΨ(ϕβF̄ ),

where P : TF̂◦iL
n+q+2 → dΨ(TF̄ R

n+q) denotes the orthogonal projection.
This implies, in particular, that T is well defined, and that Δ = N (βF

L⊥) ∩
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N (βF̄
L̄⊥). In addition,

dΨ ◦ T = P ◦ T,

which implies by (3.2) that T is a vector bundle isometry. Moreover,

dΨ ◦ T ◦ βF
L = P ◦ T ◦ βF

L = P ◦ βF̂◦i
L̂ = dΨ(ϕβF̄

L̄ ),

and therefore T ◦ βF
L = ϕβF̄

L̄ as desired.
Finally, we must prove that T is parallel with respect to the induced

connections. For ξ ∈ L and Y ∈ TN , we have

dΨ(T (∇⊥
Y ξ)L) = P (T (∇⊥

Y ξ)L̄) = P (∇⊥
Y Tξ)L̂ = P (∇̃Y Tξ)L̂ = (P ∇̃Y Tξ)P L̂

= (∇̃Y PTξ)P L̂ = (∇̃Y dΨT ξ)dΨL̄ = (dΨ∇̃Y T ξ)dΨL̄
= dΨ(∇̃Y T ξ)L̄ = dΨ(∇⊥

Y T ξ)L̄ ,

and the claim follows.
(ii) The pair {f, f̂} is degenerate.

By Proposition 2.2, the pair {f ′, f̂} extends isometrically to mutually
Δs0

0 -ruled Lorentzian cones F ′
0 : Nn+r0

0 → L
n+p+2 and F̂0 : Nn+r0

0 → L
n+q+2,

with

(3.6) s0 ≥ n − p − q + 3� − 4

and 2 ≤ r0 ≤ �. Moreover, we have a parallel vector bundle isometry T0 :
L�0

0 → L̂�0
0 that preserves second fundamental forms, with � = �0 + r0 and

Δs0
0 = N (αF ′

0

L⊥
0
) ∩ N (αF̂0

L̂⊥
0
).

Since f ′ is tangent to F ′
0, e0 is nowhere normal to F ′

0. Thus, F ′
0 is

transversal to the degenerate hyperplane H = Hn+p+1 := {x ∈ L
n+p+2 :

〈x, e0〉 = 1}, and we locally define Nn+r0−1
1 := F ′−1

0 (F ′
0(N0) ∩ H) ⊂ Nn+r0

0 ,
Δs0−1

1 := Δs0
0 ∩ TN1, and F ′

1 := F ′
0|N1 , F̂1 := F̂0|N1 .

Now, F ′
1 is transversal to V

n+p+1, hence we may locally define Nn+r :=
F ′−1

1 (F ′
1(N1) ∩ V

n+p+1) ⊂ Nn+r0−1
1 , Δs := Δs0−1

1 ∩ TN , and F ′ := F ′
1|N ,

F̂ := F̂1|N , with s = s0 − 2, r = r0 − 2.
Since F ′(N) ⊂ H ∩ V

n+p+1 = E
n+p, there exists F : N → R

n+p such
that F ′ = Ψ ◦ F . On the other hand, using that 〈F ′

0, F
′
0〉 = 〈F̂0, F̂0〉, it follows

that F̂ takes values in V
n+q+1, and we may define F̄ = C(F̂ ) : N → R

n+q.
Then, as in the nondegenerate case, we obtain that {F, F̄} is a conformal
pair, F ◦ j = f and F̄ ◦ j = f̄ , where j is the inclusion of M into N , hence
{F, F̄} is a conformal extension of {f, f̄}. Moreover, F and F̄ are mutually
Δs-conformally ruled.
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The estimate on s also follows as in the nondegenerate case. From (3.6)
we have

s = s0 − 2 ≥ n − p − q + 3(�0 + r),

so it suffices to show that �0 ≥ �c. As before, L′ := Lc
Δ(F ′) ⊂ L0 ⊕ span

{dF ′
1(η)}, where η(x) ∈ TxN1 ∩ T⊥

x N is the normal component of the mean
curvature vector at x ∈ N of the leaf of Δs through x. On the other hand,
dΨ(L) ⊂ L′ ⊕ span{F ′}, hence

(3.7) dΨ(L) ⊂ L0 ⊕ span{dF ′
1(η)} ⊕ span{F ′}.

Arguing as before, we obtain that the subspace W on the right-hand-side of
(3.7) is Lorentzian. Therefore, dΨ(L) is a Riemannian subspace of W that
is orthogonal to the null vector F ′ ∈ W , hence it has codimension at least
two in W .

We claim that (3.5) defines also in this case a parallel vector bundle
isometry T : L → L̄ such that T ◦ βF

L = ϕβF̄
L̄ .

Choose smooth unit vector fields ξ′ and ξ̂ spanning TF ′
0
N0 ∩ T⊥

F ′
1
N1 and

TF̂0
N0 ∩ T⊥

F̂1
N1, respectively, and set L1 := L0 ⊕ span{ξ′} ⊂ T⊥

F1
N1 and

L̂1 := L̂0 ⊕ span{ξ̂} ⊂ T⊥
F̂1

N1. Extend the parallel vector bundle isometry

T0 : L0 → L̂0 to T1 : L1 → L̂1 by setting T1|L0 = T0 and T1(ξ′) = ξ̂.
Now set L2 := L1 ⊕ span{ηF ′} ⊂ T⊥

F ′N and L̂2 := L̂1 ⊕ span{ηF̂ } ⊂
T⊥

F̂
N and extend T1 to T2 : L2 → L̂2 by setting T2|L1 = T1 and T2(ηF ′) = ηF̂ .

Since ηF ′ = dF ′
1(η) and ηF̂ = dF̂1(η) belong to TN1, it is easily seen that T2

is also a parallel vector bundle isometry with Δs = N (αF ′

L⊥
2
) ∩ N (αF̂

L̂⊥
2
) and

αF̂
L̂2

= T2 ◦ αF ′

L2
. Moreover, since L ⊂ L2, the restriction T = T2|L : L → L̂

defines a parallel vector bundle isometry such that βF̂
L̂ = T ◦ βF ′

L′ .
By (3.2) we have

P ◦ βF̂ = dΨ(ϕβF̄ ) and βF ′
= dΨ ◦ βF .

This implies, in particular, that T is well defined and that Δ = N (βF
L⊥) ∩

N (βF̄
L̄⊥). Moreover,

dΨ ◦ T = P ◦ T ◦ dΨ,

which implies by (3.2) that T is a vector bundle isometry. Thus,

dΨ ◦ T ◦ βF
L = P ◦ T ◦ dΨ ◦ βF

L = P ◦ βF̂
L̂ = dΨ(ϕβF̄

L̄ ),

and the claim is proved.
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The proof that T is parallel with respect to the induced connections is
also analogous to that of the nondegenerate case. �

4. The proofs of Theorem 1.2 and Corollary 1.1

Proof of Theorem 1.2. If the pair {f, f̂} in the proof of Theorem 3.1 is
nondegenerate, take the maximal isometric Δd+r-ruled extensions F ′ :
Nn+r → R

n+p and F̂ : Nn+r → L
n+q+2, r ≥ 1, of f and f̂ , respectively,

given by Theorem 2.1.
If {f, f̂} is a degenerate pair, let F ′

1 : Nn+r
1 → H ⊂ L

n+p+2 and F̂1 : Nn+r
1

→ L
n+q+2 be as in the proof of Theorem 3.1 for the degenerate case. Note

that r ≥ 1, since Nn+r
1 has dimension one less than that of the extension

F ′
0 : Nn+r0

0 → L
n+q+2 of f ′ as in the same proof, and r0 ≥ 2.

We claim that F ′ := π ◦ F ′
1 is an immersion, where π : L

n+p+2 = L
2 ×

R
n+p → R

n+p is the projection onto the second factor. Otherwise, Nn+r
1

is degenerate or, equivalently, e0 ∈ TF ′
1
N1 ⊂ TF ′

0
N0 = Tf ′M ⊕ Λ (see (2.3)).

That is, there is X0 ∈ TM such that X0 + e0 ∈ Δ0 = N (φ) as in (2.2). By
(2.11) and J (e0) = ξ0, this implies that Im dξ0 = Im ∇̂⊥ξ0 ⊆ L. On the
other hand, e0 is also normal to f ′, so e0 ∈ L ⊆ S0. It follows that ξ0 is
constant, since dξ0 = ∇̂⊥ξ0 = ∇⊥e0 = 0.

We conclude that f̂ = Ψ̄ ◦ f∗ for some isometric immersion f∗ : Mn →
R

n+q, where Ψ̄ : R
n+q → V

n+q+1 ⊂ L
n+q+2 is the isometric embedding

defined as in (1.2) with respect to a pseudo-orthonormal basis of L
n+q+2

containing ξ0. Since Ψ̄ = T ◦ Ψ for some orthogonal linear transformation T
of L

n+q+2, it follows that I(f̄) = f̂ = Ψ̄ ◦ f∗ = T ◦ Ψ ◦ f∗ = T ◦ I(f∗), that
is, I(f̄) and I(f∗) are isometrically congruent in L

n+q+2. Therefore f̄ and
f∗ are conformally congruent in R

n+q. This contradicts our hypothesis and
proves our claim.

Thus, setting N = N1, also in the degenerate case we obtain maximal
isometric Δd+r-ruled extensions F ′ : Nn+r → R

n+p and F̂ = F̂1 : Nn+r →
L

n+q+2, r ≥ 1, of f and f̂ , respectively.
As in the proof of Theorem 3.1, since F̂ is transversal to the light cone,

by restricting to an open subset, if necessary, we may assume that F̂ is
an embedding, so that N̄ = F̂−1(F̂ (N) ∩ V

n+q+1) ⊃ Mn is an (n + r − 1)-
dimensional manifold. As before, setting F = F ′ ◦ i and F̄ = C(F̂ ◦ i) : N̄ →
R

n+q, where i : N̄ → N is the inclusion map, we have that {F, F̄} is a con-
formal pair, F ◦ j = f and F̄ ◦ j = f̄ , where j is the inclusion of M into N̄ .
Thus, {F, F̄} is a conformal extension of {f, f̄}.

Since {f, f̄} is a genuine conformal pair, we must have r = 1, hence
N̄ = M , F ◦ i = f and C(F̂ ◦ i) = f̄ . A similar argument shows that any
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isometric extension of the pair {F ′, F̂} would give a conformal extension of
the pair {f, f̄}, hence {F ′, F̂} must be a genuine isometric pair. �

Proof of Corollary 1.1. Given a conformal immersion f̄ : Mn → R
n+q, The-

orem 3.1 applies and yields, locally on an open dense subset of Mn, a
(possibly trivial) conformal extension {F, F̄} of {f, f̄} to a mutually Δs-
conformally ruled pair of immersions F : Nn+r → R

n+p and F̄ : Nn+r →
R

n+q, 0 ≤ r ≤ p, with s ≥ n − p − q + 3(�c + r). It suffices to prove that
r = p.

First we show that Lc
Δ(f)⊥ = {0}. Otherwise, if s′ := rankLc

Δ(f)⊥ > 0,
we would have, since Δ ⊂ N (βf

Lc
Δ

⊥), that

νc
s′ ≥ s ≥ n − p − q + 3(p − s′) = n + p − q − 2s′ + (p − s′),

contradicting our assumption on νc
s′ . Therefore, we have

s ≥ n + 2p − q.

Now assume that r < p. Since F is Δ-conformally ruled, we have that
αF = 〈 , 〉ηF on Δ × Δ for some normal vector field ηF . In particular, for any
unit normal vector field ξ ∈ T⊥

F N we obtain that 〈(Af
ξ − 〈ξ, ηF 〉I)D, D〉 = 0,

where D = Δ ∩ TM . Since rankD = s − r ≥ n − (q − p) + 1, then νc
1 ≥ n −

2(q − p) + 2, and this is a contradiction with our assumption on νc
1. �
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