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Rigidity theorems on hemispheres in non-positive
space forms

Lan–Hsuan Huang and Damin Wu

We study the curvature condition which uniquely characterizes
the hemisphere. In particular, we prove the Min-Oo conjecture for
hypersurfaces in Euclidean space and hyperbolic space.

1. Introduction

There have been many results on characterization of manifolds with non-
negative scalar curvature. One of the most important theorems is the Posi-
tive Mass Theorem proved by Schoen–Yau [10, 11], and later by Witten [14].
A special case of their theorem tells us that, if (M3, g) is asymptotically flat
with non-negative scalar curvature, then the ADM mass defined at each end
is non-negative; furthermore, if the ADM mass is zero for one end, then
(M3, g) is isometric to Euclidean space.

For a manifold M with boundary ∂M , one can ask a similar question:
Under what conditions on ∂M is M isometric to a standard model? This
question is, in fact, related to the concept of quasi-local mass in general
relativity. Quasi-local mass is a quantity defined on ∂M , which measures
the energy content of M . Shi and Tam [12] proved that, for a three-manifold
M of non-negative scalar curvature, if ∂M , has positive Gauss curvature,
and if the Brown–York mass is zero, i.e.,

∫
∂M

(H0 − H) dσ = 0,

then M is isometric to a domain in Euclidean space. Here H and H0 are the
mean curvatures of ∂M induced from M and R

3, respectively. Miao [8] and
Hang–Wang [6] also prove some rigidity results on a flat region in Euclidean
space under different assumptions.

Besides a flat region in Euclidean space, one can also consider standard
spheres as the standard model. There have been several attempts to under-
stand what properties can uniquely characterize the hemisphere S

n
+. The

following conjecture was proposed by Min-Oo in 1995.
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Min-Oo Conjecture. Le M be an n-dimensional compact manifold with
boundary ∂M . Assume that M has scalar curvature R ≥ n(n − 1). Further-
more, assume that ∂M is isometric to the unit sphere S

n−1, and that ∂M is
totally geodesic in M . Then M is isometric to the hemisphere S

n
+.

While the conjecture is still open, some partial results have been obtai-
ned. Hang–Wang [6, 7] proved the conjecture under the stronger condition
that, either g is conformal to the standard sphere metric, or the Ricci curva-
ture Ric ≥ (n − 1)g. Eichmair [3] proved the conjecture for n = 3 by assum-
ing Ric > 0 in M and an isoperimetric condition on ∂M . For other recent
results on rigidity, see, for example,[1, 2].

Let us try to understand the assumptions in the Min-Oo conjecture.
Obviously, the condition R ≥ n(n − 1) is necessary, because one can other-
wise perturb the hemisphere at an interior point so that R ≥ n(n − 1) − ε,
for some small ε > 0, without changing the assumptions on the boundary.
However, it seems that the assumptions on the boundary can possibly be
weakened or replaced by other conditions. For example, under the assump-
tion that Ric ≥ (n − 1)g, Hang–Wang [7] relaxed the totally geodesic con-
dition on ∂M to be the condition that ∂M is convex in M .

In this paper, we study the hypersurfaces in Euclidean space and hyper-
bolic space, and obtain several curvature conditions which characterize the
hemisphere. We are able to drop the totally geodesic condition on ∂M ,
and also relax the isometry condition on ∂M . In particular, we prove the
Min-Oo conjecture for the hypersurfaces in these non-positive space forms.
Our method in fact works for a more general situation than the incorpora-
tion condition we state below. Roughly speaking, the proofs work for any
compact hypersurface M with boundary ∂M , as long as the unit n-sphere
can travel through ∂M .

Let M be a smooth hypersurface in R
n+1. Denote by κi, i = 1, . . . , n,

the principle curvatures of M . We define, for each 1 ≤ k ≤ n, the kth mean
curvature of M to be

σk(κ) =
∑

1≤i1<···<ik≤n

κi1 · · ·κik
.

In particular, σ1(κ), 2σ2(κ), and σn(κ) are the mean curvature, the scalar
curvature, and the Gauss–Kronecker curvature of M , respectively. Our con-
vention of the mean curvature is that the unit n-sphere has mean curvature
n with respect to the inward unit normal vector. We say that M is q-convex,
1 ≤ q ≤ n, if its jth mean curvature is positive, for all j = 1, . . . , q. These
definitions also make sense for a C2 hypersurface.
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Let B1 be the open unit ball in the hyperplane R
n × {0} centered at the

origin. Denote by C+ the upper solid hemicylinder, i.e.,

C+ = {(x1, . . . , xn+1) ∈ R
n+1 : r ≤ 1 and xn+1 > 0}.

Throughout this paper, we denote

r =
√

(x1)2 + · · · + (xn)2 for all (x1, . . . , xn) ∈ R
n.

It is convenient to introduce the following definition.

Definition 1.1. Let M ⊂ R
n+1 be a compact hypersurface which is C2 up

to the boundary ∂M . We say that M satisfies the incorporation condition,
if M satisfies the following three conditions

(i) ∂M is diffeomorphic to S
n−1.

(ii) ∂M ⊂ R
n × {0}, and B1 is contained in the region enclosed by ∂M in

R
n × {0}.

(iii) M ∩ C+ = ∅.

The rigidity theorem in Euclidean space is as follows:

Theorem 1.1. Let M ⊂ R
n+1 be a compact C2 hypersurface with boundary

∂M . Assume that M satisfies the incorporation condition. Suppose for some
integer 1 ≤ k ≤ n that

(1.1) σk(κ) ≥
(

n

k

)
,

and that M is k-convex if k ≥ 3. Then M is isometric to the hemisphere
S

n
+.

Note that for k = 2, (1.1) is equivalent to that R ≥ n(n − 1). Also the
convexity is not required for k = 2. This theorem in particular settles the
Min-Oo conjecture for the hypersurfaces in Euclidean space. Furthermore, if
M is a graph of a function, then the incorporation condition can be dropped.
Here is the result for the scalar curvature.

Theorem 1.2. Let u ∈ C2(B1) ∩ C0(B̄1), and Mu be the graph of u over
B̄1 in R

n+1. If Mu has induced scalar curvature R ≥ n(n − 1), then Mu is
isometric to the hemisphere S

n
+.
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Note that the function u here can be prescribed any continuous bound-
ary value. Theorem 1.2 is generalized to the statement for the kth mean
curvature (see Theorem 2.1, in Section 2, for details.).

Next, we consider the upper half-space model of the hyperbolic space
H

n+1. We consider the hypersurfaces satisfying the hyperbolic incorpora-
tion condition (see Definition 3.1 for details). This definition is the same as
Definition 1.1, except that R

n+1 is replaced by H
n+1, that the hyperplane

R
n × {0} in Definition 1.1 (ii) is replaced by R

n × {1}, and that the cylinder
C+ in (iii) is replaced by the following upper solid hemicone.

C+ = {(x1, . . . , xn+1) ∈ H
n+1 : xn+1 ≥ r and xn+1 > 1}.

We obtain similar rigidity results in H
n+1.

Theorem 1.3. Let M ⊂ H
n+1 be a compact C2 hypersurface with bound-

ary ∂M . Assume that M satisfies the hyperbolic incorporation condition.
Suppose for some integer 1 ≤ k ≤ n that

(1.2) σk(κ) ≥ 2k/2
(

n

k

)
,

and that M is k-convex if k ≥ 3. Then M is isometric to S
n
+.

Let us remark that when k = 2, the condition (1.2) is equivalent to
R ≥ n(n − 1), in view of the Gauss equation (3.1). The convexity is not
required for this case. This proves the Min-Oo conjecture in hyperbolic space.
In particular, when M is graphical, we can relax the hyperbolic incorporation
condition. The rigidity result for the scalar curvature is as follows:

Theorem 1.4. Let u ∈ C2(B1) ∩ C1(B̄1) satisfy that u > 0 in B1 and u =
1 on ∂B1. If the graph of u, denoted by Mu, has hyperbolic scalar curvature
R ≥ n(n − 1), then Mu is isometric to S

n
+.

Here the assumption on u regarding boundary regularity is stronger than
that in Theorem 1.2. This is due to the difference of the geometry, which we
will briefly mention below. As a remark, a more general statement of Theo-
rem 1.4 for the kth mean curvature is proved in Section 3 (Theorem 3.3).

An important observation in this paper is that, we can reduce the prob-
lem of scalar curvature (or of σk in general) to that of mean curvature, either
by the Gauss equation, or by the Newton–Maclaurin inequalities (see [5], for
example). The advantage is that the mean curvature operator is relatively
easy to handle, especially in Euclidean space.
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The approach is relatively difficult in hyperbolic space. To begin with,
one must figure out a model geodesic sphere which plays the same role as the
unit n-sphere in Euclidean space. Besides, the hyperbolic mean curvature
operator is significantly different from that in Euclidean space. For example,
the standard comparison principle (see, for example, Gilbarg–Trudinger [4,
pp. 263–267]) does not apply to the hyperbolic mean curvature operator.
We in fact construct a counter example in Example 3.1.

Our main tool to derive the hyperbolic rigidity theorem is the strong
maximum principles including the boundary point lemma. These principles
are known for general quasi-linear operators (see, for example, Serrin [13] and
Pucci–Serrin [9]). But as indicated in Example 3.1, in the actual applications
one has to be careful for different requirements on the ellipticity, regularity,
and coefficients. For completeness, we state and prove the strong maximum
principles in a form we need.

The rest of the paper is arranged as follows. In Section 2, we prove the
rigidity theorems for the hypersurfaces in Euclidean space. In Section 3,
we study the geometry of hypersurfaces in hyperbolic space, and prove the
hyperbolic version of rigidity theorems. Finally, we include in the Appendix
the complete proof of the strong maximum principles for the mean curvature
operators.

2. Hypersurfaces in Euclidean Space

Let M be a C2 hypersurface in R
n+1, and A = (Aj

i ) be the shape operator of
M with the eigenvalues κi for 1 ≤ i ≤ n. We define the kth mean curvature
of M , denoted by σk(A) or σk(κ), to be the kth symmetric polynomial on
κ = (κ1, . . . , κn), i.e.,

σk(A) = σk(κ) =
∑

1≤i1<···<ik≤n

κi1 · · ·κik
.

In particular, if M is smooth, σ1(κ), 2σ2(κ), and σn(κ) are the mean cur-
vature, the scalar curvature, and the Gauss–Kronecker curvature of M ,
respectively. Therefore, we can similarly define for a C2 hypersurface, its
mean curvature, scalar curvature, and Gauss–Kronecker curvature to be
σ1(κ), 2σ2(κ), and σn(κ), respectively. We say a C2 hypersurface is l-convex,
1 ≤ l ≤ n, if its jth mean curvature is positive for all j = 1, . . . , l.

In this section, we may interchangeably use σ1(A), σ1(κ), and H0 to
denote the mean curvature of a hypersurface. The notation Ba stands for
the open ball in R

n × {0} of radius a > 0 centered at the origin. Unless
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otherwise indicated, we always denote

r =
√

(x1)2 + · · · + (xn)2.

Let us first proceed to prove Theorem 1.2, in which the hypersurface is
graphical. Let u ∈ C2(B1) ∩ C0(B̄1) and Mu be the graph of u over B̄1 in
R

n+1, i.e.,

Mu = {(x1, . . . , xn, xn+1) : xn+1 = u(x1, . . . , xn), for all r ≤ 1}.

The mean curvature of Mu, with respect to the upward unit normal vector,
is

σ1(κ) = H0(u) =
n∑

i=1

∂

∂xi

(
∂u/∂xi√
1 + |Du|2

)
.

Below a simple estimate of the total mean curvature is derived.

Proposition 2.1. ∣∣∣∣
∫

B1

H0(u)dx

∣∣∣∣ ≤ nVol(B1).

Proof. It follows from the divergence theorem that, for any 0 < a < 1,

∣∣∣∣
∫

Ba

H0(u)dx

∣∣∣∣ =

∣∣∣∣∣
∫

∂Ba

Du · (y/a)√
1 + |Du|2

dy

∣∣∣∣∣
≤

∫
∂Ba

|Du|√
1 + |Du|2

dy

≤ Vol(∂Ba) =
n

a
Vol(Ba).

Letting a tend to 1 yields the result. �

Proof of Theorem 1.2. Let us invoke a useful identity:

(2.1)
(

H0

n

)2

=
σ2(A)(

n
2

) +
|Å|2

n(n − 1)
.

We denote by Å the trace-free part of A, i.e.,

(2.2) (Å)j
i = Aj

i − H0

n
δj
i .



Rigidity theorem on hemispheres 345

The identity (2.1) follows immediately from substituting (2.2) into

H2
0 − 2σ2(A) = |A|2.

Now if 2σ2(A) ≥ n(n − 1) everywhere, we have by (2.1) that

H2
0 ≥ n2 +

n

n − 1
|Å|2 ≥ n2.

Therefore, by continuity, we have either H0 ≥ n everywhere, or H0 ≤ −n
everywhere. But in view of Proposition 2.1, we obtain in fact an identity
in either case. Applying (2.1) again yields that Å ≡ 0, i.e., Mu is totally
umbilic with all principal curvatures identically equaling 1. Therefore, Mu

is isometric to the hemisphere S
n
+. �

Next, we would like to prove Theorem 1.1. Recall that C+ is the upper
solid hemicylinder given by

C+ = {(x1, . . . , xn+1) ∈ R
n+1 : r ≤ 1 and xn+1 > 0}.

Let M be a C2 hypersurface with boundary ∂M . We say M satisfies the
incorporation condition, if M has the following three conditions:

(i) ∂M is diffeomorphic to S
n−1.

(ii) ∂M ⊂ R
n × {0}, and B1 is contained in the region enclosed by ∂M in

R
n × {0}.

(iii) M ∩ C+ = ∅.

The following lemma settles the mean curvature case in Theorem 1.1.

Lemma 2.1. Let M ⊂ R
n+1 be a compact hypersurface with boundary ∂M .

Assume that M satisfies the incorporation condition. If the mean curvature
of M satisfies that |H0| ≥ n everywhere, then M is isometric to the hemi-
sphere S

n
+.

Proof. Without loss of generality, we can assume that H0 ≥ n with respect
to a non-vanishing unit normal vector field ν on M . More precisely, ν is
the inward unit normal vector if we “close up” M by adding the flat region
enclosed by ∂M in R

n × {0}. Let S(q) be the unit n-sphere in R
n+1 centered

at (0, . . . , 0, q), for each q ∈ R. Since M is compact, we can start with a very
large q so that S(q) has no intersection with M . Then, we continuously
decreases q until S(q) begins to intersect M . We denote q = q0 for this
moment.
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We assert that if S(q0) is tangent to M at an interior point, then M
must be a portion of S(q0), and hence, ∂M = ∂B1 by the incorporation
condition; therefore M is isometric to the hemisphere. Indeed, let V = M ∩
S(q0). Obviously V is a non-empty closed subset in M . If V 	= M , then there
exists an interior point p of M such that p ∈ ∂V . Locally near p, both S(q0)
and M can be written as graphs over TpM . Note that the mean curvature
of the graph of S(q0) is equal to n (instead of −n) with respect to the unit
normal ν. This is guaranteed by the incorporation condition (ii) and (iii).
Applying part (1) of Theorem A.1 yields that M must coincide with S(q0)
over the small neighborhood of p. This contradicts the assumption p ∈ ∂V .
Hence, V = M and the assertion is proved.

The assertion will imply that ∂M ∩ ∂B1 	= ∅, and q0 = 0. Suppose that
∂M ∩ ∂B1 = ∅. Then by the incorporation condition S(q0) has to tangent
to M at some interior point. By the assertion M is a portion of S(q0) and
∂M = ∂B1. It is a contradiction. Thus, we have q0 ≥ 0. If q0 > 0, then again
S(q0) must intersect M at the interior, by the incorporation (iii). We arrive
a contradiction again by the assertion.

It remains to rule out the case that S(0) intersects M only at ∂M . For
any x0 ∈ ∂M ∩ ∂B1, we can locally write M and S(0) as graphs ψ and ϕ
(with ϕ ≥ 0) over Tx0C , respectively. Here C is the cylinder

(2.3) C = {(x1, . . . , xn+1) ∈ R
n+1 | r = 1}.

We have by the second part of Theorem A.1 that

∂(ψ − ϕ)
∂xn+1 (x0) > 0.

Let us also write C locally as the graph ϕ̄ over Tx0C . Because S(0) is tangent
to C at x0, ϕ̄ and ϕ have the same derivatives in the direction of ∂/∂xn+1,
and therefore,

∂(ψ − ϕ̄)
∂xn+1 (x0) =

∂(ψ − ϕ)
∂xn+1 (x0) > 0.

This implies that ψ(x) < ϕ̄(x) for any x = x0 − (0, . . . , 0, t) with t > 0 small.
This holds for any x0 ∈ ∂M ∩ ∂B1. Hence, there exists a small constant δ > 0
such that

M ∩ C−δ = ∅,

in which

C−δ = {(x1, . . . , xn+1) ∈ R
n+1 : r ≤ 1 and − δ < xn+1 < 0}.
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Then, there exists a small constant ε > 0 such that S(q) has no intersection
with M for any −ε < q < 0. Thus, we can continuously decrease q until
S(q) is tangent to some interior point of M . We get a contradiction by the
previous assertion. This completes the proof. �

Proof of Theorem 1.1. It remains to show the theorem for k ≥ 2. If k = 2,
by (2.1) we have

|H0| ≥ n.

The result then follows immediately from Lemma 2.1. Assume for some
k ≥ 3 that M is k-convex and σk(κ) ≥

(
n
k

)
. Recall Maclaurin’s inequality

states that

(2.4)

[
σk(λ)(

n
k

)
]1/k

≤
[

σk−1(λ)(
n

k−1

)
]1/(k−1)

≤ · · · ≤ σ1(λ)
n

,

for any λ = (λ1, . . . , λn) ∈ R
n with σj(λ) > 0 for all j = 1, . . . , k. It follows

that

H0 = σ1(κ) ≥ n

[
σk(κ)(

n
k

)
]1/k

≥ n

everywhere on M . Thus, the result is implied by Lemma 2.1. �

If M is graphical, then the incorporation condition in Theorem 1.1 can
be dropped.

Theorem 2.1. Let u ∈ C2(B1) ∩ C0(B̄1), and Mu be the graph of u over
B̄1 in R

n+1. Assume that Mu is k-convex for some integer 3 ≤ k ≤ n, and

σk ≥
(

n

k

)
.

Then Mu is isometric to S
n
+.

Proof of Theorem 2.1. For 3 ≤ k ≤ n, Maclaurin’s inequality implies that

2σ2(κ) ≥ n(n − 1)

[
σk(κ)(

n
k

)
]1/k

≥ n(n − 1).

The result then follows from Theorem 1.2. �
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3. Hypersurfaces in Hyperbolic Space

We consider the upper half-space model for the hyperbolic space H
n+1 with

the metric x−2
n+1δij . Let M be a C2 hypersurface in H

n+1 and A = (Aj
i ) be

the hyperbolic shape operator. Similar to Euclidean space, we define the
hyperbolic kth mean curvature of M to be the kth symmetric functions on
A. As before, M is called k-convex, if σj(A) > 0 for all 1 ≤ j ≤ k. Note
that σ1(A) is equal to the hyperbolic mean curvature H. In contrast to the
Euclidean case, the scalar curvature of M induced from H

n+1 is defined to
be

(3.1) R = 2σ2(A) − n(n − 1).

(In the following, we call the induced scalar curvature of a hypersurface in
H

n+1 the hyperbolic scalar curvature.)
The reason is due to the Gauss equation. More precisely, assume that M

is a smooth (or at least C3) hypersurface in H
n+1. For any p ∈ M , we choose

an orthonormal basis {ei}n
i=1 of TpM . Denote by R̄ijkl and Rijkl, respectively,

the Riemann curvature tensors of H
n+1 and M at p with respect to {ei}n

i=1.
Then, by the Gauss equation,

K̄ij = R̄ijji = Rijji − AiiAjj + AijAij ,(3.2)

where K̄ij is the sectional curvature of H
n+1 at p. Recall that

K̄ij = −1 + δij , for all 1 ≤ i, j ≤ n.

Summing (3.2) over all i, j = 1, . . . , n yields that

(3.3) −n(n − 1) = R − H2 + |A|2

where R and H are, respectively, the hyperbolic scalar curvature and mean
curvature of M . On the other hand, we know that

2σ2(A) = H2 − |A|2.

This combining (3.3) yields that

R = 2σ2(A) − n(n − 1).

The following simple proposition relates the hyperbolic scalar curvature
to the hyperbolic mean curvature.
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Proposition 3.1. Let M be a C2 hypersurface in H
n+1. Denote by Å the

trace-free part of A. Then,

(3.4)
(

H

n

)2

=
|Å|2

n(n − 1)
+

R

n(n − 1)
+ 1.

As a consequence, if R ≥ n(n − 1), then

H ≥
√

2n,

where the equality holds if and only if M is totally umbilic with all the
principal curvatures identically equaling

√
2.

Proof. The identity (3.4) follows immediately from substituting

|A|2 = |Å|2 +
H2

n

into

R + n(n − 1) = 2σ2(A) = H2 − |A|2.

�

Let us now look at the graph case. Let u = u(x1, . . . , xn) ∈ C2(B1) ∩
C0(B̄1). Throughout this section, we denote for δ > 0,

Bδ = {(x1, . . . , xn, 0) ∈ R
n+1 | r < δ},

and

r = |x| =
√

(x1)2 + · · · (xn)2.

Let Mu be the graph of u over B̄1, i.e.,

Mu = {(x1, . . . , xn, xn+1) | xn+1 = u(x1, . . . , xn), for all r ≤ 1}.

Notice that if u = 1 on ∂B1, then ∂Mu with the induced metric from
H

n+1 is isometric to the unit (n − 1)–sphere S
n−1. The mean curvature of



350 Lan–Hsuan Huang and Damin Wu

Mu, with respect to the upward unit normal vector, is

(3.5) H(u) =
n√

1 + |Du|2
+ u

n∑
i=1

∂

∂xi

(
∂u/∂xi√
1 + |Du|2

)
.

A geodesic sphere in H
n+1 is an Euclidean sphere which is contained in

H
n+1. The hyperbolic mean curvature of a geodesic sphere is given by

H =
q

a
n,

where q is the height of the center and a is the radius. Among all the
hyperbolic geodesic spheres which pass through ∂B1 × {1}, the one of radius√

2 centered at (0, . . . , 0, 2) has the maximum mean curvature, which is equal
to

√
2n. We call this geodesic sphere the model sphere. Let

v = 2 −
√

2 − r2, for all r ≤ 1,

and Mv be the graph of v. Then, Mv is the portion of the model sphere. By
abuse of language, we also refer Mv (or v) as the model sphere.

Proposition 3.2. The model sphere Mv, endowed with the induced metric,
is isometric to the hemisphere S

n
+.

Proof. First, notice that Mv is totally umbilic with all the principal curva-
tures identically equaling

√
2. Let {ei}n

i=1 be an orthonormal basis under
which A is diagonalized. Since Mv is smooth, we can apply the Gauss equa-
tion (3.2) to obtain that

−1 = K̄ij = Kij − 2, for all 1 ≤ i, j ≤ n and i 	= j,

where Kij is the sectional curvature of Mv. Thus, Mv has constant sectional
curvature 1. Moreover, Mv is simply connected, and ∂Mv = ∂B1 × {1} which
is isometric to S

n−1. Therefore, we conclude that Mv is isometric to S
n
+. �

Before proving the theorems, let us remark that the standard comparison
principle (see, for example, Gilbarg–Trudinger [4, pp. 263–267]) does not
apply to the hyperbolic mean curvature operator H(u). One reason is that
the second-order coefficients in H depend on u. See below for a counter
example.
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Example 3.1. Let us compare the model sphere v with the following two
functions:

u1 ≡ 1 and u2 = 1 + ε −
√

1 + ε2 − r2 for all r ≤ 1,

where 0 < ε < 1/2. Observe that u1, u2 ∈ C∞(B̄1) with

u1
∣∣
∂B1

= u2
∣∣
∂B1

= 1 = v
∣∣
∂B1

,

and that

H(u1) = n <
√

2n = H(v) and H(u2) = n
(1 + ε)√
1 + ε2

<
√

2n.

Nevertheless, we have

u1 ≥ v ≥ u2 on B̄1.

Now we would like to show the rigidity theorem for the mean curvature.

Theorem 3.2. Let u ∈ C2(B1) ∩ C1(B̄1) such that u = 1 on ∂B1. If H(u)
≥

√
2n where H is given by (3.5), then

u ≡ v = 2 −
√

2 − r2 on B̄1.

Proof of Theorem 3.2. Let us first point out that

u > 0 on B̄1,

because, if u achieves a non-positive minimum at y0 ∈ B1, then a direct
computation shows that H(u)(y0) ≤ n.

Let

vq(r) = q −
√

q2

2
− r2 for all r = |x| ≤ min

{
1, q/

√
2
}

,

where q > 0 is a constant. Then {vq} defines a family of geodesic spheres of
radius q/

√
2 centered at (0, . . . , 0, q), whose hyperbolic mean curvatures are

all equal to
√

2n.
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The following two inequalities will be used: First, for all q ≥
√

2 and
q 	= 2,

(3.6) vq

∣∣
∂B1

= vq(1) = q −
√

q2

2
− 1 > 1 = u

∣∣
∂B1

.

Second,

(3.7) vq(r) ≥ r for all q > 0 and all r ≤ q/
√

2.

We start with a very large q so that there is no intersection of the graphs
of vq and u. Then, we continuously decrease q until ultimately the graph of
vq begins to intersect the graph of u. Denote by q = q0 for this moment.
Observe that q0 ≥ 2, since vq, with q = 2, is exactly the model sphere v
which intersects the graph of u at least on ∂B1.

We assert that q0 = 2. Suppose that q0 > 2. Then vq0 ∈ C∞(B̄1), and
vq0 ≥ u on B̄1 by the above construction. In view of (3.6), vq0 must be equal
to u at some interior point in B1. Applying Theorem A.1 (1) with Q = H
and V = B1 yields that

vq0 ≡ u on B̄1.

This contradicts with (3.6). The assertion is proved.
Thus, we have

vq0 = v = 2 −
√

2 − r2 for all r ≤ 1.

Clearly, v ∈ C∞(B̄1), and v ≥ u on B̄1. Note that if v = u at some interior
point of B1. Again by Theorem A.1 we have u ≡ v on B̄1. Therefore, to
prove this theorem, it suffices to rule out the remaining case, i.e.,

(3.8) v(x) > u(x) for all x in B1.

Assume that (3.8) holds. We claim that there exists a sufficiently small
constant ε > 0 such that for any 2 > q > 2 − ε,

vq = q −
√

q2

2
− r2 > u on B̄1.

Deferring its proof, we first proceed to exclude (3.8): By the claim we can
find a q ∈ (2 − ε, 2) so that the graph of vq lies completely above the graph
of u over B̄1. Then, we can move the graph of vq downward, by continuously
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decreasing q. Note that eventually the graph of vq must intersect the graph
of u, since u(0) > 0 and

vq(0) = min
B1

vq =
(

1 − 1√
2

)
q → 0, as q → 0+.

We denote by q1 for the moment that the graph of vq1 begins to intersect
the graph of u. There are two cases:

Case 1: Suppose that 2 > q1 ≥
√

2. Then vq1 ∈ C∞(B1) ∩ C0(B̄1) and
vq1 ≥ u on B̄1. Because of (3.6), vq1 has to equal u at some interior point of
B1. By Theorem A.1 (1), we obtain that vq1 ≡ u on B̄1, which is a contra-
diction.

Case 2: Suppose that
√

2 > q1 > 0. Then vq1 ∈ C∞(Bτ ) ∩ C0(B̄τ ) and
vq1 ≥ u on B̄τ , where τ = q1/

√
2 < 1. Note that

∂vq1

∂r
(r) =

r√
q2
1/2 − r2

→ +∞ as r → τ .

This implies that the graph of vq1 cannot touch the graph of u over a point on
∂Bτ , for otherwise u would not be in C2(B1). Thus, vq1 = u at some interior
point of Bτ . However, applying Theorem A.1 (1) yields that vq1 ≡ u on B̄τ ;
this again violates the assumption that u ∈ C2(B1). Therefore, combining
the two cases, we have ruled out (3.8), with the aid of the claim.

Let us now settle the claim. A key observation is that there is a small
constant δ > 0 such that

(3.9) u(x) < |x| = r for all 1 − δ ≤ |x| < 1.

In fact, by (3.8) and applying Theorem A.1 (2) yields that,

0 < (Du − Dv)(x0) · x0 = (Du − Dr)(x0) · x0 for each x0 ∈ ∂B1,

where we use the fact that

Dv(x0) = Dr(x0) for all x0 ∈ ∂B1.

Then by continuity, there exists a sufficiently small δ > 0 such that

D(u − r)(x) · x

|x| > 0 for all 1 − δ ≤ |x| ≤ 1.
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Since u ∈ C1(B̄1), we have by the mean value theorem that

u(x) − r(x) < 0 for all 1 − δ ≤ |x| ≤ 1.

This proves (3.9).
Let

d =
1
2

min{v(x) − u(x) : |x| ≤ 1 − δ}.

Then d > 0, because of (3.8). On the other hand, by the uniform continuity,

sup
B̄1

|v − vq| ≤ C(2 − q) for all (2 +
√

2)/2 < q < 2.

where C > 0 is a constant independent of q and δ. Now let

ε = min{d/C, (2 −
√

2)/2} > 0.

We then have for any 2 − ε < q < 2,

vq ≥ v − Cε > v − d > v − (v − u) = u for all |x| ≤ 1 − δ.

Moreover, combining (3.7) with (3.9) gives that

vq(x) ≥ |x| > u(x), for all 1 − δ ≤ |x| < 1.

Therefore, we conclude that for each 2 − ε < q < 2,

vq(x) > u(x), for all |x| ≤ 1.

This proves the claim, and hence, the proof is completed. �

Remark 3.1. As pointed out by Rick Schoen, if the function u in Theo-
rem 3.2 satisfies in addition that ∂u/∂r = ∂v/∂r on the boundary (which
holds if ∂M is totally geodesic in M), then (3.8) can be immediately ruled
out by Theorem A.1 (2).

Theorem 1.4 then follows immediately from Propositions 3.1 and 3.2,
and Theorem 3.2. There is also a k-convex version of the rigidity theorem,
which also follows from Proposition 3.1 and 3.2, Theorem 3.2, together with
Maclaurin’s inequality (2.4).
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Theorem 3.3. Let u ∈ C2(B1) ∩ C1(B̄1) satisfy that u > 0 in B1 and u =
1 on ∂B1. Let Mu be the graph of u over B̄1. Assume for some 1 ≤ k ≤ n
that

σk(κ) ≥ 2k/2
(

n

k

)
,

and that Mu is k-convex if k ≥ 3, then Mu is isometric to S
n
+.

Next, we generalize the rigidity results to a hypersurface in H
n+1. Sim-

ilar to the Euclidean case, we will introduce the hyperbolic incorporation
condition. Let C+ be the upper solid hemicone, i.e.,

C+ = {(x1, . . . , xn+1) ∈ H
n+1 : xn+1 ≥ r and xn+1 > 1}.

Definition 3.1. Let M ⊂ H
n+1 be a compact C2 hypersurface with bound-

ary ∂M . M is said to have the hyperbolic incorporation condition, if M
satisfies the following three conditions:

(i) The boundary ∂M is diffeomorphic to S
n−1.

(ii) ∂M ⊂ R
n × {1}, and B1 is contained in the region enclosed by ∂M in

R
n × {1}.

(iii) M ∩ C+ = ∅.

The rigidity theorem for hypersurfaces is as follows:

Theorem 3.4. Let M ⊂ H
n+1 be a compact C2 hypersurface with boundary

∂M . Assume that M satisfies the hyperbolic incorporation condition. If M
has hyperbolic mean curvature H ≥

√
2n, then M is isometric to S

n
+.

Proof of Theorem 3.4. The proof is similar to that of Theorem 3.2, so we
only point out the difference here. We use the following family of functions:

vq(r) = q −
√

q2

2
− r2 for all r ≤ q/

√
2,

where q > 0 serves as a parameter. Denote by S(q) the graph of vq. Again
we start with a very large q so that S(q) has no intersection with M . Then
we move S(q) downward, by continuously decreasing q, until q = q0 when
S(q) begins to intersect M .
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Observe that S(q0) ∩ M is contained in the interior of S(q0). To see this,
notice the fact that

∂S(q0) = {(x1, . . . , xn+1) : r = q0/
√

2, xn+1 = q0} ⊂ S(3q0).

Thus, if there exists an x ∈ ∂S(q0) ∩ M , then S(3q0) should also intersect
M at x. This contradicts our choice of q0.

For any y ∈ S(q0) ∩ M , the observation enables us to locally write M
near y as a graph over a small ball V ⊂ B1. The (iii) of incorporation con-
dition assures that the local graph has the right sign for its mean curvature.
Thus, similar to the proof of Theorem 3.2, we can apply Theorem A.1 to
obtain that q0 = 2, and that either M is isometric to S

n
+, or S(2) only inter-

sects M at ∂M . It remains to rule out the latter case. The process goes
the same as that of Theorem 3.2, except that Case 2 here is excluded by
virtue of the above observation. The difference is that a hypersurface can be
vertical at the interior of B1, in contrast to a graph. �

Finally, Theorem 1.3 follows as a corollary of Theorem 3.4 and Maclau-
rin’s inequality.

Added in Proof: The assumption that M being k-convex when k ≥ 3
can in fact be removed from Theorem 1.1, Theorem 1.3, and Theorem 2.1.
We are very grateful to Professor Pengfei Guan for pointing this out to us.

The reason is as follows: First, observe that M is k-convex everywhere
on M as long as it is k-convex at one point. This is due to the well-known
fact (see, for example, [15] and [16, p. 51]): The convex cone Γk ≡ {κ ∈ R

n :
σ1(κ) > 0, σ2(κ) > 0, . . . , σk(κ) > 0} is the connected component of {κ ∈ R

n :
σk(κ) > 0} containing {κ ∈ R

n : κ1 > 0, . . . , κn > 0}. Thus, it suffices to find
a point p in M so that κ(p) ∈ Γk. By the incorporation condition, ∂M lies
in a hyperplane, denoted by L. Because M is bounded, we can start from
a hyperplane which is parallel to L and disjoint from M , and translate the
hyperplane upward until it begins to contact M at some interior point p0.
Then, the principal curvature κi ≥ 0 at p0 for all 1 ≤ i ≤ n (in particular,
in hyperbolic space we have κi > 0 at p0 for all i). By the assumption,
σk(κ) > 0 on M . Applying Maclaurin’s inequality yields that

σ
1/j
j (κ) ≥ σ

1/k
k (κ) > 0 at p0, for all 1 ≤ j < k.

This shows that κ(p0) ∈ Γk.
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Appendix: Strong maximum principles

Throughout the Appendix, we denote by Br the open ball in R
n × {0} of

radius r centered at the origin, and denote B = B1 for simplicity. A function
with subscripts stands for the derivatives of the function. For example,

ui =
∂u

∂xi
, uij =

∂2u

∂xixj
.

Consider

Q(u) =
n∑

i,j=1

ãij(u, Du)uij + b̃(Du) in B,

for all u ∈ C2(B) ∩ C0(B̄). Here

ãij(t, p) =
z(t)√
1 + |p|2

(
δij − pipj

1 + |p|2

)

and

b̃(p) =
b0√

1 + |p|2
for all p = (p1, . . . , pn) ∈ R

n,

in which b0 is a constant, and z = z(t) is a smooth function defined on a
domain in R. In particular, Q is the Euclidean mean curvature operator H0
if b0 = 0 and z ≡ 1; Q is the hyperbolic mean curvature operator H if b0 = n
and z(t) = t.
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Theorem A.1. Let ϕ, ψ ∈ C2(B) ∩ C0(B̄) with z(ψ) > 0 on B̄. Let V be
an open ball in B (V could be B itself) such that

Q(ϕ) ≤ Q(ψ) and ϕ ≥ ψ in V .

(1) If ϕ = ψ at some interior point of V , then

ϕ ≡ ψ on V̄ .

(2) If ϕ ∈ C2(V̄ ), ψ ∈ C2(V ) ∩ C1(V̄ ), ϕ > ψ in V , and ϕ = ψ at some
x0 ∈ ∂V , then

D(ψ − ϕ)(x0) · η > 0,

where η is the outward unit normal vector at x0 to ∂V .

Remark A.1. Part (2) of the theorem is the boundary point lemma for
quasi-linear operators. The regularity of ϕ and ψ can be replaced by that
at least one of ϕ and ψ belongs to C2(V ) ∩ C1,1(V̄ ), while the other is in
C2(V ) ∩ C0,1(V̄ ) and at which z > 0.

The proof of Theorem A.1 is based on Hopf’s strong maximum principle
and boundary point lemma. Let V be the open ball in B, and L be the linear
operator given by

(A.1) Lh =
n∑

i,j=1

aijhij +
n∑

i=1

bihi + ch in V ,

for all h ∈ C2(V ). Assume that the coefficient matrix (aij) is everywhere
positive definite in V , and that aij , bi, and c are continuous in V for all
1 ≤ i, j ≤ n. A special case of Hopf’s strong maximum principle can be
stated as follows:

Lemma A.1. Let L be the operator given by (A.1), and h ∈ C2(V ) such
that h ≤ 0 and Lh ≥ 0 in V . If h = 0 at some interior point of V , then h ≡ 0
on V .

Lemma A.1 follows, in turn, from the following boundary point lemma
due to Hopf.
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Lemma A.2. Let L be the operator given by (A.1), and U be an open ball
in V such that aij, bi, c ∈ C0(Ū) for all 1 ≤ i, j ≤ n, and that there exists a
positive constant θ such that

(A.2)
n∑

i,j=1

aijξiξj ≥ θ|ξ|2,

for all x ∈ U and ξ = (ξ1, . . . , ξn) ∈ R
n. Let h ∈ C2(U) ∩ C1(Ū) such that

Lh ≥ 0 in U . Suppose that for some x0 ∈ ∂U ,

h(x0) = 0 > h(x) for all x ∈ U.

Then,

Dh(x0) · μ > 0,

where μ is the outward unit normal vector to U at x0.

Proof of Lemma A.2. We assume without loss of generality that U = Bδ for
some 0 < δ < 1. Define

w(x) = e−λ|x|2 − e−λδ2
for all x ∈ Bδ,

where λ > 0 is a constant yet to be determined. Notice that

(L − |c|)w ≥ e−λ|x|2

⎡
⎣4λ2

n∑
i,j=1

aijxixj − 2λ

(
n∑

i=1

bixi +
n∑

i=1

aii

)
− (|c| − c)

⎤
⎦

≥ e−λ|x|2 [
4λ2θ|x|2 − 2λC(|x| + 1) − C

]
.

Here θ > 0 is given by (A.2), and C > 0 is a constant depending on the
C0(V̄ )–norms of aii, bi, and c. Now consider the annulus A = Bδ \ Bδ/2. We
can choose a sufficiently large constant λ = λ(θ, δ, C) such that

(A.3) (L − |c|)w > 0 on Ā.
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Since h(x0) = 0 > h(x) on ∂Bδ/2, there is a constant ε > 0 such that

(A.4) h(x0) = 0 ≥ h(x) + εw(x),

for all x ∈ ∂Bδ/2. Note that (A.4) also holds on ∂Bδ, where w is identically
zero. On the other hand, we have by (A.3) that

(L − |c|)(h + εw) > −|c|h ≥ 0 on Ā.

It follows from the usual maximum principle that

h + εw ≤ 0 on Ā.

But h(x0) + εw(x0) = 0. Taking the normal derivative at x0 yields that

∂u

∂μ
(x0) + ε

∂w

∂μ
(x0) ≥ 0.

Thus,
∂u

∂μ
(x0) ≥ −ε

∂w

∂μ
(x0) = 2λεδe−λδ2

> 0.

�
Proof of Lemma A.1. Let

E = {x ∈ V | h(x) = 0}.

Then E is relatively closed in V . By the assumption E is non-empty. We need
to show that E = V . Suppose not. We can then choose a point y ∈ V \ E
such that

d(y, E) < d(y, ∂V )/2.

Consider the largest open ball U ⊂ V \ E centered at y. Then, by the con-
struction Ū ⊂ V and ∂U must intersect E at some point x0. Thus, this
implies that aij , bi, c ∈ C0(Ū) for all i, j = 1, . . . , n, that (A.2) holds for
some constant θ > 0 depending on U , and that h ∈ C2(Ū) and

h(x0) = 0 > h(x) for all x ∈ U.

Applying Lemma A.2 yields that

Dh(x0) 	= 0.

This is a contradiction, since x0 is an interior maximum point of h in V . �
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Proof of Theorem A.1. Note that

Q(ψ) − Q(ϕ)

=
n∑

i,j=1

ãij(ψ, Dψ)(ψij − ϕij) +
n∑

i,j=1

ϕij

[
ãij(ψ, Dψ) − ãij(ψ, Dϕ)

]

+ b̃(Dψ) − b̃(Dϕ) +
n∑

i,j=1

ϕij

[
ãij(ψ, Dϕ) − ãij(ϕ, Dϕ)

]
.

Let h = ψ − ϕ. We can rewrite

0 ≤ Q(ψ) − Q(ϕ) =
n∑

i,j=1

aijhij +
n∑

i=1

bihi + ch = Lh,

where

aij = ãij(ψ, Dψ),

bi =
n∑

l,m=1

ϕlm

∫ 1

0

∂ãlm

∂pi

(
ψ, tDψ + (1 − t)Dϕ

)
dt

+
∫ 1

0

∂b̃

∂pi

(
tDψ + (1 − t)Dϕ

)
dt,

c =
n∑

l,m=1

ϕlm

∫ 1

0

∂ãlm

∂z

(
tψ + (1 − t)ϕ, Dϕ

)
dt,

for all i, j = 1, . . . , n. Then since ϕ, ψ ∈ C2(B), aij , bi, c are continuous in
B for all i, j = 1, . . . , n. Furthermore, we have

n∑
i,j=1

aijξiξj ≥ z(ψ)
(1 + |Dψ|2)3/2 |ξ|2 > 0

for all x ∈ B and ξ ∈ R
n \ {0}. Thus, the first part of Theorem A.1 follows

immediately from Lemma A.1. For the second part, since ϕ ∈ C2(V̄ ) and
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ψ ∈ C1(V̄ ), we have aij , bi, c ∈ C0(V̄ ) for all 1 ≤ i, j ≤ n. Furthermore, (A.2)
holds as we can take

θ = min
V̄

z(ψ)
(1 + |Dψ|2)3/2 > 0.

Now applying Lemma A.2 with U = V yields the result. �
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