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Infimum of the spectrum of Laplace–Beltrami
operator on a bounded pseudoconvex domain with

a Kähler metric of Bergman type
Song-Ying Li and My-An Tran

The research in paper is a continuation of the work of Li and Wang
[10–12] who studied upper estimates for λ1 = λ1(Δg), the bottom
of the spectrum of Laplace–Beltrami operator on a complete non-
compact Kähler manifold (Mn, g) with a lower bound condition on
holomorphic bisectional curvature and the work of Munteanu [16]
who uses lower bound condition on Ricci curvature. In this paper,
we study the problems on a bounded pseudoconvex domain D in
C

n with a certain normalized complete Kähler metrics u on D
which are called Bergman-type, we find a class of Bergman-type
metrics u on D so that λ1(Δu) = n2. We also provide a simple
condition on metric u, under this condition, we obtain the sharp
upper bound estimates n2 for λ1(Δu) for such class of Bergman-
type metrics, which include Kähler–Einstein metric and Bergman
metric on D.

1. Introduction

Let (Mn, g) be a Kähler manifold of dimension n with Kähler metric g =∑n
i,j=1 gijdzi ⊗ dzj . Let

(1.1) Δg = −4
n∑

i,j=1

gij ∂2

∂zi∂zj

be the Laplace–Beltrami operator with respect to the metric g, where [gij ]t =
[gij ]

−1. Let
(1.2)

λ1(Δg, M) = inf

⎧
⎨

⎩
4

∫

M

n∑

i,j=1

gij ∂f

∂zi

∂f

∂zj
dVg : f ∈ C∞

0 (M), ‖f‖L2 = 1

⎫
⎬

⎭
,

where dVg is the volume measure on M with respect to the Kähler metric g.
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When M is compact and Δg is uniformly elliptic, λ1(Δg) is the first
positive eigenvalue of Δg with Dirichlet boundary condition. A lot of research
has been done on its upper and lower bound estimates and its impact on
geometry and physics (see, for example, the lecture notes of Li [8] and the
paper of Udagawa [17] and references therein).

When (Mn, g) is a complete non-compact Kähler manifold, λ1(Δg) may
not be an eigenvalue of Δg. For example, when M is the complex hyperbolic
space CH

n, λ1(Δg) is no longer an L2 eigenvalue of Δg. However, it is the
infimum of the positive spectrum of Δg. The problem of finding estimates for
λ1(Δg) in the complete non-compact case has been studied by many math-
ematicians. An important upper bound estimate was obtained by Li and
Wang [10]. With the assumption that the holomorphic bisectional curvature
of M is bounded below by −1, they proved that λ1(Δg) ≤ n2. Their esti-
mate is sharp and equality is achieved by the complex hyperbolic space form
CH

n. O. Munteanu obtained another estimate in [16], where he proved that
λ1(Δg) is bounded from above by n2 if the Ricci curvature of M is bounded
from below by −2(n + 1) (or Rij ≥ −(n + 1)gij). His estimate is also sharp
and equality is achieved by the complex hyperbolic space form CH

n. On the
other hand, the precise information on λ1 can be used to deduce information
on the geometry of manifolds. Along this line, many works have been done
by Li, Wang, Ji, Kong, Zou, and several other authors (see [5, 6, 10–12], and
references therein).

The main purpose of this note is to provide more examples of complete
Kähler manifolds for which the precise value of λ1 can be computed. We
consider a bounded pseudoconvex domain D in C

n with a Kähler met-
ric uijdzi ⊗ dzj , where uij = ∂2u

∂zi∂zj
with u being a strictly plurisubhar-

monic exhaustion function for D. If D is Bn, the unit ball in C
n, and

u(z) = − log(1 − |z|2), then uijdzi ⊗ dzj is both the Bergman metric and the
Kähler–Einstein metric on Bn. To find the exact value of λ1(Δu) on Bn, one
approach is to estimate both the upper bound and the lower bound. We first
let f(z) = (1 − |z|2)n/2. To obtain the upper bound, we apply the Rayleigh’s
principle, which gives λ1 ≤

∫
Bn

|∇f |2/
∫
Bn

|f |2 = n2. To obtain the lower
bound, we apply Proposition 9.2 in [9], which states that λ1 ≥ μ > 0 if there
exists a positive function h such that Δuh ≥ μh. In fact, the function f
defined above satisfies Δuf ≥ n2f . This implies that λ1(Δu) = n2 on Bn.
For a general bounded pseudoconvex domain D, the situation is more com-
plicated and, therefore, more subtle arguments are required to obtain the
exact value of λ1(Δu). We will impose various conditions on the exhaustion
function u on D. Under these conditions, we will estimate the upper and
lower bounds for λ1 by constructing special functions and carrying out the
analysis on a specific subdomain of D.
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Let D be a bounded pseudoconvex domain in C
n with C2 boundary.

Let r ∈ C2(Cn) be a defining function for D so that u(z) = − log(−r(z)) is
strictly plurisubharmonic in D. Then the complete Kähler metric induced
by u is

(1.3) u =
n∑

i,j=1

uijdzi ⊗ dzj .

Let

(1.4) |∂u|2u =
n∑

i,j=1

uij∂iu∂ju,

where [uij ]t = [uij ]
−1. Let

(1.5) β(z) = lim sup
w→z

|∂u(w)|2u, z ∈ ∂D.

We will prove the following:

Theorem 1.1. Let D be a bounded pseudoconvex domain in C
n with a

defining function r(z) ∈ C2(Cn). Assume that u(z) = − log(−r(z)) is strictly
plurisubharmonic in D with β(z) = 1 on ∂D. Then, with the notation λ1(D)
= λ1(Δu, D), the following statements hold:

(a) λ1(D) ≤ λ1(D \ K) ≤ n2 for any compact subset K of D;

(b) If, in addition, r(z) is plurisubharmonic in D, then λ1(D) = n2.

Corollary 1.1. Let D be a smoothly bounded strictly pseudoconvex domain
in C

n with defining function r(z) and u(z) = − log(−r(z)). Then

(i) If r is strictly plurisubharmonic in D, then λ1(D) = n2,

(ii) If
∑n

α,β=1 uαβdzα ⊗ dzβ is the Kähler–Einstein metric in D, then λ1

(Δu, D) ≤ n2, where u is the strictly plurisubharmonic solution of
Monge–Ampère equation:

(1.6) detH(u) = e(n+1)u, in D; u = ∞ on ∂D,

(iii) If
∑n

α,β=1 uαβdzα ⊗ dzβ is the Bergman metric on D, then λ1 (Δu, D)
≤ n2, where

(1.7) uij =
1

n + 1
∂2 log K(z, z)

∂zi∂zj
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and K(z, w) is the Bergman kernel function for the domain D.

Remark 1.1. (a) Part (ii) of Corollary 1.2 was proved by Munteanu in
[16], we provide an alternate proof here,

(b) The condition β(z) = 1 on ∂D is an analysis condition, but β(z) = 1
near ∂D, has geometric interpretation related to pseudo scalar curvature for
Kähler–Einstein metric, see [13, 15] for the detail.

This paper is organized as follows: In Section 2, we will prove several the-
orems for a bounded pseudoconvex domain D in C

n with a strictly plurisub-
harmonic exhaustion function u that satisfies various conditions. As a con-
sequence of those results, we will prove Theorem 1.1 there. Corollary 1.2
will be proved in Section 3. Finally, in Section 4, we will provide examples
of weakly (not strictly) pseudoconvex domains for which λ1 = n2. Specifi-
cally, we consider the complex ellipsoid Em = {z = (z1, z2) ∈ C

2 : r(z) < 0},
where r(z) = |z2|2 − (1 − |z1|2)1/m and m > 1. With u(z) = − log(−r(z)),
we will prove that λ1(Δu, Em) = 4 = 22.

2. Preliminary setting and main theorems

Let D be a bounded pseudoconvex domain in C
n with a defining function

r ∈ C2(Cn) so that u(z) = − log(−r(z)) is strictly plurisubharmonic in D.
We consider the Laplace–Beltrami operator Δu associated to the Kähler
metric uijdzi ⊗ dzj on D, which is given by

(2.1) Δu = −4
n∑

i,j=1

uij ∂2

∂zi∂zj
,

where [uij ]t = H(u)−1 = [uij ]
−1.

We start with the following lemma.

Lemma 2.1. Let Ω be any domain in C
n, and let uijdzi ⊗ dzj be any Kähler

metric on Ω, where uij = ∂iju and u ∈ C2(Ω) is strictly plurisubharmonic.
Let f(z) = e−αu(z) in Ω for some α > 0. Then the following statements hold:

(i) The Laplacian of f is given by

(2.2) Δuf(z) = 4αf(z)
(
n − α|∂u|2u

)
,
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where

(2.3) |∂u|2u =
n∑

i,j=1

uijuiuj =
n∑

i,j=1

uij∂iu∂ju,

(ii) If r(z) = −e−u(z) is plurisubharmonic, then |∂u|2u ≤ 1 on Ω,

(iii) Suppose that Ω is bounded with ∂Ω ∈ C1. Let h1, h2 ∈ C2(Ω) ∩ C1(Ω).
Then

∫

Ω

(
h2Δuh1 − h1Δuh2

)
dVu

=
∫

∂Ω

[

h2

(

−
n∑

i,j=1

uijνi
∂h1

∂zj

)

− h1

(

−
n∑

i,j=1

uijνj

∂h2

∂zi

)]

g(z) dσ(z).(2.4)

In particular, if Δuh1(z) ≥ 0 in Ω, h1(z) = 0 on ∂Ω, and h2(z) ≥ 0 on
∂Ω, then

(2.5)
∫

Ω

(
h2Δuh1 − h1Δuh2

)
dVu ≥ 0.

Here,

(2.6) g(z) = detH(u) and dVu(z) = g(z) dv(z),

and ν(z) = (ν1(z), . . . , νn(z)) is the complex outward normal vector to
∂Ω so that |ν(z)|2 = 42.

Proof. Note that

Δuf(z) = −4f(z)
n∑

i,j=1

uij [−αuij + α2uiuj ]

= 4αf(z)
[
n − α|∂u|2u

]
.

Thus (i) follows. Next we prove (ii). Straightforward computation shows that

(2.7) uij =
1

−r

[

rij +
1

−r
rirj

]

, uij = (−r)
[

rij − rirj

|∂r|2r − r

]

,
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where

(2.8) |∂r|2r =
n∑

i,j=1

rijrirj , ri =
n∑

j=1

rijrj and rj =
n∑

i=1

rijri.

Thus, since |∂r|2r ≥ 0, one has

(2.9) |∂u|2u =
1

−r

[

|∂r|2r − |∂r|4r
|∂r|2r − r

]

=
|∂r|2r

|∂r|2r − r
≤ 1.

Finally, by the Divergence Theorem in complex coordinates and the fact
that

∑n
i=1 ∂i(uijg) =

∑n
j=1 ∂j(u

ijg) = 0, we have

∫

Ω

(
h2Δuh1 − h1Δuh2

)
dVu

=
∫

Ω

[
n∑

i=1

∂

∂zi

(

h2

(

−
n∑

j=1

uijg
∂h1

∂zj

))

−
n∑

j=1

∂

∂zj

(

h1

(

−
n∑

i=1

uijg
∂h2

∂zi

))]

dv

=
∫

∂Ω

[

h2(z)

(

−
n∑

i,j=1

uijνi
∂h1

∂zj

)

− h1(z)

(

−
n∑

i,j=1

uijνj

∂h2

∂zi

)]

g(z)dσ(z).

Thus, (2.4) holds. If Δuh1 ≥ 0 in Ω and h1 = 0 on ∂Ω, by the Maximum
Principle, we have −

∑n
i,j=1 uijνi

∂h1
∂zj

≥ 0 on ∂Ω. By the assumption h2 ≥ 0
on ∂Ω and (2.4), we have that (2.5) holds. Therefore, the proof of part (iii)
is complete, and so is the proof of the lemma. �

As a corollary of the previous lemma and a proposition proved by Li
(see Proposition 9.2 in [9]), one has

Proposition 2.1. Let Ω be any domain in C
n and let u ∈ C2(Ω) be strictly

plurisubharmonic. If

(2.10) |∂u|2u ≤ β in Ω,



Laplace–Beltrami operator on a bounded pseudoconvex domain 381

for some constant β > 0, then

(2.11) λ1(Δu, Ω) ≥ n2

β
,

where λ1(Δu, Ω) is the infimum of the positive spectrum of Δu on Ω.

Proof. Let f(z) = e−αu(z). By Lemma 2.1, one has

(2.12) Δuf(z) = 4α
(
n − α|∂u|2u

)
f(z) ≥ 4α(n − αβ)f(z), z ∈ Ω.

By the argument of the proposition of Li [9] on Ω, one has that

(2.13) λ1(Δu, Ω) ≥ 4α(n − αβ), α > 0.

In fact, for any ε > 0, let Ωε ⊂ Ω be a compact subdomain of Ω such that
∂Ωε ∈ C∞ and Ωε ↑ Ω as ε → 0+. Let λ1(ε) be the first positive eigenvalue
for the Dirichlet problem for Δu with the eigenfunction v(z) on Ωε. Then
the regularity of v implies that v is positive in Ωε. Furthermore, v = 0 on
∂Ωε. By (2.5) with h1 = v and h2 = f , we have

(
λ1(ε) − 4α(n − αβ)

) ∫

Ωε

v(z)f(z) dVu(z) ≥ 0.

Thus λ1(ε) ≥ 4α(n − αβ) and

λ1(Δu, Ω) = inf
ε

λ1(ε) ≥ 4α(n − αβ).

We know that 4α(n − αβ) takes its maximum at α = n
2β . Therefore,

λ1(Δu, Ω) ≥ 4
n

2β

(

n − n

2

)

=
n2

β

and the proof of the proposition is complete. �

Notations. For convenience, we will use λ1(Δu, D), λ1(D), and λ1 inter-
changeably to denote the infimum of the positive spectrum of Δu on D. We
let α and β denote positive constants. In addition, dVu is the volume mea-
sure on D with respect to the Kähler metric uijdzi ⊗ dzj , dv is the Lebesgue
volume measure on C

n, and dσ is the Hausdorff measure on any hypersurface
in D.
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Let J be the Fefferman operator defined in [3]. Then

(2.14) J(r) = − det
[

r ∂r

(∂r)∗ H(r)

]

,

where

(2.15) ∂r = [r1, . . . , rn], (∂r)∗ = [r1, . . . , rn]t, and H(r) = [rij ].

We shall prove the following:

Theorem 2.2. If |∂u|2u ≤ β on D and r ∈ C2(D) ∩ C0,1(D) with J(r) being
bounded on D, then

(2.16) λ1(D) ≤ βn2.

Proof. It is known [13] that

(2.17) detH(u) = J(r)
(

1
−r

)n+1

, dVu = det H(u)dv =
J(r)

(−r)n+1 dv.

Let α = n
2 + ε with ε > 0 very small and f(z) = (−r(z))α. Then

(2.18)
∫

D
|f(z)|2dVu =

∫

D

(−r(z))n+2εJ(r)
(−r(z))n+1 dv

=
∫

D

J(r)(z)
(−r(z))1−2ε

dv(z) < ∞

since (−r(z)) ≈ dist(z, ∂D), the (Euclidean) distance of z to ∂D, when z is
near ∂D. Then

λ1 ≤ (∇f,∇f)u

(f, f)u

=

∫
D 4

∑n
i,j=1 uij∂if∂jfdVu

(f, f)u
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= 4α2

∫
D(−r)2α|∂u|2udVu

(f, f)u

= 4α2

∫
D |f(z)|2|∂u|2udVu

(f, f)u

≤ 4α2β

∫
D(−r)2αdVu

(f, f)u

= 4α2β.

Letting α = n
2 + ε → n

2
+, one has

λ1 ≤ n2β.

The proof of the theorem is complete. �

For every ε > 0, let Dε be a subdomain of D defined by

(2.19) Dε = {z ∈ D : r(z) < −ε}.

Note that ∂Dε ∈ C2 and Dε ↑ D as ε → 0+. Then we have the following
result:

Theorem 2.3. If limz→∂D |∂u|2u = β and
∫
∂Dt

J(r)(z)dσ(z) is a continuous
function of t on [0, 1], then

(2.20) λ1(D) ≤ n2β.

Proof. For 0 < ε1 << ε < 1, let η = s/α > 0 and let

f(z) =

{
(−r(z) − ε1)α(ε + r(z))s if 0 < ε1 ≤ −r(z) < ε,

0 otherwise.

Since limz→∂D |∂u|2u = β and limt→0
∫
∂Dt

J(r)(z)dσ(z) =
∫
∂D J(r)(z)dσ(z),

there exists δ(ε) > 0 such that |∂u|2u ≤ β(1 + δ(ε)) on D \ Dε and |
∫
∂Dε
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J(r)(z)dσ(z) −
∫
∂D J(r)(z)dσ(z)| ≤ δ(ε) with limε→0+ δ(ε) = 0. Thus, for z

∈ D \ Dε

n∑

i,j=1

uijfifj = |f(z)|2
n∑

i,j=1

uij(log f)i(log f)j

= α2|f(z)|2
(

r

r + ε1
+ η

r

ε + r

)2 n∑

i,j=1

uijuiuj

≤ α2(1 + δ(ε))βr2(ε + r)2s−2(−ε1 − r)2(α−1)

× ((1 + η)r + ε + ηε1)2.

Let 2α = n and 2s > 2 and let C =
∫
∂D J(r)(z)dσ(z). Then

∫

Dε1\Dε

n∑

i,j=1

uijfifj dVu

≤ α2(1 + δ(ε))β
∫

Dε1\Dε

r2(ε + r)2s−2(−ε1 − r)2α−2

× ((1 + η)r + ε + ηε1)2 det H(u)(z)dv(z)

= α2(1 + δ(ε))β
∫ ε

ε1

∫

∂Dt

(ε − t)2s−2(−ε1 + t)2(α−1)

× ((1 + η)t − ε − ηε1)2t−n+1J(r)dσ(z)dt

≤ α2(1 + δ(ε))βC

∫ ε

ε1

(ε − t)2s−2(t − ε1)2α−2((1 + η)t − ε − ηε1)2t−n+1dt

+ Cδ(ε)α2(1 + δ(ε))β
∫ ε

ε1

(ε − t)2s−2(t − ε1)2α−2

× ((1 + η)t − ε − ηε1)2t−n+1dt

= α2(1 + δ(ε))βC

∫ ε

1+η

ε1

(ε − t)2s−2(t − ε1)2α−2

× ((1 + η)t − ε − ηε1)2t−n+1dt

+ α2(1 + δ(ε))βC

∫ ε

ε

1+η

(ε − t)2s−2(t − ε1)2α−2

× ((1 + η)t − ε − ηε1)2t−n+1dt

+ Cδ(ε)α2(1 + δ(ε))β
∫ ε

ε1

(ε − t)2s−2(t − ε1)2α−2

× ((1 + η)t − ε − ηε1)2t−n+1dt
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≤ α2(1 + δ(ε))βCε2s

∫ ε

1+η

ε1

t−1dt + α2(1 + δ(ε))βC(1 + η2)ε2s

∫ ε

ε

1+η

t−1dt

+ Cδ(ε)α2(1 + δ(ε))β(1 + η2)ε2s

∫ ε

ε1

t−1dt

≤ Cα2(1 + δ(ε))β

×
[

ε2s log
(

ε

ε1

)

+ (1 + η2)ε2s log(1 + η) + δ(ε)(1 + η2)ε2s log
(

ε

ε1

)]

and for ε1 << ε2 ≤ 1
2ε

∫

Dε1\Dε

|f(z)|2dVu(z)

=
∫

Dε1\Dε

(ε + r)2s(−ε1 − r)2α(−r)−n−1J(r)dv(z)

=
∫ ε

ε1

∫

∂Dt

(ε − t)2s(−ε1 + t)2αt−n−1J(r)dσ(z)dt

≥ C

[ ∫ ε

ε1

(ε − t)2s(t − ε1)2αt−n−1dt − δ(ε)
∫ ε

ε1

(ε − t)2s(t − ε1)2αt−n−1dt

]

≥ C

[

(ε − ε2)2s

∫ ε2

ε1

(t − ε1)nt−1−ndt − δ(ε)ε2s

∫ ε

ε1

t−1dt

]

= C

[

(ε − ε2)2s

[ n∑

k=1

Cn
k (−ε1)k 1

k

(
1
εk
1

− 1
εk
2

)

+ log
ε2

ε1

]

− δ(ε)ε2s

∫ ε

ε1

t−1dt

]

= C

[

(ε − ε2)2s

[ n∑

k=1

Cn
k (−1)k 1

k

(

1 − εk
1

εk
2

)

+ log
(

ε2

ε1

)]

− δ(ε)ε2s log
(

ε

ε1

)]

.

Therefore, with ε2 = ε2,

lim
ε1→0+

4
∫
Dε1\Dε

uijfifjdVu
∫
Dε1\Dε

|f(z)|2dVu
≤ 4α2

(
1 + C0δ(ε)

)
β

1
(1 − ε)2s − δ(ε)

,

where C0 is a positive constant independent of ε. By the domain monotonic-
ity of eigenvalues, for any ε > 0, one has that

λ1(D) ≤ λ1(D \ Dε) ≤ 4α2
(
1 + C0δ(ε)

)
β

1
(1 − ε)2s − δ(ε)

.
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Let α = n
2 and then let ε → 0+. Thus, one has

λ1(D) ≤ n2β.

The proof of the theorem is complete. �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1.

Proof. Part (a) of Theorem 1.1 follows from Theorems 2.3 and 2.4.
To prove part (b) of the theorem, since r is plurisubharmonic in D,

without loss of generality, we may assume H(r)(z) is positive definite for
z ∈ D — otherwise, we may use r1(z) = r(z) + ε(|z|2 − A) to replace r —
and carry out the following computation.

By (2.9), one has that

|∂u|2u =
|∂r|2r

−r + |∂r|2r
≤ 1.

By Proposition 2.2, one has λ1(D) ≥ n2. Therefore, part (b) of Theorem 1.1
follows.

Finally, by (2.9), one has

|∂u|2u =
|∂r|2r

−r + |∂r|2r
.

This implies that

β(z) = lim sup
w→z

|∂u(w)|2u = 1, z ∈ ∂D,

and |∂u|2u ≤ 1 on D. By parts (a) and (b), one has proved part (c). Therefore,
the proof of Theorem 1.1 is complete. �

3. Proof of Corollary 1.2

We are now ready to prove Corollary 1.2.
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Proof. (i) We first consider the Laplace–Beltrami operator in Kähler–
Einstein metric. Let u be strictly plurisubharmonic in D so that

(3.1)

{
det H(u) = e(n+1)u in D,

u = +∞ on ∂D

and let

(3.2) r(z) = −e−u(z).

Then J(r) = 1 and by Cheng and Yau [2], Lee and Melrose [7], one has that
r(z) ∈ Cn+2−ε(D) for any ε > 0. Thus ∂r �= 0 on ∂D and

(3.3) detH(r) = eu
(
1 − |∂u|2u

)
on D.

Since det H(r)(z) is bounded on D and u(z) → +∞ as z → ∂D, this implies
that

lim
z→∂D

|∂u|2u = 1.

Applying Theorem 2.4 with β = 1, one has that λ1(D) ≤ n2.
(ii) Let K be the Bergman kernel function, and let u(z) = 1

n+1 log K

(z, z). Then u(z) is strictly plurisubharmonic in D. Let r(z) = −e−u(z). Then
r ∈ Cn+2−ε(D) is a defining function for D by the result of Fefferman [4].
Let ρ ∈ C∞(D) be any strictly plurisubharmonic defining function for D.
By Fefferman [4], one has that

u(z) = − log(−ρ(z)) + b(z),

where b ∈ Cn+2−ε(D). Then

[uij ] = [(− log(−ρ))ij ](In + ρB),

where B is an n × n matrix with bounded entries near ∂D. Let u0 =
− log(−ρ). Then by (2.9), limz→∂D |∂u0|2u0 = 1. It is easy to see that

|∂u0|2u0(1 + Cρ) ≤ |∂u|2u ≤ |∂u0|2u0(1 − Cρ)

for some C >> 1 and z near ∂D. Therefore, limz→∂D |∂u|2u = 1. Apply-
ing Theorem 2.4 with β = 1, one has that λ1(D) ≤ n2 for the Laplace–
Beltrami operator in Bergman metric. Therefore, the proof of Corollary 1.2 is
complete. �
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4. Weakly pseudoconvex domains with λ1 = n2

In this section, we consider the complex ellipsoid in C
2 (n = 2)

(4.1) Em = {(z1, z2) : |z2|2m + |z1|2 < 1}, m > 1,

which is a weakly (not strongly) pseudoconvex domain in C
2. We let

(4.2) r(z) = |z2|2 − (1 − |z1|2)1/m.

Then r(z) ∈ C∞(Em) ∩ C1/m(Em) is a strictly plurisubharmonic defining
function for Em (see [14] for more details) with

(4.3) H(r) =

[
(1−|z1|2)1/m−2

m2

(
m − |z1|2

)
0

0 1

]

.

Let

(4.4) u(z) = − log(−r(z)), z ∈ Em.

Then the following holds:

Proposition 4.1. Let Δu be the Laplace–Beltrami operator associated to
the Kähler metric uijdzi ⊗ dzj on Em. Then λ1(Δu) = 4 = 22.

Proof. By (4.3), one has

|∂r|2r =
m(1 − |z1|2)2−1/m

1 − |z1|2
m

1
m2 (1 − |z1|2)2/m−2|z1|2 + |z2|2

=
(1 − |z1|2)1/m

m − |z1|2
|z1|2 + |z2|2,(4.5)

|∂r|2r − r(z) = (1 − |z1|2)1/m

(

1 +
|z1|2

m − |z1|2

)

=
m(1 − |z1|2)1/m

m − |z1|2
,(4.6)
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|∂u|2u =
|∂r|2r

|∂r|2r − r
=

m|z2|2 − r(z)|z1|2
m(1 − |z1|2)1/m

= 1 + r(z)
m − |z1|2

m(1 − |z1|2)1/m
(4.7)

and

J(r) = det H(r)
[
|∂r|2r − r

]
(4.8)

=
(1 − |z1|2)1/m−2

m

[

1 − |z1|2
m

]

×
[

(1 − |z1|2)1/m +
(1 − |z1|2)1/m

m − |z1|2
|z1|2

]

=
(1 − |z1|2)2/m−2

m
.

Moreover,

(4.9) r11 =
m2

m − |z1|2
(1 − |z1|2)2−1/m, r22 = 1, r12 = 0

and

(4.10) r1 =
m

m − |z1|2
(1 − |z1|2)z1, r2 = z2.

Therefore,

[uij ] = (−r(z))

[

rij − rirj

|∂r|2r − r

]

(4.11)

= (−r(z))

[
m(1 − |z1|2)2−1/m −(1 − |z1|2)1−1/mz1z2

−(1 − |z1|2)1−1/mz2z1 1 − (m−|z1|2)
m

|z2|2
(1−|z1|2)1/m

]

.

Let

(4.12) h(z) = β log(1 − |z1|2) and f = e−αu+h,
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where α and β are positive constants. Then

2∑

i,j=1

uijuihj

= β

[

m(1 − |z1|2)2−1/m 1
m

(1 − |z1|2)1/m−1z1 − (1 − |z1|2)1−1/mz2z1z2

]

×
[

−z1

1 − |z1|2

]

= −β|z1|2
(

1 − |z2|2
(1 − |z1|2)1/m

)

= −β|z1|2(1 − |z1|2)−1/m(−r(z))

and

2∑

i,j=1

uijhij = mβr(1 − |z1|2)1−1/m
[
(1 − |z1|2)−1|z1|2 + 1

]

= mβr(1 − |z1|2)−1/m|z1|2 + mβr(1 − |z1|2)1−1/m

and

2∑

i,j=1

uijhihj = (−r)m(1 − |z1|2)2−1/mβ2(1 − |z1|2)−2|z1|2

= mβ2(−r)|z1|2(1 − |z1|2)−1/m.

Thus

eαu−hΔu

(
e−αu+h

)

= 4αn − 4α2|∂u|2u − 4
2∑

i,j=1

uij(hij + hihj) + 4α2Re
2∑

i,j=1

uijuihj

= 4α(n − α) + 4α2 −r(z)
(1 − |z1|2)1/m

m − |z1|2
m

+ 4mβ
−r(z)

(1 − |z1|2)1/m
(1 − β|z1|2) − 8αβ|z1|2(1 − |z1|2)−1/m(−r(z))

= 4α(n − α) + 4
−r(z)

(1 − |z1|2)1/m

[

βm(1 − β|z1|2)−2βα|z1|2+α2 m − |z1|2
m

]
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= 4α(n − α) + 4
−r(z)

(1 − |z1|2)1/m

[

βm + α2 − (mβ2 + 2βα +
α2

m
)|z1|2

]

and

e2(αu−h)|∂(e−αu+h)|2u(4.13)

= α2|∂u|2u − αuij(uihj + ujhi) + uijhihj

= α2 − α2 −r(z)
(1 − |z1|2)1/m

m − |z1|2
m

+ mβ2 −r(z)
(1 − |z1|2)1/m

|z1|2 + 2αβ|z1|2(1 − |z1|2)−1/m(−r(z))

= α2 +
−r(z)

(1 − |z1|2)1/m

[

− α2 m − |z1|2
m

+ mβ2|z1|2 + 2αβ|z1|2
]

= α2 +
−r(z)

(1 − |z1|2)1/m

[

− α2 +
|z1|2
m

(α2 + m2β2 + 2mαβ)
]

.

Let 2α > n and 2β = 1 with n = 2. Then

m

∫

Em

|f(z)|2(−r(z))−n−1J(r)dv(z)

=
∫

|z1|<1

∫

|z2|2<(1−|z1|2)1/m

(
(1 − |z1|2)1/m − |z2|2

)2α−n−1

× (1 − |z1|2)2/m+2β−2dA(z2)dA(z1)

= π

∫

|z1|<1
(1 − |z1|2)2/m+2β−2

×
∫ (1−|z1|2)1/m

0

(
(1 − |z1|2)1/m − t

)2α−n−1
dtdA(z1)

= π

∫

|z1|<1
(1 − |z1|2)2/m+2β−2 1

2α − n

(
(1 − |z1|2)1/m

)2α−n
dA(z1)

=
π

2α − n

∫

|z1|<1
(1 − |z1|2)

2+2α−n

m
+2β−2dA(z1)

=
π2

2α − n

∫ 1

0
(1 − t)

2α

m
+2β−2 dt

=
mπ2

(2α − n)2α
.
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Moreover,

m

∫

Em

|f(z)|2 (−r(z))
(1 − |z1|2)1/m

×
[

− α2 +
|z1|2
m

(α2 + m2β2 + 2mαβ)
]

(−r(z))−n−1J(r)(z)dv(z)

=
∫

|z1|<1

∫

|z2|2<(1−|z1|2)1/m

(
(1 − |z1|2)1/m − |z2|2

)2α−n

× (α2 + m2/4 + mα)|z1|2
m(1 − |z1|2)1−1/m

dA(z2)dA(z1)

−
∫

|z1|<1

∫

|z2|2<(1−|z1|2)1/m

(
(1 − |z1|2)1/m − |z2|2

)2α−n

× α2

(1 − |z1|2)1−1/m
dA(z2)dA(z1)

=
π

2α − 1

∫

|z1|<1
(1 − |z1|2)

2α

m
−1(α2/m + m/4 + α)|z1|2dA(z1)

− πα2

2α − 1

∫

|z1|<1
(1 − |z1|2)

2α

m
−1dA(z1)

=
π2

2α − 1

∫ 1

0
(1 − t)

2α

m
−1(α2/m + m/4 + α)t dt − α2π2

2α − 1
m

2α

=
π2

(2α − 1)2α

∫ 1

0
(1 − t)

2α

m (α2 + m2/4 + mα)dt − αmπ2

2(2α − 1)

=
π2m

(2α − 1)2α(2α + m)
(α2 + m2/4 + mα) − αmπ2

2(2α − 1)
.

So (4.13) implies that

m

∫

Em

|∇f(z)|2(−r(z))−n−1J(r)dv(z)

= 4α2m

∫

Em

|f(z)|2(−r(z))−n−1J(r)dv(z)

+ 4
[

π2m

(2α − 1)2α(2α + m)
(α2 + m2/4 + mα) − αmπ2

2(2α − 1)

]

.
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Thus

λ1 ≤ 4α2 + 4
(2α − 2)2α

mπ2

×
[

π2m

(2α − 1)2α(2α + m)

(

α2 +
m2

4
+ mα

)

− αmπ2

2(2α − 1)

]

= 4α2 + 4
[

(α + m/2)
(2α − 1)α2

− α

(2α − 1)

]

(2α − 2)α.

Letting 2α → 2+, we have
λ1 ≤ 4.

On the other hand, since |∂u|2u ≤ 1 in Em, Proposition 2.2 implies that

λ1 ≥ 22 = 4.

Therefore, λ1 = 22, and the proof of the proposition is complete. �
Next we will make a remark and pose a question. Note that

log det H(u)(z) = (n + 1)u + log J(r)(z)

= (n + 1)u − 2
m − 1

m
log(1 − |z1|2) − log m,

where n = 2 and m ≥ 1, one has the Ricci curvature

Rij = −∂2 log det H(u)(z)
∂zi∂zj

= −(n + 1)uij +
2(m − 1)

m

−1
(1 − |z1|2)2

δ1iδ1j ,

where n = 2 and m ≥ 1. This leads to the following remark and question.

Remark 4.1. (i) Rij̄ ≤ −(n + 1)gij̄ on Em;

(ii) Rij ≥ −(n + 1)gij if and only if m = 1 and Em = B2.

Problem 4.1. Let D be a smoothly bounded pseudoconvex domain in C
n

with a negative defining function r(z) so that u(z) = − log(−r(z)) is strictly
plurisubharmonic in D induced a Kähler metric u =

∑n
i,j=1 uijdzi ⊗ dzj .

Assume Rij ≥ −(n + 1)gij on (D, u) and λ1 = n2. What can one say about
D?
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