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Connected components of spaces of representations
of non-orientable surfaces

Frederic Palesi

Let M be a compact closed non-orientable surface. We show that
the space of representations of the fundamental group of M into
PSL(2, R) has exactly two connected components. These two com-
ponents are the preimages of a certain Stiefel–Whitney characte-
ristic class, computed in a similar way as the Euler class in the
orientable case.
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1. Introduction

Let M be a compact closed surface and G be a connected semisimple Lie
group. Let Hom(π1(M), G) be the space of representations π1(M) → G. An
important problem is to compute the number of connected components of
this space and some topological invariants that separate them. When the
surface is orientable, this problem was considered and solved for a large
variety of groups G (see [1] for a summary of known results). In this paper,
we will focus on the case of representations of non-orientable surfaces into
the group of orientation-preserving isometries of the hyperbolic plane.

The obstruction to lifting a representation ρ : π1(M) → G to the uni-
versal cover of G is a characteristic class of ρ, which is an element of
H2(M, π1(G)). This defines a map:

o2 : Hom(π1(M), G) −→ H2(M, π1(G)).

One knows that:

H2(M, π1(G)) =

{
π1(G) if M is orientable,
π1(G)/2π1(G) if M is non-orientable,

where 2π1(G) is the subgroup of the abelian group π1(G) of elements of the
form {A2|A ∈ π1(G)}. This map provides a useful tool in the study of the
connected components of the representation space Hom(π1(M), G), because
it is continuous and takes values in a discrete set. Hence, it is constant
on the connected components of Hom(π1(M), G) and induces a map also
denoted o2:

o2 : π0(Hom(π1(M), G)) −→ H2(M, π1(G)).

In [4], William Goldman conjectured that for any connected complex
semisimple Lie group G, and any orientable surface M of genus g > 1, the
map o2 is a bijection. Jun Li proved this conjecture in [9]. In the same paper,
he also proved that when the group G is connected compact and semisimple,
the map o2 is also a bijection. When M is non-orientable, the problem has
been studied by Nan-Kuo Ho and Chiu-chu Melissa Liu in [7] who proved



Components of Hom(π, PSL(2, R)) 197

the bijectivity of o2 when the non-orientable genus of M is not 1, 2 or 4 and
G is a connected compact and semisimple Lie group.

These situations contrast with the case when G is a non-compact real
form of a semisimple complex Lie group. The most common example is the
group G = PSL(2, R). The fundamental group of PSL(2, R) is infinite cyclic,
π1(G) = Z. On the other hand, we know that the space of representation of
a finitely presented group into an algebraic semisimple Lie group can have
only finitely many connected components.

When the group G is PSL(2, R) and the surface is orientable, the map
o2 coincides with a well-known invariant of representations, the Euler class:

e : Hom(π, PSL(2, R)) −→ π1(PSL(2, R)) = Z.

For a representation φ, the Euler class satisfies the Milnor–Wood inequality
|e(φ)| ≤ |χ(M)|. The main theorem of [4] states that the connected compo-
nents of Hom(π, G) are the preimages e−1(n), where n is any integer satis-
fying |n| ≤ 2g − 2. Thus the Euler class distinguishes the 4g − 3 connected
components of the space Hom(π, PSL(2, R)). Generalizations of this result
for orientable surfaces have been studied for a variety of other Lie groups, for
example when G = PSL(n, R) (see [6]), G = Sp(2n, R) (see [2, 3]), or when
the symmetric space associated to G is Hermitian (see [10]).

In this paper, our purpose is to generalize the results of Goldman for G =
PSL(2, R) to non-orientable surfaces. When the surface M is non-orientable,
the map o2 is defined as a map:

o2 : Hom(π, G) −→ π1(G)/2π1(G) = Z/2Z.

The main purpose of this paper is to obtain the following:

Theorem 1.1. Let M be a closed non-orientable surface of genus k with
k ≥ 3. Then the map

o2 : π0(Hom(π1(M), PSL(2, R))) −→ Z/2Z

given by the obstruction class is a bijection.

In particular, this theorem states that the set Hom(π1(M), PSL(2, R))
consists of two connected components, which are the preimages o−1

2 (n),
where n ∈ Z/2Z.

This paper is organized as follows. The construction of the obstruction
class o2 for non-orientable surfaces is the object of Section 3. We also define
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it for non-orientable surfaces with boundary and state some basic properties.
To understand this map, we need to have a full description of the square map
in SL(2, R) and its universal cover which can be found in Section 2. Section
4 is devoted to refinements of some of Goldman’s intermediary results, to fit
with the behavior of the square map. Finally, Section 5 contains the core of
the proof of the main theorem.

2. The square map

2.1. Properties of the square map

For the rest of the paper, let G denote the group of orientation preserving
isometries of the hyperbolic plane H

2. We can identify G with the quo-
tient group PSL(2, R) = SL(2, R)/{±I}. We will often denote elements of
PSL(2, R) by matrices, as if they were in SL(2, R).

The map

Q : PSL(2, R) −→ SL(2, R)

[A] �−→ A2

is well-defined as (−A)2 = A2 in SL(2, R). This map satisfies the following
proposition:

Proposition 2.1.

(i) The image of Q is the set

J = {K ∈ SL(2, R)| tr(K) > −2} ∪ {−I}.

(ii) For any K ∈ J \ {−I}, there is a unique A ∈ PSL(2, R) such that
Q(A) = K, given by

A =
K + I√
tr(K) + 2

.

(iii) The fiber Q−1(−I) is the set
{

g

(
0 −1
1 0

)
g−1| g ∈ PSL(2, R)

}
.

Proof. Let K be an element of SL(2, R), and A ∈ SL(2, R) such that A2 = K.
We have the identity tr(A2) = (tr(A))2 − 2, hence the trace satisfies tr(A2) =
tr(K) ≥ −2. If tr(K) > −2, then K is conjugated to one of the following
matrix:
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• Rθ =
(

cos θ sin θ
− sin θ cos θ

)
with θ ∈ R \ {kπ|k ∈ Z}, if tr(K) < 2;

• Ht =
(

cosh t sinh t
sinh t cosh t

)
with t ∈ R

∗ if tr(K) > 2;

• Pu =
(

1 u
0 1

)
with u ∈ R if tr(K) = 2.

In these three cases, the matricial equation A2 = K is easily solved.
Namely we have

• A2 = Rθ if and only if A = ±Rθ/2;

• A2 = Pu if and only if A = ±Pu/2;

• A2 = Ht if and only if A = ±Ht/2.

In each case, one of the solutions satisfies tr(A) > 0, and then we have
tr(A) =

√
tr(K) + 2. The Cayley–Hamilton theorem ensures that A satisfies

A =
K + I√
tr(K) + 2

.

The two solutions in SL(2, R) are identified in PSL(2, R), and hence (ii) is
proved.

If tr(K) = −2, then K is conjugated to the matrix
(

−1 u
0 −1

)
.

If u �= 0, the equation A2 = K has no solutions in SL(2, R).

If u = 0, we have K = −I and then the matrix A =
(

x y
z t

)
∈ SL(2, R)

is a solution, if and only if the coefficients satisfy z �= 0, t = −x and y =
−1−x2

z . Hence the set of solutions in SL(2, R) is⎧⎨
⎩
⎛
⎝x

−1 − x2

z
z −x

⎞
⎠ |x ∈ R, z ∈ R

∗

⎫⎬
⎭ ⊂ SL(2, R).

Each solution in PSL(2, R) has a couple of representatives of the form
(A,−A) that are solutions in SL(2, R). We choose the representative sat-
isfying z > 0 and define the matrix

g =

⎛
⎝

√
z x/

√
z

0 1/
√

z

⎞
⎠ ∈ SL(2, R).
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We see that

g

(
0 −1
1 0

)
g−1 =

⎛
⎝x

−1 − x2

z
z −x

⎞
⎠ = A.

Conversely, any matrix A ∈ PSL(2, R) of the form A = g

(
0 −1
1 0

)
g−1 sat-

isfies Q(A) = −I. �

2.2. The square map in the universal cover

Let G̃ be the universal cover of G with p : G̃ → G the covering map. The
group G is homeomorphic to a solid torus, and hence π1(G) = Z. The center
of G̃ is isomorphic to Z and G = G̃/Z(G̃). We denote by z a generator of
Z(G̃), so that Z(G̃) = 〈z〉.

The group SL(2, R) is a connected 2-fold cover of PSL(2, R), and thus
G̃ is also the universal cover of SL(2, R). We have a canonical identification

SL(2, R) = G̃/〈z2〉.

For A ∈ G̃ we define tr(A) to be the trace of the image of A in SL(2, R). We
say that A /∈ Z(G̃) is elliptic, parabolic or hyperbolic according as | tr(A)| <
2, | tr(A)| = 2 or | tr(A)| > 2 and we denote by E , P and H the subsets of
G̃ consisting of elliptic, parabolic and hyperbolic elements. These subsets
decompose G̃ into infinitely many components, indexed by Z, according to
figure 1.

We can distinguish these regions by the following invariants of A ∈ G̃. An
element A ∈ PSL(2, R) acts by projective automorphisms on the boundary

Figure 1: Domains of G̃.
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∂H
2  S

1. This action lifts to an action of G̃ on S̃1 = R. For A ∈ G̃ we define

mA = min{A · x − x |x ∈ R},

mA = max{A · x − x |x ∈ R}.

Lemma 2.1 ([8]). We have

A ∈ Ei if and only if [mA,mA] ⊂]i, i + 1[,
A ∈ Hi if and only if i ∈ ]mA,mA[,
A ∈ P+

i if and only if mA = i < mA,

A ∈ P−
i if and only if mA < i = mA.

Let J ⊂ G̃ be the set of elements of G̃ whose image in SL(2, R) is in J ,
or equivalently the image of the map

Q̃ : G̃ −→ G̃

[A] �−→ A2.

We have

J =
{

A ∈ G̃| tr(A) > −2
}

∪
{

z2k+1|k ∈ Z

}

For an element K ∈ G̃, we have tr(K) < −2 if and only if K ∈ H2k+1 for a
certain k ∈ Z. Likewise, tr(K) = −2 if and only if K ∈ P2k+1 ∪ {z2k+1}. We
infer that

J = G̃ \
(⋃

k∈Z

H2k+1 ∪ P2k+1

)
.

As a consequence of Proposition 2.1, we can state a path-lifting property
of the square map:

Proposition 2.2. Let {K}t∈[0,1] be a path in G̃ satisfying the following
properties:

(1) For all t in [0, 1], the element Kt is in J .

(2) The set T = {t ∈]0, 1[ |Kt �= z2k+1 for any k ∈ Z} is a finite union of
open intervals.
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(3) For every s ∈ [0, 1] such that Ks = z2k+1, there exists ε > 0, hs and gs

in G̃ such that:

∀t ∈ (s − ε, s), Kt = gsR̃θt
g−1
s

∀t ∈ (s, s + ε), Kt = hsR̃θt
h−1

s

where R̃θt
is a lift of Rθt

with θt converging towards π.

Then, up to a reparametrization of the path {Kt}t∈[0,1], there exists a contin-
uous path {At}t∈[0,1] in G such that for all t ∈ [0, 1], we have Q(At) = [Kt].

Proof. Let {Kt}t∈[0,1] be a path satisfying the hypotheses. The set T is a
finite union of intervals denoted by Ti =]s−

i , s+
i [, with i ∈ {0, m}. On each

interval Ti, the path in G̃ defined by

(2.1) At =
Kt + I√
tr(Kt) + 2

, ∀t ∈ Ti

is continuous.
Let i ∈ {0, 1, . . . , m} such that s−

i �= 0, and k ∈ Z such that Ks = z2k+1.
On a right neighborhood of the point s−

i , we can write Kt = giRθt
g−1
i with

t ∈ T . As limt→s−
i

Kt = z2k+1, we infer that limt→s−
i

θt = π. On this neigh-
borhood, the matrix At is defined (2.1) which gives us

At = giR̃θt/2g
−1
i .

Hence, the path {At}t∈Ti
has a limit when t converges towards s−

i with
t > s−

i . This limit is the matrix in G̃ defined by

A−
i = lim

t
>→s−

i

At = giR̃π/2g
−1
i .

Using the same argument in a left neighborhood of the point s+
i , we

define the matrix A+
i in G̃ by

A−
i = lim

t
>→s+

i

At = hiR̃π/2h
−1
i .

Hence, on each closed interval T̄i, we have a path {At}t∈T̄i
satisfying the

desired properties. It suffices to find paths on the intervals of ]0, 1[\T such
that the endpoints of these paths coincide.

Up to a possible reparametrization of the path {Kt}t∈[0,1], we can assume

that s+
i �= s−

i+1. For all t ∈ [s+
i , s−

i+1] = T ′
i , we have Kt = z2k+1 . The group
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G being connected, there exists a path joining hi to gi+1. Hence, there exists
a path {At}t∈T ′

i
joining A+

i to A−
i+1 in Q−1(I).

The paths {At}t∈Ti
, {At}t∈T ′

i
and {At}t∈Ti+1 are compatible for gluing,

in the sense that the limits at the common boundary points are equals. Hence
the path {At}t∈[0,1] is continuous and satisfies the desired properties. �

Remark 2.1. Without the condition (3), Proposition 2.2 is false. For t �= 0,
consider the matrix in SL(2, R) defined by

gt =
(√

2 + sin
(1

t

)
cos

(1
t

)
cos

(1
t

) √
2 − sin

(1
t

))

and let θt = π − t. Consider the path in SL(2, R) given by

Kt =

{
gtRθt

g−1
t if t �= 0,

−I if t = 0.

This path is continuous and lies within J . For all t �= 0, there is a unique
At ∈ PSL(2, R) such that Q(At) = Kt given by

At = gtR(θt/2)g
−1
t .

However, At does not converge when t goes to 0. Hence the path {Kt}t∈[0,1]
can not be lifted in a continuous path in PSL(2, R).

3. The obstruction map

In this section, we define and compute the map o2 in the context of non-
orientable surfaces, and we give some of its properties.

3.1. Definitions

Let M be a closed non-orientable surface of genus k, with k ≥ 1. Its funda-
mental group admits the following presentation:

π1(M) = π = 〈A1, . . . , Ak|A2
1 · · ·A2

k〉.

The obstruction map

o2 : Hom(π, G) −→ Z/2Z

is defined as follows.
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Let φ be an element of Hom(π, G). Choose arbitrary lifts φ̃(A1), . . . ,
φ̃(Ak) of the images of the generators into G̃. The relation of the fundamental
group implies that the element

(φ̃(A1))2 · · · (φ̃(Ak))2

is a lift of the identity element of G into G̃. Hence, it is an element of
π1(G) ∼= Z. This element is not independent of the chosen lift (contrary to
the analogous situation in orientable surface). However the element is well-
defined up to an element of 2π1(G) ∼= 2Z. This gives a well-defined element
of Z/2Z, that we denote by o2(φ) and we call the Stiefel–Whitney class of φ.

The map o2 is continuous and hence allows us to partition the space
Hom(π, G) into sets that are both open and closed. We can now recall The-
orem 1.1 as

Theorem 3.1. Let M be a closed non-orientable surface of genus k with
k ≥ 3. The space of representations Hom(π1(M), PSL(2, R)) has two con-
nected components, which are given by the preimages o−1

2 (n), where n is an
element of Z/2Z.

To prove this theorem, we have to decompose the surface M into surfaces
that are necessarily surfaces with boundary.

3.2. Surfaces with boundary

In this section, we state a generalization of Theorem 1.1 to surfaces with
boundary.

Let M be a non-orientable surface of genus k with m boundary compo-
nents. Its fundamental group π admits the following presentation:

π = 〈A1, . . . , Ak, C1, . . . , Cm|A2
1 · · ·A2

k · C1 · · ·Cm〉

where C1, . . . , Cm correspond to the components of ∂M . The group π is
isomorphic to the free group in k + m − 1 generators, and the representa-
tion space Hom(π1(M), G) is identified with Gk+m−1. As the group G =
PSL(2, R) is connected, the representation space is also connected. We shall
need to impose boundary conditions in order to define a suitable obstruction
map.

Suppose that an element φ of Hom(π, G) is a homomorphism such that
for each boundary component Ci, the image φ(Ci) is hyperbolic. Let W (M)
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denote the set of all homomorphisms satisfying this condition. For any ele-

ment g ∈ H there exists a unique lift g̃0 in H0. Let φ̃(Ci)
0

be the lift of φ(Ci)
into H0 for any i ∈ {1, . . . , m}. Choose lifts φ̃(A1), . . . , φ̃(Ak) of the images
of the generators into G̃. The relation of the fundamental group implies that
the element

(φ̃(A1))2 · · · (φ̃(Ak))2φ̃(C1)
0
. . . φ̃(Cm)

0

is a lift of the identity element of G into G̃. As in the closed case, this gives a
well-defined element of Z/2Z, that we call the relative Stiefel–Whitney class
of φ, and also denote o2(φ). This gives the map

o2 : W (M) −→ Z/2Z.

The generalization of Theorem 1.1 is the following:

Theorem 3.2. Let M be a compact non-orientable surface with χ(M) ≤
−1. The set W (M) has two connected components, which are given by the
preimages o−1

2 (n) where n is an element of Z/2Z.

The rest of the paper will be devoted to the proof of this theorem.
For an orientable surface with boundary S, we denote by

e : W (S) → Z

the relative Euler class as defined by Goldman in [4]. The relative Stiefel–
Whitney class enjoys a simple additivity formula, similar to the orientable
case.

Proposition 3.1. Let M be a non-orientable surface such that M = M1 ∪
M2 and φ ∈ Hom(π, G) such that for each boundary component C of Mi, the
restriction of φ to π1(C) is hyperbolic. Without loss of generality we may
assume that M1 is non-orientable. Then,

• If M2 is non-orientable

o2(φ) = o2(φ |π1(M1)) + o2(φ |π1(M2)) ∈ Z/2Z.

• If M2 is orientable

o2(φ) = o2(φ |π1(M1)) + ē(φ |π1(M2)) ∈ Z/2Z,

where ē(φ) = e(φ) (mod 2) ∈ Z/2Z
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4. Path-lifting properties

In this section, we construct paths in the representation space of an
orientable surface Σ with non-empty boundary, that join two different com-
ponents of W (Σ). We want to be able to extend a representation of the ori-
entable surface, to a representation of the non-orientable surface obtained
by gluing a Möbius strip along one of the boundary component.

4.1. Path-lifting in the hyperbolic case

In [4], Goldman stated the following:

Lemma 4.1. Let Σ be a three-holed sphere or a one-holed torus, and C
denote a boundary component of Σ. The evaluation map

evC : W (Σ) −→ H
φ �−→ φ(C)

satisfies the path-lifting property.

We recall the following definition:

Definition 4.1. A map f : X −→ Y satisfies the path-lifting property if
for every x ∈ X and a path {yt}0≤t≤1 with f(x) = y0, there exists a non-
decreasing surjective map (a reparametrization of the path) τ : [0, 1] → [0, 1]
and a path {xs}0≤s≤1 such that f(xs) = yτ(s) and x0 = x.

We can generalize Lemma 4.1 to any orientable surface with non-empty
boundary.

Proposition 4.1. Let Σ be an orientable surface with non-empty boundary
C1, . . . , Cm ⊂ ∂Σ. Let C = C1 be one of the boundary components. The map

evC : W (Σ) −→ H
φ �−→ φ(C)

satisfies the path-lifting property.

Proof. We prove this result by induction on the Euler characteristic. Lemma
4.1 shows that the result holds if χ(Σ) = −1. For a surface Σ with χ(Σ) ≤
−2, let Σ =

⋃|χ(Σ)|
i=1 Σi be a decomposition into pair-of-pants, such that C1 is
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a boundary component of Σ1. Denote the two other boundary components
of Σ1 by D1 and D2 and by Si the connected component of Σ \ Σ1 that
contains Di as a boundary component (the surface Si can be empty). We
can choose the pair-of-pants decomposition so that S1 and S2 are disjoint.

Let {γt} be a path in H, and φ0 a representation in W (Σ) with γ0 =
φ0(C). In each connected component of ev−1

C (γ0), there is a representation
φ such that φ(D1) and φ(D2) are hyperbolic. Hence, we can assume without
loss of generality that φ0(D1) and φ0(D2) are hyperbolic. By the path lifting
property of Lemma 4.1, we can find a path of representations ψt in W (Σ1),
such that ψt(C) = γt and ψ0 = φ|π1(Σ1). The paths ψt(D1) and ψt(D2) are
paths in H. When Si is non-empty, we have χ(Si) ≥ χ(Σ) + 1, hence we can
apply the induction hypotheses to lift these paths to paths of representations
{ψ

(i)
t } in W (Si).
The path of representations {φt} defined by

φt(α) =

{
ψt(α) if α ∈ π1(Σ1),
ψ

(j)
t (α) if α ∈ π1(Sj)

satisfies φt(C) = γt, and for all 1 ≤ j ≤ m, the element φt(Cj) is in H for all
t ∈ [0, 1]. Thus, we have a path in W (Σ) with the desired property. �

4.2. Compatibility with Q

Our objective is to find particular paths in the representation space of ori-
entable surfaces, such that the path corresponding to the evaluation of the
representation at one of the boundary component, satisfies the properties of
Proposition 2.2.

First, let Σ be a three-holed sphere. Its fundamental group is free of
rank two. Hence a representation in Hom(π, G) is determined by the image
of the two generators, and Hom(π, G) identifies with G × G. To find paths of
representation in Hom(π, G) it is sufficient to find paths in G × G. As G =
PSL(2, R) is covered by SL(2, R), it is sufficient to find paths in SL(2, R) ×
SL(2, R).

The character map is defined by

χ : SL(2, R) × SL(2, R) −→ R
3

(X, Y ) �−→

⎛
⎝ tr(X)

tr(Y )
tr(XY )

⎞
⎠ .
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This map and the following lemma of Goldman ([4, Corollary 4.5]) will
be useful in the sequel.

Lemma 4.2. Let κ(x, y, z) = x2 + y2 + z2 − xyz − 2 and

ΩR = {(X, Y ) ∈ SL(2, R) × SL(2, R)|[X, Y ] �= I}.

Then the character map

χ : ΩR −→ R
3 \ [−2, 2]3 ∩ κ−1([−2, 2])

satisfies the path-lifting property.

In particular, this lemma is a key ingredient of the following proposition:

Proposition 4.2. Let Σ be a three-holed sphere, with boundary components
B, C, K. Let φ be a representation in W (Σ) such that e(φ) = −1. There
exists a path of representations {φt}0≤t≤1 such that

(1) φ0 = φ.

(2) e(φ1) = 1.

(3) The elements φt(B) and φt(C) are in H for all t ∈ [0, 1].

(4) If {φ̃t}t∈[0,1] is a lift of the path {φt}0≤t≤1 in Hom(π, G̃) such that
φ̃0(K) ∈ zεJ , then the path {zεφ̃t(K)}t∈[0,1] satisfies the hypotheses of
Proposition 2.2.

Proof. Let φ ∈ W (Σ) such that e(φ) = −1, and let φ̃(B)
0
, φ̃(C)

0
be the

unique lifts in H0. The element φ̃(B)
0
φ̃(C)

0
is in H−1, and hence we have

χ

(
φ̃(B)

0
, φ̃(C)

0
)

= (b, c, k)

with b, c ∈]2, +∞[ and k ∈] −∞,−2[. Note that κ(b, c, k) �= 2.
Let g be an element of PSL(2, R) such that, for θ ∈]0, π[, the elliptic

element R′
θ = gRθg

−1 satisfies [φ(B), R′
θ] �= I. For 0 ≤ θ ≤ π, we take the

lift of R′
θ in G̃ belonging to E0, and we denote it also R′

θ. The path in G̃
defined by

Ct =
(

φ̃(B)
0
)−1

R′
t

is continuous and starts from H0. Hence, as H0 is an open set, there exists
s ∈]0, 1[ such that Ct is in H0 for all t ≤ s. Let Bt = φ̃(B)

0
in G̃ for all t ≤ s,
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so the element BtCt = R′
t is in E0. Thus, we have χ(Bs, Cs) = (b, c′, k′), with

b > 2, c′ > 2 and k′ ∈] −2, 2[.
The path in R

3 defined by

bt = b,

ct =
(

1 − t − s

1 − s

)
c′ +

t − s

1 − s
c,

kt =
(

1 − t − s

1 − s

)
k′ +

t − s

1 − s
k,

never meets the set [−2, 2]3 ∩ κ−1([−2, 2]). We also have [Bs, Cs] = [R′
t,

(φ(B))−1] �= I and according to Lemma 4.2, the path can be lifted to a
path {(Bt, Ct)}t≥s starting from (Bs, Cs) such that

χ(Bt, Ct) = (bt, ct, kt).

Moreover, kt < 2 for all t ≥ s, and hence the path {BtCt}t≥s never meets
the set H0 ∪ P0. We infer that B1C1 is an element of H−1, and that the
representation given by (B1, C1) has Euler class −1.

We obtain χ(B1, C1) = (b, c, k) = χ(φ̃(B)
0
, φ̃(C)

0
). We know that κ

(b, c, k) �= 2 and hence the two couples are conjugated by an element g ∈
PGL(2, R). An element of PGL(2, R) that is not in PSL(2, R) conjugates
a representation in e−1(−1) to a representation in e−1(1). As each couple
defines a representation with Euler class −1, they are conjugated by an
element of PSL(2, R). The path

{(gBtg
−1, gCtg

−1)}t∈[0,1]

joins the representation φ with the representation φ′ defined by

φ′(B) = gφ(B)g−1,

φ′(C) = g(φ(B))−1g−1.

Let ψ ∈ W (M) be a representation with e(ψ) = 1. We can use the same
arguments to prove that there exists a path joining the representations ψ
and ψ′, where ψ′ is defined by

ψ′(B) = hψ(B)h−1,

ψ′(C) = h(ψ(B))−1h−1.

Therefore, it suffices to find a path joining φ′ to ψ′ that satisfies the
desired properties to prove the proposition. The elements gφ′(B)g−1 and
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hψ′(B)h−1 are in H and can be connected by a path {Ht}t∈[0,1] that lies
inside H. This defines a path {φ′

t}t∈[0,1] of representations from φ′ to ψ′ by

φ′
t(B) = Ht,

φ′
t(C) = (Ht)−1.

We have constructed paths from φ to φ′, from φ′ to ψ′ and from ψ′ to
ψ, satisfying condition (3). Hence, we have a path {φt}t∈[0,1] that satisfies
(1), (2) and (3).

Finally, let φ̃t : π → G̃ be a lift of the path φt such that φ̃0(K) is in zεJ .

Let φ̃t(B)
0

and φ̃t(C)
0

be the lifts in H0. Then there exists N ∈ N such that
for all t ∈ [0, 1], we have

φ̃t(K) = φ̃t(B)φ̃t(C) = zN

(
φ̃t(B)

0
φ̃t(C)

0
)

.

The element φ̃0(K) is in HN−1 because e(φ) = −1. Hence

φ̃0(K) ∈ zεJ ∩ HN−1,

and thus N and ε are of different parity.

In the construction, the path {φ̃t(B)
0
φ̃t(C)

0
}t∈[0,1] does not meet any

of the Hi ∪ Pi where i is even. We infer that φ̃t(K) does not meet any of
the zεHi ∪ Pi where i is odd, which means φ̃t(K) lies within zεJ . The other
hypotheses of Proposition 2.2 are naturally satisfied by construction. �

For the one-holed torus, the following proposition gives a similar state-
ment.

Proposition 4.3. Let Σ be a one-holed torus, with fundamental group

π1(Σ) = 〈X, Y, K|[X, Y ] = K〉.

Let φ be a representation in W (Σ) such that e(φ) = −1. There exists a path
of representations {φt}t∈[0,1] in Hom(π, G) such that

(1) φ0 = φ.

(2) e(φ1) = 1.

(3) If {φ̃t}t∈[0,1] is a lift of the path in Hom(π, G̃) such that φ̃0(K) ∈ zεJ ,
then the path {zεφ̃t(K)}t∈[0,1] satisfies the hypotheses of Proposition
2.2.
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Proof. Let φ̃ be a lift of φ. The element φ̃(K) = φ̃([X, Y ]) is uniquely deter-
mined and belongs to H−1, thus it belongs to zJ . Let Kt be a path starting
at K0 = φ̃(K) and ending at an element K1 ∈ H1 that lies in the image of
the map

R̃1 : G × G −→ G̃

(A, B) �−→ [A, B].

We can choose Kt so that the path {zKt}t∈[0,1] satisfies the hypotheses of
Proposition 2.2. According to Goldman ([4, Theorem 7.1]), any path in the
image of R̃1 can be lifted to a path in G × G. Hence, there exists a path

{(Xt, Yt)}t∈[0,1] ∈ G2 such that R̃1(Xt, Yt) = Kt for all t ∈ [0, 1].
Moreover, the preimage R̃1(K0) is connected, and hence we can find

a path joining φ to the representation defined by (X0, Y0). The path of
representations defined by (Xt, Yt) has the desired properties. �

We can establish a generalization of this proposition to any orientable
surface with boundary, as follows:

Proposition 4.4. Let Σ be an orientable surface with m ≥ 1 boundary com-
ponents C1, . . . , Cm with χ(Σ) ≤ −1. Let φ be a representation in W (Σ)
with relative Euler class e(φ) = n ≤ |χ(Σ)| − 2. There is a path {φt}t∈[0,1] in
Hom(π, G) such that:

(1) φ0 = φ.

(2) e(φ1) = n + 2.

(3) φt(Cj) ∈ H for all j > 1 and all t ∈ [0, 1].

(4) If {φ̃t}t∈[0,1] is a lift of the path in Hom(π, G̃) such that φ̃0(C1) ∈ zεJ ,
then the path {zεφ̃t(C1)}t∈[0,1] satisfies the hypotheses of Proposition
2.2.

Proof. The result was proved for χ(Σ) = −1, so we can suppose that χ(Σ) ≤
−2. For a surface Σ with χ(Σ) ≤ −2, let Σ =

⋃|χ(Σ)|
i=1 Σi be a decomposition

into pair-of-pants, such that C1 is a boundary component of Σ1. Denote the
two other boundary components of Σ1 by D1 and D2 and by Si the connected
component of Σ \ Σ1 that contains Di as a boundary component (the surface
Si can be empty). We can choose the pair-of-pants decomposition so that
S1 and S2 are disjoint.
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Let φ be a representation in W (Σ) with relative Euler class e(φ) =
n ≤ |χ(Σ)| − 2. We can assume without loss of generality that the elements
φ(D1), φ(D2) are in H. Moreover, as n ≤ |χ(Σ)| − 2 and e−1(n) is connected,
the representation can be chosen such that the restriction ψ0 of φ to π1(Σ1)
satisfies e(ψ0) = −1.

According to Lemma 4.1, there is a path {ψt}t∈[0,1] of representation in
Hom(π1(Σ1), G) starting from ψ0 such that

(1) ψt(D1) and ψt(D2) lie within H.

(2) If {φ̃t}t∈[0,1] is a lift of the path in Hom(π, G̃) such that φ̃0(C1) ∈ zεJ ,
then the path {zεφ̃t(C1)}t∈[0,1] satisfies the hypotheses of Proposition
2.2.

(3) e(ψ1) = 1.

If Si is non-empty, we can apply Lemma 4.1, and find a path {ψ
(i)
t }t∈[0,1]

of representations in W (Si), such that ψ
(i)
t (Di) = ψt(Di) and ψ

(i)
0 is the

restriction of φ to π1(Si). We define the path {φt}t∈[0,1] by

φt(γ) =

{
ψt(γ) if γ ∈ π1(Σ1),
ψ

(i)
t (γ) if γ ∈ π1(Si).

We have φ0 = φ by construction.
For j > 1, if Cj is a boundary component of Si, then φt(Cj) = ψ

(i)
t (Cj) ∈

H, because ψ
(i)
t ∈ W (Si). Otherwise Cj is a boundary component of Σ1 and

Lemma 4.1 gives us that φt(Cj) ∈ H.
We have e(ψ1) = 1 = e(ψ0) + 2, and ψ

(i)
1 is in the same connected com-

ponent of W (Si) than ψ
(i)
0 . Therefore e(ψ(i)

1 ) = e(ψ(i)
0 ).

The additivity formula of the Euler class gives us

e(φ1) = e(ψ1) +
∑

i

e(ψ(i)
1 ) = e(ψ0) + 2 +

∑
i

e(ψ(i)
0 ) = e(φ0) + 2.

The construction of the path {ψt}t∈[0,1] insures that for any lift φ̃t in
Hom(π, G̃), the path φ̃t(C1) = ψ̃t(C1) has the required properties. �

5. Connected components

A non-orientable surface is the connected sum of an orientable surface Σ
with one or two projective planes. The idea is to consider representations
whose restriction to the orientable surface Σ is in W (Σ).
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5.1. Surface decomposition

The following lemma is a direct consequence of Lemma 4.2

Lemma 5.1. Let M be a two-holed projective plane with fundamental group

π = 〈A, B, C, K|A2 = K = BC〉.

If φ is a representation in Hom(π, G) so that φ(C) ∈ H, then there exists a
path {φt}t∈[0,1] in Hom(π, G) such that:

(1) φ0 = φ.

(2) φt(B) is conjugated to φ(B) and φt(C) is conjugated to φ(C), for all
t.

(3) φ1(K) is hyperbolic.

Proof. Let φ̃ : π → G̃ be a lift of the representation φ. Let b, c, k denote the
traces of the elements φ̃(B), φ̃(C) and φ̃(K). If φ(K) is already hyperbolic
there is nothing to prove, thus we assume that −2 ≤ k ≤ 2. For ε > 0, con-
sider the path {(bt, ct, kt)}t∈[0,1] defined by

bt = b, ct = c, kt = t(2 + ε) + (1 − t)k.

As |c| > 2, this path never meets the set [−2, 2]3 ∩ κ−1([−2, 2]), and hence
can be lifted to a path (Bt, Ct) ∈ G̃ × G̃ starting from (B0, C0) = (φ̃(B),
φ̃(C)).

The element K0 = φ̃(K) = (φ̃(A))2 belongs to J . Moreover, the path
Kt = BtCt satisfies kt > −2, and [Bt, Ct] �= I for all t > 0. Hence the path
Kt lies entirely within J \ Z(G̃) for all t > 0. This proves the existence of a
path At ∈ G̃ such that A2

t = Kt.
It follows that {(At, Bt, Ct, Kt)}t∈[0,1] defines a path with the desired

properties. �

Lemma 5.2. Let M be a non-orientable surface with χ(M) ≤ −1 and N
an embedded Möbius strip inside M . Let S be the subsurface M \ N and K
the common boundary ∂S ∩ ∂N .

Let φ be a representation in W (M). There exists a path {φt}t∈[0,1] such
that φ1(K) is hyperbolic.
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Proof. First, assume that ∂M �= ∅ and let C ⊂ ∂M . Then there is an embed-
ded three-holed sphere Σ1 in M , having C and K as boundary compo-
nent. Denote by B its third boundary component. Lemma 5.1 applies to the
restriction ψ of φ to the surface N ∪ Σ1. Hence there exists a path {ψt}t∈[0,1]
such that ψ1(K) is hyperbolic. Moreover, there exists a path {Ut}t∈[0,1] in
G̃ such that ψt(B) = Utφ(B)U−1

t . The path {φt}t∈[0,1] given by

φt(γ) = ψt(γ) if γ ∈ π1(N ∪ Σ1),

φt(γ) = Utφ(γ)U−1
t if γ ∈ π1(S),

has the desired properties.
Now, if M is a closed surface. Then S is a one-holed torus or χ(S) ≤ −2.
If S is a one-holed torus, let ψ be the restriction of φ to π1(S), and ψ̃

a lift of this representation. Using the same arguments as in the proof of
Proposition 4.3, there exists a path {ψt}t∈[0,1] joining ψ to a representation
ψ′ such that ψ′(K) is hyperbolic. This path has the property that whenever
zεψ̃0(K) is in J , the path {zεψ̃t(K)}t∈[0,1] lies within J . Hence, there exists
a path {At}t∈[0,1] in G̃ such that At = zεψ̃t(K) and this defines a path of
representations {φt}t∈[0,1] in Hom(π, G) with the desired properties.

Otherwise, we have χ(S) ≤ −2. There is an embedded three-holed sphere
Σ1 in S having K as boundary component, such that S \ Σ1) has two con-
nected components, one of them being a one-holed torus T . Denote by B
and C the other boundary components of Σ1. The surface Σ = T ∪ Σ1 is a
two-holed torus with boundary components K and B. There exists a path
{ψt}t∈[0,1] in Hom(π1(Σ), G) starting from ψ0 = φ|π1(Σ) such that φ1(C)
is hyperbolic (see Goldman [4, Lemma 9.3]). Moreover there exists path
{Ut}t∈[0,1] and {Vt}t∈[0,1] in G̃ such that

ψt(K) = Utφ(K)U−1
t , ψt(B) = Vtφ(B)V −1

t .

The path defined by

φt(γ) = ψt(γ) if γ ∈ Σ,

φt(γ) = Utφ(γ)U−1
t if γ ∈ N,

φt(γ) = Vtφ(γ)V −1
t if γ ∈ M \ (N ∪ Σ),

is such that φ1(C) is hyperbolic. Now we can apply Lemma 5.1 to the restric-
tion of the representation φ1 to π1(N ∪ Σ1) and apply the same argument
as in the case of an open surface. �
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5.2. Proof of main theorem

We resume now the proof of Theorem 3.2.
First, let M be a non-orientable surface of odd genus k. There is an

embedded Möbius strip N inside M such that the surface S = M \ N is an
orientable surface with Euler characteristic χ(S) = χ(M). Let φ and ψ be
two representations in W (M) such that o2(φ) = o2(ψ). We denote by φ′ and
ψ′ the restrictions to π1(S) of the representations φ and ψ. According to
Proposition 5.2, we can assume that φ(K) and ψ(K) are hyperbolic, and
hence φ′ and ψ′ are in W (S).

We infer from Proposition 4.4 that we can choose φ and ψ such that
the relative Euler classes e(φ′) and e(ψ′) are in {|χ(S)|, |χ(S)| − 1}. Indeed,
we can find a path of representations {φ′

t}t∈[0,1] in Hom(π1(S), G) such that
e(φ′

1) ∈ {|χ(S)|, |χ(S)| − 1} and φ′
t(K) ∈ J . Hence, according to Proposition

2.2, we can lift the path of representations {φ′
t}t∈[0,1] to a path {φt}t∈[0,1] of

representations in W (M).
A presentation of the fundamental group is given by

π =
〈
A, X1, . . . , Yg, C1, . . . , Cm |A2[X1, Y1] · · · [Xg, Yg]C1 · · ·Cm

〉
where element A satisfies A2 = K. Choose lifts φ̃(A), φ̃(X1), . . . , φ̃(Yg) in G̃

and let φ̃(C1)
0
, . . . , φ̃(Cm)

0
be the lifts in H0. By definition of the map o2,

we have(
φ̃(A)

)2 [
φ̃(X1), φ̃(Y1)

]
· · ·

[
φ̃(Xg), φ̃(Yg)

]
φ̃(C1)

0
· · · φ̃(Cm)

0
= z2n+o2(φ)

for some n ∈ Z.
On the other hand, if φ̃(K)

0
is the lift of φ(K) in H0 then by definition

of the Euler class we have

φ̃(K)
0 [

φ̃(X1), φ̃(Y1)
]
· · ·

[
φ̃(Xg), φ̃(Yg)

]
φ̃(C1)

0
· · · φ̃(Cm)

0
= ze(φ′).

Hence, we obtain

(φ̃(A))2 = zN φ̃(K)
0

with N = e(φ′) − o2(φ) − 2n. This element belongs to J ∩ HN , thus N is
even. This implies that ē(φ′) = o2(φ) in Z/2Z, where ē = e(mod 2). The same
applies to ψ and hence ē(ψ) = o2(ψ) in Z/2Z. We infer that e(φ′) = e(ψ′),
which implies that φ′ and ψ′ are in the same connected component of W (S).
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Therefore there exists a path {φ′
t}t∈[0,1] joining φ′ to ψ′ in W (S). The

fact that we can find a path joining φ to ψ in W (M) is a consequence of the
following Lemma:

Lemma 5.3. Let M be a non-orientable surface with χ(M) ≤ −1. Let
N ⊂ M be an embedded Möbius strip and S = M \ N . Let φ and ψ be rep-
resentations in W (M), and let φ′ and ψ′ be their restrictions to π1(S).

If φ′ and ψ′ are in W (S), then a path joining φ′ and ψ′ in W (S) can be
extended to a path joining φ and ψ in W (M).

Proof. Let A be the generator of π1(N) ↪→ π1(M), so that A2 = K is the
homotopy class of the common boundary of N and S. In particular the con-
dition φ′ ∈ W (S) implies that φ′(K) is hyperbolic. Let {φ′

t}t∈[0,1] be the path
joining φ′ and ψ′ in W (S). There exists A0 in G such that φ′

0(K) = A2
0. More-

over for any t ∈ [0, 1], the element φ′
t(K) is hyperbolic. Hence according to

Proposition 2.1, for any t ∈ [0, 1] there exists a unique element At such that
A2

t = φ′
t(K). We have the unicity of At and this proves that A0 = φ(A) and

A1 = ψ(A). Thus, we can define the path φt in W (M) by

φt(γ) = φ′
t(γ) if γ ∈ π1(S),

φt(A) = At.

This path joins φ to ψ in W (M). �

Now, let M be a non-orientable surface of even genus k and N an embed-
ded Möbius strip inside M with boundary K. The surface S = M \ N is a
non-orientable surface of odd genus. Let φ and ψ be two representations in
W (M) such that o2(φ) = o2(ψ). According to Lemma 5.2, we can assume
that φ(K) and ψ(K) are hyperbolic.

We consider the restrictions φ′ and ψ′ of φ and ψ to π1(S). The previous
case ensures that we can find a path {φ′

t}t∈[0,1] in W (S) joining φ′ to ψ′.
Then, Lemma 5.3 gives us a path joining φ to ψ in W (M), which concludes
the proof.
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